blob: b8dd9f2fe4636f0d474b3fb296876de49a76568f [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk4e112c12003-06-03 23:54:09 +000015 any later version.
wdenk57b2d802003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk4e112c12003-06-03 23:54:09 +000020 more details.
wdenk57b2d802003-06-27 21:31:46 +000021
wdenk4e112c12003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk57b2d802003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk35f734f2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk57b2d802003-06-27 21:31:46 +000025
wdenk4e112c12003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk57b2d802003-06-27 21:31:46 +000028
wdenk4e112c12003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45#include "e1000.h"
46
wdenk4e112c12003-06-03 23:54:09 +000047#define TOUT_LOOP 100000
48
Timur Tabiedc45b52009-08-17 15:55:38 -050049#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000050#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
Wolfgang Denk35f734f2008-04-13 09:59:26 -070051#define mdelay(n) udelay((n)*1000)
wdenk4e112c12003-06-03 23:54:09 +000052
Roy Zang28f7a052009-07-31 13:34:02 +080053#define E1000_DEFAULT_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000054
55/* NIC specific static variables go here */
56
57static char tx_pool[128 + 16];
58static char rx_pool[128 + 16];
59static char packet[2096];
60
61static struct e1000_tx_desc *tx_base;
62static struct e1000_rx_desc *rx_base;
63
64static int tx_tail;
65static int rx_tail, rx_last;
66
67static struct pci_device_id supported[] = {
68 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040077 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000078 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010082 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080084 /* E1000 PCIe card */
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100106 {}
wdenk4e112c12003-06-03 23:54:09 +0000107};
108
109/* Function forward declarations */
110static int e1000_setup_link(struct eth_device *nic);
111static int e1000_setup_fiber_link(struct eth_device *nic);
112static int e1000_setup_copper_link(struct eth_device *nic);
113static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
114static void e1000_config_collision_dist(struct e1000_hw *hw);
115static int e1000_config_mac_to_phy(struct e1000_hw *hw);
116static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
117static int e1000_check_for_link(struct eth_device *nic);
118static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800119static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000120 uint16_t * duplex);
121static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
122 uint16_t * phy_data);
123static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
124 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800125static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000126static int e1000_phy_reset(struct e1000_hw *hw);
127static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800128static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
129static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000130
Roy Zang28f7a052009-07-31 13:34:02 +0800131static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
132static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000133#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
134#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
135#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
136 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
137#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
wdenk57b2d802003-06-27 21:31:46 +0000138 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
wdenk4e112c12003-06-03 23:54:09 +0000139#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
140
Wolfgang Denk56811f62005-10-09 01:04:33 +0200141#ifndef CONFIG_AP1000 /* remove for warnings */
Roy Zang9b7c4302009-08-11 03:48:05 +0800142static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
143 uint16_t words,
144 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000145/******************************************************************************
146 * Raises the EEPROM's clock input.
147 *
148 * hw - Struct containing variables accessed by shared code
149 * eecd - EECD's current value
150 *****************************************************************************/
151static void
152e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
153{
154 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
155 * wait 50 microseconds.
156 */
157 *eecd = *eecd | E1000_EECD_SK;
158 E1000_WRITE_REG(hw, EECD, *eecd);
159 E1000_WRITE_FLUSH(hw);
160 udelay(50);
161}
162
163/******************************************************************************
164 * Lowers the EEPROM's clock input.
165 *
wdenk57b2d802003-06-27 21:31:46 +0000166 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000167 * eecd - EECD's current value
168 *****************************************************************************/
169static void
170e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
171{
wdenk57b2d802003-06-27 21:31:46 +0000172 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
173 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000174 */
175 *eecd = *eecd & ~E1000_EECD_SK;
176 E1000_WRITE_REG(hw, EECD, *eecd);
177 E1000_WRITE_FLUSH(hw);
178 udelay(50);
179}
180
181/******************************************************************************
182 * Shift data bits out to the EEPROM.
183 *
184 * hw - Struct containing variables accessed by shared code
185 * data - data to send to the EEPROM
186 * count - number of bits to shift out
187 *****************************************************************************/
188static void
189e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
190{
191 uint32_t eecd;
192 uint32_t mask;
193
194 /* We need to shift "count" bits out to the EEPROM. So, value in the
195 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000196 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000197 */
198 mask = 0x01 << (count - 1);
199 eecd = E1000_READ_REG(hw, EECD);
200 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
201 do {
202 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
203 * and then raising and then lowering the clock (the SK bit controls
204 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
205 * by setting "DI" to "0" and then raising and then lowering the clock.
206 */
207 eecd &= ~E1000_EECD_DI;
208
209 if (data & mask)
210 eecd |= E1000_EECD_DI;
211
212 E1000_WRITE_REG(hw, EECD, eecd);
213 E1000_WRITE_FLUSH(hw);
214
215 udelay(50);
216
217 e1000_raise_ee_clk(hw, &eecd);
218 e1000_lower_ee_clk(hw, &eecd);
219
220 mask = mask >> 1;
221
222 } while (mask);
223
224 /* We leave the "DI" bit set to "0" when we leave this routine. */
225 eecd &= ~E1000_EECD_DI;
226 E1000_WRITE_REG(hw, EECD, eecd);
227}
228
229/******************************************************************************
230 * Shift data bits in from the EEPROM
231 *
232 * hw - Struct containing variables accessed by shared code
233 *****************************************************************************/
234static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800235e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000236{
237 uint32_t eecd;
238 uint32_t i;
239 uint16_t data;
240
Roy Zang28f7a052009-07-31 13:34:02 +0800241 /* In order to read a register from the EEPROM, we need to shift 'count'
242 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
243 * input to the EEPROM (setting the SK bit), and then reading the
244 * value of the "DO" bit. During this "shifting in" process the
245 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000246 */
247
248 eecd = E1000_READ_REG(hw, EECD);
249
250 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
251 data = 0;
252
Roy Zang28f7a052009-07-31 13:34:02 +0800253 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000254 data = data << 1;
255 e1000_raise_ee_clk(hw, &eecd);
256
257 eecd = E1000_READ_REG(hw, EECD);
258
259 eecd &= ~(E1000_EECD_DI);
260 if (eecd & E1000_EECD_DO)
261 data |= 1;
262
263 e1000_lower_ee_clk(hw, &eecd);
264 }
265
266 return data;
267}
268
269/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800270 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000271 *
272 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000273 *****************************************************************************/
274static void
Roy Zang28f7a052009-07-31 13:34:02 +0800275e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000276{
Roy Zang28f7a052009-07-31 13:34:02 +0800277 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000278 uint32_t eecd;
279
280 eecd = E1000_READ_REG(hw, EECD);
281
Roy Zang28f7a052009-07-31 13:34:02 +0800282 if (eeprom->type == e1000_eeprom_microwire) {
283 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000287
Roy Zang28f7a052009-07-31 13:34:02 +0800288 /* Clock high */
289 eecd |= E1000_EECD_SK;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(eeprom->delay_usec);
293
294 /* Select EEPROM */
295 eecd |= E1000_EECD_CS;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
298 udelay(eeprom->delay_usec);
299
300 /* Clock low */
301 eecd &= ~E1000_EECD_SK;
302 E1000_WRITE_REG(hw, EECD, eecd);
303 E1000_WRITE_FLUSH(hw);
304 udelay(eeprom->delay_usec);
305 } else if (eeprom->type == e1000_eeprom_spi) {
306 /* Toggle CS to flush commands */
307 eecd |= E1000_EECD_CS;
308 E1000_WRITE_REG(hw, EECD, eecd);
309 E1000_WRITE_FLUSH(hw);
310 udelay(eeprom->delay_usec);
311 eecd &= ~E1000_EECD_CS;
312 E1000_WRITE_REG(hw, EECD, eecd);
313 E1000_WRITE_FLUSH(hw);
314 udelay(eeprom->delay_usec);
315 }
316}
317
318/***************************************************************************
319* Description: Determines if the onboard NVM is FLASH or EEPROM.
320*
321* hw - Struct containing variables accessed by shared code
322****************************************************************************/
323static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
324{
325 uint32_t eecd = 0;
326
327 DEBUGFUNC();
328
329 if (hw->mac_type == e1000_ich8lan)
330 return FALSE;
331
332 if (hw->mac_type == e1000_82573) {
333 eecd = E1000_READ_REG(hw, EECD);
334
335 /* Isolate bits 15 & 16 */
336 eecd = ((eecd >> 15) & 0x03);
337
338 /* If both bits are set, device is Flash type */
339 if (eecd == 0x03)
340 return FALSE;
341 }
342 return TRUE;
wdenk4e112c12003-06-03 23:54:09 +0000343}
344
345/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800346 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000347 *
wdenk4e112c12003-06-03 23:54:09 +0000348 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800349 *
350 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
351 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000352 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800353static int32_t
354e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000355{
Roy Zang28f7a052009-07-31 13:34:02 +0800356 struct e1000_eeprom_info *eeprom = &hw->eeprom;
357 uint32_t eecd, i = 0;
358
Timur Tabiedc45b52009-08-17 15:55:38 -0500359 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000360
Roy Zang28f7a052009-07-31 13:34:02 +0800361 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
362 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000363 eecd = E1000_READ_REG(hw, EECD);
364
Roy Zang28f7a052009-07-31 13:34:02 +0800365 if (hw->mac_type != e1000_82573) {
366 /* Request EEPROM Access */
367 if (hw->mac_type > e1000_82544) {
368 eecd |= E1000_EECD_REQ;
369 E1000_WRITE_REG(hw, EECD, eecd);
370 eecd = E1000_READ_REG(hw, EECD);
371 while ((!(eecd & E1000_EECD_GNT)) &&
372 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
373 i++;
374 udelay(5);
375 eecd = E1000_READ_REG(hw, EECD);
376 }
377 if (!(eecd & E1000_EECD_GNT)) {
378 eecd &= ~E1000_EECD_REQ;
379 E1000_WRITE_REG(hw, EECD, eecd);
380 DEBUGOUT("Could not acquire EEPROM grant\n");
381 return -E1000_ERR_EEPROM;
382 }
383 }
384 }
wdenk4e112c12003-06-03 23:54:09 +0000385
Roy Zang28f7a052009-07-31 13:34:02 +0800386 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000387
Roy Zang28f7a052009-07-31 13:34:02 +0800388 if (eeprom->type == e1000_eeprom_microwire) {
389 /* Clear SK and DI */
390 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
391 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000392
Roy Zang28f7a052009-07-31 13:34:02 +0800393 /* Set CS */
394 eecd |= E1000_EECD_CS;
395 E1000_WRITE_REG(hw, EECD, eecd);
396 } else if (eeprom->type == e1000_eeprom_spi) {
397 /* Clear SK and CS */
398 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
399 E1000_WRITE_REG(hw, EECD, eecd);
400 udelay(1);
401 }
402
403 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000404}
405
406/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800407 * Sets up eeprom variables in the hw struct. Must be called after mac_type
408 * is configured. Additionally, if this is ICH8, the flash controller GbE
409 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000410 *
411 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000412 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800413static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000414{
Roy Zang28f7a052009-07-31 13:34:02 +0800415 struct e1000_eeprom_info *eeprom = &hw->eeprom;
416 uint32_t eecd = E1000_READ_REG(hw, EECD);
417 int32_t ret_val = E1000_SUCCESS;
418 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000419
Timur Tabiedc45b52009-08-17 15:55:38 -0500420 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800421
422 switch (hw->mac_type) {
423 case e1000_82542_rev2_0:
424 case e1000_82542_rev2_1:
425 case e1000_82543:
426 case e1000_82544:
427 eeprom->type = e1000_eeprom_microwire;
428 eeprom->word_size = 64;
429 eeprom->opcode_bits = 3;
430 eeprom->address_bits = 6;
431 eeprom->delay_usec = 50;
432 eeprom->use_eerd = FALSE;
433 eeprom->use_eewr = FALSE;
434 break;
435 case e1000_82540:
436 case e1000_82545:
437 case e1000_82545_rev_3:
438 case e1000_82546:
439 case e1000_82546_rev_3:
440 eeprom->type = e1000_eeprom_microwire;
441 eeprom->opcode_bits = 3;
442 eeprom->delay_usec = 50;
443 if (eecd & E1000_EECD_SIZE) {
444 eeprom->word_size = 256;
445 eeprom->address_bits = 8;
446 } else {
447 eeprom->word_size = 64;
448 eeprom->address_bits = 6;
449 }
450 eeprom->use_eerd = FALSE;
451 eeprom->use_eewr = FALSE;
452 break;
453 case e1000_82541:
454 case e1000_82541_rev_2:
455 case e1000_82547:
456 case e1000_82547_rev_2:
457 if (eecd & E1000_EECD_TYPE) {
458 eeprom->type = e1000_eeprom_spi;
459 eeprom->opcode_bits = 8;
460 eeprom->delay_usec = 1;
461 if (eecd & E1000_EECD_ADDR_BITS) {
462 eeprom->page_size = 32;
463 eeprom->address_bits = 16;
464 } else {
465 eeprom->page_size = 8;
466 eeprom->address_bits = 8;
467 }
468 } else {
469 eeprom->type = e1000_eeprom_microwire;
470 eeprom->opcode_bits = 3;
471 eeprom->delay_usec = 50;
472 if (eecd & E1000_EECD_ADDR_BITS) {
473 eeprom->word_size = 256;
474 eeprom->address_bits = 8;
475 } else {
476 eeprom->word_size = 64;
477 eeprom->address_bits = 6;
478 }
479 }
480 eeprom->use_eerd = FALSE;
481 eeprom->use_eewr = FALSE;
482 break;
483 case e1000_82571:
484 case e1000_82572:
485 eeprom->type = e1000_eeprom_spi;
486 eeprom->opcode_bits = 8;
487 eeprom->delay_usec = 1;
488 if (eecd & E1000_EECD_ADDR_BITS) {
489 eeprom->page_size = 32;
490 eeprom->address_bits = 16;
491 } else {
492 eeprom->page_size = 8;
493 eeprom->address_bits = 8;
494 }
495 eeprom->use_eerd = FALSE;
496 eeprom->use_eewr = FALSE;
497 break;
498 case e1000_82573:
499 eeprom->type = e1000_eeprom_spi;
500 eeprom->opcode_bits = 8;
501 eeprom->delay_usec = 1;
502 if (eecd & E1000_EECD_ADDR_BITS) {
503 eeprom->page_size = 32;
504 eeprom->address_bits = 16;
505 } else {
506 eeprom->page_size = 8;
507 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000508 }
Roy Zang28f7a052009-07-31 13:34:02 +0800509 eeprom->use_eerd = TRUE;
510 eeprom->use_eewr = TRUE;
511 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
512 eeprom->type = e1000_eeprom_flash;
513 eeprom->word_size = 2048;
514
515 /* Ensure that the Autonomous FLASH update bit is cleared due to
516 * Flash update issue on parts which use a FLASH for NVM. */
517 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000518 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000519 }
Roy Zang28f7a052009-07-31 13:34:02 +0800520 break;
521 case e1000_80003es2lan:
522 eeprom->type = e1000_eeprom_spi;
523 eeprom->opcode_bits = 8;
524 eeprom->delay_usec = 1;
525 if (eecd & E1000_EECD_ADDR_BITS) {
526 eeprom->page_size = 32;
527 eeprom->address_bits = 16;
528 } else {
529 eeprom->page_size = 8;
530 eeprom->address_bits = 8;
531 }
532 eeprom->use_eerd = TRUE;
533 eeprom->use_eewr = FALSE;
534 break;
wdenk4e112c12003-06-03 23:54:09 +0000535
Roy Zang28f7a052009-07-31 13:34:02 +0800536 /* ich8lan does not support currently. if needed, please
537 * add corresponding code and functions.
538 */
539#if 0
540 case e1000_ich8lan:
541 {
542 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000543
Roy Zang28f7a052009-07-31 13:34:02 +0800544 eeprom->type = e1000_eeprom_ich8;
545 eeprom->use_eerd = FALSE;
546 eeprom->use_eewr = FALSE;
547 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
548 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
549 ICH_FLASH_GFPREG);
550 /* Zero the shadow RAM structure. But don't load it from NVM
551 * so as to save time for driver init */
552 if (hw->eeprom_shadow_ram != NULL) {
553 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
554 hw->eeprom_shadow_ram[i].modified = FALSE;
555 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
556 }
557 }
wdenk4e112c12003-06-03 23:54:09 +0000558
Roy Zang28f7a052009-07-31 13:34:02 +0800559 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
560 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000561
Roy Zang28f7a052009-07-31 13:34:02 +0800562 hw->flash_bank_size = ((flash_size >> 16)
563 & ICH_GFPREG_BASE_MASK) + 1;
564 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000565
Roy Zang28f7a052009-07-31 13:34:02 +0800566 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
567
568 hw->flash_bank_size /= 2 * sizeof(uint16_t);
569 break;
570 }
571#endif
572 default:
573 break;
wdenk4e112c12003-06-03 23:54:09 +0000574 }
575
Roy Zang28f7a052009-07-31 13:34:02 +0800576 if (eeprom->type == e1000_eeprom_spi) {
577 /* eeprom_size will be an enum [0..8] that maps
578 * to eeprom sizes 128B to
579 * 32KB (incremented by powers of 2).
580 */
581 if (hw->mac_type <= e1000_82547_rev_2) {
582 /* Set to default value for initial eeprom read. */
583 eeprom->word_size = 64;
584 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
585 &eeprom_size);
586 if (ret_val)
587 return ret_val;
588 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
589 >> EEPROM_SIZE_SHIFT;
590 /* 256B eeprom size was not supported in earlier
591 * hardware, so we bump eeprom_size up one to
592 * ensure that "1" (which maps to 256B) is never
593 * the result used in the shifting logic below. */
594 if (eeprom_size)
595 eeprom_size++;
596 } else {
597 eeprom_size = (uint16_t)((eecd &
598 E1000_EECD_SIZE_EX_MASK) >>
599 E1000_EECD_SIZE_EX_SHIFT);
600 }
601
602 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
603 }
604 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000605}
606
Roy Zang28f7a052009-07-31 13:34:02 +0800607/******************************************************************************
608 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
609 *
610 * hw - Struct containing variables accessed by shared code
611 *****************************************************************************/
612static int32_t
613e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000614{
Roy Zang28f7a052009-07-31 13:34:02 +0800615 uint32_t attempts = 100000;
616 uint32_t i, reg = 0;
617 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000618
Roy Zang28f7a052009-07-31 13:34:02 +0800619 for (i = 0; i < attempts; i++) {
620 if (eerd == E1000_EEPROM_POLL_READ)
621 reg = E1000_READ_REG(hw, EERD);
622 else
623 reg = E1000_READ_REG(hw, EEWR);
624
625 if (reg & E1000_EEPROM_RW_REG_DONE) {
626 done = E1000_SUCCESS;
627 break;
628 }
629 udelay(5);
630 }
631
632 return done;
wdenk4e112c12003-06-03 23:54:09 +0000633}
634
Roy Zang28f7a052009-07-31 13:34:02 +0800635/******************************************************************************
636 * Reads a 16 bit word from the EEPROM using the EERD register.
