Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2011 The Chromium OS Authors. |
| 3 | * See file CREDITS for list of people who contributed to this |
| 4 | * project. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation; either version 2 of |
| 9 | * the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 19 | * MA 02111-1307 USA |
| 20 | */ |
| 21 | |
| 22 | /* Tegra2 Clock control functions */ |
| 23 | |
| 24 | #include <asm/io.h> |
| 25 | #include <asm/arch/clk_rst.h> |
| 26 | #include <asm/arch/clock.h> |
| 27 | #include <asm/arch/timer.h> |
| 28 | #include <asm/arch/tegra2.h> |
| 29 | #include <common.h> |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 30 | #include <div64.h> |
Simon Glass | 2966cd2 | 2012-03-06 17:10:27 +0000 | [diff] [blame] | 31 | #include <fdtdec.h> |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 32 | |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 33 | /* |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 34 | * This is our record of the current clock rate of each clock. We don't |
| 35 | * fill all of these in since we are only really interested in clocks which |
| 36 | * we use as parents. |
| 37 | */ |
| 38 | static unsigned pll_rate[CLOCK_ID_COUNT]; |
| 39 | |
| 40 | /* |
| 41 | * The oscillator frequency is fixed to one of four set values. Based on this |
| 42 | * the other clocks are set up appropriately. |
| 43 | */ |
| 44 | static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { |
| 45 | 13000000, |
| 46 | 19200000, |
| 47 | 12000000, |
| 48 | 26000000, |
| 49 | }; |
| 50 | |
| 51 | /* |
| 52 | * Clock types that we can use as a source. The Tegra2 has muxes for the |
| 53 | * peripheral clocks, and in most cases there are four options for the clock |
| 54 | * source. This gives us a clock 'type' and exploits what commonality exists |
| 55 | * in the device. |
| 56 | * |
| 57 | * Letters are obvious, except for T which means CLK_M, and S which means the |
| 58 | * clock derived from 32KHz. Beware that CLK_M (also called OSC in the |
| 59 | * datasheet) and PLL_M are different things. The former is the basic |
| 60 | * clock supplied to the SOC from an external oscillator. The latter is the |
| 61 | * memory clock PLL. |
| 62 | * |
| 63 | * See definitions in clock_id in the header file. |
| 64 | */ |
| 65 | enum clock_type_id { |
| 66 | CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */ |
| 67 | CLOCK_TYPE_MCPA, /* and so on */ |
| 68 | CLOCK_TYPE_MCPT, |
| 69 | CLOCK_TYPE_PCM, |
| 70 | CLOCK_TYPE_PCMT, |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 71 | CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */ |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 72 | CLOCK_TYPE_PCXTS, |
| 73 | CLOCK_TYPE_PDCT, |
| 74 | |
| 75 | CLOCK_TYPE_COUNT, |
| 76 | CLOCK_TYPE_NONE = -1, /* invalid clock type */ |
| 77 | }; |
| 78 | |
| 79 | /* return 1 if a peripheral ID is in range */ |
| 80 | #define clock_type_id_isvalid(id) ((id) >= 0 && \ |
| 81 | (id) < CLOCK_TYPE_COUNT) |
| 82 | |
| 83 | char pllp_valid = 1; /* PLLP is set up correctly */ |
| 84 | |
| 85 | enum { |
| 86 | CLOCK_MAX_MUX = 4 /* number of source options for each clock */ |
| 87 | }; |
| 88 | |
| 89 | /* |
| 90 | * Clock source mux for each clock type. This just converts our enum into |
| 91 | * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS |
| 92 | * is special as it has 5 sources. Since it also has a different number of |
| 93 | * bits in its register for the source, we just handle it with a special |
| 94 | * case in the code. |
| 95 | */ |
| 96 | #define CLK(x) CLOCK_ID_ ## x |
| 97 | static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = { |
| 98 | { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) }, |
| 99 | { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) }, |
| 100 | { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) }, |
| 101 | { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) }, |
| 102 | { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 103 | { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 104 | { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) }, |
| 105 | { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) }, |
| 106 | }; |
| 107 | |
| 108 | /* |
| 109 | * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is |
| 110 | * not in the header file since it is for purely internal use - we want |
| 111 | * callers to use the PERIPH_ID for all access to peripheral clocks to avoid |
| 112 | * confusion bewteen PERIPH_ID_... and PERIPHC_... |
| 113 | * |
| 114 | * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be |
| 115 | * confusing. |
| 116 | * |
| 117 | * Note to SOC vendors: perhaps define a unified numbering for peripherals and |
| 118 | * use it for reset, clock enable, clock source/divider and even pinmuxing |
| 119 | * if you can. |
| 120 | */ |
| 121 | enum periphc_internal_id { |
| 122 | /* 0x00 */ |
| 123 | PERIPHC_I2S1, |
| 124 | PERIPHC_I2S2, |
| 125 | PERIPHC_SPDIF_OUT, |
