blob: 39376ab86ef90434dacfa5b1cae8e44fabbc987e [file] [log] [blame]
Simon Glass16134fd2011-08-30 06:23:13 +00001/*
2 * Copyright (c) 2011 The Chromium OS Authors.
3 * See file CREDITS for list of people who contributed to this
4 * project.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21
22/* Tegra2 Clock control functions */
23
24#include <asm/io.h>
25#include <asm/arch/clk_rst.h>
26#include <asm/arch/clock.h>
27#include <asm/arch/timer.h>
28#include <asm/arch/tegra2.h>
29#include <common.h>
Simon Glassc2ea5e42011-09-21 12:40:04 +000030#include <div64.h>
Simon Glass2966cd22012-03-06 17:10:27 +000031#include <fdtdec.h>
Simon Glass16134fd2011-08-30 06:23:13 +000032
Simon Glass16134fd2011-08-30 06:23:13 +000033/*
Simon Glassc2ea5e42011-09-21 12:40:04 +000034 * This is our record of the current clock rate of each clock. We don't
35 * fill all of these in since we are only really interested in clocks which
36 * we use as parents.
37 */
38static unsigned pll_rate[CLOCK_ID_COUNT];
39
40/*
41 * The oscillator frequency is fixed to one of four set values. Based on this
42 * the other clocks are set up appropriately.
43 */
44static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
45 13000000,
46 19200000,
47 12000000,
48 26000000,
49};
50
51/*
52 * Clock types that we can use as a source. The Tegra2 has muxes for the
53 * peripheral clocks, and in most cases there are four options for the clock
54 * source. This gives us a clock 'type' and exploits what commonality exists
55 * in the device.
56 *
57 * Letters are obvious, except for T which means CLK_M, and S which means the
58 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
59 * datasheet) and PLL_M are different things. The former is the basic
60 * clock supplied to the SOC from an external oscillator. The latter is the
61 * memory clock PLL.
62 *
63 * See definitions in clock_id in the header file.
64 */
65enum clock_type_id {
66 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
67 CLOCK_TYPE_MCPA, /* and so on */
68 CLOCK_TYPE_MCPT,
69 CLOCK_TYPE_PCM,
70 CLOCK_TYPE_PCMT,
Simon Glassd2430222012-02-03 15:13:54 +000071 CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
Simon Glassc2ea5e42011-09-21 12:40:04 +000072 CLOCK_TYPE_PCXTS,
73 CLOCK_TYPE_PDCT,
74
75 CLOCK_TYPE_COUNT,
76 CLOCK_TYPE_NONE = -1, /* invalid clock type */
77};
78
79/* return 1 if a peripheral ID is in range */
80#define clock_type_id_isvalid(id) ((id) >= 0 && \
81 (id) < CLOCK_TYPE_COUNT)
82
83char pllp_valid = 1; /* PLLP is set up correctly */
84
85enum {
86 CLOCK_MAX_MUX = 4 /* number of source options for each clock */
87};
88
89/*
90 * Clock source mux for each clock type. This just converts our enum into
91 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
92 * is special as it has 5 sources. Since it also has a different number of
93 * bits in its register for the source, we just handle it with a special
94 * case in the code.
95 */
96#define CLK(x) CLOCK_ID_ ## x
97static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
98 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
99 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
100 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
101 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
102 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glassd2430222012-02-03 15:13:54 +0000103 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glassc2ea5e42011-09-21 12:40:04 +0000104 { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
105 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
106};
107
108/*
109 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
110 * not in the header file since it is for purely internal use - we want
111 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
112 * confusion bewteen PERIPH_ID_... and PERIPHC_...
113 *
114 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
115 * confusing.
116 *
117 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
118 * use it for reset, clock enable, clock source/divider and even pinmuxing
119 * if you can.