637 *
638 * hw - Struct containing variables accessed by shared code
639 * offset - offset of word in the EEPROM to read
640 * data - word read from the EEPROM
641 * words - number of words to read
642 *****************************************************************************/
643static int32_t
644e1000_read_eeprom_eerd(struct e1000_hw *hw,
645 uint16_t offset,
646 uint16_t words,
647 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000648{
Roy Zang28f7a052009-07-31 13:34:02 +0800649 uint32_t i, eerd = 0;
650 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000651
Roy Zang28f7a052009-07-31 13:34:02 +0800652 for (i = 0; i < words; i++) {
653 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
654 E1000_EEPROM_RW_REG_START;
655
656 E1000_WRITE_REG(hw, EERD, eerd);
657 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
658
659 if (error)
660 break;
661 data[i] = (E1000_READ_REG(hw, EERD) >>
662 E1000_EEPROM_RW_REG_DATA);
663
wdenk4e112c12003-06-03 23:54:09 +0000664 }
Roy Zang28f7a052009-07-31 13:34:02 +0800665
666 return error;
wdenk4e112c12003-06-03 23:54:09 +0000667}
668
Roy Zang28f7a052009-07-31 13:34:02 +0800669static void
670e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000671{
672 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000673
Roy Zang28f7a052009-07-31 13:34:02 +0800674 DEBUGFUNC();
675
676 eecd = E1000_READ_REG(hw, EECD);
677
678 if (hw->eeprom.type == e1000_eeprom_spi) {
679 eecd |= E1000_EECD_CS; /* Pull CS high */
680 eecd &= ~E1000_EECD_SK; /* Lower SCK */
681
wdenk4e112c12003-06-03 23:54:09 +0000682 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800683
684 udelay(hw->eeprom.delay_usec);
685 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
686 /* cleanup eeprom */
687
688 /* CS on Microwire is active-high */
689 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
690
691 E1000_WRITE_REG(hw, EECD, eecd);
692
693 /* Rising edge of clock */
694 eecd |= E1000_EECD_SK;
695 E1000_WRITE_REG(hw, EECD, eecd);
696 E1000_WRITE_FLUSH(hw);
697 udelay(hw->eeprom.delay_usec);
698
699 /* Falling edge of clock */
700 eecd &= ~E1000_EECD_SK;
701 E1000_WRITE_REG(hw, EECD, eecd);
702 E1000_WRITE_FLUSH(hw);
703 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000704 }
wdenk4e112c12003-06-03 23:54:09 +0000705
706 /* Stop requesting EEPROM access */
707 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000708 eecd &= ~E1000_EECD_REQ;
709 E1000_WRITE_REG(hw, EECD, eecd);
710 }
wdenk4e112c12003-06-03 23:54:09 +0000711}
wdenk4e112c12003-06-03 23:54:09 +0000712/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800713 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000714 *
wdenk4e112c12003-06-03 23:54:09 +0000715 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000716 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800717static int32_t
718e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000719{
Roy Zang28f7a052009-07-31 13:34:02 +0800720 uint16_t retry_count = 0;
721 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000722
723 DEBUGFUNC();
724
Roy Zang28f7a052009-07-31 13:34:02 +0800725 /* Read "Status Register" repeatedly until the LSB is cleared. The
726 * EEPROM will signal that the command has been completed by clearing
727 * bit 0 of the internal status register. If it's not cleared within
728 * 5 milliseconds, then error out.
729 */
730 retry_count = 0;
731 do {
732 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
733 hw->eeprom.opcode_bits);
734 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
735 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
736 break;
wdenk57b2d802003-06-27 21:31:46 +0000737
Roy Zang28f7a052009-07-31 13:34:02 +0800738 udelay(5);
739 retry_count += 5;
740
741 e1000_standby_eeprom(hw);
742 } while (retry_count < EEPROM_MAX_RETRY_SPI);
743
744 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
745 * only 0-5mSec on 5V devices)
746 */
747 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
748 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000749 return -E1000_ERR_EEPROM;
750 }
Roy Zang28f7a052009-07-31 13:34:02 +0800751
752 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000753}
754
755/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800756 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000757 *
Roy Zang28f7a052009-07-31 13:34:02 +0800758 * hw - Struct containing variables accessed by shared code
759 * offset - offset of word in the EEPROM to read
760 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000761 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800762static int32_t
763e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
764 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000765{
Roy Zang28f7a052009-07-31 13:34:02 +0800766 struct e1000_eeprom_info *eeprom = &hw->eeprom;
767 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000768
769 DEBUGFUNC();
770
Roy Zang28f7a052009-07-31 13:34:02 +0800771 /* If eeprom is not yet detected, do so now */
772 if (eeprom->word_size == 0)
773 e1000_init_eeprom_params(hw);
774
775 /* A check for invalid values: offset too large, too many words,
776 * and not enough words.
777 */
778 if ((offset >= eeprom->word_size) ||
779 (words > eeprom->word_size - offset) ||
780 (words == 0)) {
781 DEBUGOUT("\"words\" parameter out of bounds."
782 "Words = %d, size = %d\n", offset, eeprom->word_size);
783 return -E1000_ERR_EEPROM;
784 }
785
786 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
787 * directly. In this case, we need to acquire the EEPROM so that
788 * FW or other port software does not interrupt.
789 */
790 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
791 hw->eeprom.use_eerd == FALSE) {
792
793 /* Prepare the EEPROM for bit-bang reading */
794 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
795 return -E1000_ERR_EEPROM;
796 }
797
798 /* Eerd register EEPROM access requires no eeprom aquire/release */
799 if (eeprom->use_eerd == TRUE)
800 return e1000_read_eeprom_eerd(hw, offset, words, data);
801
802 /* ich8lan does not support currently. if needed, please
803 * add corresponding code and functions.
804 */
805#if 0
806 /* ICH EEPROM access is done via the ICH flash controller */
807 if (eeprom->type == e1000_eeprom_ich8)
808 return e1000_read_eeprom_ich8(hw, offset, words, data);
809#endif
810 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
811 * acquired the EEPROM at this point, so any returns should relase it */
812 if (eeprom->type == e1000_eeprom_spi) {
813 uint16_t word_in;
814 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
815
816 if (e1000_spi_eeprom_ready(hw)) {
817 e1000_release_eeprom(hw);
818 return -E1000_ERR_EEPROM;
819 }
820
821 e1000_standby_eeprom(hw);
822
823 /* Some SPI eeproms use the 8th address bit embedded in
824 * the opcode */
825 if ((eeprom->address_bits == 8) && (offset >= 128))
826 read_opcode |= EEPROM_A8_OPCODE_SPI;
827
828 /* Send the READ command (opcode + addr) */
829 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
830 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
831 eeprom->address_bits);
832
833 /* Read the data. The address of the eeprom internally
834 * increments with each byte (spi) being read, saving on the
835 * overhead of eeprom setup and tear-down. The address
836 * counter will roll over if reading beyond the size of
837 * the eeprom, thus allowing the entire memory to be read
838 * starting from any offset. */
839 for (i = 0; i < words; i++) {
840 word_in = e1000_shift_in_ee_bits(hw, 16);
841 data[i] = (word_in >> 8) | (word_in << 8);
842 }
843 } else if (eeprom->type == e1000_eeprom_microwire) {
844 for (i = 0; i < words; i++) {
845 /* Send the READ command (opcode + addr) */
846 e1000_shift_out_ee_bits(hw,
847 EEPROM_READ_OPCODE_MICROWIRE,
848 eeprom->opcode_bits);
849 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
850 eeprom->address_bits);
851
852 /* Read the data. For microwire, each word requires
853 * the overhead of eeprom setup and tear-down. */
854 data[i] = e1000_shift_in_ee_bits(hw, 16);
855 e1000_standby_eeprom(hw);
856 }
857 }
858
859 /* End this read operation */
860 e1000_release_eeprom(hw);
861
862 return E1000_SUCCESS;
863}
864
865/******************************************************************************
866 * Verifies that the EEPROM has a valid checksum
867 *
868 * hw - Struct containing variables accessed by shared code
869 *
870 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
871 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
872 * valid.
873 *****************************************************************************/
874static int
875e1000_validate_eeprom_checksum(struct eth_device *nic)
876{
877 struct e1000_hw *hw = nic->priv;
878 uint16_t checksum = 0;
879 uint16_t i, eeprom_data;
880
881 DEBUGFUNC();
882
883 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
884 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
885 DEBUGOUT("EEPROM Read Error\n");
886 return -E1000_ERR_EEPROM;
887 }
888 checksum += eeprom_data;
889 }
890
891 if (checksum == (uint16_t) EEPROM_SUM) {
892 return 0;
893 } else {
894 DEBUGOUT("EEPROM Checksum Invalid\n");
895 return -E1000_ERR_EEPROM;
896 }
Roy Zang9b7c4302009-08-11 03:48:05 +0800897}
898
899/*****************************************************************************
900 * Set PHY to class A mode
901 * Assumes the following operations will follow to enable the new class mode.
902 * 1. Do a PHY soft reset
903 * 2. Restart auto-negotiation or force link.
904 *
905 * hw - Struct containing variables accessed by shared code
906 ****************************************************************************/
907static int32_t
908e1000_set_phy_mode(struct e1000_hw *hw)
909{
910 int32_t ret_val;
911 uint16_t eeprom_data;
912
913 DEBUGFUNC();
914
915 if ((hw->mac_type == e1000_82545_rev_3) &&
916 (hw->media_type == e1000_media_type_copper)) {
917 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
918 1, &eeprom_data);
919 if (ret_val)
920 return ret_val;
921
922 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
923 (eeprom_data & EEPROM_PHY_CLASS_A)) {
924 ret_val = e1000_write_phy_reg(hw,
925 M88E1000_PHY_PAGE_SELECT, 0x000B);
926 if (ret_val)
927 return ret_val;
928 ret_val = e1000_write_phy_reg(hw,
929 M88E1000_PHY_GEN_CONTROL, 0x8104);
930 if (ret_val)
931 return ret_val;
932
933 hw->phy_reset_disable = FALSE;
934 }
935 }
936
937 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800938}
939#endif /* #ifndef CONFIG_AP1000 */
940
941/***************************************************************************
942 *
943 * Obtaining software semaphore bit (SMBI) before resetting PHY.
944 *
945 * hw: Struct containing variables accessed by shared code
946 *
947 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
948 * E1000_SUCCESS at any other case.
949 *
950 ***************************************************************************/
951static int32_t
952e1000_get_software_semaphore(struct e1000_hw *hw)
953{
954 int32_t timeout = hw->eeprom.word_size + 1;
955 uint32_t swsm;
956
957 DEBUGFUNC();
958
959 if (hw->mac_type != e1000_80003es2lan)
960 return E1000_SUCCESS;
961
962 while (timeout) {
963 swsm = E1000_READ_REG(hw, SWSM);
964 /* If SMBI bit cleared, it is now set and we hold
965 * the semaphore */
966 if (!(swsm & E1000_SWSM_SMBI))
967 break;
968 mdelay(1);
969 timeout--;
970 }
971
972 if (!timeout) {
973 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
974 return -E1000_ERR_RESET;
975 }
976
977 return E1000_SUCCESS;
978}
979
980/***************************************************************************
981 * This function clears HW semaphore bits.
982 *
983 * hw: Struct containing variables accessed by shared code
984 *
985 * returns: - None.
986 *
987 ***************************************************************************/
988static void
989e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
990{
991 uint32_t swsm;
992
993 DEBUGFUNC();
994
995 if (!hw->eeprom_semaphore_present)
996 return;
997
998 swsm = E1000_READ_REG(hw, SWSM);
999 if (hw->mac_type == e1000_80003es2lan) {
1000 /* Release both semaphores. */
1001 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1002 } else
1003 swsm &= ~(E1000_SWSM_SWESMBI);
1004 E1000_WRITE_REG(hw, SWSM, swsm);
1005}
1006
1007/***************************************************************************
1008 *
1009 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1010 * adapter or Eeprom access.
1011 *
1012 * hw: Struct containing variables accessed by shared code
1013 *
1014 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1015 * E1000_SUCCESS at any other case.
1016 *
1017 ***************************************************************************/
1018static int32_t
1019e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1020{
1021 int32_t timeout;
1022 uint32_t swsm;
1023
1024 DEBUGFUNC();
1025
1026 if (!hw->eeprom_semaphore_present)
1027 return E1000_SUCCESS;
1028
1029 if (hw->mac_type == e1000_80003es2lan) {
1030 /* Get the SW semaphore. */
1031 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1032 return -E1000_ERR_EEPROM;
1033 }
1034
1035 /* Get the FW semaphore. */
1036 timeout = hw->eeprom.word_size + 1;
1037 while (timeout) {
1038 swsm = E1000_READ_REG(hw, SWSM);
1039 swsm |= E1000_SWSM_SWESMBI;
1040 E1000_WRITE_REG(hw, SWSM, swsm);
1041 /* if we managed to set the bit we got the semaphore. */
1042 swsm = E1000_READ_REG(hw, SWSM);
1043 if (swsm & E1000_SWSM_SWESMBI)
1044 break;
1045
1046 udelay(50);
1047 timeout--;
1048 }
1049
1050 if (!timeout) {
1051 /* Release semaphores */
1052 e1000_put_hw_eeprom_semaphore(hw);
1053 DEBUGOUT("Driver can't access the Eeprom - "
1054 "SWESMBI bit is set.\n");
1055 return -E1000_ERR_EEPROM;
1056 }
1057
1058 return E1000_SUCCESS;
1059}
1060
1061static int32_t
1062e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1063{
1064 uint32_t swfw_sync = 0;
1065 uint32_t swmask = mask;
1066 uint32_t fwmask = mask << 16;
1067 int32_t timeout = 200;
1068
1069 DEBUGFUNC();
1070 while (timeout) {
1071 if (e1000_get_hw_eeprom_semaphore(hw))
1072 return -E1000_ERR_SWFW_SYNC;
1073
1074 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1075 if (!(swfw_sync & (fwmask | swmask)))
1076 break;
1077
1078 /* firmware currently using resource (fwmask) */
1079 /* or other software thread currently using resource (swmask) */
1080 e1000_put_hw_eeprom_semaphore(hw);
1081 mdelay(5);
1082 timeout--;
1083 }
1084
1085 if (!timeout) {
1086 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1087 return -E1000_ERR_SWFW_SYNC;
1088 }
1089
1090 swfw_sync |= swmask;
1091 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1092
1093 e1000_put_hw_eeprom_semaphore(hw);
1094 return E1000_SUCCESS;
1095}
1096
1097/******************************************************************************
1098 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1099 * second function of dual function devices
1100 *
1101 * nic - Struct containing variables accessed by shared code
1102 *****************************************************************************/
1103static int
1104e1000_read_mac_addr(struct eth_device *nic)
1105{
1106#ifndef CONFIG_AP1000
1107 struct e1000_hw *hw = nic->priv;
1108 uint16_t offset;
1109 uint16_t eeprom_data;
1110 int i;
1111
1112 DEBUGFUNC();
1113
1114 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001115 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001116 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001117 DEBUGOUT("EEPROM Read Error\n");
1118 return -E1000_ERR_EEPROM;
1119 }
1120 nic->enetaddr[i] = eeprom_data & 0xff;
1121 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1122 }
1123 if ((hw->mac_type == e1000_82546) &&
1124 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1125 /* Invert the last bit if this is the second device */
1126 nic->enetaddr[5] += 1;
1127 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001128#ifdef CONFIG_E1000_FALLBACK_MAC
Stefan Roese37628252008-08-06 14:05:38 +02001129 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1130 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1131
1132 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1133 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001134#endif
Wolfgang Denk56811f62005-10-09 01:04:33 +02001135#else
1136 /*
1137 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1138 * environment variables. Currently this does not support the addition
1139 * of a PMC e1000 card, which is certainly a possibility, so this should
1140 * be updated to properly use the env variable only for the onboard e1000
1141 */
1142
1143 int ii;
1144 char *s, *e;
1145
1146 DEBUGFUNC();
1147
1148 s = getenv ("ethaddr");
Stefan Roese37628252008-08-06 14:05:38 +02001149 if (s == NULL) {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001150 return -E1000_ERR_EEPROM;
Stefan Roese37628252008-08-06 14:05:38 +02001151 } else {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001152 for(ii = 0; ii < 6; ii++) {
1153 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1154 if (s){
1155 s = (*e) ? e + 1 : e;
1156 }
1157 }
1158 }
1159#endif
wdenk4e112c12003-06-03 23:54:09 +00001160 return 0;
1161}
1162
1163/******************************************************************************
1164 * Initializes receive address filters.
1165 *
wdenk57b2d802003-06-27 21:31:46 +00001166 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001167 *
1168 * Places the MAC address in receive address register 0 and clears the rest
1169 * of the receive addresss registers. Clears the multicast table. Assumes
1170 * the receiver is in reset when the routine is called.
1171 *****************************************************************************/
1172static void
1173e1000_init_rx_addrs(struct eth_device *nic)
1174{
1175 struct e1000_hw *hw = nic->priv;
1176 uint32_t i;
1177 uint32_t addr_low;
1178 uint32_t addr_high;
1179
1180 DEBUGFUNC();
1181
1182 /* Setup the receive address. */
1183 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1184 addr_low = (nic->enetaddr[0] |
1185 (nic->enetaddr[1] << 8) |
1186 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1187
1188 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1189
1190 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1191 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1192
1193 /* Zero out the other 15 receive addresses. */
1194 DEBUGOUT("Clearing RAR[1-15]\n");
1195 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1196 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1197 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1198 }
1199}
1200
1201/******************************************************************************
1202 * Clears the VLAN filer table
1203 *
1204 * hw - Struct containing variables accessed by shared code
1205 *****************************************************************************/
1206static void
1207e1000_clear_vfta(struct e1000_hw *hw)
1208{
1209 uint32_t offset;
1210
1211 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1212 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1213}
1214
1215/******************************************************************************
1216 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001217 *
wdenk4e112c12003-06-03 23:54:09 +00001218 * hw - Struct containing variables accessed by shared code
1219 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001220int32_t
wdenk4e112c12003-06-03 23:54:09 +00001221e1000_set_mac_type(struct e1000_hw *hw)
1222{
1223 DEBUGFUNC();
1224
1225 switch (hw->device_id) {
1226 case E1000_DEV_ID_82542:
1227 switch (hw->revision_id) {
1228 case E1000_82542_2_0_REV_ID:
1229 hw->mac_type = e1000_82542_rev2_0;
1230 break;
1231 case E1000_82542_2_1_REV_ID:
1232 hw->mac_type = e1000_82542_rev2_1;
1233 break;
1234 default:
1235 /* Invalid 82542 revision ID */
1236 return -E1000_ERR_MAC_TYPE;
1237 }
1238 break;
1239 case E1000_DEV_ID_82543GC_FIBER:
1240 case E1000_DEV_ID_82543GC_COPPER:
1241 hw->mac_type = e1000_82543;
1242 break;
1243 case E1000_DEV_ID_82544EI_COPPER:
1244 case E1000_DEV_ID_82544EI_FIBER:
1245 case E1000_DEV_ID_82544GC_COPPER:
1246 case E1000_DEV_ID_82544GC_LOM:
1247 hw->mac_type = e1000_82544;
1248 break;
1249 case E1000_DEV_ID_82540EM:
1250 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001251 case E1000_DEV_ID_82540EP:
1252 case E1000_DEV_ID_82540EP_LOM:
1253 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001254 hw->mac_type = e1000_82540;
1255 break;
1256 case E1000_DEV_ID_82545EM_COPPER:
1257 case E1000_DEV_ID_82545EM_FIBER:
1258 hw->mac_type = e1000_82545;
1259 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001260 case E1000_DEV_ID_82545GM_COPPER:
1261 case E1000_DEV_ID_82545GM_FIBER:
1262 case E1000_DEV_ID_82545GM_SERDES:
1263 hw->mac_type = e1000_82545_rev_3;
1264 break;
wdenk4e112c12003-06-03 23:54:09 +00001265 case E1000_DEV_ID_82546EB_COPPER:
1266 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001267 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001268 hw->mac_type = e1000_82546;
1269 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001270 case E1000_DEV_ID_82546GB_COPPER:
1271 case E1000_DEV_ID_82546GB_FIBER:
1272 case E1000_DEV_ID_82546GB_SERDES:
1273 case E1000_DEV_ID_82546GB_PCIE:
1274 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1275 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1276 hw->mac_type = e1000_82546_rev_3;
1277 break;
1278 case E1000_DEV_ID_82541EI:
1279 case E1000_DEV_ID_82541EI_MOBILE:
1280 case E1000_DEV_ID_82541ER_LOM:
1281 hw->mac_type = e1000_82541;
1282 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001283 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001284 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001285 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001286 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001287 hw->mac_type = e1000_82541_rev_2;
1288 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001289 case E1000_DEV_ID_82547EI:
1290 case E1000_DEV_ID_82547EI_MOBILE:
1291 hw->mac_type = e1000_82547;
1292 break;
1293 case E1000_DEV_ID_82547GI:
1294 hw->mac_type = e1000_82547_rev_2;
1295 break;
1296 case E1000_DEV_ID_82571EB_COPPER:
1297 case E1000_DEV_ID_82571EB_FIBER:
1298 case E1000_DEV_ID_82571EB_SERDES:
1299 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1300 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1301 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1302 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1303 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1304 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1305 hw->mac_type = e1000_82571;
1306 break;
1307 case E1000_DEV_ID_82572EI_COPPER:
1308 case E1000_DEV_ID_82572EI_FIBER:
1309 case E1000_DEV_ID_82572EI_SERDES:
1310 case E1000_DEV_ID_82572EI:
1311 hw->mac_type = e1000_82572;
1312 break;
1313 case E1000_DEV_ID_82573E:
1314 case E1000_DEV_ID_82573E_IAMT:
1315 case E1000_DEV_ID_82573L:
1316 hw->mac_type = e1000_82573;
1317 break;
1318 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1319 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1320 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1321 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1322 hw->mac_type = e1000_80003es2lan;
1323 break;
1324 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1325 case E1000_DEV_ID_ICH8_IGP_AMT:
1326 case E1000_DEV_ID_ICH8_IGP_C:
1327 case E1000_DEV_ID_ICH8_IFE:
1328 case E1000_DEV_ID_ICH8_IFE_GT:
1329 case E1000_DEV_ID_ICH8_IFE_G:
1330 case E1000_DEV_ID_ICH8_IGP_M:
1331 hw->mac_type = e1000_ich8lan;
1332 break;
wdenk4e112c12003-06-03 23:54:09 +00001333 default:
1334 /* Should never have loaded on this device */
1335 return -E1000_ERR_MAC_TYPE;
1336 }
1337 return E1000_SUCCESS;
1338}
1339
1340/******************************************************************************
1341 * Reset the transmit and receive units; mask and clear all interrupts.