| 126 | PERIPHC_SPDIF_IN, |
| 127 | PERIPHC_PWM, |
| 128 | PERIPHC_SPI1, |
| 129 | PERIPHC_SPI2, |
| 130 | PERIPHC_SPI3, |
| 131 | |
| 132 | /* 0x08 */ |
| 133 | PERIPHC_XIO, |
| 134 | PERIPHC_I2C1, |
| 135 | PERIPHC_DVC_I2C, |
| 136 | PERIPHC_TWC, |
| 137 | PERIPHC_0c, |
| 138 | PERIPHC_10, /* PERIPHC_SPI1, what is this really? */ |
| 139 | PERIPHC_DISP1, |
| 140 | PERIPHC_DISP2, |
| 141 | |
| 142 | /* 0x10 */ |
| 143 | PERIPHC_CVE, |
| 144 | PERIPHC_IDE0, |
| 145 | PERIPHC_VI, |
| 146 | PERIPHC_1c, |
| 147 | PERIPHC_SDMMC1, |
| 148 | PERIPHC_SDMMC2, |
| 149 | PERIPHC_G3D, |
| 150 | PERIPHC_G2D, |
| 151 | |
| 152 | /* 0x18 */ |
| 153 | PERIPHC_NDFLASH, |
| 154 | PERIPHC_SDMMC4, |
| 155 | PERIPHC_VFIR, |
| 156 | PERIPHC_EPP, |
| 157 | PERIPHC_MPE, |
| 158 | PERIPHC_MIPI, |
| 159 | PERIPHC_UART1, |
| 160 | PERIPHC_UART2, |
| 161 | |
| 162 | /* 0x20 */ |
| 163 | PERIPHC_HOST1X, |
| 164 | PERIPHC_21, |
| 165 | PERIPHC_TVO, |
| 166 | PERIPHC_HDMI, |
| 167 | PERIPHC_24, |
| 168 | PERIPHC_TVDAC, |
| 169 | PERIPHC_I2C2, |
| 170 | PERIPHC_EMC, |
| 171 | |
| 172 | /* 0x28 */ |
| 173 | PERIPHC_UART3, |
| 174 | PERIPHC_29, |
| 175 | PERIPHC_VI_SENSOR, |
| 176 | PERIPHC_2b, |
| 177 | PERIPHC_2c, |
| 178 | PERIPHC_SPI4, |
| 179 | PERIPHC_I2C3, |
| 180 | PERIPHC_SDMMC3, |
| 181 | |
| 182 | /* 0x30 */ |
| 183 | PERIPHC_UART4, |
| 184 | PERIPHC_UART5, |
| 185 | PERIPHC_VDE, |
| 186 | PERIPHC_OWR, |
| 187 | PERIPHC_NOR, |
| 188 | PERIPHC_CSITE, |
| 189 | |
| 190 | PERIPHC_COUNT, |
| 191 | |
| 192 | PERIPHC_NONE = -1, |
| 193 | }; |
| 194 | |
| 195 | /* return 1 if a periphc_internal_id is in range */ |
| 196 | #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ |
| 197 | (id) < PERIPHC_COUNT) |
| 198 | |
| 199 | /* |
| 200 | * Clock type for each peripheral clock source. We put the name in each |
| 201 | * record just so it is easy to match things up |
| 202 | */ |
| 203 | #define TYPE(name, type) type |
| 204 | static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = { |
| 205 | /* 0x00 */ |
| 206 | TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT), |
| 207 | TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT), |
| 208 | TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT), |
| 209 | TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM), |
| 210 | TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS), |
| 211 | TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), |
| 212 | TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT), |
| 213 | TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT), |
| 214 | |
| 215 | /* 0x08 */ |
| 216 | TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT), |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 217 | TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16), |
| 218 | TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16), |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 219 | TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT), |
| 220 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 221 | TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), |
| 222 | TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT), |
| 223 | TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT), |
| 224 | |
| 225 | /* 0x10 */ |
| 226 | TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT), |
| 227 | TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT), |
| 228 | TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), |
| 229 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 230 | TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT), |
| 231 | TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT), |
| 232 | TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA), |
| 233 | TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA), |
| 234 | |
| 235 | /* 0x18 */ |
| 236 | TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT), |
| 237 | TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT), |
| 238 | TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT), |
| 239 | TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA), |
| 240 | TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA), |
| 241 | TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), |
| 242 | TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT), |
| 243 | TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT), |
| 244 | |
| 245 | /* 0x20 */ |
| 246 | TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA), |
| 247 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 248 | TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT), |
| 249 | TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT), |
| 250 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 251 | TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT), |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 252 | TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16), |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 253 | TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT), |