120 */
121enum periphc_internal_id {
122 /* 0x00 */
123 PERIPHC_I2S1,
124 PERIPHC_I2S2,
125 PERIPHC_SPDIF_OUT,
126 PERIPHC_SPDIF_IN,
127 PERIPHC_PWM,
128 PERIPHC_SPI1,
129 PERIPHC_SPI2,
130 PERIPHC_SPI3,
131
132 /* 0x08 */
133 PERIPHC_XIO,
134 PERIPHC_I2C1,
135 PERIPHC_DVC_I2C,
136 PERIPHC_TWC,
137 PERIPHC_0c,
138 PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
139 PERIPHC_DISP1,
140 PERIPHC_DISP2,
141
142 /* 0x10 */
143 PERIPHC_CVE,
144 PERIPHC_IDE0,
145 PERIPHC_VI,
146 PERIPHC_1c,
147 PERIPHC_SDMMC1,
148 PERIPHC_SDMMC2,
149 PERIPHC_G3D,
150 PERIPHC_G2D,
151
152 /* 0x18 */
153 PERIPHC_NDFLASH,
154 PERIPHC_SDMMC4,
155 PERIPHC_VFIR,
156 PERIPHC_EPP,
157 PERIPHC_MPE,
158 PERIPHC_MIPI,
159 PERIPHC_UART1,
160 PERIPHC_UART2,
161
162 /* 0x20 */
163 PERIPHC_HOST1X,
164 PERIPHC_21,
165 PERIPHC_TVO,
166 PERIPHC_HDMI,
167 PERIPHC_24,
168 PERIPHC_TVDAC,
169 PERIPHC_I2C2,
170 PERIPHC_EMC,
171
172 /* 0x28 */
173 PERIPHC_UART3,
174 PERIPHC_29,
175 PERIPHC_VI_SENSOR,
176 PERIPHC_2b,
177 PERIPHC_2c,
178 PERIPHC_SPI4,
179 PERIPHC_I2C3,
180 PERIPHC_SDMMC3,
181
182 /* 0x30 */
183 PERIPHC_UART4,
184 PERIPHC_UART5,
185 PERIPHC_VDE,
186 PERIPHC_OWR,
187 PERIPHC_NOR,
188 PERIPHC_CSITE,
189
190 PERIPHC_COUNT,
191
192 PERIPHC_NONE = -1,
193};
194
195/* return 1 if a periphc_internal_id is in range */
196#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
197 (id) < PERIPHC_COUNT)
198
199/*
200 * Clock type for each peripheral clock source. We put the name in each
201 * record just so it is easy to match things up
202 */
203#define TYPE(name, type) type
204static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
205 /* 0x00 */
206 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
207 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
208 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
209 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
210 TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
211 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
212 TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
213 TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
214
215 /* 0x08 */
216 TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
Simon Glassd2430222012-02-03 15:13:54 +0000217 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
218 TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000219 TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
220 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
221 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
222 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
223 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
224
225 /* 0x10 */
226 TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
227 TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
228 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
229 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
230 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
231 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
232 TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
233 TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
234
235 /* 0x18 */
236 TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
237 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
238 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
239 TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
240 TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
241 TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
242 TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
243 TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
244
245 /* 0x20 */
246 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
247 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
248 TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
249 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
250 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
251 TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
Simon Glassd2430222012-02-03 15:13:54 +0000252 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000253 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
254
255 /* 0x28 */
256 TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
257 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
258 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