1342 *
1343 * hw - Struct containing variables accessed by shared code
1344 *****************************************************************************/
1345void
1346e1000_reset_hw(struct e1000_hw *hw)
1347{
1348 uint32_t ctrl;
1349 uint32_t ctrl_ext;
1350 uint32_t icr;
1351 uint32_t manc;
1352
1353 DEBUGFUNC();
1354
1355 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1356 if (hw->mac_type == e1000_82542_rev2_0) {
1357 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1358 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001359 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001360 }
1361
1362 /* Clear interrupt mask to stop board from generating interrupts */
1363 DEBUGOUT("Masking off all interrupts\n");
1364 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1365
1366 /* Disable the Transmit and Receive units. Then delay to allow
1367 * any pending transactions to complete before we hit the MAC with
1368 * the global reset.
1369 */
1370 E1000_WRITE_REG(hw, RCTL, 0);
1371 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1372 E1000_WRITE_FLUSH(hw);
1373
1374 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1375 hw->tbi_compatibility_on = FALSE;
1376
1377 /* Delay to allow any outstanding PCI transactions to complete before
1378 * resetting the device
1379 */
1380 mdelay(10);
1381
1382 /* Issue a global reset to the MAC. This will reset the chip's
1383 * transmit, receive, DMA, and link units. It will not effect
1384 * the current PCI configuration. The global reset bit is self-
1385 * clearing, and should clear within a microsecond.
1386 */
1387 DEBUGOUT("Issuing a global reset to MAC\n");
1388 ctrl = E1000_READ_REG(hw, CTRL);
1389
Roy Zang28f7a052009-07-31 13:34:02 +08001390 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001391
1392 /* Force a reload from the EEPROM if necessary */
1393 if (hw->mac_type < e1000_82540) {
1394 /* Wait for reset to complete */
1395 udelay(10);
1396 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1397 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1398 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1399 E1000_WRITE_FLUSH(hw);
1400 /* Wait for EEPROM reload */
1401 mdelay(2);
1402 } else {
1403 /* Wait for EEPROM reload (it happens automatically) */
1404 mdelay(4);
1405 /* Dissable HW ARPs on ASF enabled adapters */
1406 manc = E1000_READ_REG(hw, MANC);
1407 manc &= ~(E1000_MANC_ARP_EN);
1408 E1000_WRITE_REG(hw, MANC, manc);
1409 }
1410
1411 /* Clear interrupt mask to stop board from generating interrupts */
1412 DEBUGOUT("Masking off all interrupts\n");
1413 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1414
1415 /* Clear any pending interrupt events. */
1416 icr = E1000_READ_REG(hw, ICR);
1417
1418 /* If MWI was previously enabled, reenable it. */
1419 if (hw->mac_type == e1000_82542_rev2_0) {
1420 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1421 }
Roy Zang28f7a052009-07-31 13:34:02 +08001422 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
1423}
1424
1425/******************************************************************************
1426 *
1427 * Initialize a number of hardware-dependent bits
1428 *
1429 * hw: Struct containing variables accessed by shared code
1430 *
1431 * This function contains hardware limitation workarounds for PCI-E adapters
1432 *
1433 *****************************************************************************/
1434static void
1435e1000_initialize_hardware_bits(struct e1000_hw *hw)
1436{
1437 if ((hw->mac_type >= e1000_82571) &&
1438 (!hw->initialize_hw_bits_disable)) {
1439 /* Settings common to all PCI-express silicon */
1440 uint32_t reg_ctrl, reg_ctrl_ext;
1441 uint32_t reg_tarc0, reg_tarc1;
1442 uint32_t reg_tctl;
1443 uint32_t reg_txdctl, reg_txdctl1;
1444
1445 /* link autonegotiation/sync workarounds */
1446 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1447 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1448
1449 /* Enable not-done TX descriptor counting */
1450 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1451 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1452 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1453
1454 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1455 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1456 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1457
1458 switch (hw->mac_type) {
1459 case e1000_82571:
1460 case e1000_82572:
1461 /* Clear PHY TX compatible mode bits */
1462 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1463 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1464
1465 /* link autonegotiation/sync workarounds */
1466 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1467
1468 /* TX ring control fixes */
1469 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1470
1471 /* Multiple read bit is reversed polarity */
1472 reg_tctl = E1000_READ_REG(hw, TCTL);
1473 if (reg_tctl & E1000_TCTL_MULR)
1474 reg_tarc1 &= ~(1 << 28);
1475 else
1476 reg_tarc1 |= (1 << 28);
1477
1478 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1479 break;
1480 case e1000_82573:
1481 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1482 reg_ctrl_ext &= ~(1 << 23);
1483 reg_ctrl_ext |= (1 << 22);
1484
1485 /* TX byte count fix */
1486 reg_ctrl = E1000_READ_REG(hw, CTRL);
1487 reg_ctrl &= ~(1 << 29);
1488
1489 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1490 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1491 break;
1492 case e1000_80003es2lan:
1493 /* improve small packet performace for fiber/serdes */
1494 if ((hw->media_type == e1000_media_type_fiber)
1495 || (hw->media_type ==
1496 e1000_media_type_internal_serdes)) {
1497 reg_tarc0 &= ~(1 << 20);
1498 }
1499
1500 /* Multiple read bit is reversed polarity */
1501 reg_tctl = E1000_READ_REG(hw, TCTL);
1502 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1503 if (reg_tctl & E1000_TCTL_MULR)
1504 reg_tarc1 &= ~(1 << 28);
1505 else
1506 reg_tarc1 |= (1 << 28);
1507
1508 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1509 break;
1510 case e1000_ich8lan:
1511 /* Reduce concurrent DMA requests to 3 from 4 */
1512 if ((hw->revision_id < 3) ||
1513 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1514 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1515 reg_tarc0 |= ((1 << 29)|(1 << 28));
1516
1517 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1518 reg_ctrl_ext |= (1 << 22);
1519 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1520
1521 /* workaround TX hang with TSO=on */
1522 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1523
1524 /* Multiple read bit is reversed polarity */
1525 reg_tctl = E1000_READ_REG(hw, TCTL);
1526 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1527 if (reg_tctl & E1000_TCTL_MULR)
1528 reg_tarc1 &= ~(1 << 28);
1529 else
1530 reg_tarc1 |= (1 << 28);
1531
1532 /* workaround TX hang with TSO=on */
1533 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1534
1535 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1536 break;
1537 default:
1538 break;
1539 }
1540
1541 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1542 }
wdenk4e112c12003-06-03 23:54:09 +00001543}
1544
1545/******************************************************************************
1546 * Performs basic configuration of the adapter.
1547 *
1548 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001549 *
1550 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001551 * post-reset uninitialized state. Initializes the receive address registers,
1552 * multicast table, and VLAN filter table. Calls routines to setup link
1553 * configuration and flow control settings. Clears all on-chip counters. Leaves
1554 * the transmit and receive units disabled and uninitialized.
1555 *****************************************************************************/
1556static int
1557e1000_init_hw(struct eth_device *nic)
1558{
1559 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001560 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001561 uint32_t i;
1562 int32_t ret_val;
1563 uint16_t pcix_cmd_word;
1564 uint16_t pcix_stat_hi_word;
1565 uint16_t cmd_mmrbc;
1566 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001567 uint32_t mta_size;
1568 uint32_t reg_data;
1569 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001570 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001571 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1572 if ((hw->mac_type == e1000_ich8lan) &&
1573 ((hw->revision_id < 3) ||
1574 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1575 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1576 reg_data = E1000_READ_REG(hw, STATUS);
1577 reg_data &= ~0x80000000;
1578 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001579 }
Roy Zang28f7a052009-07-31 13:34:02 +08001580 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001581
Roy Zang28f7a052009-07-31 13:34:02 +08001582 /* Set the media type and TBI compatibility */
1583 e1000_set_media_type(hw);
1584
1585 /* Must be called after e1000_set_media_type
1586 * because media_type is used */
1587 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001588
1589 /* Disabling VLAN filtering. */
1590 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001591 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1592 if (hw->mac_type != e1000_ich8lan) {
1593 if (hw->mac_type < e1000_82545_rev_3)
1594 E1000_WRITE_REG(hw, VET, 0);
1595 e1000_clear_vfta(hw);
1596 }
wdenk4e112c12003-06-03 23:54:09 +00001597
1598 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1599 if (hw->mac_type == e1000_82542_rev2_0) {
1600 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1601 pci_write_config_word(hw->pdev, PCI_COMMAND,
1602 hw->
1603 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1604 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1605 E1000_WRITE_FLUSH(hw);
1606 mdelay(5);
1607 }
1608
1609 /* Setup the receive address. This involves initializing all of the Receive
1610 * Address Registers (RARs 0 - 15).
1611 */
1612 e1000_init_rx_addrs(nic);
1613
1614 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1615 if (hw->mac_type == e1000_82542_rev2_0) {
1616 E1000_WRITE_REG(hw, RCTL, 0);
1617 E1000_WRITE_FLUSH(hw);
1618 mdelay(1);
1619 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1620 }
1621
1622 /* Zero out the Multicast HASH table */
1623 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001624 mta_size = E1000_MC_TBL_SIZE;
1625 if (hw->mac_type == e1000_ich8lan)
1626 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1627 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001628 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001629 /* use write flush to prevent Memory Write Block (MWB) from
1630 * occuring when accessing our register space */
1631 E1000_WRITE_FLUSH(hw);
1632 }
wdenk4e112c12003-06-03 23:54:09 +00001633#if 0
1634 /* Set the PCI priority bit correctly in the CTRL register. This
1635 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001636 * gives equal priority to transmits and receives. Valid only on
1637 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001638 */
Roy Zang28f7a052009-07-31 13:34:02 +08001639 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001640 ctrl = E1000_READ_REG(hw, CTRL);
1641 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1642 }
1643#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001644 switch (hw->mac_type) {
1645 case e1000_82545_rev_3:
1646 case e1000_82546_rev_3:
1647 break;
1648 default:
wdenk4e112c12003-06-03 23:54:09 +00001649 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001650 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001651 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1652 &pcix_cmd_word);
1653 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1654 &pcix_stat_hi_word);
1655 cmd_mmrbc =
1656 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1657 PCIX_COMMAND_MMRBC_SHIFT;
1658 stat_mmrbc =
1659 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1660 PCIX_STATUS_HI_MMRBC_SHIFT;
1661 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1662 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1663 if (cmd_mmrbc > stat_mmrbc) {
1664 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1665 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1666 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1667 pcix_cmd_word);
1668 }
1669 }
Roy Zang28f7a052009-07-31 13:34:02 +08001670 break;
1671 }
wdenk4e112c12003-06-03 23:54:09 +00001672
Roy Zang28f7a052009-07-31 13:34:02 +08001673 /* More time needed for PHY to initialize */
1674 if (hw->mac_type == e1000_ich8lan)
1675 mdelay(15);
1676
wdenk4e112c12003-06-03 23:54:09 +00001677 /* Call a subroutine to configure the link and setup flow control. */
1678 ret_val = e1000_setup_link(nic);
1679
1680 /* Set the transmit descriptor write-back policy */
1681 if (hw->mac_type > e1000_82544) {
1682 ctrl = E1000_READ_REG(hw, TXDCTL);
1683 ctrl =
1684 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1685 E1000_TXDCTL_FULL_TX_DESC_WB;
1686 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1687 }
Roy Zang28f7a052009-07-31 13:34:02 +08001688
1689 switch (hw->mac_type) {
1690 default:
1691 break;
1692 case e1000_80003es2lan:
1693 /* Enable retransmit on late collisions */
1694 reg_data = E1000_READ_REG(hw, TCTL);
1695 reg_data |= E1000_TCTL_RTLC;
1696 E1000_WRITE_REG(hw, TCTL, reg_data);
1697
1698 /* Configure Gigabit Carry Extend Padding */
1699 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1700 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1701 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1702 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1703
1704 /* Configure Transmit Inter-Packet Gap */
1705 reg_data = E1000_READ_REG(hw, TIPG);
1706 reg_data &= ~E1000_TIPG_IPGT_MASK;
1707 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1708 E1000_WRITE_REG(hw, TIPG, reg_data);
1709
1710 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1711 reg_data &= ~0x00100000;
1712 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1713 /* Fall through */
1714 case e1000_82571:
1715 case e1000_82572:
1716 case e1000_ich8lan:
1717 ctrl = E1000_READ_REG(hw, TXDCTL1);
1718 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1719 | E1000_TXDCTL_FULL_TX_DESC_WB;
1720 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1721 break;
1722 }
1723
1724 if (hw->mac_type == e1000_82573) {
1725 uint32_t gcr = E1000_READ_REG(hw, GCR);
1726 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1727 E1000_WRITE_REG(hw, GCR, gcr);
1728 }
1729
wdenk4e112c12003-06-03 23:54:09 +00001730#if 0
1731 /* Clear all of the statistics registers (clear on read). It is
1732 * important that we do this after we have tried to establish link
1733 * because the symbol error count will increment wildly if there
1734 * is no link.
1735 */
1736 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001737
1738 /* ICH8 No-snoop bits are opposite polarity.
1739 * Set to snoop by default after reset. */
1740 if (hw->mac_type == e1000_ich8lan)
1741 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001742#endif
1743
Roy Zang28f7a052009-07-31 13:34:02 +08001744 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1745 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1746 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1747 /* Relaxed ordering must be disabled to avoid a parity
1748 * error crash in a PCI slot. */
1749 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1750 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1751 }
1752
1753 return ret_val;
1754}
wdenk4e112c12003-06-03 23:54:09 +00001755
1756/******************************************************************************
1757 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001758 *
wdenk4e112c12003-06-03 23:54:09 +00001759 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001760 *
wdenk4e112c12003-06-03 23:54:09 +00001761 * Determines which flow control settings to use. Calls the apropriate media-
1762 * specific link configuration function. Configures the flow control settings.
1763 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001764 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001765 * transmitter and receiver are not enabled.
1766 *****************************************************************************/
1767static int
1768e1000_setup_link(struct eth_device *nic)
1769{
1770 struct e1000_hw *hw = nic->priv;
1771 uint32_t ctrl_ext;
1772 int32_t ret_val;
1773 uint16_t eeprom_data;
1774
1775 DEBUGFUNC();
1776
Roy Zang28f7a052009-07-31 13:34:02 +08001777 /* In the case of the phy reset being blocked, we already have a link.
1778 * We do not have to set it up again. */
1779 if (e1000_check_phy_reset_block(hw))
1780 return E1000_SUCCESS;
1781
Wolfgang Denk56811f62005-10-09 01:04:33 +02001782#ifndef CONFIG_AP1000
wdenk4e112c12003-06-03 23:54:09 +00001783 /* Read and store word 0x0F of the EEPROM. This word contains bits
1784 * that determine the hardware's default PAUSE (flow control) mode,
1785 * a bit that determines whether the HW defaults to enabling or
1786 * disabling auto-negotiation, and the direction of the
1787 * SW defined pins. If there is no SW over-ride of the flow
1788 * control setting, then the variable hw->fc will
1789 * be initialized based on a value in the EEPROM.
1790 */
Roy Zang28f7a052009-07-31 13:34:02 +08001791 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1792 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001793 DEBUGOUT("EEPROM Read Error\n");
1794 return -E1000_ERR_EEPROM;
1795 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02001796#else
1797 /* we have to hardcode the proper value for our hardware. */
1798 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1799 eeprom_data = 0xb220;
1800#endif
wdenk4e112c12003-06-03 23:54:09 +00001801
1802 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001803 switch (hw->mac_type) {
1804 case e1000_ich8lan:
1805 case e1000_82573:
wdenk4e112c12003-06-03 23:54:09 +00001806 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001807 break;
1808 default:
1809#ifndef CONFIG_AP1000
1810 ret_val = e1000_read_eeprom(hw,
1811 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1812 if (ret_val) {
1813 DEBUGOUT("EEPROM Read Error\n");
1814 return -E1000_ERR_EEPROM;
1815 }
1816#else
1817 eeprom_data = 0xb220;
1818#endif
1819 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1820 hw->fc = e1000_fc_none;
1821 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1822 EEPROM_WORD0F_ASM_DIR)
1823 hw->fc = e1000_fc_tx_pause;
1824 else
1825 hw->fc = e1000_fc_full;
1826 break;
1827 }
wdenk4e112c12003-06-03 23:54:09 +00001828 }
1829
1830 /* We want to save off the original Flow Control configuration just
1831 * in case we get disconnected and then reconnected into a different
1832 * hub or switch with different Flow Control capabilities.
1833 */
1834 if (hw->mac_type == e1000_82542_rev2_0)
1835 hw->fc &= (~e1000_fc_tx_pause);
1836
1837 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1838 hw->fc &= (~e1000_fc_rx_pause);
1839
1840 hw->original_fc = hw->fc;
1841
1842 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1843
1844 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1845 * polarity value for the SW controlled pins, and setup the
1846 * Extended Device Control reg with that info.
1847 * This is needed because one of the SW controlled pins is used for
1848 * signal detection. So this should be done before e1000_setup_pcs_link()
1849 * or e1000_phy_setup() is called.
1850 */
1851 if (hw->mac_type == e1000_82543) {
1852 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1853 SWDPIO__EXT_SHIFT);
1854 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1855 }
1856
1857 /* Call the necessary subroutine to configure the link. */
1858 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1859 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1860 if (ret_val < 0) {
1861 return ret_val;
1862 }
1863
1864 /* Initialize the flow control address, type, and PAUSE timer
1865 * registers to their default values. This is done even if flow
1866 * control is disabled, because it does not hurt anything to
1867 * initialize these registers.
1868 */
Roy Zang28f7a052009-07-31 13:34:02 +08001869 DEBUGOUT("Initializing the Flow Control address, type"
1870 "and timer regs\n");
1871
1872 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1873 if (hw->mac_type != e1000_ich8lan) {
1874 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1875 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1876 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1877 }
wdenk4e112c12003-06-03 23:54:09 +00001878
wdenk4e112c12003-06-03 23:54:09 +00001879 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1880
1881 /* Set the flow control receive threshold registers. Normally,
1882 * these registers will be set to a default threshold that may be
1883 * adjusted later by the driver's runtime code. However, if the
1884 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001885 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001886 */
1887 if (!(hw->fc & e1000_fc_tx_pause)) {
1888 E1000_WRITE_REG(hw, FCRTL, 0);
1889 E1000_WRITE_REG(hw, FCRTH, 0);
1890 } else {
1891 /* We need to set up the Receive Threshold high and low water marks
1892 * as well as (optionally) enabling the transmission of XON frames.
1893 */
1894 if (hw->fc_send_xon) {
1895 E1000_WRITE_REG(hw, FCRTL,
1896 (hw->fc_low_water | E1000_FCRTL_XONE));
1897 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1898 } else {
1899 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1900 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1901 }
1902 }
1903 return ret_val;
1904}
1905
1906/******************************************************************************
1907 * Sets up link for a fiber based adapter
1908 *
1909 * hw - Struct containing variables accessed by shared code
1910 *
1911 * Manipulates Physical Coding Sublayer functions in order to configure
1912 * link. Assumes the hardware has been previously reset and the transmitter
1913 * and receiver are not enabled.
1914 *****************************************************************************/
1915static int
1916e1000_setup_fiber_link(struct eth_device *nic)
1917{
1918 struct e1000_hw *hw = nic->priv;
1919 uint32_t ctrl;
1920 uint32_t status;
1921 uint32_t txcw = 0;
1922 uint32_t i;
1923 uint32_t signal;
1924 int32_t ret_val;
1925
1926 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001927 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1928 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001929 * cleared when there is a signal
1930 */
1931 ctrl = E1000_READ_REG(hw, CTRL);
1932 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1933 signal = E1000_CTRL_SWDPIN1;
1934 else
1935 signal = 0;
1936
1937 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1938 ctrl);
1939 /* Take the link out of reset */
1940 ctrl &= ~(E1000_CTRL_LRST);
1941
1942 e1000_config_collision_dist(hw);
1943
1944 /* Check for a software override of the flow control settings, and setup
1945 * the device accordingly. If auto-negotiation is enabled, then software
1946 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1947 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001948 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001949 * configure the two flow control enable bits in the CTRL register.