| 254 | |
| 255 | /* 0x28 */ |
| 256 | TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT), |
| 257 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 258 | TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), |
| 259 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 260 | TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| 261 | TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT), |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 262 | TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16), |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 263 | TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT), |
| 264 | |
| 265 | /* 0x30 */ |
| 266 | TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT), |
| 267 | TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT), |
| 268 | TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT), |
| 269 | TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT), |
| 270 | TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT), |
| 271 | TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT), |
| 272 | }; |
| 273 | |
| 274 | /* |
| 275 | * This array translates a periph_id to a periphc_internal_id |
| 276 | * |
| 277 | * Not present/matched up: |
| 278 | * uint vi_sensor; _VI_SENSOR_0, 0x1A8 |
| 279 | * SPDIF - which is both 0x08 and 0x0c |
| 280 | * |
| 281 | */ |
| 282 | #define NONE(name) (-1) |
| 283 | #define OFFSET(name, value) PERIPHC_ ## name |
| 284 | static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = { |
| 285 | /* Low word: 31:0 */ |
| 286 | NONE(CPU), |
| 287 | NONE(RESERVED1), |
| 288 | NONE(RESERVED2), |
| 289 | NONE(AC97), |
| 290 | NONE(RTC), |
| 291 | NONE(TMR), |
| 292 | PERIPHC_UART1, |
| 293 | PERIPHC_UART2, /* and vfir 0x68 */ |
| 294 | |
| 295 | /* 0x08 */ |
| 296 | NONE(GPIO), |
| 297 | PERIPHC_SDMMC2, |
| 298 | NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */ |
| 299 | PERIPHC_I2S1, |
| 300 | PERIPHC_I2C1, |
| 301 | PERIPHC_NDFLASH, |
| 302 | PERIPHC_SDMMC1, |
| 303 | PERIPHC_SDMMC4, |
| 304 | |
| 305 | /* 0x10 */ |
| 306 | PERIPHC_TWC, |
| 307 | PERIPHC_PWM, |
| 308 | PERIPHC_I2S2, |
| 309 | PERIPHC_EPP, |
| 310 | PERIPHC_VI, |
| 311 | PERIPHC_G2D, |
| 312 | NONE(USBD), |
| 313 | NONE(ISP), |
| 314 | |
| 315 | /* 0x18 */ |
| 316 | PERIPHC_G3D, |
| 317 | PERIPHC_IDE0, |
| 318 | PERIPHC_DISP2, |
| 319 | PERIPHC_DISP1, |
| 320 | PERIPHC_HOST1X, |
| 321 | NONE(VCP), |
| 322 | NONE(RESERVED30), |
| 323 | NONE(CACHE2), |
| 324 | |
| 325 | /* Middle word: 63:32 */ |
| 326 | NONE(MEM), |
| 327 | NONE(AHBDMA), |
| 328 | NONE(APBDMA), |
| 329 | NONE(RESERVED35), |
| 330 | NONE(KBC), |
| 331 | NONE(STAT_MON), |
| 332 | NONE(PMC), |
| 333 | NONE(FUSE), |
| 334 | |
| 335 | /* 0x28 */ |
| 336 | NONE(KFUSE), |
| 337 | NONE(SBC1), /* SBC1, 0x34, is this SPI1? */ |
| 338 | PERIPHC_NOR, |
| 339 | PERIPHC_SPI1, |
| 340 | PERIPHC_SPI2, |
| 341 | PERIPHC_XIO, |
| 342 | PERIPHC_SPI3, |
| 343 | PERIPHC_DVC_I2C, |
| 344 | |
| 345 | /* 0x30 */ |
| 346 | NONE(DSI), |
| 347 | PERIPHC_TVO, /* also CVE 0x40 */ |
| 348 | PERIPHC_MIPI, |
| 349 | PERIPHC_HDMI, |
| 350 | PERIPHC_CSITE, |
| 351 | PERIPHC_TVDAC, |
| 352 | PERIPHC_I2C2, |
| 353 | PERIPHC_UART3, |
| 354 | |
| 355 | /* 0x38 */ |
| 356 | NONE(RESERVED56), |
| 357 | PERIPHC_EMC, |
| 358 | NONE(USB2), |
| 359 | NONE(USB3), |
| 360 | PERIPHC_MPE, |
| 361 | PERIPHC_VDE, |
| 362 | NONE(BSEA), |
| 363 | NONE(BSEV), |
| 364 | |
| 365 | /* Upper word 95:64 */ |
| 366 | NONE(SPEEDO), |
| 367 | PERIPHC_UART4, |
| 368 | PERIPHC_UART5, |
| 369 | PERIPHC_I2C3, |
| 370 | PERIPHC_SPI4, |
| 371 | PERIPHC_SDMMC3, |
| 372 | NONE(PCIE), |
| 373 | PERIPHC_OWR, |
| 374 | |
| 375 | /* 0x48 */ |
| 376 | NONE(AFI), |
| 377 | NONE(CORESIGHT), |
| 378 | NONE(RESERVED74), |
| 379 | NONE(AVPUCQ), |
| 380 | NONE(RESERVED76), |
| 381 | NONE(RESERVED77), |
| 382 | NONE(RESERVED78), |
| 383 | NONE(RESERVED79), |
| 384 | |
| 385 | /* 0x50 */ |
| 386 | NONE(RESERVED80), |
| 387 | NONE(RESERVED81), |
| 388 | NONE(RESERVED82), |
| 389 | NONE(RESERVED83), |
| 390 | NONE(IRAMA), |
| 391 | NONE(IRAMB), |
| 392 | NONE(IRAMC), |
| 393 | NONE(IRAMD), |
| 394 | |
| 395 | /* 0x58 */ |
| 396 | NONE(CRAM2), |
| 397 | }; |
| 398 | |
| 399 | /* |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 400 | * Get the oscillator frequency, from the corresponding hardware configuration |
| 401 | * field. |
| 402 | */ |
| 403 | enum clock_osc_freq clock_get_osc_freq(void) |
| 404 | { |
| 405 | struct clk_rst_ctlr *clkrst = |
| 406 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 407 | u32 reg; |
| 408 | |
| 409 | reg = readl(&clkrst->crc_osc_ctrl); |
| 410 | return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT; |
| 411 | } |
| 412 | |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 413 | /* Returns a pointer to the registers of the given pll */ |
| 414 | static struct clk_pll *get_pll(enum clock_id clkid) |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 415 | { |