259 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
260 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
261 TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
Simon Glassd2430222012-02-03 15:13:54 +0000262 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000263 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
264
265 /* 0x30 */
266 TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
267 TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
268 TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
269 TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
270 TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
271 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
272};
273
274/*
275 * This array translates a periph_id to a periphc_internal_id
276 *
277 * Not present/matched up:
278 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
279 * SPDIF - which is both 0x08 and 0x0c
280 *
281 */
282#define NONE(name) (-1)
283#define OFFSET(name, value) PERIPHC_ ## name
284static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
285 /* Low word: 31:0 */
286 NONE(CPU),
287 NONE(RESERVED1),
288 NONE(RESERVED2),
289 NONE(AC97),
290 NONE(RTC),
291 NONE(TMR),
292 PERIPHC_UART1,
293 PERIPHC_UART2, /* and vfir 0x68 */
294
295 /* 0x08 */
296 NONE(GPIO),
297 PERIPHC_SDMMC2,
298 NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
299 PERIPHC_I2S1,
300 PERIPHC_I2C1,
301 PERIPHC_NDFLASH,
302 PERIPHC_SDMMC1,
303 PERIPHC_SDMMC4,
304
305 /* 0x10 */
306 PERIPHC_TWC,
307 PERIPHC_PWM,
308 PERIPHC_I2S2,
309 PERIPHC_EPP,
310 PERIPHC_VI,
311 PERIPHC_G2D,
312 NONE(USBD),
313 NONE(ISP),
314
315 /* 0x18 */
316 PERIPHC_G3D,
317 PERIPHC_IDE0,
318 PERIPHC_DISP2,
319 PERIPHC_DISP1,
320 PERIPHC_HOST1X,
321 NONE(VCP),
322 NONE(RESERVED30),
323 NONE(CACHE2),
324
325 /* Middle word: 63:32 */
326 NONE(MEM),
327 NONE(AHBDMA),
328 NONE(APBDMA),
329 NONE(RESERVED35),
330 NONE(KBC),
331 NONE(STAT_MON),
332 NONE(PMC),
333 NONE(FUSE),
334
335 /* 0x28 */
336 NONE(KFUSE),
337 NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
338 PERIPHC_NOR,
339 PERIPHC_SPI1,
340 PERIPHC_SPI2,
341 PERIPHC_XIO,
342 PERIPHC_SPI3,
343 PERIPHC_DVC_I2C,
344
345 /* 0x30 */
346 NONE(DSI),
347 PERIPHC_TVO, /* also CVE 0x40 */
348 PERIPHC_MIPI,
349 PERIPHC_HDMI,
350 PERIPHC_CSITE,
351 PERIPHC_TVDAC,
352 PERIPHC_I2C2,
353 PERIPHC_UART3,
354
355 /* 0x38 */
356 NONE(RESERVED56),
357 PERIPHC_EMC,
358 NONE(USB2),
359 NONE(USB3),
360 PERIPHC_MPE,
361 PERIPHC_VDE,
362 NONE(BSEA),
363 NONE(BSEV),
364
365 /* Upper word 95:64 */
366 NONE(SPEEDO),
367 PERIPHC_UART4,
368 PERIPHC_UART5,
369 PERIPHC_I2C3,
370 PERIPHC_SPI4,
371 PERIPHC_SDMMC3,
372 NONE(PCIE),
373 PERIPHC_OWR,
374
375 /* 0x48 */
376 NONE(AFI),
377 NONE(CORESIGHT),
378 NONE(RESERVED74),
379 NONE(AVPUCQ),
380 NONE(RESERVED76),
381 NONE(RESERVED77),
382 NONE(RESERVED78),
383 NONE(RESERVED79),
384
385 /* 0x50 */
386 NONE(RESERVED80),
387 NONE(RESERVED81),
388 NONE(RESERVED82),
389 NONE(RESERVED83),
390 NONE(IRAMA),
391 NONE(IRAMB),
392 NONE(IRAMC),
393 NONE(IRAMD),
394
395 /* 0x58 */
396 NONE(CRAM2),
397};
398
399/*
Simon Glass16134fd2011-08-30 06:23:13 +0000400 * Get the oscillator frequency, from the corresponding hardware configuration
401 * field.
402 */
403enum clock_osc_freq clock_get_osc_freq(void)
404{
405 struct clk_rst_ctlr *clkrst =
406 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
407 u32 reg;
408
409 reg = readl(&clkrst->crc_osc_ctrl);
410 return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
411}
412
Simon Glassc2ea5e42011-09-21 12:40:04 +0000413/* Returns a pointer to the registers of the given pll */
414static struct clk_pll *get_pll(enum clock_id clkid)
Simon Glass16134fd2011-08-30 06:23:13 +0000415{
416 struct clk_rst_ctlr *clkrst =
417 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
Simon Glass16134fd2011-08-30 06:23:13 +0000418
Simon Glass069784e2011-09-21 12:40:02 +0000419 assert(clock_id_isvalid(clkid));
Simon Glassc2ea5e42011-09-21 12:40:04 +0000420 return &clkrst->crc_pll[clkid];
421}
422
423unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
424 u32 divp, u32 cpcon, u32 lfcon)
425{
426 struct clk_pll *pll = get_pll(clkid);
427 u32 data;
Simon Glass16134fd2011-08-30 06:23:13 +0000428
429 /*
430 * We cheat by treating all PLL (except PLLU) in the same fashion.