1950 *
1951 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001952 * 0: Flow control is completely disabled
1953 * 1: Rx flow control is enabled (we can receive pause frames, but
1954 * not send pause frames).
1955 * 2: Tx flow control is enabled (we can send pause frames but we do
1956 * not support receiving pause frames).
1957 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001958 */
1959 switch (hw->fc) {
1960 case e1000_fc_none:
1961 /* Flow control is completely disabled by a software over-ride. */
1962 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1963 break;
1964 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001965 /* RX Flow control is enabled and TX Flow control is disabled by a
1966 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001967 * that we are capable of RX Pause ONLY, we will advertise that we
1968 * support both symmetric and asymmetric RX PAUSE. Later, we will
1969 * disable the adapter's ability to send PAUSE frames.
1970 */
1971 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1972 break;
1973 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001974 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00001975 * software over-ride.
1976 */
1977 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1978 break;
1979 case e1000_fc_full:
1980 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1981 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1982 break;
1983 default:
1984 DEBUGOUT("Flow control param set incorrectly\n");
1985 return -E1000_ERR_CONFIG;
1986 break;
1987 }
1988
1989 /* Since auto-negotiation is enabled, take the link out of reset (the link
1990 * will be in reset, because we previously reset the chip). This will
1991 * restart auto-negotiation. If auto-neogtiation is successful then the
1992 * link-up status bit will be set and the flow control enable bits (RFCE
1993 * and TFCE) will be set according to their negotiated value.
1994 */
1995 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1996
1997 E1000_WRITE_REG(hw, TXCW, txcw);
1998 E1000_WRITE_REG(hw, CTRL, ctrl);
1999 E1000_WRITE_FLUSH(hw);
2000
2001 hw->txcw = txcw;
2002 mdelay(1);
2003
2004 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002005 * indication in the Device Status Register. Time-out if a link isn't
2006 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002007 * less than 500 milliseconds even if the other end is doing it in SW).
2008 */
2009 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2010 DEBUGOUT("Looking for Link\n");
2011 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2012 mdelay(10);
2013 status = E1000_READ_REG(hw, STATUS);
2014 if (status & E1000_STATUS_LU)
2015 break;
2016 }
2017 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002018 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002019 * e1000_check_for_link. This routine will force the link up if we
2020 * detect a signal. This will allow us to communicate with
2021 * non-autonegotiating link partners.
2022 */
2023 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2024 hw->autoneg_failed = 1;
2025 ret_val = e1000_check_for_link(nic);
2026 if (ret_val < 0) {
2027 DEBUGOUT("Error while checking for link\n");
2028 return ret_val;
2029 }
2030 hw->autoneg_failed = 0;
2031 } else {
2032 hw->autoneg_failed = 0;
2033 DEBUGOUT("Valid Link Found\n");
2034 }
2035 } else {
2036 DEBUGOUT("No Signal Detected\n");
2037 return -E1000_ERR_NOLINK;
2038 }
2039 return 0;
2040}
2041
2042/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002043* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002044*
2045* hw - Struct containing variables accessed by shared code
2046******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002047static int32_t
2048e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002049{
wdenk4e112c12003-06-03 23:54:09 +00002050 uint32_t ctrl;
2051 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002052 uint16_t phy_data;
2053
2054 DEBUGFUNC();
2055
2056 ctrl = E1000_READ_REG(hw, CTRL);
2057 /* With 82543, we need to force speed and duplex on the MAC equal to what
2058 * the PHY speed and duplex configuration is. In addition, we need to
2059 * perform a hardware reset on the PHY to take it out of reset.
2060 */
2061 if (hw->mac_type > e1000_82543) {
2062 ctrl |= E1000_CTRL_SLU;
2063 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2064 E1000_WRITE_REG(hw, CTRL, ctrl);
2065 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002066 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2067 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002068 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002069 ret_val = e1000_phy_hw_reset(hw);
2070 if (ret_val)
2071 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002072 }
2073
2074 /* Make sure we have a valid PHY */
2075 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002076 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002077 DEBUGOUT("Error, did not detect valid phy.\n");
2078 return ret_val;
2079 }
2080 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2081
Roy Zang28f7a052009-07-31 13:34:02 +08002082#ifndef CONFIG_AP1000
2083 /* Set PHY to class A mode (if necessary) */
2084 ret_val = e1000_set_phy_mode(hw);
2085 if (ret_val)
2086 return ret_val;
2087#endif
2088 if ((hw->mac_type == e1000_82545_rev_3) ||
2089 (hw->mac_type == e1000_82546_rev_3)) {
2090 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2091 &phy_data);
2092 phy_data |= 0x00000008;
2093 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2094 phy_data);
2095 }
2096
2097 if (hw->mac_type <= e1000_82543 ||
2098 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2099 hw->mac_type == e1000_82541_rev_2
2100 || hw->mac_type == e1000_82547_rev_2)
2101 hw->phy_reset_disable = FALSE;
2102
2103 return E1000_SUCCESS;
2104}
2105
2106/*****************************************************************************
2107 *
2108 * This function sets the lplu state according to the active flag. When
2109 * activating lplu this function also disables smart speed and vise versa.
2110 * lplu will not be activated unless the device autonegotiation advertisment
2111 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2112 * hw: Struct containing variables accessed by shared code
2113 * active - true to enable lplu false to disable lplu.
2114 *
2115 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2116 * E1000_SUCCESS at any other case.
2117 *
2118 ****************************************************************************/
2119
2120static int32_t
2121e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2122{
2123 uint32_t phy_ctrl = 0;
2124 int32_t ret_val;
2125 uint16_t phy_data;
2126 DEBUGFUNC();
2127
2128 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2129 && hw->phy_type != e1000_phy_igp_3)
2130 return E1000_SUCCESS;
2131
2132 /* During driver activity LPLU should not be used or it will attain link
2133 * from the lowest speeds starting from 10Mbps. The capability is used
2134 * for Dx transitions and states */
2135 if (hw->mac_type == e1000_82541_rev_2
2136 || hw->mac_type == e1000_82547_rev_2) {
2137 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2138 &phy_data);
2139 if (ret_val)
2140 return ret_val;
2141 } else if (hw->mac_type == e1000_ich8lan) {
2142 /* MAC writes into PHY register based on the state transition
2143 * and start auto-negotiation. SW driver can overwrite the
2144 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2145 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2146 } else {
2147 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2148 &phy_data);
2149 if (ret_val)
2150 return ret_val;
2151 }
2152
2153 if (!active) {
2154 if (hw->mac_type == e1000_82541_rev_2 ||
2155 hw->mac_type == e1000_82547_rev_2) {
2156 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2157 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2158 phy_data);
2159 if (ret_val)
2160 return ret_val;
2161 } else {
2162 if (hw->mac_type == e1000_ich8lan) {
2163 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2164 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2165 } else {
2166 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2167 ret_val = e1000_write_phy_reg(hw,
2168 IGP02E1000_PHY_POWER_MGMT, phy_data);
2169 if (ret_val)
2170 return ret_val;
2171 }
2172 }
2173
2174 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2175 * Dx states where the power conservation is most important. During
2176 * driver activity we should enable SmartSpeed, so performance is
2177 * maintained. */
2178 if (hw->smart_speed == e1000_smart_speed_on) {
2179 ret_val = e1000_read_phy_reg(hw,
2180 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2181 if (ret_val)
2182 return ret_val;
2183
2184 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2185 ret_val = e1000_write_phy_reg(hw,
2186 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2187 if (ret_val)
2188 return ret_val;
2189 } else if (hw->smart_speed == e1000_smart_speed_off) {
2190 ret_val = e1000_read_phy_reg(hw,
2191 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2192 if (ret_val)
2193 return ret_val;
2194
2195 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2196 ret_val = e1000_write_phy_reg(hw,
2197 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2198 if (ret_val)
2199 return ret_val;
2200 }
2201
2202 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2203 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2204 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2205
2206 if (hw->mac_type == e1000_82541_rev_2 ||
2207 hw->mac_type == e1000_82547_rev_2) {
2208 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2209 ret_val = e1000_write_phy_reg(hw,
2210 IGP01E1000_GMII_FIFO, phy_data);
2211 if (ret_val)
2212 return ret_val;
2213 } else {
2214 if (hw->mac_type == e1000_ich8lan) {
2215 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2216 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2217 } else {
2218 phy_data |= IGP02E1000_PM_D3_LPLU;
2219 ret_val = e1000_write_phy_reg(hw,
2220 IGP02E1000_PHY_POWER_MGMT, phy_data);
2221 if (ret_val)
2222 return ret_val;
2223 }
2224 }
2225
2226 /* When LPLU is enabled we should disable SmartSpeed */
2227 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2228 &phy_data);
2229 if (ret_val)
2230 return ret_val;
2231
2232 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2233 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2234 phy_data);
2235 if (ret_val)
2236 return ret_val;
2237 }
2238 return E1000_SUCCESS;
2239}
2240
2241/*****************************************************************************
2242 *
2243 * This function sets the lplu d0 state according to the active flag. When
2244 * activating lplu this function also disables smart speed and vise versa.
2245 * lplu will not be activated unless the device autonegotiation advertisment
2246 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2247 * hw: Struct containing variables accessed by shared code
2248 * active - true to enable lplu false to disable lplu.
2249 *
2250 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2251 * E1000_SUCCESS at any other case.
2252 *
2253 ****************************************************************************/
2254
2255static int32_t
2256e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2257{
2258 uint32_t phy_ctrl = 0;
2259 int32_t ret_val;
2260 uint16_t phy_data;
2261 DEBUGFUNC();
2262
2263 if (hw->mac_type <= e1000_82547_rev_2)
2264 return E1000_SUCCESS;
2265
2266 if (hw->mac_type == e1000_ich8lan) {
2267 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2268 } else {
2269 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2270 &phy_data);
2271 if (ret_val)
2272 return ret_val;
2273 }
2274
2275 if (!active) {
2276 if (hw->mac_type == e1000_ich8lan) {
2277 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2278 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2279 } else {
2280 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2281 ret_val = e1000_write_phy_reg(hw,
2282 IGP02E1000_PHY_POWER_MGMT, phy_data);
2283 if (ret_val)
2284 return ret_val;
2285 }
2286
2287 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2288 * Dx states where the power conservation is most important. During
2289 * driver activity we should enable SmartSpeed, so performance is
2290 * maintained. */
2291 if (hw->smart_speed == e1000_smart_speed_on) {
2292 ret_val = e1000_read_phy_reg(hw,
2293 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2294 if (ret_val)
2295 return ret_val;
2296
2297 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2298 ret_val = e1000_write_phy_reg(hw,
2299 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2300 if (ret_val)
2301 return ret_val;
2302 } else if (hw->smart_speed == e1000_smart_speed_off) {
2303 ret_val = e1000_read_phy_reg(hw,
2304 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2305 if (ret_val)
2306 return ret_val;
2307
2308 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2309 ret_val = e1000_write_phy_reg(hw,
2310 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2311 if (ret_val)
2312 return ret_val;
2313 }
2314
2315
2316 } else {
2317
2318 if (hw->mac_type == e1000_ich8lan) {
2319 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2320 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2321 } else {
2322 phy_data |= IGP02E1000_PM_D0_LPLU;
2323 ret_val = e1000_write_phy_reg(hw,
2324 IGP02E1000_PHY_POWER_MGMT, phy_data);
2325 if (ret_val)
2326 return ret_val;
2327 }
2328
2329 /* When LPLU is enabled we should disable SmartSpeed */
2330 ret_val = e1000_read_phy_reg(hw,
2331 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2332 if (ret_val)
2333 return ret_val;
2334
2335 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2336 ret_val = e1000_write_phy_reg(hw,
2337 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2338 if (ret_val)
2339 return ret_val;
2340
2341 }
2342 return E1000_SUCCESS;
2343}
2344
2345/********************************************************************
2346* Copper link setup for e1000_phy_igp series.
2347*
2348* hw - Struct containing variables accessed by shared code
2349*********************************************************************/
2350static int32_t
2351e1000_copper_link_igp_setup(struct e1000_hw *hw)
2352{
2353 uint32_t led_ctrl;
2354 int32_t ret_val;
2355 uint16_t phy_data;
2356
Timur Tabiedc45b52009-08-17 15:55:38 -05002357 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002358
2359 if (hw->phy_reset_disable)
2360 return E1000_SUCCESS;
2361
2362 ret_val = e1000_phy_reset(hw);
2363 if (ret_val) {
2364 DEBUGOUT("Error Resetting the PHY\n");
2365 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002366 }
Roy Zang28f7a052009-07-31 13:34:02 +08002367
2368 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2369 mdelay(15);
2370 if (hw->mac_type != e1000_ich8lan) {
2371 /* Configure activity LED after PHY reset */
2372 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2373 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2374 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2375 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2376 }
2377
2378 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2379 if (hw->phy_type == e1000_phy_igp) {
2380 /* disable lplu d3 during driver init */
2381 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2382 if (ret_val) {
2383 DEBUGOUT("Error Disabling LPLU D3\n");
2384 return ret_val;
2385 }
2386 }
2387
2388 /* disable lplu d0 during driver init */
2389 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2390 if (ret_val) {
2391 DEBUGOUT("Error Disabling LPLU D0\n");
2392 return ret_val;
2393 }
2394 /* Configure mdi-mdix settings */
2395 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2396 if (ret_val)
2397 return ret_val;
2398
2399 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2400 hw->dsp_config_state = e1000_dsp_config_disabled;
2401 /* Force MDI for earlier revs of the IGP PHY */
2402 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2403 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2404 hw->mdix = 1;
2405
2406 } else {
2407 hw->dsp_config_state = e1000_dsp_config_enabled;
2408 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2409
2410 switch (hw->mdix) {
2411 case 1:
2412 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2413 break;
2414 case 2:
2415 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2416 break;
2417 case 0:
2418 default:
2419 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2420 break;
2421 }
2422 }
2423 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2424 if (ret_val)
2425 return ret_val;
2426
2427 /* set auto-master slave resolution settings */
2428 if (hw->autoneg) {
2429 e1000_ms_type phy_ms_setting = hw->master_slave;
2430
2431 if (hw->ffe_config_state == e1000_ffe_config_active)
2432 hw->ffe_config_state = e1000_ffe_config_enabled;
2433
2434 if (hw->dsp_config_state == e1000_dsp_config_activated)
2435 hw->dsp_config_state = e1000_dsp_config_enabled;
2436
2437 /* when autonegotiation advertisment is only 1000Mbps then we
2438 * should disable SmartSpeed and enable Auto MasterSlave
2439 * resolution as hardware default. */
2440 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2441 /* Disable SmartSpeed */
2442 ret_val = e1000_read_phy_reg(hw,
2443 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2444 if (ret_val)
2445 return ret_val;
2446 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2447 ret_val = e1000_write_phy_reg(hw,
2448 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2449 if (ret_val)
2450 return ret_val;
2451 /* Set auto Master/Slave resolution process */
2452 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2453 &phy_data);
2454 if (ret_val)
2455 return ret_val;
2456 phy_data &= ~CR_1000T_MS_ENABLE;
2457 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2458 phy_data);
2459 if (ret_val)
2460 return ret_val;
2461 }
2462
2463 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2464 if (ret_val)
2465 return ret_val;
2466
2467 /* load defaults for future use */
2468 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2469 ((phy_data & CR_1000T_MS_VALUE) ?
2470 e1000_ms_force_master :
2471 e1000_ms_force_slave) :
2472 e1000_ms_auto;
2473
2474 switch (phy_ms_setting) {
2475 case e1000_ms_force_master:
2476 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2477 break;
2478 case e1000_ms_force_slave:
2479 phy_data |= CR_1000T_MS_ENABLE;
2480 phy_data &= ~(CR_1000T_MS_VALUE);
2481 break;
2482 case e1000_ms_auto:
2483 phy_data &= ~CR_1000T_MS_ENABLE;
2484 default:
2485 break;
2486 }
2487 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2488 if (ret_val)
2489 return ret_val;
2490 }
2491
2492 return E1000_SUCCESS;
2493}
2494
2495/*****************************************************************************
2496 * This function checks the mode of the firmware.
2497 *
2498 * returns - TRUE when the mode is IAMT or FALSE.
2499 ****************************************************************************/
2500boolean_t
2501e1000_check_mng_mode(struct e1000_hw *hw)
2502{
2503 uint32_t fwsm;
2504 DEBUGFUNC();
2505
2506 fwsm = E1000_READ_REG(hw, FWSM);
2507
2508 if (hw->mac_type == e1000_ich8lan) {
2509 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2510 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2511 return TRUE;
2512 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2513 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2514 return TRUE;
2515
2516 return FALSE;
2517}
2518
2519static int32_t
2520e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2521{
2522 uint32_t reg_val;
2523 uint16_t swfw;
2524 DEBUGFUNC();
2525
2526 if ((hw->mac_type == e1000_80003es2lan) &&
2527 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2528 swfw = E1000_SWFW_PHY1_SM;
2529 } else {
2530 swfw = E1000_SWFW_PHY0_SM;
2531 }
2532 if (e1000_swfw_sync_acquire(hw, swfw))
2533 return -E1000_ERR_SWFW_SYNC;
2534
2535 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2536 & E1000_KUMCTRLSTA_OFFSET) | data;
2537 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2538 udelay(2);
2539
2540 return E1000_SUCCESS;
2541}
2542
2543static int32_t
2544e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2545{
2546 uint32_t reg_val;
2547 uint16_t swfw;
2548 DEBUGFUNC();
2549
2550 if ((hw->mac_type == e1000_80003es2lan) &&
2551 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2552 swfw = E1000_SWFW_PHY1_SM;
2553 } else {
2554 swfw = E1000_SWFW_PHY0_SM;
2555 }
2556 if (e1000_swfw_sync_acquire(hw, swfw))
2557 return -E1000_ERR_SWFW_SYNC;
2558
2559 /* Write register address */
2560 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2561 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2562 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2563 udelay(2);
2564
2565 /* Read the data returned */
2566 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2567 *data = (uint16_t)reg_val;
2568
2569 return E1000_SUCCESS;
2570}
2571
2572/********************************************************************
2573* Copper link setup for e1000_phy_gg82563 series.
2574*
2575* hw - Struct containing variables accessed by shared code
2576*********************************************************************/
2577static int32_t
2578e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2579{
2580 int32_t ret_val;
2581 uint16_t phy_data;
2582 uint32_t reg_data;
2583
2584 DEBUGFUNC();
2585
2586 if (!hw->phy_reset_disable) {
2587 /* Enable CRS on TX for half-duplex operation. */
2588 ret_val = e1000_read_phy_reg(hw,
2589 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2590 if (ret_val)
2591 return ret_val;
2592
2593 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2594 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2595 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2596
2597 ret_val = e1000_write_phy_reg(hw,
2598 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2599 if (ret_val)
2600 return ret_val;
2601
2602 /* Options:
2603 * MDI/MDI-X = 0 (default)
2604 * 0 - Auto for all speeds
2605 * 1 - MDI mode
2606 * 2 - MDI-X mode
2607 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2608 */
2609 ret_val = e1000_read_phy_reg(hw,
2610 GG82563_PHY_SPEC_CTRL, &phy_data);
2611 if (ret_val)
2612 return ret_val;
2613
2614 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2615
2616 switch (hw->mdix) {
2617 case 1:
2618 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2619 break;
2620 case 2:
2621 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2622 break;
2623 case 0:
2624 default:
2625 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2626 break;
2627 }
2628
2629 /* Options:
2630 * disable_polarity_correction = 0 (default)
2631 * Automatic Correction for Reversed Cable Polarity
2632 * 0 - Disabled
2633 * 1 - Enabled
2634 */
2635 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2636 ret_val = e1000_write_phy_reg(hw,
2637 GG82563_PHY_SPEC_CTRL, phy_data);
2638
2639 if (ret_val)
2640 return ret_val;
2641
2642 /* SW Reset the PHY so all changes take effect */
2643 ret_val = e1000_phy_reset(hw);
2644 if (ret_val) {
2645 DEBUGOUT("Error Resetting the PHY\n");
2646 return ret_val;
2647 }
2648 } /* phy_reset_disable */
2649
2650 if (hw->mac_type == e1000_80003es2lan) {
2651 /* Bypass RX and TX FIFO's */
2652 ret_val = e1000_write_kmrn_reg(hw,
2653 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2654 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2655 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2656 if (ret_val)
2657 return ret_val;
2658
2659 ret_val = e1000_read_phy_reg(hw,
2660 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2661 if (ret_val)
2662 return ret_val;
2663
2664 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2665 ret_val = e1000_write_phy_reg(hw,
2666 GG82563_PHY_SPEC_CTRL_2, phy_data);
2667
2668 if (ret_val)
2669 return ret_val;
2670
2671 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2672 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2673 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2674
2675 ret_val = e1000_read_phy_reg(hw,
2676 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2677 if (ret_val)
2678 return ret_val;
2679
2680 /* Do not init these registers when the HW is in IAMT mode, since the
2681 * firmware will have already initialized them. We only initialize
2682 * them if the HW is not in IAMT mode.