| 416 | struct clk_rst_ctlr *clkrst = |
| 417 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 418 | |
Simon Glass | 069784e | 2011-09-21 12:40:02 +0000 | [diff] [blame] | 419 | assert(clock_id_isvalid(clkid)); |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 420 | return &clkrst->crc_pll[clkid]; |
| 421 | } |
| 422 | |
| 423 | unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, |
| 424 | u32 divp, u32 cpcon, u32 lfcon) |
| 425 | { |
| 426 | struct clk_pll *pll = get_pll(clkid); |
| 427 | u32 data; |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 428 | |
| 429 | /* |
| 430 | * We cheat by treating all PLL (except PLLU) in the same fashion. |
| 431 | * This works only because: |
| 432 | * - same fields are always mapped at same offsets, except DCCON |
| 433 | * - DCCON is always 0, doesn't conflict |
| 434 | * - M,N, P of PLLP values are ignored for PLLP |
| 435 | */ |
| 436 | data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT); |
| 437 | writel(data, &pll->pll_misc); |
| 438 | |
| 439 | data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) | |
| 440 | (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT); |
| 441 | |
Simon Glass | 069784e | 2011-09-21 12:40:02 +0000 | [diff] [blame] | 442 | if (clkid == CLOCK_ID_USB) |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 443 | data |= divp << PLLU_VCO_FREQ_SHIFT; |
| 444 | else |
| 445 | data |= divp << PLL_DIVP_SHIFT; |
| 446 | writel(data, &pll->pll_base); |
| 447 | |
| 448 | /* calculate the stable time */ |
| 449 | return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; |
| 450 | } |
| 451 | |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 452 | /* return 1 if a peripheral ID is in range and valid */ |
| 453 | static int clock_periph_id_isvalid(enum periph_id id) |
| 454 | { |
| 455 | if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT) |
| 456 | printf("Peripheral id %d out of range\n", id); |
| 457 | else { |
| 458 | switch (id) { |
| 459 | case PERIPH_ID_RESERVED1: |
| 460 | case PERIPH_ID_RESERVED2: |
| 461 | case PERIPH_ID_RESERVED30: |
| 462 | case PERIPH_ID_RESERVED35: |
| 463 | case PERIPH_ID_RESERVED56: |
| 464 | case PERIPH_ID_RESERVED74: |
| 465 | case PERIPH_ID_RESERVED76: |
| 466 | case PERIPH_ID_RESERVED77: |
| 467 | case PERIPH_ID_RESERVED78: |
| 468 | case PERIPH_ID_RESERVED79: |
| 469 | case PERIPH_ID_RESERVED80: |
| 470 | case PERIPH_ID_RESERVED81: |
| 471 | case PERIPH_ID_RESERVED82: |
| 472 | case PERIPH_ID_RESERVED83: |
| 473 | printf("Peripheral id %d is reserved\n", id); |
| 474 | break; |
| 475 | default: |
| 476 | return 1; |
| 477 | } |
| 478 | } |
| 479 | return 0; |
| 480 | } |
| 481 | |
| 482 | /* Returns a pointer to the clock source register for a peripheral */ |
| 483 | static u32 *get_periph_source_reg(enum periph_id periph_id) |
| 484 | { |
| 485 | struct clk_rst_ctlr *clkrst = |
| 486 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 487 | enum periphc_internal_id internal_id; |
| 488 | |
| 489 | assert(clock_periph_id_isvalid(periph_id)); |
| 490 | internal_id = periph_id_to_internal_id[periph_id]; |
| 491 | assert(internal_id != -1); |
| 492 | return &clkrst->crc_clk_src[internal_id]; |
| 493 | } |
| 494 | |
| 495 | void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, |
| 496 | unsigned divisor) |
| 497 | { |
| 498 | u32 *reg = get_periph_source_reg(periph_id); |
| 499 | u32 value; |
| 500 | |
| 501 | value = readl(reg); |
| 502 | |
| 503 | value &= ~OUT_CLK_SOURCE_MASK; |
| 504 | value |= source << OUT_CLK_SOURCE_SHIFT; |
| 505 | |
| 506 | value &= ~OUT_CLK_DIVISOR_MASK; |
| 507 | value |= divisor << OUT_CLK_DIVISOR_SHIFT; |
| 508 | |
| 509 | writel(value, reg); |
| 510 | } |
| 511 | |
| 512 | void clock_ll_set_source(enum periph_id periph_id, unsigned source) |
| 513 | { |
| 514 | u32 *reg = get_periph_source_reg(periph_id); |
| 515 | |
| 516 | clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, |
| 517 | source << OUT_CLK_SOURCE_SHIFT); |
| 518 | } |
| 519 | |
| 520 | /** |
| 521 | * Given the parent's rate and the required rate for the children, this works |
| 522 | * out the peripheral clock divider to use, in 7.1 binary format. |
| 523 | * |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 524 | * @param divider_bits number of divider bits (8 or 16) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 525 | * @param parent_rate clock rate of parent clock in Hz |
| 526 | * @param rate required clock rate for this clock |
| 527 | * @return divider which should be used |
| 528 | */ |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 529 | static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, |
| 530 | unsigned long rate) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 531 | { |
| 532 | u64 divider = parent_rate * 2; |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 533 | unsigned max_divider = 1 << divider_bits; |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 534 | |
| 535 | divider += rate - 1; |
| 536 | do_div(divider, rate); |