431 * This works only because:
432 * - same fields are always mapped at same offsets, except DCCON
433 * - DCCON is always 0, doesn't conflict
434 * - M,N, P of PLLP values are ignored for PLLP
435 */
436 data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
437 writel(data, &pll->pll_misc);
438
439 data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
440 (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
441
Simon Glass069784e2011-09-21 12:40:02 +0000442 if (clkid == CLOCK_ID_USB)
Simon Glass16134fd2011-08-30 06:23:13 +0000443 data |= divp << PLLU_VCO_FREQ_SHIFT;
444 else
445 data |= divp << PLL_DIVP_SHIFT;
446 writel(data, &pll->pll_base);
447
448 /* calculate the stable time */
449 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
450}
451
Simon Glassc2ea5e42011-09-21 12:40:04 +0000452/* return 1 if a peripheral ID is in range and valid */
453static int clock_periph_id_isvalid(enum periph_id id)
454{
455 if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
456 printf("Peripheral id %d out of range\n", id);
457 else {
458 switch (id) {
459 case PERIPH_ID_RESERVED1:
460 case PERIPH_ID_RESERVED2:
461 case PERIPH_ID_RESERVED30:
462 case PERIPH_ID_RESERVED35:
463 case PERIPH_ID_RESERVED56:
464 case PERIPH_ID_RESERVED74:
465 case PERIPH_ID_RESERVED76:
466 case PERIPH_ID_RESERVED77:
467 case PERIPH_ID_RESERVED78:
468 case PERIPH_ID_RESERVED79:
469 case PERIPH_ID_RESERVED80:
470 case PERIPH_ID_RESERVED81:
471 case PERIPH_ID_RESERVED82:
472 case PERIPH_ID_RESERVED83:
473 printf("Peripheral id %d is reserved\n", id);
474 break;
475 default:
476 return 1;
477 }
478 }
479 return 0;
480}
481
482/* Returns a pointer to the clock source register for a peripheral */
483static u32 *get_periph_source_reg(enum periph_id periph_id)
484{
485 struct clk_rst_ctlr *clkrst =
486 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
487 enum periphc_internal_id internal_id;
488
489 assert(clock_periph_id_isvalid(periph_id));
490 internal_id = periph_id_to_internal_id[periph_id];
491 assert(internal_id != -1);
492 return &clkrst->crc_clk_src[internal_id];
493}
494
495void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
496 unsigned divisor)
497{
498 u32 *reg = get_periph_source_reg(periph_id);
499 u32 value;
500
501 value = readl(reg);
502
503 value &= ~OUT_CLK_SOURCE_MASK;
504 value |= source << OUT_CLK_SOURCE_SHIFT;
505
506 value &= ~OUT_CLK_DIVISOR_MASK;
507 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
508
509 writel(value, reg);
510}
511
512void clock_ll_set_source(enum periph_id periph_id, unsigned source)
513{
514 u32 *reg = get_periph_source_reg(periph_id);
515
516 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
517 source << OUT_CLK_SOURCE_SHIFT);
518}
519
520/**
521 * Given the parent's rate and the required rate for the children, this works
522 * out the peripheral clock divider to use, in 7.1 binary format.
523 *
Simon Glassd2430222012-02-03 15:13:54 +0000524 * @param divider_bits number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000525 * @param parent_rate clock rate of parent clock in Hz
526 * @param rate required clock rate for this clock
527 * @return divider which should be used
528 */
Simon Glassd2430222012-02-03 15:13:54 +0000529static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
530 unsigned long rate)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000531{
532 u64 divider = parent_rate * 2;
Simon Glassd2430222012-02-03 15:13:54 +0000533 unsigned max_divider = 1 << divider_bits;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000534
535 divider += rate - 1;
536 do_div(divider, rate);
537
538 if ((s64)divider - 2 < 0)
539 return 0;
540
Simon Glassd2430222012-02-03 15:13:54 +0000541 if ((s64)divider - 2 >= max_divider)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000542 return -1;
543
544 return divider - 2;
545}
546
547/**
548 * Given the parent's rate and the divider in 7.1 format, this works out the
549 * resulting peripheral clock rate.