2683 */
2684 if (e1000_check_mng_mode(hw) == FALSE) {
2685 /* Enable Electrical Idle on the PHY */
2686 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2687 ret_val = e1000_write_phy_reg(hw,
2688 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2689 if (ret_val)
2690 return ret_val;
2691
2692 ret_val = e1000_read_phy_reg(hw,
2693 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2694 if (ret_val)
2695 return ret_val;
2696
2697 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2698 ret_val = e1000_write_phy_reg(hw,
2699 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2700
2701 if (ret_val)
2702 return ret_val;
2703 }
2704
2705 /* Workaround: Disable padding in Kumeran interface in the MAC
2706 * and in the PHY to avoid CRC errors.
2707 */
2708 ret_val = e1000_read_phy_reg(hw,
2709 GG82563_PHY_INBAND_CTRL, &phy_data);
2710 if (ret_val)
2711 return ret_val;
2712 phy_data |= GG82563_ICR_DIS_PADDING;
2713 ret_val = e1000_write_phy_reg(hw,
2714 GG82563_PHY_INBAND_CTRL, phy_data);
2715 if (ret_val)
2716 return ret_val;
2717 }
2718 return E1000_SUCCESS;
2719}
2720
2721/********************************************************************
2722* Copper link setup for e1000_phy_m88 series.
2723*
2724* hw - Struct containing variables accessed by shared code
2725*********************************************************************/
2726static int32_t
2727e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2728{
2729 int32_t ret_val;
2730 uint16_t phy_data;
2731
2732 DEBUGFUNC();
2733
2734 if (hw->phy_reset_disable)
2735 return E1000_SUCCESS;
2736
2737 /* Enable CRS on TX. This must be set for half-duplex operation. */
2738 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2739 if (ret_val)
2740 return ret_val;
2741
wdenk4e112c12003-06-03 23:54:09 +00002742 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2743
wdenk4e112c12003-06-03 23:54:09 +00002744 /* Options:
2745 * MDI/MDI-X = 0 (default)
2746 * 0 - Auto for all speeds
2747 * 1 - MDI mode
2748 * 2 - MDI-X mode
2749 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2750 */
2751 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002752
wdenk4e112c12003-06-03 23:54:09 +00002753 switch (hw->mdix) {
2754 case 1:
2755 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2756 break;
2757 case 2:
2758 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2759 break;
2760 case 3:
2761 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2762 break;
2763 case 0:
2764 default:
2765 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2766 break;
2767 }
wdenk4e112c12003-06-03 23:54:09 +00002768
wdenk4e112c12003-06-03 23:54:09 +00002769 /* Options:
2770 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002771 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002772 * 0 - Disabled
2773 * 1 - Enabled
2774 */
2775 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002776 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2777 if (ret_val)
2778 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002779
Roy Zang28f7a052009-07-31 13:34:02 +08002780 if (hw->phy_revision < M88E1011_I_REV_4) {
2781 /* Force TX_CLK in the Extended PHY Specific Control Register
2782 * to 25MHz clock.
2783 */
2784 ret_val = e1000_read_phy_reg(hw,
2785 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2786 if (ret_val)
2787 return ret_val;
2788
2789 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2790
2791 if ((hw->phy_revision == E1000_REVISION_2) &&
2792 (hw->phy_id == M88E1111_I_PHY_ID)) {
2793 /* Vidalia Phy, set the downshift counter to 5x */
2794 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2795 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2796 ret_val = e1000_write_phy_reg(hw,
2797 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2798 if (ret_val)
2799 return ret_val;
2800 } else {
2801 /* Configure Master and Slave downshift values */
2802 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2803 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2804 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2805 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2806 ret_val = e1000_write_phy_reg(hw,
2807 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2808 if (ret_val)
2809 return ret_val;
2810 }
wdenk4e112c12003-06-03 23:54:09 +00002811 }
2812
2813 /* SW Reset the PHY so all changes take effect */
2814 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002815 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002816 DEBUGOUT("Error Resetting the PHY\n");
2817 return ret_val;
2818 }
2819
Roy Zang28f7a052009-07-31 13:34:02 +08002820 return E1000_SUCCESS;
2821}
wdenk4e112c12003-06-03 23:54:09 +00002822
Roy Zang28f7a052009-07-31 13:34:02 +08002823/********************************************************************
2824* Setup auto-negotiation and flow control advertisements,
2825* and then perform auto-negotiation.
2826*
2827* hw - Struct containing variables accessed by shared code
2828*********************************************************************/
2829static int32_t
2830e1000_copper_link_autoneg(struct e1000_hw *hw)
2831{
2832 int32_t ret_val;
2833 uint16_t phy_data;
2834
2835 DEBUGFUNC();
2836
wdenk4e112c12003-06-03 23:54:09 +00002837 /* Perform some bounds checking on the hw->autoneg_advertised
2838 * parameter. If this variable is zero, then set it to the default.
2839 */
2840 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2841
2842 /* If autoneg_advertised is zero, we assume it was not defaulted
2843 * by the calling code so we set to advertise full capability.
2844 */
2845 if (hw->autoneg_advertised == 0)
2846 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2847
Roy Zang28f7a052009-07-31 13:34:02 +08002848 /* IFE phy only supports 10/100 */
2849 if (hw->phy_type == e1000_phy_ife)
2850 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2851
wdenk4e112c12003-06-03 23:54:09 +00002852 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2853 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002854 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002855 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2856 return ret_val;
2857 }
2858 DEBUGOUT("Restarting Auto-Neg\n");
2859
2860 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2861 * the Auto Neg Restart bit in the PHY control register.
2862 */
Roy Zang28f7a052009-07-31 13:34:02 +08002863 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2864 if (ret_val)
2865 return ret_val;
2866
wdenk4e112c12003-06-03 23:54:09 +00002867 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002868 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2869 if (ret_val)
2870 return ret_val;
2871
wdenk4e112c12003-06-03 23:54:09 +00002872 /* Does the user want to wait for Auto-Neg to complete here, or
2873 * check at a later time (for example, callback routine).
2874 */
Roy Zang28f7a052009-07-31 13:34:02 +08002875 /* If we do not wait for autonegtation to complete I
2876 * do not see a valid link status.
2877 * wait_autoneg_complete = 1 .
2878 */
wdenk4e112c12003-06-03 23:54:09 +00002879 if (hw->wait_autoneg_complete) {
2880 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002881 if (ret_val) {
2882 DEBUGOUT("Error while waiting for autoneg"
2883 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002884 return ret_val;
2885 }
2886 }
Roy Zang28f7a052009-07-31 13:34:02 +08002887
2888 hw->get_link_status = TRUE;
2889
2890 return E1000_SUCCESS;
2891}
2892
2893/******************************************************************************
2894* Config the MAC and the PHY after link is up.
2895* 1) Set up the MAC to the current PHY speed/duplex
2896* if we are on 82543. If we
2897* are on newer silicon, we only need to configure
2898* collision distance in the Transmit Control Register.
2899* 2) Set up flow control on the MAC to that established with
2900* the link partner.
2901* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2902*
2903* hw - Struct containing variables accessed by shared code
2904******************************************************************************/
2905static int32_t
2906e1000_copper_link_postconfig(struct e1000_hw *hw)
2907{
2908 int32_t ret_val;
2909 DEBUGFUNC();
2910
2911 if (hw->mac_type >= e1000_82544) {
2912 e1000_config_collision_dist(hw);
2913 } else {
2914 ret_val = e1000_config_mac_to_phy(hw);
2915 if (ret_val) {
2916 DEBUGOUT("Error configuring MAC to PHY settings\n");
2917 return ret_val;
2918 }
2919 }
2920 ret_val = e1000_config_fc_after_link_up(hw);
2921 if (ret_val) {
2922 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002923 return ret_val;
2924 }
Roy Zang28f7a052009-07-31 13:34:02 +08002925 return E1000_SUCCESS;
2926}
2927
2928/******************************************************************************
2929* Detects which PHY is present and setup the speed and duplex
2930*
2931* hw - Struct containing variables accessed by shared code
2932******************************************************************************/
2933static int
2934e1000_setup_copper_link(struct eth_device *nic)
2935{
2936 struct e1000_hw *hw = nic->priv;
2937 int32_t ret_val;
2938 uint16_t i;
2939 uint16_t phy_data;
2940 uint16_t reg_data;
2941
2942 DEBUGFUNC();
2943
2944 switch (hw->mac_type) {
2945 case e1000_80003es2lan:
2946 case e1000_ich8lan:
2947 /* Set the mac to wait the maximum time between each
2948 * iteration and increase the max iterations when
2949 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2950 ret_val = e1000_write_kmrn_reg(hw,
2951 GG82563_REG(0x34, 4), 0xFFFF);
2952 if (ret_val)
2953 return ret_val;
2954 ret_val = e1000_read_kmrn_reg(hw,
2955 GG82563_REG(0x34, 9), &reg_data);
2956 if (ret_val)
2957 return ret_val;
2958 reg_data |= 0x3F;
2959 ret_val = e1000_write_kmrn_reg(hw,
2960 GG82563_REG(0x34, 9), reg_data);
2961 if (ret_val)
2962 return ret_val;
2963 default:
2964 break;
2965 }
2966
2967 /* Check if it is a valid PHY and set PHY mode if necessary. */
2968 ret_val = e1000_copper_link_preconfig(hw);
2969 if (ret_val)
2970 return ret_val;
2971 switch (hw->mac_type) {
2972 case e1000_80003es2lan:
2973 /* Kumeran registers are written-only */
2974 reg_data =
2975 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2976 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2977 ret_val = e1000_write_kmrn_reg(hw,
2978 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2979 if (ret_val)
2980 return ret_val;
2981 break;
2982 default:
2983 break;
2984 }
2985
2986 if (hw->phy_type == e1000_phy_igp ||
2987 hw->phy_type == e1000_phy_igp_3 ||
2988 hw->phy_type == e1000_phy_igp_2) {
2989 ret_val = e1000_copper_link_igp_setup(hw);
2990 if (ret_val)
2991 return ret_val;
2992 } else if (hw->phy_type == e1000_phy_m88) {
2993 ret_val = e1000_copper_link_mgp_setup(hw);
2994 if (ret_val)
2995 return ret_val;
2996 } else if (hw->phy_type == e1000_phy_gg82563) {
2997 ret_val = e1000_copper_link_ggp_setup(hw);
2998 if (ret_val)
2999 return ret_val;
3000 }
3001
3002 /* always auto */
3003 /* Setup autoneg and flow control advertisement
3004 * and perform autonegotiation */
3005 ret_val = e1000_copper_link_autoneg(hw);
3006 if (ret_val)
3007 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003008
3009 /* Check link status. Wait up to 100 microseconds for link to become
3010 * valid.
3011 */
3012 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003013 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3014 if (ret_val)
3015 return ret_val;
3016 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3017 if (ret_val)
3018 return ret_val;
3019
wdenk4e112c12003-06-03 23:54:09 +00003020 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003021 /* Config the MAC and PHY after link is up */
3022 ret_val = e1000_copper_link_postconfig(hw);
3023 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003024 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003025
wdenk4e112c12003-06-03 23:54:09 +00003026 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003027 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003028 }
3029 udelay(10);
3030 }
3031
3032 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003033 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003034}
3035
3036/******************************************************************************
3037* Configures PHY autoneg and flow control advertisement settings
3038*
3039* hw - Struct containing variables accessed by shared code
3040******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003041int32_t
wdenk4e112c12003-06-03 23:54:09 +00003042e1000_phy_setup_autoneg(struct e1000_hw *hw)
3043{
Roy Zang28f7a052009-07-31 13:34:02 +08003044 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003045 uint16_t mii_autoneg_adv_reg;
3046 uint16_t mii_1000t_ctrl_reg;
3047
3048 DEBUGFUNC();
3049
3050 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003051 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3052 if (ret_val)
3053 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003054
Roy Zang28f7a052009-07-31 13:34:02 +08003055 if (hw->phy_type != e1000_phy_ife) {
3056 /* Read the MII 1000Base-T Control Register (Address 9). */
3057 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3058 &mii_1000t_ctrl_reg);
3059 if (ret_val)
3060 return ret_val;
3061 } else
3062 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003063
3064 /* Need to parse both autoneg_advertised and fc and set up
3065 * the appropriate PHY registers. First we will parse for
3066 * autoneg_advertised software override. Since we can advertise
3067 * a plethora of combinations, we need to check each bit
3068 * individually.
3069 */
3070
3071 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3072 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003073 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003074 */
3075 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3076 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3077
3078 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3079
3080 /* Do we want to advertise 10 Mb Half Duplex? */
3081 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3082 DEBUGOUT("Advertise 10mb Half duplex\n");
3083 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3084 }
3085
3086 /* Do we want to advertise 10 Mb Full Duplex? */
3087 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3088 DEBUGOUT("Advertise 10mb Full duplex\n");
3089 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3090 }
3091
3092 /* Do we want to advertise 100 Mb Half Duplex? */
3093 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3094 DEBUGOUT("Advertise 100mb Half duplex\n");
3095 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3096 }
3097
3098 /* Do we want to advertise 100 Mb Full Duplex? */
3099 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3100 DEBUGOUT("Advertise 100mb Full duplex\n");
3101 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3102 }
3103
3104 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3105 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3106 DEBUGOUT
3107 ("Advertise 1000mb Half duplex requested, request denied!\n");
3108 }
3109
3110 /* Do we want to advertise 1000 Mb Full Duplex? */
3111 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3112 DEBUGOUT("Advertise 1000mb Full duplex\n");
3113 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3114 }
3115
3116 /* Check for a software override of the flow control settings, and
3117 * setup the PHY advertisement registers accordingly. If
3118 * auto-negotiation is enabled, then software will have to set the
3119 * "PAUSE" bits to the correct value in the Auto-Negotiation
3120 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3121 *
3122 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003123 * 0: Flow control is completely disabled
3124 * 1: Rx flow control is enabled (we can receive pause frames
3125 * but not send pause frames).
3126 * 2: Tx flow control is enabled (we can send pause frames
3127 * but we do not support receiving pause frames).
3128 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003129 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003130 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003131 */
3132 switch (hw->fc) {
3133 case e1000_fc_none: /* 0 */
3134 /* Flow control (RX & TX) is completely disabled by a
3135 * software over-ride.
3136 */
3137 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3138 break;
3139 case e1000_fc_rx_pause: /* 1 */
3140 /* RX Flow control is enabled, and TX Flow control is
3141 * disabled, by a software over-ride.
3142 */
3143 /* Since there really isn't a way to advertise that we are
3144 * capable of RX Pause ONLY, we will advertise that we
3145 * support both symmetric and asymmetric RX PAUSE. Later
3146 * (in e1000_config_fc_after_link_up) we will disable the
3147 *hw's ability to send PAUSE frames.
3148 */
3149 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3150 break;
3151 case e1000_fc_tx_pause: /* 2 */
3152 /* TX Flow control is enabled, and RX Flow control is
3153 * disabled, by a software over-ride.
3154 */
3155 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3156 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3157 break;
3158 case e1000_fc_full: /* 3 */
3159 /* Flow control (both RX and TX) is enabled by a software
3160 * over-ride.
3161 */
3162 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3163 break;
3164 default:
3165 DEBUGOUT("Flow control param set incorrectly\n");
3166 return -E1000_ERR_CONFIG;
3167 }
3168
Roy Zang28f7a052009-07-31 13:34:02 +08003169 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3170 if (ret_val)
3171 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003172
3173 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3174
Roy Zang28f7a052009-07-31 13:34:02 +08003175 if (hw->phy_type != e1000_phy_ife) {
3176 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3177 mii_1000t_ctrl_reg);
3178 if (ret_val)
3179 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003180 }
Roy Zang28f7a052009-07-31 13:34:02 +08003181
3182 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003183}
3184
3185/******************************************************************************
3186* Sets the collision distance in the Transmit Control register
3187*
3188* hw - Struct containing variables accessed by shared code
3189*
3190* Link should have been established previously. Reads the speed and duplex
3191* information from the Device Status register.
3192******************************************************************************/
3193static void
3194e1000_config_collision_dist(struct e1000_hw *hw)
3195{
Roy Zang28f7a052009-07-31 13:34:02 +08003196 uint32_t tctl, coll_dist;
3197
3198 DEBUGFUNC();
3199
3200 if (hw->mac_type < e1000_82543)
3201 coll_dist = E1000_COLLISION_DISTANCE_82542;
3202 else
3203 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003204
3205 tctl = E1000_READ_REG(hw, TCTL);
3206
3207 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003208 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003209
3210 E1000_WRITE_REG(hw, TCTL, tctl);
3211 E1000_WRITE_FLUSH(hw);
3212}
3213
3214/******************************************************************************
3215* Sets MAC speed and duplex settings to reflect the those in the PHY
3216*
3217* hw - Struct containing variables accessed by shared code
3218* mii_reg - data to write to the MII control register
3219*
3220* The contents of the PHY register containing the needed information need to
3221* be passed in.
3222******************************************************************************/
3223static int
3224e1000_config_mac_to_phy(struct e1000_hw *hw)
3225{
3226 uint32_t ctrl;
3227 uint16_t phy_data;
3228
3229 DEBUGFUNC();
3230
3231 /* Read the Device Control Register and set the bits to Force Speed
3232 * and Duplex.
3233 */
3234 ctrl = E1000_READ_REG(hw, CTRL);
3235 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3236 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3237
3238 /* Set up duplex in the Device Control and Transmit Control
3239 * registers depending on negotiated values.
3240 */
3241 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3242 DEBUGOUT("PHY Read Error\n");
3243 return -E1000_ERR_PHY;
3244 }
3245 if (phy_data & M88E1000_PSSR_DPLX)
3246 ctrl |= E1000_CTRL_FD;
3247 else
3248 ctrl &= ~E1000_CTRL_FD;
3249
3250 e1000_config_collision_dist(hw);
3251
3252 /* Set up speed in the Device Control register depending on
3253 * negotiated values.
3254 */
3255 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3256 ctrl |= E1000_CTRL_SPD_1000;
3257 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3258 ctrl |= E1000_CTRL_SPD_100;
3259 /* Write the configured values back to the Device Control Reg. */
3260 E1000_WRITE_REG(hw, CTRL, ctrl);
3261 return 0;
3262}
3263
3264/******************************************************************************
3265 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003266 *
wdenk4e112c12003-06-03 23:54:09 +00003267 * hw - Struct containing variables accessed by shared code
3268 *
3269 * Sets the TFCE and RFCE bits in the device control register to reflect
3270 * the adapter settings. TFCE and RFCE need to be explicitly set by
3271 * software when a Copper PHY is used because autonegotiation is managed
3272 * by the PHY rather than the MAC. Software must also configure these
3273 * bits when link is forced on a fiber connection.
3274 *****************************************************************************/
3275static int
3276e1000_force_mac_fc(struct e1000_hw *hw)
3277{
3278 uint32_t ctrl;
3279
3280 DEBUGFUNC();
3281
3282 /* Get the current configuration of the Device Control Register */
3283 ctrl = E1000_READ_REG(hw, CTRL);
3284
3285 /* Because we didn't get link via the internal auto-negotiation
3286 * mechanism (we either forced link or we got link via PHY
3287 * auto-neg), we have to manually enable/disable transmit an
3288 * receive flow control.
3289 *
3290 * The "Case" statement below enables/disable flow control
3291 * according to the "hw->fc" parameter.
3292 *
3293 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003294 * 0: Flow control is completely disabled
3295 * 1: Rx flow control is enabled (we can receive pause
3296 * frames but not send pause frames).
3297 * 2: Tx flow control is enabled (we can send pause frames
3298 * frames but we do not receive pause frames).
3299 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003300 * other: No other values should be possible at this point.