| 537 | |
| 538 | if ((s64)divider - 2 < 0) |
| 539 | return 0; |
| 540 | |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 541 | if ((s64)divider - 2 >= max_divider) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 542 | return -1; |
| 543 | |
| 544 | return divider - 2; |
| 545 | } |
| 546 | |
| 547 | /** |
| 548 | * Given the parent's rate and the divider in 7.1 format, this works out the |
| 549 | * resulting peripheral clock rate. |
| 550 | * |
| 551 | * @param parent_rate clock rate of parent clock in Hz |
| 552 | * @param divider which should be used in 7.1 format |
| 553 | * @return effective clock rate of peripheral |
| 554 | */ |
| 555 | static unsigned long get_rate_from_divider(unsigned long parent_rate, |
| 556 | int divider) |
| 557 | { |
| 558 | u64 rate; |
| 559 | |
| 560 | rate = (u64)parent_rate * 2; |
| 561 | do_div(rate, divider + 2); |
| 562 | return rate; |
| 563 | } |
| 564 | |
| 565 | unsigned long clock_get_periph_rate(enum periph_id periph_id, |
| 566 | enum clock_id parent) |
| 567 | { |
| 568 | u32 *reg = get_periph_source_reg(periph_id); |
| 569 | |
| 570 | return get_rate_from_divider(pll_rate[parent], |
| 571 | (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT); |
| 572 | } |
| 573 | |
| 574 | /** |
| 575 | * Find the best available 7.1 format divisor given a parent clock rate and |
| 576 | * required child clock rate. This function assumes that a second-stage |
| 577 | * divisor is available which can divide by powers of 2 from 1 to 256. |
| 578 | * |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 579 | * @param divider_bits number of divider bits (8 or 16) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 580 | * @param parent_rate clock rate of parent clock in Hz |
| 581 | * @param rate required clock rate for this clock |
| 582 | * @param extra_div value for the second-stage divisor (not set if this |
| 583 | * function returns -1. |
| 584 | * @return divider which should be used, or -1 if nothing is valid |
| 585 | * |
| 586 | */ |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 587 | static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, |
| 588 | unsigned long rate, int *extra_div) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 589 | { |
| 590 | int shift; |
| 591 | int best_divider = -1; |
| 592 | int best_error = rate; |
| 593 | |
| 594 | /* try dividers from 1 to 256 and find closest match */ |
| 595 | for (shift = 0; shift <= 8 && best_error > 0; shift++) { |
| 596 | unsigned divided_parent = parent_rate >> shift; |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 597 | int divider = clk_get_divider(divider_bits, divided_parent, |
| 598 | rate); |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 599 | unsigned effective_rate = get_rate_from_divider(divided_parent, |
| 600 | divider); |
| 601 | int error = rate - effective_rate; |
| 602 | |
| 603 | /* Given a valid divider, look for the lowest error */ |
| 604 | if (divider != -1 && error < best_error) { |
| 605 | best_error = error; |
| 606 | *extra_div = 1 << shift; |
| 607 | best_divider = divider; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | /* return what we found - *extra_div will already be set */ |
| 612 | return best_divider; |
| 613 | } |
| 614 | |
| 615 | /** |
| 616 | * Given a peripheral ID and the required source clock, this returns which |
| 617 | * value should be programmed into the source mux for that peripheral. |
| 618 | * |
| 619 | * There is special code here to handle the one source type with 5 sources. |
| 620 | * |
| 621 | * @param periph_id peripheral to start |
| 622 | * @param source PLL id of required parent clock |
| 623 | * @param mux_bits Set to number of bits in mux register: 2 or 4 |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 624 | * @param divider_bits Set to number of divider bits (8 or 16) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 625 | * @return mux value (0-4, or -1 if not found) |
| 626 | */ |
| 627 | static int get_periph_clock_source(enum periph_id periph_id, |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 628 | enum clock_id parent, int *mux_bits, int *divider_bits) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 629 | { |
| 630 | enum clock_type_id type; |
| 631 | enum periphc_internal_id internal_id; |
| 632 | int mux; |
| 633 | |
| 634 | assert(clock_periph_id_isvalid(periph_id)); |
| 635 | |
| 636 | internal_id = periph_id_to_internal_id[periph_id]; |
| 637 | assert(periphc_internal_id_isvalid(internal_id)); |
| 638 | |
| 639 | type = clock_periph_type[internal_id]; |
| 640 | assert(clock_type_id_isvalid(type)); |
| 641 | |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 642 | /* |
| 643 | * Special cases here for the clock with a 4-bit source mux and I2C |
| 644 | * with its 16-bit divisor |
| 645 | */ |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 646 | if (type == CLOCK_TYPE_PCXTS) |
| 647 | *mux_bits = 4; |
| 648 | else |