550 *
551 * @param parent_rate clock rate of parent clock in Hz
552 * @param divider which should be used in 7.1 format
553 * @return effective clock rate of peripheral
554 */
555static unsigned long get_rate_from_divider(unsigned long parent_rate,
556 int divider)
557{
558 u64 rate;
559
560 rate = (u64)parent_rate * 2;
561 do_div(rate, divider + 2);
562 return rate;
563}
564
565unsigned long clock_get_periph_rate(enum periph_id periph_id,
566 enum clock_id parent)
567{
568 u32 *reg = get_periph_source_reg(periph_id);
569
570 return get_rate_from_divider(pll_rate[parent],
571 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
572}
573
574/**
575 * Find the best available 7.1 format divisor given a parent clock rate and
576 * required child clock rate. This function assumes that a second-stage
577 * divisor is available which can divide by powers of 2 from 1 to 256.
578 *
Simon Glassd2430222012-02-03 15:13:54 +0000579 * @param divider_bits number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000580 * @param parent_rate clock rate of parent clock in Hz
581 * @param rate required clock rate for this clock
582 * @param extra_div value for the second-stage divisor (not set if this
583 * function returns -1.
584 * @return divider which should be used, or -1 if nothing is valid
585 *
586 */
Simon Glassd2430222012-02-03 15:13:54 +0000587static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
588 unsigned long rate, int *extra_div)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000589{
590 int shift;
591 int best_divider = -1;
592 int best_error = rate;
593
594 /* try dividers from 1 to 256 and find closest match */
595 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
596 unsigned divided_parent = parent_rate >> shift;
Simon Glassd2430222012-02-03 15:13:54 +0000597 int divider = clk_get_divider(divider_bits, divided_parent,
598 rate);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000599 unsigned effective_rate = get_rate_from_divider(divided_parent,
600 divider);
601 int error = rate - effective_rate;
602
603 /* Given a valid divider, look for the lowest error */
604 if (divider != -1 && error < best_error) {
605 best_error = error;
606 *extra_div = 1 << shift;
607 best_divider = divider;
608 }
609 }
610
611 /* return what we found - *extra_div will already be set */
612 return best_divider;
613}
614
615/**
616 * Given a peripheral ID and the required source clock, this returns which
617 * value should be programmed into the source mux for that peripheral.
618 *
619 * There is special code here to handle the one source type with 5 sources.
620 *
621 * @param periph_id peripheral to start
622 * @param source PLL id of required parent clock
623 * @param mux_bits Set to number of bits in mux register: 2 or 4
Simon Glassd2430222012-02-03 15:13:54 +0000624 * @param divider_bits Set to number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000625 * @return mux value (0-4, or -1 if not found)
626 */
627static int get_periph_clock_source(enum periph_id periph_id,
Simon Glassd2430222012-02-03 15:13:54 +0000628 enum clock_id parent, int *mux_bits, int *divider_bits)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000629{
630 enum clock_type_id type;
631 enum periphc_internal_id internal_id;
632 int mux;
633
634 assert(clock_periph_id_isvalid(periph_id));
635
636 internal_id = periph_id_to_internal_id[periph_id];
637 assert(periphc_internal_id_isvalid(internal_id));
638
639 type = clock_periph_type[internal_id];
640 assert(clock_type_id_isvalid(type));
641
Simon Glassd2430222012-02-03 15:13:54 +0000642 /*
643 * Special cases here for the clock with a 4-bit source mux and I2C
644 * with its 16-bit divisor
645 */
Simon Glassc2ea5e42011-09-21 12:40:04 +0000646 if (type == CLOCK_TYPE_PCXTS)
647 *mux_bits = 4;
648 else
649 *mux_bits = 2;
Simon Glassd2430222012-02-03 15:13:54 +0000650 if (type == CLOCK_TYPE_PCMT16)
651 *divider_bits = 16;
652 else
653 *divider_bits = 8;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000654
655 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
656 if (clock_source[type][mux] == parent)
657 return mux;
658
659 /*
660 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
661 * which is not in our table. If not, then they are asking for a
662 * source which this peripheral can't access through its mux.