3301 */
3302
3303 switch (hw->fc) {
3304 case e1000_fc_none:
3305 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3306 break;
3307 case e1000_fc_rx_pause:
3308 ctrl &= (~E1000_CTRL_TFCE);
3309 ctrl |= E1000_CTRL_RFCE;
3310 break;
3311 case e1000_fc_tx_pause:
3312 ctrl &= (~E1000_CTRL_RFCE);
3313 ctrl |= E1000_CTRL_TFCE;
3314 break;
3315 case e1000_fc_full:
3316 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3317 break;
3318 default:
3319 DEBUGOUT("Flow control param set incorrectly\n");
3320 return -E1000_ERR_CONFIG;
3321 }
3322
3323 /* Disable TX Flow Control for 82542 (rev 2.0) */
3324 if (hw->mac_type == e1000_82542_rev2_0)
3325 ctrl &= (~E1000_CTRL_TFCE);
3326
3327 E1000_WRITE_REG(hw, CTRL, ctrl);
3328 return 0;
3329}
3330
3331/******************************************************************************
3332 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003333 *
wdenk4e112c12003-06-03 23:54:09 +00003334 * hw - Struct containing variables accessed by shared code
3335 *
3336 * Should be called immediately after a valid link has been established.
3337 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3338 * and autonegotiation is enabled, the MAC flow control settings will be set
3339 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3340 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3341 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003342static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003343e1000_config_fc_after_link_up(struct e1000_hw *hw)
3344{
3345 int32_t ret_val;
3346 uint16_t mii_status_reg;
3347 uint16_t mii_nway_adv_reg;
3348 uint16_t mii_nway_lp_ability_reg;
3349 uint16_t speed;
3350 uint16_t duplex;
3351
3352 DEBUGFUNC();
3353
3354 /* Check for the case where we have fiber media and auto-neg failed
3355 * so we had to force link. In this case, we need to force the
3356 * configuration of the MAC to match the "fc" parameter.
3357 */
Roy Zang28f7a052009-07-31 13:34:02 +08003358 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3359 || ((hw->media_type == e1000_media_type_internal_serdes)
3360 && (hw->autoneg_failed))
3361 || ((hw->media_type == e1000_media_type_copper)
3362 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003363 ret_val = e1000_force_mac_fc(hw);
3364 if (ret_val < 0) {
3365 DEBUGOUT("Error forcing flow control settings\n");
3366 return ret_val;
3367 }
3368 }
3369
3370 /* Check for the case where we have copper media and auto-neg is
3371 * enabled. In this case, we need to check and see if Auto-Neg
3372 * has completed, and if so, how the PHY and link partner has
3373 * flow control configured.
3374 */
3375 if (hw->media_type == e1000_media_type_copper) {
3376 /* Read the MII Status Register and check to see if AutoNeg
3377 * has completed. We read this twice because this reg has
3378 * some "sticky" (latched) bits.
3379 */
3380 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3381 DEBUGOUT("PHY Read Error \n");
3382 return -E1000_ERR_PHY;
3383 }
3384 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3385 DEBUGOUT("PHY Read Error \n");
3386 return -E1000_ERR_PHY;
3387 }
3388
3389 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3390 /* The AutoNeg process has completed, so we now need to
3391 * read both the Auto Negotiation Advertisement Register
3392 * (Address 4) and the Auto_Negotiation Base Page Ability
3393 * Register (Address 5) to determine how flow control was
3394 * negotiated.
3395 */
3396 if (e1000_read_phy_reg
3397 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3398 DEBUGOUT("PHY Read Error\n");
3399 return -E1000_ERR_PHY;
3400 }
3401 if (e1000_read_phy_reg
3402 (hw, PHY_LP_ABILITY,
3403 &mii_nway_lp_ability_reg) < 0) {
3404 DEBUGOUT("PHY Read Error\n");
3405 return -E1000_ERR_PHY;
3406 }
3407
3408 /* Two bits in the Auto Negotiation Advertisement Register
3409 * (Address 4) and two bits in the Auto Negotiation Base
3410 * Page Ability Register (Address 5) determine flow control
3411 * for both the PHY and the link partner. The following
3412 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3413 * 1999, describes these PAUSE resolution bits and how flow
3414 * control is determined based upon these settings.
3415 * NOTE: DC = Don't Care
3416 *
3417 * LOCAL DEVICE | LINK PARTNER
3418 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3419 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003420 * 0 | 0 | DC | DC | e1000_fc_none
3421 * 0 | 1 | 0 | DC | e1000_fc_none
3422 * 0 | 1 | 1 | 0 | e1000_fc_none
3423 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3424 * 1 | 0 | 0 | DC | e1000_fc_none
3425 * 1 | DC | 1 | DC | e1000_fc_full
3426 * 1 | 1 | 0 | 0 | e1000_fc_none
3427 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003428 *
3429 */
3430 /* Are both PAUSE bits set to 1? If so, this implies
3431 * Symmetric Flow Control is enabled at both ends. The
3432 * ASM_DIR bits are irrelevant per the spec.
3433 *
3434 * For Symmetric Flow Control:
3435 *
3436 * LOCAL DEVICE | LINK PARTNER
3437 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3438 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003439 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003440 *
3441 */
3442 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3443 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3444 /* Now we need to check if the user selected RX ONLY
3445 * of pause frames. In this case, we had to advertise
3446 * FULL flow control because we could not advertise RX
3447 * ONLY. Hence, we must now check to see if we need to
3448 * turn OFF the TRANSMISSION of PAUSE frames.
3449 */
3450 if (hw->original_fc == e1000_fc_full) {
3451 hw->fc = e1000_fc_full;
3452 DEBUGOUT("Flow Control = FULL.\r\n");
3453 } else {
3454 hw->fc = e1000_fc_rx_pause;
3455 DEBUGOUT
3456 ("Flow Control = RX PAUSE frames only.\r\n");
3457 }
3458 }
3459 /* For receiving PAUSE frames ONLY.
3460 *
3461 * LOCAL DEVICE | LINK PARTNER
3462 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3463 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003464 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003465 *
3466 */
3467 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3468 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3469 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3470 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3471 {
3472 hw->fc = e1000_fc_tx_pause;
3473 DEBUGOUT
3474 ("Flow Control = TX PAUSE frames only.\r\n");
3475 }
3476 /* For transmitting PAUSE frames ONLY.
3477 *
3478 * LOCAL DEVICE | LINK PARTNER
3479 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3480 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003481 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003482 *
3483 */
3484 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3485 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3486 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3487 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3488 {
3489 hw->fc = e1000_fc_rx_pause;
3490 DEBUGOUT
3491 ("Flow Control = RX PAUSE frames only.\r\n");
3492 }
3493 /* Per the IEEE spec, at this point flow control should be
3494 * disabled. However, we want to consider that we could
3495 * be connected to a legacy switch that doesn't advertise
3496 * desired flow control, but can be forced on the link
3497 * partner. So if we advertised no flow control, that is
3498 * what we will resolve to. If we advertised some kind of
3499 * receive capability (Rx Pause Only or Full Flow Control)
3500 * and the link partner advertised none, we will configure
3501 * ourselves to enable Rx Flow Control only. We can do
3502 * this safely for two reasons: If the link partner really
3503 * didn't want flow control enabled, and we enable Rx, no
3504 * harm done since we won't be receiving any PAUSE frames
3505 * anyway. If the intent on the link partner was to have
3506 * flow control enabled, then by us enabling RX only, we
3507 * can at least receive pause frames and process them.
3508 * This is a good idea because in most cases, since we are
3509 * predominantly a server NIC, more times than not we will
3510 * be asked to delay transmission of packets than asking
3511 * our link partner to pause transmission of frames.
3512 */
3513 else if (hw->original_fc == e1000_fc_none ||
3514 hw->original_fc == e1000_fc_tx_pause) {
3515 hw->fc = e1000_fc_none;
3516 DEBUGOUT("Flow Control = NONE.\r\n");
3517 } else {
3518 hw->fc = e1000_fc_rx_pause;
3519 DEBUGOUT
3520 ("Flow Control = RX PAUSE frames only.\r\n");
3521 }
3522
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003523 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003524 * negotiated to HALF DUPLEX, flow control should not be
3525 * enabled per IEEE 802.3 spec.
3526 */
3527 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3528
3529 if (duplex == HALF_DUPLEX)
3530 hw->fc = e1000_fc_none;
3531
3532 /* Now we call a subroutine to actually force the MAC
3533 * controller to use the correct flow control settings.
3534 */
3535 ret_val = e1000_force_mac_fc(hw);
3536 if (ret_val < 0) {
3537 DEBUGOUT
3538 ("Error forcing flow control settings\n");
3539 return ret_val;
3540 }
3541 } else {
3542 DEBUGOUT
3543 ("Copper PHY and Auto Neg has not completed.\r\n");
3544 }
3545 }
Roy Zang28f7a052009-07-31 13:34:02 +08003546 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003547}
3548
3549/******************************************************************************
3550 * Checks to see if the link status of the hardware has changed.
3551 *
3552 * hw - Struct containing variables accessed by shared code
3553 *
3554 * Called by any function that needs to check the link status of the adapter.
3555 *****************************************************************************/
3556static int
3557e1000_check_for_link(struct eth_device *nic)
3558{
3559 struct e1000_hw *hw = nic->priv;
3560 uint32_t rxcw;
3561 uint32_t ctrl;
3562 uint32_t status;
3563 uint32_t rctl;
3564 uint32_t signal;
3565 int32_t ret_val;
3566 uint16_t phy_data;
3567 uint16_t lp_capability;
3568
3569 DEBUGFUNC();
3570
wdenk57b2d802003-06-27 21:31:46 +00003571 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3572 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003573 * cleared when there is a signal
3574 */
3575 ctrl = E1000_READ_REG(hw, CTRL);
3576 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3577 signal = E1000_CTRL_SWDPIN1;
3578 else
3579 signal = 0;
3580
3581 status = E1000_READ_REG(hw, STATUS);
3582 rxcw = E1000_READ_REG(hw, RXCW);
3583 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3584
3585 /* If we have a copper PHY then we only want to go out to the PHY
3586 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003587 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003588 * receive a Link Status Change interrupt or we have Rx Sequence
3589 * Errors.
3590 */
3591 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3592 /* First we want to see if the MII Status Register reports
3593 * link. If so, then we want to get the current speed/duplex
3594 * of the PHY.
3595 * Read the register twice since the link bit is sticky.
3596 */
3597 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3598 DEBUGOUT("PHY Read Error\n");
3599 return -E1000_ERR_PHY;
3600 }
3601 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3602 DEBUGOUT("PHY Read Error\n");
3603 return -E1000_ERR_PHY;
3604 }
3605
3606 if (phy_data & MII_SR_LINK_STATUS) {
3607 hw->get_link_status = FALSE;
3608 } else {
3609 /* No link detected */
3610 return -E1000_ERR_NOLINK;
3611 }
3612
3613 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3614 * have Si on board that is 82544 or newer, Auto
3615 * Speed Detection takes care of MAC speed/duplex
3616 * configuration. So we only need to configure Collision
3617 * Distance in the MAC. Otherwise, we need to force
3618 * speed/duplex on the MAC to the current PHY speed/duplex
3619 * settings.
3620 */
3621 if (hw->mac_type >= e1000_82544)
3622 e1000_config_collision_dist(hw);
3623 else {
3624 ret_val = e1000_config_mac_to_phy(hw);
3625 if (ret_val < 0) {
3626 DEBUGOUT
3627 ("Error configuring MAC to PHY settings\n");
3628 return ret_val;
3629 }
3630 }
3631
wdenk57b2d802003-06-27 21:31:46 +00003632 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003633 * need to restore the desired flow control settings because we may
3634 * have had to re-autoneg with a different link partner.
3635 */
3636 ret_val = e1000_config_fc_after_link_up(hw);
3637 if (ret_val < 0) {
3638 DEBUGOUT("Error configuring flow control\n");
3639 return ret_val;
3640 }
3641
3642 /* At this point we know that we are on copper and we have
3643 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003644 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003645 * determine if TBI Compatibility needs to be turned on or off. If
3646 * the link partner advertises any speed in addition to Gigabit, then
3647 * we assume that they are GMII-based, and TBI compatibility is not
3648 * needed. If no other speeds are advertised, we assume the link
3649 * partner is TBI-based, and we turn on TBI Compatibility.
3650 */
3651 if (hw->tbi_compatibility_en) {
3652 if (e1000_read_phy_reg
3653 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3654 DEBUGOUT("PHY Read Error\n");
3655 return -E1000_ERR_PHY;
3656 }
3657 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3658 NWAY_LPAR_10T_FD_CAPS |
3659 NWAY_LPAR_100TX_HD_CAPS |
3660 NWAY_LPAR_100TX_FD_CAPS |
3661 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003662 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003663 * gigabit, we do not need to enable TBI compatibility.
3664 */
3665 if (hw->tbi_compatibility_on) {
3666 /* If we previously were in the mode, turn it off. */
3667 rctl = E1000_READ_REG(hw, RCTL);
3668 rctl &= ~E1000_RCTL_SBP;
3669 E1000_WRITE_REG(hw, RCTL, rctl);
3670 hw->tbi_compatibility_on = FALSE;
3671 }
3672 } else {
3673 /* If TBI compatibility is was previously off, turn it on. For
3674 * compatibility with a TBI link partner, we will store bad
3675 * packets. Some frames have an additional byte on the end and
3676 * will look like CRC errors to to the hardware.
3677 */
3678 if (!hw->tbi_compatibility_on) {
3679 hw->tbi_compatibility_on = TRUE;
3680 rctl = E1000_READ_REG(hw, RCTL);
3681 rctl |= E1000_RCTL_SBP;
3682 E1000_WRITE_REG(hw, RCTL, rctl);
3683 }
3684 }
3685 }
3686 }
3687 /* If we don't have link (auto-negotiation failed or link partner cannot
3688 * auto-negotiate), the cable is plugged in (we have signal), and our
3689 * link partner is not trying to auto-negotiate with us (we are receiving
3690 * idles or data), we need to force link up. We also need to give
3691 * auto-negotiation time to complete, in case the cable was just plugged
3692 * in. The autoneg_failed flag does this.
3693 */
3694 else if ((hw->media_type == e1000_media_type_fiber) &&
3695 (!(status & E1000_STATUS_LU)) &&
3696 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3697 (!(rxcw & E1000_RXCW_C))) {
3698 if (hw->autoneg_failed == 0) {
3699 hw->autoneg_failed = 1;
3700 return 0;
3701 }
3702 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3703
3704 /* Disable auto-negotiation in the TXCW register */
3705 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3706
3707 /* Force link-up and also force full-duplex. */
3708 ctrl = E1000_READ_REG(hw, CTRL);
3709 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3710 E1000_WRITE_REG(hw, CTRL, ctrl);
3711
3712 /* Configure Flow Control after forcing link up. */
3713 ret_val = e1000_config_fc_after_link_up(hw);
3714 if (ret_val < 0) {
3715 DEBUGOUT("Error configuring flow control\n");
3716 return ret_val;
3717 }
3718 }
3719 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3720 * auto-negotiation in the TXCW register and disable forced link in the
3721 * Device Control register in an attempt to auto-negotiate with our link
3722 * partner.
3723 */
3724 else if ((hw->media_type == e1000_media_type_fiber) &&
3725 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3726 DEBUGOUT
3727 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3728 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3729 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3730 }
3731 return 0;
3732}
3733
3734/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003735* Configure the MAC-to-PHY interface for 10/100Mbps
3736*
3737* hw - Struct containing variables accessed by shared code
3738******************************************************************************/
3739static int32_t
3740e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3741{
3742 int32_t ret_val = E1000_SUCCESS;
3743 uint32_t tipg;
3744 uint16_t reg_data;
3745
3746 DEBUGFUNC();
3747
3748 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3749 ret_val = e1000_write_kmrn_reg(hw,
3750 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3751 if (ret_val)
3752 return ret_val;
3753
3754 /* Configure Transmit Inter-Packet Gap */
3755 tipg = E1000_READ_REG(hw, TIPG);
3756 tipg &= ~E1000_TIPG_IPGT_MASK;
3757 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3758 E1000_WRITE_REG(hw, TIPG, tipg);
3759
3760 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3761
3762 if (ret_val)
3763 return ret_val;
3764
3765 if (duplex == HALF_DUPLEX)
3766 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3767 else
3768 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3769
3770 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3771
3772 return ret_val;
3773}
3774
3775static int32_t
3776e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3777{
3778 int32_t ret_val = E1000_SUCCESS;
3779 uint16_t reg_data;
3780 uint32_t tipg;
3781
3782 DEBUGFUNC();
3783
3784 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3785 ret_val = e1000_write_kmrn_reg(hw,
3786 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3787 if (ret_val)
3788 return ret_val;
3789
3790 /* Configure Transmit Inter-Packet Gap */
3791 tipg = E1000_READ_REG(hw, TIPG);
3792 tipg &= ~E1000_TIPG_IPGT_MASK;
3793 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3794 E1000_WRITE_REG(hw, TIPG, tipg);
3795
3796 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3797
3798 if (ret_val)
3799 return ret_val;
3800
3801 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3802 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3803
3804 return ret_val;
3805}
3806
3807/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003808 * Detects the current speed and duplex settings of the hardware.
3809 *
3810 * hw - Struct containing variables accessed by shared code
3811 * speed - Speed of the connection
3812 * duplex - Duplex setting of the connection
3813 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003814static int
3815e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3816 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003817{
3818 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003819 int32_t ret_val;
3820 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003821
3822 DEBUGFUNC();
3823
3824 if (hw->mac_type >= e1000_82543) {
3825 status = E1000_READ_REG(hw, STATUS);
3826 if (status & E1000_STATUS_SPEED_1000) {
3827 *speed = SPEED_1000;
3828 DEBUGOUT("1000 Mbs, ");
3829 } else if (status & E1000_STATUS_SPEED_100) {
3830 *speed = SPEED_100;
3831 DEBUGOUT("100 Mbs, ");
3832 } else {
3833 *speed = SPEED_10;
3834 DEBUGOUT("10 Mbs, ");
3835 }
3836
3837 if (status & E1000_STATUS_FD) {
3838 *duplex = FULL_DUPLEX;
3839 DEBUGOUT("Full Duplex\r\n");
3840 } else {
3841 *duplex = HALF_DUPLEX;
3842 DEBUGOUT(" Half Duplex\r\n");
3843 }
3844 } else {
3845 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3846 *speed = SPEED_1000;
3847 *duplex = FULL_DUPLEX;
3848 }
Roy Zang28f7a052009-07-31 13:34:02 +08003849
3850 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3851 * even if it is operating at half duplex. Here we set the duplex
3852 * settings to match the duplex in the link partner's capabilities.
3853 */
3854 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3855 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3856 if (ret_val)
3857 return ret_val;
3858
3859 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3860 *duplex = HALF_DUPLEX;
3861 else {
3862 ret_val = e1000_read_phy_reg(hw,
3863 PHY_LP_ABILITY, &phy_data);
3864 if (ret_val)
3865 return ret_val;
3866 if ((*speed == SPEED_100 &&
3867 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3868 || (*speed == SPEED_10
3869 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3870 *duplex = HALF_DUPLEX;
3871 }
3872 }
3873
3874 if ((hw->mac_type == e1000_80003es2lan) &&
3875 (hw->media_type == e1000_media_type_copper)) {
3876 if (*speed == SPEED_1000)
3877 ret_val = e1000_configure_kmrn_for_1000(hw);
3878 else
3879 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3880 if (ret_val)
3881 return ret_val;
3882 }
3883 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003884}
3885
3886/******************************************************************************
3887* Blocks until autoneg completes or times out (~4.5 seconds)
3888*
3889* hw - Struct containing variables accessed by shared code
3890******************************************************************************/
3891static int
3892e1000_wait_autoneg(struct e1000_hw *hw)
3893{
3894 uint16_t i;
3895 uint16_t phy_data;
3896
3897 DEBUGFUNC();
3898 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3899
3900 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3901 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3902 /* Read the MII Status Register and wait for Auto-Neg
3903 * Complete bit to be set.
3904 */
3905 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3906 DEBUGOUT("PHY Read Error\n");
3907 return -E1000_ERR_PHY;
3908 }
3909 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3910 DEBUGOUT("PHY Read Error\n");
3911 return -E1000_ERR_PHY;
3912 }
3913 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3914 DEBUGOUT("Auto-Neg complete.\n");
3915 return 0;
3916 }
3917 mdelay(100);
3918 }
3919 DEBUGOUT("Auto-Neg timedout.\n");
3920 return -E1000_ERR_TIMEOUT;
3921}
3922
3923/******************************************************************************
3924* Raises the Management Data Clock
3925*
3926* hw - Struct containing variables accessed by shared code
3927* ctrl - Device control register's current value
3928******************************************************************************/
3929static void
3930e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3931{
3932 /* Raise the clock input to the Management Data Clock (by setting the MDC
3933 * bit), and then delay 2 microseconds.