| 649 | *mux_bits = 2; |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 650 | if (type == CLOCK_TYPE_PCMT16) |
| 651 | *divider_bits = 16; |
| 652 | else |
| 653 | *divider_bits = 8; |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 654 | |
| 655 | for (mux = 0; mux < CLOCK_MAX_MUX; mux++) |
| 656 | if (clock_source[type][mux] == parent) |
| 657 | return mux; |
| 658 | |
| 659 | /* |
| 660 | * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS |
| 661 | * which is not in our table. If not, then they are asking for a |
| 662 | * source which this peripheral can't access through its mux. |
| 663 | */ |
| 664 | assert(type == CLOCK_TYPE_PCXTS); |
| 665 | assert(parent == CLOCK_ID_SFROM32KHZ); |
| 666 | if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ) |
| 667 | return 4; /* mux value for this clock */ |
| 668 | |
| 669 | /* if we get here, either us or the caller has made a mistake */ |
| 670 | printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id, |
| 671 | parent); |
| 672 | return -1; |
| 673 | } |
| 674 | |
| 675 | /** |
| 676 | * Adjust peripheral PLL to use the given divider and source. |
| 677 | * |
| 678 | * @param periph_id peripheral to adjust |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 679 | * @param source Source number (0-3 or 0-7) |
| 680 | * @param mux_bits Number of mux bits (2 or 4) |
| 681 | * @param divider Required divider in 7.1 or 15.1 format |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 682 | * @return 0 if ok, -1 on error (requesting a parent clock which is not valid |
| 683 | * for this peripheral) |
| 684 | */ |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 685 | static int adjust_periph_pll(enum periph_id periph_id, int source, |
| 686 | int mux_bits, unsigned divider) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 687 | { |
| 688 | u32 *reg = get_periph_source_reg(periph_id); |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 689 | |
| 690 | clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, |
| 691 | divider << OUT_CLK_DIVISOR_SHIFT); |
| 692 | udelay(1); |
| 693 | |
| 694 | /* work out the source clock and set it */ |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 695 | if (source < 0) |
| 696 | return -1; |
| 697 | if (mux_bits == 4) { |
| 698 | clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK, |
| 699 | source << OUT_CLK_SOURCE4_SHIFT); |
| 700 | } else { |
| 701 | clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, |
| 702 | source << OUT_CLK_SOURCE_SHIFT); |
| 703 | } |
| 704 | udelay(2); |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, |
| 709 | enum clock_id parent, unsigned rate, int *extra_div) |
| 710 | { |
| 711 | unsigned effective_rate; |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 712 | int mux_bits, divider_bits, source; |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 713 | int divider; |
| 714 | |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 715 | /* work out the source clock and set it */ |
| 716 | source = get_periph_clock_source(periph_id, parent, &mux_bits, |
| 717 | ÷r_bits); |
| 718 | |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 719 | if (extra_div) |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 720 | divider = find_best_divider(divider_bits, pll_rate[parent], |
| 721 | rate, extra_div); |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 722 | else |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 723 | divider = clk_get_divider(divider_bits, pll_rate[parent], |
| 724 | rate); |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 725 | assert(divider >= 0); |
Simon Glass | d243022 | 2012-02-03 15:13:54 +0000 | [diff] [blame] | 726 | if (adjust_periph_pll(periph_id, source, mux_bits, divider)) |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 727 | return -1U; |
| 728 | debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, |
| 729 | get_periph_source_reg(periph_id), |
| 730 | readl(get_periph_source_reg(periph_id))); |
| 731 | |
| 732 | /* Check what we ended up with. This shouldn't matter though */ |
| 733 | effective_rate = clock_get_periph_rate(periph_id, parent); |
| 734 | if (extra_div) |
| 735 | effective_rate /= *extra_div; |
| 736 | if (rate != effective_rate) |
| 737 | debug("Requested clock rate %u not honored (got %u)\n", |
| 738 | rate, effective_rate); |
| 739 | return effective_rate; |
| 740 | } |
| 741 | |
| 742 | unsigned clock_start_periph_pll(enum periph_id periph_id, |
| 743 | enum clock_id parent, unsigned rate) |
| 744 | { |
| 745 | unsigned effective_rate; |
| 746 | |
| 747 | reset_set_enable(periph_id, 1); |
| 748 | clock_enable(periph_id); |
| 749 | |
| 750 | effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, |
| 751 | NULL); |
| 752 | |
| 753 | reset_set_enable(periph_id, 0); |
| 754 | return effective_rate; |
| 755 | } |
| 756 | |
Simon Glass | 16134fd | 2011-08-30 06:23:13 +0000 | [diff] [blame] | 757 | void clock_set_enable(enum periph_id periph_id, int enable) |
| 758 | { |
| 759 | struct clk_rst_ctlr *clkrst = |