663 */
664 assert(type == CLOCK_TYPE_PCXTS);
665 assert(parent == CLOCK_ID_SFROM32KHZ);
666 if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
667 return 4; /* mux value for this clock */
668
669 /* if we get here, either us or the caller has made a mistake */
670 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
671 parent);
672 return -1;
673}
674
675/**
676 * Adjust peripheral PLL to use the given divider and source.
677 *
678 * @param periph_id peripheral to adjust
Simon Glassd2430222012-02-03 15:13:54 +0000679 * @param source Source number (0-3 or 0-7)
680 * @param mux_bits Number of mux bits (2 or 4)
681 * @param divider Required divider in 7.1 or 15.1 format
Simon Glassc2ea5e42011-09-21 12:40:04 +0000682 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
683 * for this peripheral)
684 */
Simon Glassd2430222012-02-03 15:13:54 +0000685static int adjust_periph_pll(enum periph_id periph_id, int source,
686 int mux_bits, unsigned divider)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000687{
688 u32 *reg = get_periph_source_reg(periph_id);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000689
690 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
691 divider << OUT_CLK_DIVISOR_SHIFT);
692 udelay(1);
693
694 /* work out the source clock and set it */
Simon Glassc2ea5e42011-09-21 12:40:04 +0000695 if (source < 0)
696 return -1;
697 if (mux_bits == 4) {
698 clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
699 source << OUT_CLK_SOURCE4_SHIFT);
700 } else {
701 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
702 source << OUT_CLK_SOURCE_SHIFT);
703 }
704 udelay(2);
705 return 0;
706}
707
708unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
709 enum clock_id parent, unsigned rate, int *extra_div)
710{
711 unsigned effective_rate;
Simon Glassd2430222012-02-03 15:13:54 +0000712 int mux_bits, divider_bits, source;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000713 int divider;
714
Simon Glassd2430222012-02-03 15:13:54 +0000715 /* work out the source clock and set it */
716 source = get_periph_clock_source(periph_id, parent, &mux_bits,
717 &divider_bits);
718
Simon Glassc2ea5e42011-09-21 12:40:04 +0000719 if (extra_div)
Simon Glassd2430222012-02-03 15:13:54 +0000720 divider = find_best_divider(divider_bits, pll_rate[parent],
721 rate, extra_div);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000722 else
Simon Glassd2430222012-02-03 15:13:54 +0000723 divider = clk_get_divider(divider_bits, pll_rate[parent],
724 rate);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000725 assert(divider >= 0);
Simon Glassd2430222012-02-03 15:13:54 +0000726 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
Simon Glassc2ea5e42011-09-21 12:40:04 +0000727 return -1U;
728 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
729 get_periph_source_reg(periph_id),
730 readl(get_periph_source_reg(periph_id)));
731
732 /* Check what we ended up with. This shouldn't matter though */
733 effective_rate = clock_get_periph_rate(periph_id, parent);
734 if (extra_div)
735 effective_rate /= *extra_div;
736 if (rate != effective_rate)
737 debug("Requested clock rate %u not honored (got %u)\n",
738 rate, effective_rate);
739 return effective_rate;
740}
741
742unsigned clock_start_periph_pll(enum periph_id periph_id,
743 enum clock_id parent, unsigned rate)
744{
745 unsigned effective_rate;
746
747 reset_set_enable(periph_id, 1);
748 clock_enable(periph_id);
749
750 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
751 NULL);
752
753 reset_set_enable(periph_id, 0);
754 return effective_rate;
755}
756
Simon Glass16134fd2011-08-30 06:23:13 +0000757void clock_set_enable(enum periph_id periph_id, int enable)
758{
759 struct clk_rst_ctlr *clkrst =
760 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