3934 */
3935 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3936 E1000_WRITE_FLUSH(hw);
3937 udelay(2);
3938}
3939
3940/******************************************************************************
3941* Lowers the Management Data Clock
3942*
3943* hw - Struct containing variables accessed by shared code
3944* ctrl - Device control register's current value
3945******************************************************************************/
3946static void
3947e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3948{
3949 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3950 * bit), and then delay 2 microseconds.
3951 */
3952 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3953 E1000_WRITE_FLUSH(hw);
3954 udelay(2);
3955}
3956
3957/******************************************************************************
3958* Shifts data bits out to the PHY
3959*
3960* hw - Struct containing variables accessed by shared code
3961* data - Data to send out to the PHY
3962* count - Number of bits to shift out
3963*
3964* Bits are shifted out in MSB to LSB order.
3965******************************************************************************/
3966static void
3967e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3968{
3969 uint32_t ctrl;
3970 uint32_t mask;
3971
3972 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003973 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003974 * time. In order to do this, "data" must be broken down into bits.
3975 */
3976 mask = 0x01;
3977 mask <<= (count - 1);
3978
3979 ctrl = E1000_READ_REG(hw, CTRL);
3980
3981 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3982 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3983
3984 while (mask) {
3985 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3986 * then raising and lowering the Management Data Clock. A "0" is
3987 * shifted out to the PHY by setting the MDIO bit to "0" and then
3988 * raising and lowering the clock.
3989 */
3990 if (data & mask)
3991 ctrl |= E1000_CTRL_MDIO;
3992 else
3993 ctrl &= ~E1000_CTRL_MDIO;
3994
3995 E1000_WRITE_REG(hw, CTRL, ctrl);
3996 E1000_WRITE_FLUSH(hw);
3997
3998 udelay(2);
3999
4000 e1000_raise_mdi_clk(hw, &ctrl);
4001 e1000_lower_mdi_clk(hw, &ctrl);
4002
4003 mask = mask >> 1;
4004 }
4005}
4006
4007/******************************************************************************
4008* Shifts data bits in from the PHY
4009*
4010* hw - Struct containing variables accessed by shared code
4011*
wdenk57b2d802003-06-27 21:31:46 +00004012* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004013******************************************************************************/
4014static uint16_t
4015e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4016{
4017 uint32_t ctrl;
4018 uint16_t data = 0;
4019 uint8_t i;
4020
4021 /* In order to read a register from the PHY, we need to shift in a total
4022 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4023 * to avoid contention on the MDIO pin when a read operation is performed.
4024 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4025 * by raising the input to the Management Data Clock (setting the MDC bit),
4026 * and then reading the value of the MDIO bit.
4027 */
4028 ctrl = E1000_READ_REG(hw, CTRL);
4029
4030 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4031 ctrl &= ~E1000_CTRL_MDIO_DIR;
4032 ctrl &= ~E1000_CTRL_MDIO;
4033
4034 E1000_WRITE_REG(hw, CTRL, ctrl);
4035 E1000_WRITE_FLUSH(hw);
4036
4037 /* Raise and Lower the clock before reading in the data. This accounts for
4038 * the turnaround bits. The first clock occurred when we clocked out the
4039 * last bit of the Register Address.
4040 */
4041 e1000_raise_mdi_clk(hw, &ctrl);
4042 e1000_lower_mdi_clk(hw, &ctrl);
4043
4044 for (data = 0, i = 0; i < 16; i++) {
4045 data = data << 1;
4046 e1000_raise_mdi_clk(hw, &ctrl);
4047 ctrl = E1000_READ_REG(hw, CTRL);
4048 /* Check to see if we shifted in a "1". */
4049 if (ctrl & E1000_CTRL_MDIO)
4050 data |= 1;
4051 e1000_lower_mdi_clk(hw, &ctrl);
4052 }
4053
4054 e1000_raise_mdi_clk(hw, &ctrl);
4055 e1000_lower_mdi_clk(hw, &ctrl);
4056
4057 return data;
4058}
4059
4060/*****************************************************************************
4061* Reads the value from a PHY register
4062*
4063* hw - Struct containing variables accessed by shared code
4064* reg_addr - address of the PHY register to read
4065******************************************************************************/
4066static int
4067e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4068{
4069 uint32_t i;
4070 uint32_t mdic = 0;
4071 const uint32_t phy_addr = 1;
4072
4073 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4074 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4075 return -E1000_ERR_PARAM;
4076 }
4077
4078 if (hw->mac_type > e1000_82543) {
4079 /* Set up Op-code, Phy Address, and register address in the MDI
4080 * Control register. The MAC will take care of interfacing with the
4081 * PHY to retrieve the desired data.
4082 */
4083 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4084 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4085 (E1000_MDIC_OP_READ));
4086
4087 E1000_WRITE_REG(hw, MDIC, mdic);
4088
4089 /* Poll the ready bit to see if the MDI read completed */
4090 for (i = 0; i < 64; i++) {
4091 udelay(10);
4092 mdic = E1000_READ_REG(hw, MDIC);
4093 if (mdic & E1000_MDIC_READY)
4094 break;
4095 }
4096 if (!(mdic & E1000_MDIC_READY)) {
4097 DEBUGOUT("MDI Read did not complete\n");
4098 return -E1000_ERR_PHY;
4099 }
4100 if (mdic & E1000_MDIC_ERROR) {
4101 DEBUGOUT("MDI Error\n");
4102 return -E1000_ERR_PHY;
4103 }
4104 *phy_data = (uint16_t) mdic;
4105 } else {
4106 /* We must first send a preamble through the MDIO pin to signal the
4107 * beginning of an MII instruction. This is done by sending 32
4108 * consecutive "1" bits.
4109 */
4110 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4111
4112 /* Now combine the next few fields that are required for a read
4113 * operation. We use this method instead of calling the
4114 * e1000_shift_out_mdi_bits routine five different times. The format of
4115 * a MII read instruction consists of a shift out of 14 bits and is
4116 * defined as follows:
4117 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4118 * followed by a shift in of 18 bits. This first two bits shifted in
4119 * are TurnAround bits used to avoid contention on the MDIO pin when a
4120 * READ operation is performed. These two bits are thrown away
4121 * followed by a shift in of 16 bits which contains the desired data.
4122 */
4123 mdic = ((reg_addr) | (phy_addr << 5) |
4124 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4125
4126 e1000_shift_out_mdi_bits(hw, mdic, 14);
4127
4128 /* Now that we've shifted out the read command to the MII, we need to
4129 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4130 * register address.
4131 */
4132 *phy_data = e1000_shift_in_mdi_bits(hw);
4133 }
4134 return 0;
4135}
4136
4137/******************************************************************************
4138* Writes a value to a PHY register
4139*
4140* hw - Struct containing variables accessed by shared code
4141* reg_addr - address of the PHY register to write
4142* data - data to write to the PHY
4143******************************************************************************/
4144static int
4145e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4146{
4147 uint32_t i;
4148 uint32_t mdic = 0;
4149 const uint32_t phy_addr = 1;
4150
4151 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4152 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4153 return -E1000_ERR_PARAM;
4154 }
4155
4156 if (hw->mac_type > e1000_82543) {
4157 /* Set up Op-code, Phy Address, register address, and data intended
4158 * for the PHY register in the MDI Control register. The MAC will take
4159 * care of interfacing with the PHY to send the desired data.
4160 */
4161 mdic = (((uint32_t) phy_data) |
4162 (reg_addr << E1000_MDIC_REG_SHIFT) |
4163 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4164 (E1000_MDIC_OP_WRITE));
4165
4166 E1000_WRITE_REG(hw, MDIC, mdic);
4167
4168 /* Poll the ready bit to see if the MDI read completed */
4169 for (i = 0; i < 64; i++) {
4170 udelay(10);
4171 mdic = E1000_READ_REG(hw, MDIC);
4172 if (mdic & E1000_MDIC_READY)
4173 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004174 }
4175 if (!(mdic & E1000_MDIC_READY)) {
4176 DEBUGOUT("MDI Write did not complete\n");
4177 return -E1000_ERR_PHY;
4178 }
4179 } else {
4180 /* We'll need to use the SW defined pins to shift the write command
4181 * out to the PHY. We first send a preamble to the PHY to signal the
4182 * beginning of the MII instruction. This is done by sending 32
4183 * consecutive "1" bits.
4184 */
4185 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4186
4187 /* Now combine the remaining required fields that will indicate a
4188 * write operation. We use this method instead of calling the
4189 * e1000_shift_out_mdi_bits routine for each field in the command. The
4190 * format of a MII write instruction is as follows:
4191 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4192 */
4193 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4194 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4195 mdic <<= 16;
4196 mdic |= (uint32_t) phy_data;
4197
4198 e1000_shift_out_mdi_bits(hw, mdic, 32);
4199 }
4200 return 0;
4201}
4202
4203/******************************************************************************
4204 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4205 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4206 * the caller to figure out how to deal with it.
4207 *
4208 * hw - Struct containing variables accessed by shared code
4209 *
4210 * returns: - E1000_BLK_PHY_RESET
4211 * E1000_SUCCESS
4212 *
4213 *****************************************************************************/
4214int32_t
4215e1000_check_phy_reset_block(struct e1000_hw *hw)
4216{
4217 uint32_t manc = 0;
4218 uint32_t fwsm = 0;
4219
4220 if (hw->mac_type == e1000_ich8lan) {
4221 fwsm = E1000_READ_REG(hw, FWSM);
4222 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4223 : E1000_BLK_PHY_RESET;
4224 }
4225
4226 if (hw->mac_type > e1000_82547_rev_2)
4227 manc = E1000_READ_REG(hw, MANC);
4228 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4229 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4230}
4231
4232/***************************************************************************
4233 * Checks if the PHY configuration is done
4234 *
4235 * hw: Struct containing variables accessed by shared code
4236 *
4237 * returns: - E1000_ERR_RESET if fail to reset MAC
4238 * E1000_SUCCESS at any other case.
4239 *
4240 ***************************************************************************/
4241static int32_t
4242e1000_get_phy_cfg_done(struct e1000_hw *hw)
4243{
4244 int32_t timeout = PHY_CFG_TIMEOUT;
4245 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4246
4247 DEBUGFUNC();
4248
4249 switch (hw->mac_type) {
4250 default:
4251 mdelay(10);
4252 break;
4253 case e1000_80003es2lan:
4254 /* Separate *_CFG_DONE_* bit for each port */
4255 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4256 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4257 /* Fall Through */
4258 case e1000_82571:
4259 case e1000_82572:
4260 while (timeout) {
4261 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4262 break;
4263 else
4264 mdelay(1);
4265 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004266 }
Roy Zang28f7a052009-07-31 13:34:02 +08004267 if (!timeout) {
4268 DEBUGOUT("MNG configuration cycle has not "
4269 "completed.\n");
4270 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004271 }
Roy Zang28f7a052009-07-31 13:34:02 +08004272 break;
wdenk4e112c12003-06-03 23:54:09 +00004273 }
Roy Zang28f7a052009-07-31 13:34:02 +08004274
4275 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004276}
4277
4278/******************************************************************************
4279* Returns the PHY to the power-on reset state
4280*
4281* hw - Struct containing variables accessed by shared code
4282******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004283int32_t
wdenk4e112c12003-06-03 23:54:09 +00004284e1000_phy_hw_reset(struct e1000_hw *hw)
4285{
Roy Zang28f7a052009-07-31 13:34:02 +08004286 uint32_t ctrl, ctrl_ext;
4287 uint32_t led_ctrl;
4288 int32_t ret_val;
4289 uint16_t swfw;
wdenk4e112c12003-06-03 23:54:09 +00004290
4291 DEBUGFUNC();
4292
Roy Zang28f7a052009-07-31 13:34:02 +08004293 /* In the case of the phy reset being blocked, it's not an error, we
4294 * simply return success without performing the reset. */
4295 ret_val = e1000_check_phy_reset_block(hw);
4296 if (ret_val)
4297 return E1000_SUCCESS;
4298
wdenk4e112c12003-06-03 23:54:09 +00004299 DEBUGOUT("Resetting Phy...\n");
4300
4301 if (hw->mac_type > e1000_82543) {
Roy Zang28f7a052009-07-31 13:34:02 +08004302 if ((hw->mac_type == e1000_80003es2lan) &&
4303 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4304 swfw = E1000_SWFW_PHY1_SM;
4305 } else {
4306 swfw = E1000_SWFW_PHY0_SM;
4307 }
4308 if (e1000_swfw_sync_acquire(hw, swfw)) {
4309 DEBUGOUT("Unable to acquire swfw sync\n");
4310 return -E1000_ERR_SWFW_SYNC;
4311 }
wdenk4e112c12003-06-03 23:54:09 +00004312 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4313 * bit. Then, take it out of reset.
4314 */
4315 ctrl = E1000_READ_REG(hw, CTRL);
4316 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4317 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004318
4319 if (hw->mac_type < e1000_82571)
4320 udelay(10);
4321 else
4322 udelay(100);
4323
wdenk4e112c12003-06-03 23:54:09 +00004324 E1000_WRITE_REG(hw, CTRL, ctrl);
4325 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004326
4327 if (hw->mac_type >= e1000_82571)
4328 mdelay(10);
4329
wdenk4e112c12003-06-03 23:54:09 +00004330 } else {
4331 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4332 * bit to put the PHY into reset. Then, take it out of reset.
4333 */
4334 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4335 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4336 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4337 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4338 E1000_WRITE_FLUSH(hw);
4339 mdelay(10);
4340 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4341 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4342 E1000_WRITE_FLUSH(hw);
4343 }
4344 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004345
4346 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4347 /* Configure activity LED after PHY reset */
4348 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4349 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4350 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4351 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4352 }
4353
4354 /* Wait for FW to finish PHY configuration. */
4355 ret_val = e1000_get_phy_cfg_done(hw);
4356 if (ret_val != E1000_SUCCESS)
4357 return ret_val;
4358
4359 return ret_val;
4360}
4361
4362/******************************************************************************
4363 * IGP phy init script - initializes the GbE PHY
4364 *
4365 * hw - Struct containing variables accessed by shared code
4366 *****************************************************************************/
4367static void
4368e1000_phy_init_script(struct e1000_hw *hw)
4369{
4370 uint32_t ret_val;
4371 uint16_t phy_saved_data;
4372 DEBUGFUNC();
4373
4374 if (hw->phy_init_script) {
4375 mdelay(20);
4376
4377 /* Save off the current value of register 0x2F5B to be
4378 * restored at the end of this routine. */
4379 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4380
4381 /* Disabled the PHY transmitter */
4382 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4383
4384 mdelay(20);
4385
4386 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4387
4388 mdelay(5);
4389
4390 switch (hw->mac_type) {
4391 case e1000_82541:
4392 case e1000_82547:
4393 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4394
4395 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4396
4397 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4398
4399 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4400
4401 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4402
4403 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4404
4405 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4406
4407 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4408
4409 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4410 break;
4411
4412 case e1000_82541_rev_2:
4413 case e1000_82547_rev_2:
4414 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4415 break;
4416 default:
4417 break;
4418 }
4419
4420 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4421
4422 mdelay(20);
4423
4424 /* Now enable the transmitter */
4425 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4426
4427 if (hw->mac_type == e1000_82547) {
4428 uint16_t fused, fine, coarse;
4429
4430 /* Move to analog registers page */
4431 e1000_read_phy_reg(hw,
4432 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4433
4434 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4435 e1000_read_phy_reg(hw,
4436 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4437
4438 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4439 coarse = fused
4440 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4441
4442 if (coarse >
4443 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4444 coarse -=
4445 IGP01E1000_ANALOG_FUSE_COARSE_10;
4446 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4447 } else if (coarse
4448 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4449 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4450
4451 fused = (fused
4452 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4453 (fine
4454 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4455 (coarse
4456 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4457
4458 e1000_write_phy_reg(hw,
4459 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4460 e1000_write_phy_reg(hw,
4461 IGP01E1000_ANALOG_FUSE_BYPASS,
4462 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4463 }
4464 }
4465 }
wdenk4e112c12003-06-03 23:54:09 +00004466}
4467
4468/******************************************************************************
4469* Resets the PHY
4470*
4471* hw - Struct containing variables accessed by shared code
4472*
Roy Zang28f7a052009-07-31 13:34:02 +08004473* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004474******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004475int32_t
wdenk4e112c12003-06-03 23:54:09 +00004476e1000_phy_reset(struct e1000_hw *hw)
4477{
Roy Zang28f7a052009-07-31 13:34:02 +08004478 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004479 uint16_t phy_data;
4480
4481 DEBUGFUNC();
4482
Roy Zang28f7a052009-07-31 13:34:02 +08004483 /* In the case of the phy reset being blocked, it's not an error, we
4484 * simply return success without performing the reset. */
4485 ret_val = e1000_check_phy_reset_block(hw);
4486 if (ret_val)
4487 return E1000_SUCCESS;
4488
4489 switch (hw->phy_type) {
4490 case e1000_phy_igp:
4491 case e1000_phy_igp_2:
4492 case e1000_phy_igp_3:
4493 case e1000_phy_ife:
4494 ret_val = e1000_phy_hw_reset(hw);
4495 if (ret_val)
4496 return ret_val;
4497 break;
4498 default:
4499 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4500 if (ret_val)
4501 return ret_val;
4502
4503 phy_data |= MII_CR_RESET;
4504 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4505 if (ret_val)
4506 return ret_val;
4507
4508 udelay(1);
4509 break;
wdenk4e112c12003-06-03 23:54:09 +00004510 }
Roy Zang28f7a052009-07-31 13:34:02 +08004511
4512 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4513 e1000_phy_init_script(hw);
4514
4515 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004516}
4517
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004518static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004519{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004520 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004521
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004522 if (hw->mac_type == e1000_undefined)
4523 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004524
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004525 switch (hw->phy_id) {
4526 case M88E1000_E_PHY_ID:
4527 case M88E1000_I_PHY_ID:
4528 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004529 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004530 hw->phy_type = e1000_phy_m88;
4531 break;
4532 case IGP01E1000_I_PHY_ID:
4533 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004534 hw->mac_type == e1000_82541_rev_2 ||
4535 hw->mac_type == e1000_82547 ||
4536 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004537 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004538 hw->phy_type = e1000_phy_igp;
4539 break;
4540 }
4541 case IGP03E1000_E_PHY_ID:
4542 hw->phy_type = e1000_phy_igp_3;
4543 break;
4544 case IFE_E_PHY_ID:
4545 case IFE_PLUS_E_PHY_ID:
4546 case IFE_C_E_PHY_ID:
4547 hw->phy_type = e1000_phy_ife;
4548 break;
4549 case GG82563_E_PHY_ID:
4550 if (hw->mac_type == e1000_80003es2lan) {
4551 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004552 break;
4553 }
4554 /* Fall Through */
4555 default:
4556 /* Should never have loaded on this device */
4557 hw->phy_type = e1000_phy_undefined;
4558 return -E1000_ERR_PHY_TYPE;
4559 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004560
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004561 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004562}
4563
wdenk4e112c12003-06-03 23:54:09 +00004564/******************************************************************************
4565* Probes the expected PHY address for known PHY IDs
4566*
4567* hw - Struct containing variables accessed by shared code
4568******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004569static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004570e1000_detect_gig_phy(struct e1000_hw *hw)
4571{
Roy Zang28f7a052009-07-31 13:34:02 +08004572 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004573 uint16_t phy_id_high, phy_id_low;
Roy Zang28f7a052009-07-31 13:34:02 +08004574 boolean_t match = FALSE;
wdenk4e112c12003-06-03 23:54:09 +00004575
4576 DEBUGFUNC();
4577
Roy Zang28f7a052009-07-31 13:34:02 +08004578 /* The 82571 firmware may still be configuring the PHY. In this
4579 * case, we cannot access the PHY until the configuration is done. So
4580 * we explicitly set the PHY values. */
4581 if (hw->mac_type == e1000_82571 ||
4582 hw->mac_type == e1000_82572) {
4583 hw->phy_id = IGP01E1000_I_PHY_ID;
4584 hw->phy_type = e1000_phy_igp_2;
4585 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004586 }
Roy Zang28f7a052009-07-31 13:34:02 +08004587
4588 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4589 * work- around that forces PHY page 0 to be set or the reads fail.