| 760 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 761 | u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)]; |
| 762 | u32 reg; |
| 763 | |
| 764 | /* Enable/disable the clock to this peripheral */ |
| 765 | assert(clock_periph_id_isvalid(periph_id)); |
| 766 | reg = readl(clk); |
| 767 | if (enable) |
| 768 | reg |= PERIPH_MASK(periph_id); |
| 769 | else |
| 770 | reg &= ~PERIPH_MASK(periph_id); |
| 771 | writel(reg, clk); |
| 772 | } |
| 773 | |
| 774 | void clock_enable(enum periph_id clkid) |
| 775 | { |
| 776 | clock_set_enable(clkid, 1); |
| 777 | } |
| 778 | |
| 779 | void clock_disable(enum periph_id clkid) |
| 780 | { |
| 781 | clock_set_enable(clkid, 0); |
| 782 | } |
| 783 | |
| 784 | void reset_set_enable(enum periph_id periph_id, int enable) |
| 785 | { |
| 786 | struct clk_rst_ctlr *clkrst = |
| 787 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 788 | u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)]; |
| 789 | u32 reg; |
| 790 | |
| 791 | /* Enable/disable reset to the peripheral */ |
| 792 | assert(clock_periph_id_isvalid(periph_id)); |
| 793 | reg = readl(reset); |
| 794 | if (enable) |
| 795 | reg |= PERIPH_MASK(periph_id); |
| 796 | else |
| 797 | reg &= ~PERIPH_MASK(periph_id); |
| 798 | writel(reg, reset); |
| 799 | } |
| 800 | |
| 801 | void reset_periph(enum periph_id periph_id, int us_delay) |
| 802 | { |
| 803 | /* Put peripheral into reset */ |
| 804 | reset_set_enable(periph_id, 1); |
| 805 | udelay(us_delay); |
| 806 | |
| 807 | /* Remove reset */ |
| 808 | reset_set_enable(periph_id, 0); |
| 809 | |
| 810 | udelay(us_delay); |
| 811 | } |
| 812 | |
| 813 | void reset_cmplx_set_enable(int cpu, int which, int reset) |
| 814 | { |
| 815 | struct clk_rst_ctlr *clkrst = |
| 816 | (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| 817 | u32 mask; |
| 818 | |
| 819 | /* Form the mask, which depends on the cpu chosen. Tegra2 has 2 */ |
| 820 | assert(cpu >= 0 && cpu < 2); |
| 821 | mask = which << cpu; |
| 822 | |
| 823 | /* either enable or disable those reset for that CPU */ |
| 824 | if (reset) |
| 825 | writel(mask, &clkrst->crc_cpu_cmplx_set); |
| 826 | else |
| 827 | writel(mask, &clkrst->crc_cpu_cmplx_clr); |
| 828 | } |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 829 | |
| 830 | unsigned clock_get_rate(enum clock_id clkid) |
| 831 | { |
| 832 | struct clk_pll *pll; |
| 833 | u32 base; |
| 834 | u32 divm; |
| 835 | u64 parent_rate; |
| 836 | u64 rate; |
| 837 | |
| 838 | parent_rate = osc_freq[clock_get_osc_freq()]; |
| 839 | if (clkid == CLOCK_ID_OSC) |
| 840 | return parent_rate; |
| 841 | |
| 842 | pll = get_pll(clkid); |
| 843 | base = readl(&pll->pll_base); |
| 844 | |
| 845 | /* Oh for bf_unpack()... */ |
| 846 | rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT); |
| 847 | divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; |
| 848 | if (clkid == CLOCK_ID_USB) |
| 849 | divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT; |
| 850 | else |
| 851 | divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; |
| 852 | do_div(rate, divm); |
| 853 | return rate; |
| 854 | } |
| 855 | |
| 856 | /** |
| 857 | * Set the output frequency you want for each PLL clock. |
| 858 | * PLL output frequencies are programmed by setting their N, M and P values. |
| 859 | * The governing equations are: |
| 860 | * VCO = (Fi / m) * n, Fo = VCO / (2^p) |
| 861 | * where Fo is the output frequency from the PLL. |
| 862 | * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) |
| 863 | * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 |
| 864 | * Please see Tegra TRM section 5.3 to get the detail for PLL Programming |
| 865 | * |
| 866 | * @param n PLL feedback divider(DIVN) |
| 867 | * @param m PLL input divider(DIVN) |
| 868 | * @param p post divider(DIVP) |
| 869 | * @param cpcon base PLL charge pump(CPCON) |
| 870 | * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot |
| 871 | * be overriden), 1 if PLL is already correct |
| 872 | */ |
| 873 | static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) |
| 874 | { |
| 875 | u32 base_reg; |
| 876 | u32 misc_reg; |
| 877 | struct clk_pll *pll; |
| 878 | |
| 879 | pll = get_pll(clkid); |
| 880 | |
| 881 | base_reg = readl(&pll->pll_base); |
| 882 | |
| 883 | /* Set BYPASS, m, n and p to PLL_BASE */ |
| 884 | base_reg &= ~PLL_DIVM_MASK; |
| 885 | base_reg |= m << PLL_DIVM_SHIFT; |
| 886 | |
| 887 | base_reg &= ~PLL_DIVN_MASK; |
| 888 | base_reg |= n << PLL_DIVN_SHIFT; |
| 889 | |
| 890 | base_reg &= ~PLL_DIVP_MASK; |
| 891 | base_reg |= p << PLL_DIVP_SHIFT; |
| 892 | |
| 893 | if (clkid == CLOCK_ID_PERIPH) { |
| 894 | /* |
| 895 | * If the PLL is already set up, check that it is correct |
| 896 | * and record this info for clock_verify() to check. |
| 897 | */ |
| 898 | if (base_reg & PLL_BASE_OVRRIDE_MASK) { |
| 899 | base_reg |= PLL_ENABLE_MASK; |
| 900 | if (base_reg != readl(&pll->pll_base)) |
| 901 | pllp_valid = 0; |
| 902 | return pllp_valid ? 1 : -1; |