761 u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
762 u32 reg;
763
764 /* Enable/disable the clock to this peripheral */
765 assert(clock_periph_id_isvalid(periph_id));
766 reg = readl(clk);
767 if (enable)
768 reg |= PERIPH_MASK(periph_id);
769 else
770 reg &= ~PERIPH_MASK(periph_id);
771 writel(reg, clk);
772}
773
774void clock_enable(enum periph_id clkid)
775{
776 clock_set_enable(clkid, 1);
777}
778
779void clock_disable(enum periph_id clkid)
780{
781 clock_set_enable(clkid, 0);
782}
783
784void reset_set_enable(enum periph_id periph_id, int enable)
785{
786 struct clk_rst_ctlr *clkrst =
787 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
788 u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
789 u32 reg;
790
791 /* Enable/disable reset to the peripheral */
792 assert(clock_periph_id_isvalid(periph_id));
793 reg = readl(reset);
794 if (enable)
795 reg |= PERIPH_MASK(periph_id);
796 else
797 reg &= ~PERIPH_MASK(periph_id);
798 writel(reg, reset);
799}
800
801void reset_periph(enum periph_id periph_id, int us_delay)
802{
803 /* Put peripheral into reset */
804 reset_set_enable(periph_id, 1);
805 udelay(us_delay);
806
807 /* Remove reset */
808 reset_set_enable(periph_id, 0);
809
810 udelay(us_delay);
811}
812
813void reset_cmplx_set_enable(int cpu, int which, int reset)
814{
815 struct clk_rst_ctlr *clkrst =
816 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
817 u32 mask;
818
819 /* Form the mask, which depends on the cpu chosen. Tegra2 has 2 */
820 assert(cpu >= 0 && cpu < 2);
821 mask = which << cpu;
822
823 /* either enable or disable those reset for that CPU */
824 if (reset)
825 writel(mask, &clkrst->crc_cpu_cmplx_set);
826 else
827 writel(mask, &clkrst->crc_cpu_cmplx_clr);
828}
Simon Glassc2ea5e42011-09-21 12:40:04 +0000829
830unsigned clock_get_rate(enum clock_id clkid)
831{
832 struct clk_pll *pll;
833 u32 base;
834 u32 divm;
835 u64 parent_rate;
836 u64 rate;
837
838 parent_rate = osc_freq[clock_get_osc_freq()];
839 if (clkid == CLOCK_ID_OSC)
840 return parent_rate;
841
842 pll = get_pll(clkid);
843 base = readl(&pll->pll_base);
844
845 /* Oh for bf_unpack()... */
846 rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
847 divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
848 if (clkid == CLOCK_ID_USB)
849 divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
850 else
851 divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
852 do_div(rate, divm);
853 return rate;
854}
855
856/**
857 * Set the output frequency you want for each PLL clock.
858 * PLL output frequencies are programmed by setting their N, M and P values.
859 * The governing equations are:
860 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
861 * where Fo is the output frequency from the PLL.
862 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
863 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
864 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
865 *
866 * @param n PLL feedback divider(DIVN)
867 * @param m PLL input divider(DIVN)
868 * @param p post divider(DIVP)
869 * @param cpcon base PLL charge pump(CPCON)
870 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
871 * be overriden), 1 if PLL is already correct
872 */
873static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
874{
875 u32 base_reg;
876 u32 misc_reg;
877 struct clk_pll *pll;
878
879 pll = get_pll(clkid);
880
881 base_reg = readl(&pll->pll_base);
882
883 /* Set BYPASS, m, n and p to PLL_BASE */
884 base_reg &= ~PLL_DIVM_MASK;
885 base_reg |= m << PLL_DIVM_SHIFT;
886
887 base_reg &= ~PLL_DIVN_MASK;
888 base_reg |= n << PLL_DIVN_SHIFT;
889
890 base_reg &= ~PLL_DIVP_MASK;
891 base_reg |= p << PLL_DIVP_SHIFT;
892
893 if (clkid == CLOCK_ID_PERIPH) {
894 /*
895 * If the PLL is already set up, check that it is correct
896 * and record this info for clock_verify() to check.