4590 * The rest of the code in this routine uses e1000_read_phy_reg to
4591 * read the PHY ID. So for ESB-2 we need to have this set so our
4592 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4593 * the routines below will figure this out as well. */
4594 if (hw->mac_type == e1000_80003es2lan)
4595 hw->phy_type = e1000_phy_gg82563;
4596
4597 /* Read the PHY ID Registers to identify which PHY is onboard. */
4598 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4599 if (ret_val)
4600 return ret_val;
4601
wdenk4e112c12003-06-03 23:54:09 +00004602 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004603 udelay(20);
4604 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4605 if (ret_val)
4606 return ret_val;
4607
wdenk4e112c12003-06-03 23:54:09 +00004608 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004609 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004610
4611 switch (hw->mac_type) {
4612 case e1000_82543:
4613 if (hw->phy_id == M88E1000_E_PHY_ID)
4614 match = TRUE;
4615 break;
4616 case e1000_82544:
4617 if (hw->phy_id == M88E1000_I_PHY_ID)
4618 match = TRUE;
4619 break;
4620 case e1000_82540:
4621 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004622 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004623 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004624 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004625 if (hw->phy_id == M88E1011_I_PHY_ID)
4626 match = TRUE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004627 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004628 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004629 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004630 case e1000_82547:
4631 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004632 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4633 match = TRUE;
4634
wdenk4e112c12003-06-03 23:54:09 +00004635 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004636 case e1000_82573:
4637 if (hw->phy_id == M88E1111_I_PHY_ID)
4638 match = TRUE;
4639 break;
4640 case e1000_80003es2lan:
4641 if (hw->phy_id == GG82563_E_PHY_ID)
4642 match = TRUE;
4643 break;
4644 case e1000_ich8lan:
4645 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4646 match = TRUE;
4647 if (hw->phy_id == IFE_E_PHY_ID)
4648 match = TRUE;
4649 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4650 match = TRUE;
4651 if (hw->phy_id == IFE_C_E_PHY_ID)
4652 match = TRUE;
4653 break;
wdenk4e112c12003-06-03 23:54:09 +00004654 default:
4655 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4656 return -E1000_ERR_CONFIG;
4657 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004658
4659 phy_init_status = e1000_set_phy_type(hw);
4660
4661 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004662 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4663 return 0;
4664 }
4665 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4666 return -E1000_ERR_PHY;
4667}
4668
Roy Zang28f7a052009-07-31 13:34:02 +08004669/*****************************************************************************
4670 * Set media type and TBI compatibility.
4671 *
4672 * hw - Struct containing variables accessed by shared code
4673 * **************************************************************************/
4674void
4675e1000_set_media_type(struct e1000_hw *hw)
4676{
4677 uint32_t status;
4678
4679 DEBUGFUNC();
4680
4681 if (hw->mac_type != e1000_82543) {
4682 /* tbi_compatibility is only valid on 82543 */
4683 hw->tbi_compatibility_en = FALSE;
4684 }
4685
4686 switch (hw->device_id) {
4687 case E1000_DEV_ID_82545GM_SERDES:
4688 case E1000_DEV_ID_82546GB_SERDES:
4689 case E1000_DEV_ID_82571EB_SERDES:
4690 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4691 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4692 case E1000_DEV_ID_82572EI_SERDES:
4693 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4694 hw->media_type = e1000_media_type_internal_serdes;
4695 break;
4696 default:
4697 switch (hw->mac_type) {
4698 case e1000_82542_rev2_0:
4699 case e1000_82542_rev2_1:
4700 hw->media_type = e1000_media_type_fiber;
4701 break;
4702 case e1000_ich8lan:
4703 case e1000_82573:
4704 /* The STATUS_TBIMODE bit is reserved or reused
4705 * for the this device.
4706 */
4707 hw->media_type = e1000_media_type_copper;
4708 break;
4709 default:
4710 status = E1000_READ_REG(hw, STATUS);
4711 if (status & E1000_STATUS_TBIMODE) {
4712 hw->media_type = e1000_media_type_fiber;
4713 /* tbi_compatibility not valid on fiber */
4714 hw->tbi_compatibility_en = FALSE;
4715 } else {
4716 hw->media_type = e1000_media_type_copper;
4717 }
4718 break;
4719 }
4720 }
4721}
4722
wdenk4e112c12003-06-03 23:54:09 +00004723/**
4724 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4725 *
4726 * e1000_sw_init initializes the Adapter private data structure.
4727 * Fields are initialized based on PCI device information and
4728 * OS network device settings (MTU size).
4729 **/
4730
4731static int
4732e1000_sw_init(struct eth_device *nic, int cardnum)
4733{
4734 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4735 int result;
4736
4737 /* PCI config space info */
4738 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4739 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4740 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4741 &hw->subsystem_vendor_id);
4742 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4743
4744 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4745 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4746
4747 /* identify the MAC */
4748 result = e1000_set_mac_type(hw);
4749 if (result) {
4750 E1000_ERR("Unknown MAC Type\n");
4751 return result;
4752 }
4753
Roy Zang28f7a052009-07-31 13:34:02 +08004754 switch (hw->mac_type) {
4755 default:
4756 break;
4757 case e1000_82541:
4758 case e1000_82547:
4759 case e1000_82541_rev_2:
4760 case e1000_82547_rev_2:
4761 hw->phy_init_script = 1;
4762 break;
4763 }
4764
wdenk4e112c12003-06-03 23:54:09 +00004765 /* lan a vs. lan b settings */
4766 if (hw->mac_type == e1000_82546)
4767 /*this also works w/ multiple 82546 cards */
4768 /*but not if they're intermingled /w other e1000s */
4769 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4770 else
4771 hw->lan_loc = e1000_lan_a;
4772
4773 /* flow control settings */
4774 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4775 hw->fc_low_water = E1000_FC_LOW_THRESH;
4776 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4777 hw->fc_send_xon = 1;
4778
4779 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004780 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004781
4782 if (hw->mac_type >= e1000_82543) {
4783 uint32_t status = E1000_READ_REG(hw, STATUS);
4784
4785 if (status & E1000_STATUS_TBIMODE) {
4786 DEBUGOUT("fiber interface\n");
4787 hw->media_type = e1000_media_type_fiber;
4788 } else {
4789 DEBUGOUT("copper interface\n");
4790 hw->media_type = e1000_media_type_copper;
4791 }
4792 } else {
4793 hw->media_type = e1000_media_type_fiber;
4794 }
4795
Roy Zang28f7a052009-07-31 13:34:02 +08004796 hw->tbi_compatibility_en = TRUE;
4797 hw->wait_autoneg_complete = TRUE;
wdenk4e112c12003-06-03 23:54:09 +00004798 if (hw->mac_type < e1000_82543)
4799 hw->report_tx_early = 0;
4800 else
4801 hw->report_tx_early = 1;
4802
wdenk4e112c12003-06-03 23:54:09 +00004803 return E1000_SUCCESS;
4804}
4805
4806void
4807fill_rx(struct e1000_hw *hw)
4808{
4809 struct e1000_rx_desc *rd;
4810
4811 rx_last = rx_tail;
4812 rd = rx_base + rx_tail;
4813 rx_tail = (rx_tail + 1) % 8;
4814 memset(rd, 0, 16);
4815 rd->buffer_addr = cpu_to_le64((u32) & packet);
4816 E1000_WRITE_REG(hw, RDT, rx_tail);
4817}
4818
4819/**
4820 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4821 * @adapter: board private structure
4822 *
4823 * Configure the Tx unit of the MAC after a reset.
4824 **/
4825
4826static void
4827e1000_configure_tx(struct e1000_hw *hw)
4828{
4829 unsigned long ptr;
4830 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004831 unsigned long tipg, tarc;
4832 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004833
4834 ptr = (u32) tx_pool;
4835 if (ptr & 0xf)
4836 ptr = (ptr + 0x10) & (~0xf);
4837
4838 tx_base = (typeof(tx_base)) ptr;
4839
4840 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4841 E1000_WRITE_REG(hw, TDBAH, 0);
4842
4843 E1000_WRITE_REG(hw, TDLEN, 128);
4844
4845 /* Setup the HW Tx Head and Tail descriptor pointers */
4846 E1000_WRITE_REG(hw, TDH, 0);
4847 E1000_WRITE_REG(hw, TDT, 0);
4848 tx_tail = 0;
4849
4850 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004851 if (hw->mac_type <= e1000_82547_rev_2 &&
4852 (hw->media_type == e1000_media_type_fiber ||
4853 hw->media_type == e1000_media_type_internal_serdes))
4854 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4855 else
4856 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4857
4858 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004859 switch (hw->mac_type) {
4860 case e1000_82542_rev2_0:
4861 case e1000_82542_rev2_1:
4862 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004863 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4864 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4865 break;
4866 case e1000_80003es2lan:
4867 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4868 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004869 break;
4870 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004871 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4872 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4873 break;
wdenk4e112c12003-06-03 23:54:09 +00004874 }
Roy Zang28f7a052009-07-31 13:34:02 +08004875 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4876 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004877 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004878 /* Program the Transmit Control Register */
4879 tctl = E1000_READ_REG(hw, TCTL);
4880 tctl &= ~E1000_TCTL_CT;
4881 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4882 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004883
4884 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4885 tarc = E1000_READ_REG(hw, TARC0);
4886 /* set the speed mode bit, we'll clear it if we're not at
4887 * gigabit link later */
4888 /* git bit can be set to 1*/
4889 } else if (hw->mac_type == e1000_80003es2lan) {
4890 tarc = E1000_READ_REG(hw, TARC0);
4891 tarc |= 1;
4892 E1000_WRITE_REG(hw, TARC0, tarc);
4893 tarc = E1000_READ_REG(hw, TARC1);
4894 tarc |= 1;
4895 E1000_WRITE_REG(hw, TARC1, tarc);
4896 }
4897
wdenk4e112c12003-06-03 23:54:09 +00004898
4899 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004900 /* Setup Transmit Descriptor Settings for eop descriptor */
4901 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004902
Roy Zang28f7a052009-07-31 13:34:02 +08004903 /* Need to set up RS bit */
4904 if (hw->mac_type < e1000_82543)
4905 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004906 else
Roy Zang28f7a052009-07-31 13:34:02 +08004907 hw->txd_cmd |= E1000_TXD_CMD_RS;
4908 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004909}
4910
4911/**
4912 * e1000_setup_rctl - configure the receive control register
4913 * @adapter: Board private structure
4914 **/
4915static void
4916e1000_setup_rctl(struct e1000_hw *hw)
4917{
4918 uint32_t rctl;
4919
4920 rctl = E1000_READ_REG(hw, RCTL);
4921
4922 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4923
Roy Zang28f7a052009-07-31 13:34:02 +08004924 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4925 | E1000_RCTL_RDMTS_HALF; /* |
4926 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004927
4928 if (hw->tbi_compatibility_on == 1)
4929 rctl |= E1000_RCTL_SBP;
4930 else
4931 rctl &= ~E1000_RCTL_SBP;
4932
4933 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004934 rctl |= E1000_RCTL_SZ_2048;
4935 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004936 E1000_WRITE_REG(hw, RCTL, rctl);
4937}
4938
4939/**
4940 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4941 * @adapter: board private structure
4942 *
4943 * Configure the Rx unit of the MAC after a reset.
4944 **/
4945static void
4946e1000_configure_rx(struct e1000_hw *hw)
4947{
4948 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004949 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004950 rx_tail = 0;
4951 /* make sure receives are disabled while setting up the descriptors */
4952 rctl = E1000_READ_REG(hw, RCTL);
4953 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004954 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004955 /* Set the interrupt throttling rate. Value is calculated
4956 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004957#define MAX_INTS_PER_SEC 8000
4958#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004959 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4960 }
4961
Roy Zang28f7a052009-07-31 13:34:02 +08004962 if (hw->mac_type >= e1000_82571) {
4963 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4964 /* Reset delay timers after every interrupt */
4965 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4966 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4967 E1000_WRITE_FLUSH(hw);
4968 }
wdenk4e112c12003-06-03 23:54:09 +00004969 /* Setup the Base and Length of the Rx Descriptor Ring */
4970 ptr = (u32) rx_pool;
4971 if (ptr & 0xf)
4972 ptr = (ptr + 0x10) & (~0xf);
4973 rx_base = (typeof(rx_base)) ptr;
4974 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4975 E1000_WRITE_REG(hw, RDBAH, 0);
4976
4977 E1000_WRITE_REG(hw, RDLEN, 128);
4978
4979 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4980 E1000_WRITE_REG(hw, RDH, 0);
4981 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00004982 /* Enable Receives */
4983
4984 E1000_WRITE_REG(hw, RCTL, rctl);
4985 fill_rx(hw);
4986}
4987
4988/**************************************************************************
4989POLL - Wait for a frame
4990***************************************************************************/
4991static int
4992e1000_poll(struct eth_device *nic)
4993{
4994 struct e1000_hw *hw = nic->priv;
4995 struct e1000_rx_desc *rd;
4996 /* return true if there's an ethernet packet ready to read */
4997 rd = rx_base + rx_last;
4998 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4999 return 0;
5000 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02005001 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00005002 fill_rx(hw);
5003 return 1;
5004}
5005
5006/**************************************************************************
5007TRANSMIT - Transmit a frame
5008***************************************************************************/
5009static int
5010e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5011{
5012 struct e1000_hw *hw = nic->priv;
5013 struct e1000_tx_desc *txp;
5014 int i = 0;
5015
5016 txp = tx_base + tx_tail;
5017 tx_tail = (tx_tail + 1) % 8;
5018
Timur Tabiedc45b52009-08-17 15:55:38 -05005019 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005020 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005021 txp->upper.data = 0;
5022 E1000_WRITE_REG(hw, TDT, tx_tail);
5023
Roy Zang28f7a052009-07-31 13:34:02 +08005024 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005025 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5026 if (i++ > TOUT_LOOP) {
5027 DEBUGOUT("e1000: tx timeout\n");
5028 return 0;
5029 }
5030 udelay(10); /* give the nic a chance to write to the register */
5031 }
5032 return 1;
5033}
5034
5035/*reset function*/
5036static inline int
5037e1000_reset(struct eth_device *nic)
5038{
5039 struct e1000_hw *hw = nic->priv;
5040
5041 e1000_reset_hw(hw);
5042 if (hw->mac_type >= e1000_82544) {
5043 E1000_WRITE_REG(hw, WUC, 0);
5044 }
5045 return e1000_init_hw(nic);
5046}
5047
5048/**************************************************************************
5049DISABLE - Turn off ethernet interface
5050***************************************************************************/
5051static void
5052e1000_disable(struct eth_device *nic)
5053{
5054 struct e1000_hw *hw = nic->priv;
5055
5056 /* Turn off the ethernet interface */
5057 E1000_WRITE_REG(hw, RCTL, 0);
5058 E1000_WRITE_REG(hw, TCTL, 0);
5059
5060 /* Clear the transmit ring */
5061 E1000_WRITE_REG(hw, TDH, 0);
5062 E1000_WRITE_REG(hw, TDT, 0);
5063
5064 /* Clear the receive ring */
5065 E1000_WRITE_REG(hw, RDH, 0);
5066 E1000_WRITE_REG(hw, RDT, 0);
5067
5068 /* put the card in its initial state */
5069#if 0
5070 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5071#endif
5072 mdelay(10);
5073
5074}
5075
5076/**************************************************************************
5077INIT - set up ethernet interface(s)
5078***************************************************************************/
5079static int
5080e1000_init(struct eth_device *nic, bd_t * bis)
5081{
5082 struct e1000_hw *hw = nic->priv;
5083 int ret_val = 0;
5084
5085 ret_val = e1000_reset(nic);
5086 if (ret_val < 0) {
5087 if ((ret_val == -E1000_ERR_NOLINK) ||
5088 (ret_val == -E1000_ERR_TIMEOUT)) {
5089 E1000_ERR("Valid Link not detected\n");
5090 } else {
5091 E1000_ERR("Hardware Initialization Failed\n");
5092 }
5093 return 0;
5094 }
5095 e1000_configure_tx(hw);
5096 e1000_setup_rctl(hw);
5097 e1000_configure_rx(hw);
5098 return 1;
5099}
5100
Roy Zang28f7a052009-07-31 13:34:02 +08005101/******************************************************************************
5102 * Gets the current PCI bus type of hardware
5103 *
5104 * hw - Struct containing variables accessed by shared code
5105 *****************************************************************************/
5106void e1000_get_bus_type(struct e1000_hw *hw)
5107{
5108 uint32_t status;
5109
5110 switch (hw->mac_type) {
5111 case e1000_82542_rev2_0:
5112 case e1000_82542_rev2_1:
5113 hw->bus_type = e1000_bus_type_pci;
5114 break;
5115 case e1000_82571:
5116 case e1000_82572:
5117 case e1000_82573:
5118 case e1000_80003es2lan:
5119 hw->bus_type = e1000_bus_type_pci_express;
5120 break;
5121 case e1000_ich8lan:
5122 hw->bus_type = e1000_bus_type_pci_express;
5123 break;
5124 default:
5125 status = E1000_READ_REG(hw, STATUS);
5126 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5127 e1000_bus_type_pcix : e1000_bus_type_pci;
5128 break;
5129 }
5130}
5131
wdenk4e112c12003-06-03 23:54:09 +00005132/**************************************************************************
5133PROBE - Look for an adapter, this routine's visible to the outside
5134You should omit the last argument struct pci_device * for a non-PCI NIC
5135***************************************************************************/
5136int
5137e1000_initialize(bd_t * bis)
5138{
5139 pci_dev_t devno;
5140 int card_number = 0;
5141 struct eth_device *nic = NULL;
5142 struct e1000_hw *hw = NULL;
5143 u32 iobase;
5144 int idx = 0;
5145 u32 PciCommandWord;
5146
Timur Tabiedc45b52009-08-17 15:55:38 -05005147 DEBUGFUNC();
5148
wdenk4e112c12003-06-03 23:54:09 +00005149 while (1) { /* Find PCI device(s) */
5150 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5151 break;
5152 }
5153
5154 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5155 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5156 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5157
5158 pci_write_config_dword(devno, PCI_COMMAND,
5159 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5160 /* Check if I/O accesses and Bus Mastering are enabled. */
5161 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5162 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5163 printf("Error: Can not enable MEM access.\n");
5164 continue;
5165 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5166 printf("Error: Can not enable Bus Mastering.\n");
5167 continue;
5168 }
5169
5170 nic = (struct eth_device *) malloc(sizeof (*nic));
5171 hw = (struct e1000_hw *) malloc(sizeof (*hw));
5172 hw->pdev = devno;
5173 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005174
5175 sprintf(nic->name, "e1000#%d", card_number);
5176
5177 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005178 hw->fc = e1000_fc_default;
5179 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005180 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005181 hw->autoneg = 1;
wdenk4e112c12003-06-03 23:54:09 +00005182 hw->get_link_status = TRUE;
Timur Tabiedc45b52009-08-17 15:55:38 -05005183 hw->hw_addr =
5184 pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
wdenk4e112c12003-06-03 23:54:09 +00005185 hw->mac_type = e1000_undefined;
5186
5187 /* MAC and Phy settings */
5188 if (e1000_sw_init(nic, card_number) < 0) {
5189 free(hw);
5190 free(nic);
5191 return 0;
5192 }
Roy Zang28f7a052009-07-31 13:34:02 +08005193 if (e1000_check_phy_reset_block(hw))
5194 printf("phy reset block error \n");
5195 e1000_reset_hw(hw);
Andre Schwarz68c2a302008-03-06 16:45:44 +01005196#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
Roy Zang28f7a052009-07-31 13:34:02 +08005197 if (e1000_init_eeprom_params(hw)) {
5198 printf("The EEPROM Checksum Is Not Valid\n");
5199 free(hw);
5200 free(nic);
5201 return 0;
5202 }
wdenk4e112c12003-06-03 23:54:09 +00005203 if (e1000_validate_eeprom_checksum(nic) < 0) {
5204 printf("The EEPROM Checksum Is Not Valid\n");
5205 free(hw);
5206 free(nic);
5207 return 0;
5208 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02005209#endif
wdenk4e112c12003-06-03 23:54:09 +00005210 e1000_read_mac_addr(nic);
5211
Roy Zang28f7a052009-07-31 13:34:02 +08005212 /* get the bus type information */
5213 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005214
5215 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5216 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5217 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5218
5219 nic->init = e1000_init;
5220 nic->recv = e1000_poll;
5221 nic->send = e1000_transmit;
5222 nic->halt = e1000_disable;
5223
5224 eth_register(nic);
5225
5226 card_number++;
5227 }
Ben Warren050019d2008-08-31 10:44:19 -07005228 return card_number;
wdenk4e112c12003-06-03 23:54:09 +00005229}