| 903 | } |
| 904 | base_reg |= PLL_BASE_OVRRIDE_MASK; |
| 905 | } |
| 906 | |
| 907 | base_reg |= PLL_BYPASS_MASK; |
| 908 | writel(base_reg, &pll->pll_base); |
| 909 | |
| 910 | /* Set cpcon to PLL_MISC */ |
| 911 | misc_reg = readl(&pll->pll_misc); |
| 912 | misc_reg &= ~PLL_CPCON_MASK; |
| 913 | misc_reg |= cpcon << PLL_CPCON_SHIFT; |
| 914 | writel(misc_reg, &pll->pll_misc); |
| 915 | |
| 916 | /* Enable PLL */ |
| 917 | base_reg |= PLL_ENABLE_MASK; |
| 918 | writel(base_reg, &pll->pll_base); |
| 919 | |
| 920 | /* Disable BYPASS */ |
| 921 | base_reg &= ~PLL_BYPASS_MASK; |
| 922 | writel(base_reg, &pll->pll_base); |
| 923 | |
| 924 | return 0; |
| 925 | } |
| 926 | |
Simon Glass | 2ffbb25 | 2011-11-28 15:04:37 +0000 | [diff] [blame] | 927 | void clock_ll_start_uart(enum periph_id periph_id) |
| 928 | { |
| 929 | /* Assert UART reset and enable clock */ |
| 930 | reset_set_enable(periph_id, 1); |
| 931 | clock_enable(periph_id); |
| 932 | clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ |
| 933 | |
| 934 | /* wait for 2us */ |
| 935 | udelay(2); |
| 936 | |
| 937 | /* De-assert reset to UART */ |
| 938 | reset_set_enable(periph_id, 0); |
| 939 | } |
| 940 | |
Simon Glass | 2966cd2 | 2012-03-06 17:10:27 +0000 | [diff] [blame] | 941 | #ifdef CONFIG_OF_CONTROL |
| 942 | /* |
| 943 | * Convert a device tree clock ID to our peripheral ID. They are mostly |
| 944 | * the same but we are very cautious so we check that a valid clock ID is |
| 945 | * provided. |
| 946 | * |
| 947 | * @param clk_id Clock ID according to tegra2 device tree binding |
| 948 | * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid |
| 949 | */ |
| 950 | static enum periph_id clk_id_to_periph_id(int clk_id) |
| 951 | { |
| 952 | if (clk_id > 95) |
| 953 | return PERIPH_ID_NONE; |
| 954 | |
| 955 | switch (clk_id) { |
| 956 | case 1: |
| 957 | case 2: |
| 958 | case 7: |
| 959 | case 10: |
| 960 | case 20: |
| 961 | case 30: |
| 962 | case 35: |
| 963 | case 49: |
| 964 | case 56: |
| 965 | case 74: |
| 966 | case 76: |
| 967 | case 77: |
| 968 | case 78: |
| 969 | case 79: |
| 970 | case 80: |
| 971 | case 81: |
| 972 | case 82: |
| 973 | case 83: |
| 974 | case 91: |
| 975 | case 95: |
| 976 | return PERIPH_ID_NONE; |
| 977 | default: |
| 978 | return clk_id; |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | int clock_decode_periph_id(const void *blob, int node) |
| 983 | { |
| 984 | enum periph_id id; |
| 985 | u32 cell[2]; |
| 986 | int err; |
| 987 | |
| 988 | err = fdtdec_get_int_array(blob, node, "clocks", cell, |
| 989 | ARRAY_SIZE(cell)); |
| 990 | if (err) |
| 991 | return -1; |
| 992 | id = clk_id_to_periph_id(cell[1]); |
| 993 | assert(clock_periph_id_isvalid(id)); |
| 994 | return id; |
| 995 | } |
| 996 | #endif /* CONFIG_OF_CONTROL */ |
| 997 | |
Simon Glass | c2ea5e4 | 2011-09-21 12:40:04 +0000 | [diff] [blame] | 998 | int clock_verify(void) |
| 999 | { |
| 1000 | struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); |
| 1001 | u32 reg = readl(&pll->pll_base); |
| 1002 | |
| 1003 | if (!pllp_valid) { |
| 1004 | printf("Warning: PLLP %x is not correct\n", reg); |
| 1005 | return -1; |
| 1006 | } |
| 1007 | debug("PLLX %x is correct\n", reg); |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | void clock_early_init(void) |
| 1012 | { |
| 1013 | /* |
| 1014 | * PLLP output frequency set to 216MHz |
| 1015 | * PLLC output frequency set to 600Mhz |
| 1016 | * |
| 1017 | * TODO: Can we calculate these values instead of hard-coding? |
| 1018 | */ |
| 1019 | switch (clock_get_osc_freq()) { |
| 1020 | case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ |
| 1021 | clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8); |
| 1022 | clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8); |
| 1023 | break; |
| 1024 | |
| 1025 | case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ |
| 1026 | clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8); |
| 1027 | clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); |
| 1028 | break; |
| 1029 | |
| 1030 | case CLOCK_OSC_FREQ_13_0: |
| 1031 | case CLOCK_OSC_FREQ_19_2: |
| 1032 | default: |
| 1033 | /* |
| 1034 | * These are not supported. It is too early to print a |
| 1035 | * message and the UART likely won't work anyway due to the |
| 1036 | * oscillator being wrong. |
| 1037 | */ |
| 1038 | break; |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | void clock_init(void) |
| 1043 | { |
| 1044 | pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); |
| 1045 | pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); |
| 1046 | pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); |
| 1047 | pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); |
| 1048 | pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; |
| 1049 | debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); |
| 1050 | debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); |
| 1051 | debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); |
| 1052 | } |