897 */
898 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
899 base_reg |= PLL_ENABLE_MASK;
900 if (base_reg != readl(&pll->pll_base))
901 pllp_valid = 0;
902 return pllp_valid ? 1 : -1;
903 }
904 base_reg |= PLL_BASE_OVRRIDE_MASK;
905 }
906
907 base_reg |= PLL_BYPASS_MASK;
908 writel(base_reg, &pll->pll_base);
909
910 /* Set cpcon to PLL_MISC */
911 misc_reg = readl(&pll->pll_misc);
912 misc_reg &= ~PLL_CPCON_MASK;
913 misc_reg |= cpcon << PLL_CPCON_SHIFT;
914 writel(misc_reg, &pll->pll_misc);
915
916 /* Enable PLL */
917 base_reg |= PLL_ENABLE_MASK;
918 writel(base_reg, &pll->pll_base);
919
920 /* Disable BYPASS */
921 base_reg &= ~PLL_BYPASS_MASK;
922 writel(base_reg, &pll->pll_base);
923
924 return 0;
925}
926
Simon Glass2ffbb252011-11-28 15:04:37 +0000927void clock_ll_start_uart(enum periph_id periph_id)
928{
929 /* Assert UART reset and enable clock */
930 reset_set_enable(periph_id, 1);
931 clock_enable(periph_id);
932 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
933
934 /* wait for 2us */
935 udelay(2);
936
937 /* De-assert reset to UART */
938 reset_set_enable(periph_id, 0);
939}
940
Simon Glass2966cd22012-03-06 17:10:27 +0000941#ifdef CONFIG_OF_CONTROL
942/*
943 * Convert a device tree clock ID to our peripheral ID. They are mostly
944 * the same but we are very cautious so we check that a valid clock ID is
945 * provided.
946 *
947 * @param clk_id Clock ID according to tegra2 device tree binding
948 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
949 */
950static enum periph_id clk_id_to_periph_id(int clk_id)
951{
952 if (clk_id > 95)
953 return PERIPH_ID_NONE;
954
955 switch (clk_id) {
956 case 1:
957 case 2:
958 case 7:
959 case 10:
960 case 20:
961 case 30:
962 case 35:
963 case 49:
964 case 56:
965 case 74:
966 case 76:
967 case 77:
968 case 78:
969 case 79:
970 case 80:
971 case 81:
972 case 82:
973 case 83:
974 case 91:
975 case 95:
976 return PERIPH_ID_NONE;
977 default:
978 return clk_id;
979 }
980}
981
982int clock_decode_periph_id(const void *blob, int node)
983{
984 enum periph_id id;
985 u32 cell[2];
986 int err;
987
988 err = fdtdec_get_int_array(blob, node, "clocks", cell,
989 ARRAY_SIZE(cell));
990 if (err)
991 return -1;
992 id = clk_id_to_periph_id(cell[1]);
993 assert(clock_periph_id_isvalid(id));
994 return id;
995}
996#endif /* CONFIG_OF_CONTROL */
997
Simon Glassc2ea5e42011-09-21 12:40:04 +0000998int clock_verify(void)
999{
1000 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
1001 u32 reg = readl(&pll->pll_base);
1002
1003 if (!pllp_valid) {
1004 printf("Warning: PLLP %x is not correct\n", reg);
1005 return -1;
1006 }
1007 debug("PLLX %x is correct\n", reg);
1008 return 0;
1009}
1010
1011void clock_early_init(void)
1012{
1013 /*
1014 * PLLP output frequency set to 216MHz
1015 * PLLC output frequency set to 600Mhz
1016 *
1017 * TODO: Can we calculate these values instead of hard-coding?
1018 */
1019 switch (clock_get_osc_freq()) {
1020 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
1021 clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
1022 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
1023 break;
1024
1025 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
1026 clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
1027 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
1028 break;
1029
1030 case CLOCK_OSC_FREQ_13_0:
1031 case CLOCK_OSC_FREQ_19_2:
1032 default:
1033 /*
1034 * These are not supported. It is too early to print a
1035 * message and the UART likely won't work anyway due to the
1036 * oscillator being wrong.
1037 */
1038 break;
1039 }
1040}
1041
1042void clock_init(void)
1043{
1044 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
1045 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
1046 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
1047 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
1048 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
1049 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
1050 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
1051 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
1052}