blob: aa3be414a29f8fd8d291a3958d199d8859ceaedb [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Patrice Chotard5fffeab2017-09-13 18:00:06 +02002/*
Patrice Chotard789ee0e2017-10-23 09:53:58 +02003 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
Patrice Chotard5d9950d2020-12-02 18:47:30 +01004 * Author(s): Patrice Chotard, <patrice.chotard@foss.st.com> for STMicroelectronics.
Patrice Chotard5fffeab2017-09-13 18:00:06 +02005 */
6
Patrick Delaunay88c7eb72020-11-06 19:01:47 +01007#define LOG_CATEGORY UCLASS_CLK
8
Patrice Chotard5fffeab2017-09-13 18:00:06 +02009#include <clk-uclass.h>
10#include <dm.h>
Simon Glass0f2af882020-05-10 11:40:05 -060011#include <log.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020012#include <regmap.h>
13#include <syscon.h>
14#include <asm/io.h>
Patrick Delaunay88c7eb72020-11-06 19:01:47 +010015#include <dm/device_compat.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020016#include <dm/root.h>
Simon Glass4dcacfc2020-05-10 11:40:13 -060017#include <linux/bitops.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020018
19#include <dt-bindings/clock/stm32h7-clks.h>
20
Patrick Delaunaye378d852024-11-27 17:23:09 +010021/* must be equal to last peripheral clock index */
22#define LAST_PERIF_BANK SYSCFG_CK
23
Patrice Chotard5fffeab2017-09-13 18:00:06 +020024/* RCC CR specific definitions */
25#define RCC_CR_HSION BIT(0)
26#define RCC_CR_HSIRDY BIT(2)
27
28#define RCC_CR_HSEON BIT(16)
29#define RCC_CR_HSERDY BIT(17)
30#define RCC_CR_HSEBYP BIT(18)
31#define RCC_CR_PLL1ON BIT(24)
32#define RCC_CR_PLL1RDY BIT(25)
33
34#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
35#define RCC_CR_HSIDIV_SHIFT 3
36
37#define RCC_CFGR_SW_MASK GENMASK(2, 0)
38#define RCC_CFGR_SW_HSI 0
39#define RCC_CFGR_SW_CSI 1
40#define RCC_CFGR_SW_HSE 2
41#define RCC_CFGR_SW_PLL1 3
Patrice Chotard53016352018-02-07 10:44:47 +010042#define RCC_CFGR_TIMPRE BIT(15)
Patrice Chotard5fffeab2017-09-13 18:00:06 +020043
44#define RCC_PLLCKSELR_PLLSRC_HSI 0
45#define RCC_PLLCKSELR_PLLSRC_CSI 1
46#define RCC_PLLCKSELR_PLLSRC_HSE 2
47#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
48
49#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
50
51#define RCC_PLLCKSELR_DIVM1_SHIFT 4
52#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
53
54#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
55
56#define RCC_PLL1DIVR_DIVP1_SHIFT 9
57#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
58
59#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
60#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
61
62#define RCC_PLL1DIVR_DIVR1_SHIFT 24
63#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
64
65#define RCC_PLL1FRACR_FRACN1_SHIFT 3
66#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
67
68#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
69#define PLL1RGE_1_2_MHZ 0
70#define PLL1RGE_2_4_MHZ 1
71#define PLL1RGE_4_8_MHZ 2
72#define PLL1RGE_8_16_MHZ 3
73#define RCC_PLLCFGR_DIVP1EN BIT(16)
74#define RCC_PLLCFGR_DIVQ1EN BIT(17)
75#define RCC_PLLCFGR_DIVR1EN BIT(18)
76
77#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
78#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
79#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
80
81#define RCC_D1CFGR_HPRE_DIV2 8
82
83#define RCC_D1CFGR_D1PPRE_SHIFT 4
84#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
85#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
86
87#define RCC_D1CFGR_D1CPRE_SHIFT 8
88#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
89#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
90
91#define RCC_D2CFGR_D2PPRE1_SHIFT 4
92#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
93#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
94
95#define RCC_D2CFGR_D2PPRE2_SHIFT 8
96#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
97#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
98
99#define RCC_D3CFGR_D3PPRE_SHIFT 4
100#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
101#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
102
103#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
104#define FMCSRC_HCLKD1 0
105#define FMCSRC_PLL1_Q_CK 1
106#define FMCSRC_PLL2_R_CK 2
107#define FMCSRC_PER_CK 3
108
109#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
110#define RCC_D1CCIPR_QSPISRC_SHIFT 4
111#define QSPISRC_HCLKD1 0
112#define QSPISRC_PLL1_Q_CK 1
113#define QSPISRC_PLL2_R_CK 2
114#define QSPISRC_PER_CK 3
115
116#define PWR_CR3 0x0c
Dario Binacchi58145422025-06-07 11:37:17 +0200117#define PWR_CR3_LDOEN BIT(1)
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200118#define PWR_CR3_SCUEN BIT(2)
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200119#define PWR_D3CR 0x18
120#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
121#define PWR_D3CR_VOS_SHIFT 14
122#define VOS_SCALE_3 1
123#define VOS_SCALE_2 2
124#define VOS_SCALE_1 3
125#define PWR_D3CR_VOSREADY BIT(13)
126
127struct stm32_rcc_regs {
128 u32 cr; /* 0x00 Source Control Register */
129 u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
130 u32 crrcr; /* 0x08 Clock Recovery RC Register */
131 u32 reserved1; /* 0x0c reserved */
132 u32 cfgr; /* 0x10 Clock Configuration Register */
133 u32 reserved2; /* 0x14 reserved */
134 u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
135 u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
136 u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
137 u32 reserved3; /* 0x24 reserved */
138 u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
139 u32 pllcfgr; /* 0x2c PLLs Configuration Register */
140 u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
141 u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
142 u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
143 u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
144 u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
145 u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
146 u32 reserved4; /* 0x48 reserved */
147 u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
148 u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
149 u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
150 u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
151 u32 reserved5; /* 0x5c reserved */
152 u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
153 u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
154 u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
155 u32 reserved6; /* 0x6c reserved */
156 u32 bdcr; /* 0x70 Backup Domain Control Register */
157 u32 csr; /* 0x74 Clock Control and Status Register */
158 u32 reserved7; /* 0x78 reserved */
159
160 u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
161 u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
162 u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
163 u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
164
165 u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
166 u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
167 u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
168 u32 apb2rstr; /* 0x98 APB2 Clock Register */
169 u32 apb4rstr; /* 0x9c APB4 Clock Register */
170
171 u32 gcr; /* 0xa0 Global Control Register */
172 u32 reserved8; /* 0xa4 reserved */
173 u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
174 u32 reserved9[9];/* 0xac to 0xcc reserved */
175 u32 rsr; /* 0xd0 Reset Status Register */
176 u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
177 u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
178 u32 ahb2enr; /* 0xdc AHB2 Clock Register */
179 u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
180
181 u32 apb3enr; /* 0xe4 APB3 Clock Register */
182 u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
183 u32 apb1henr; /* 0xec APB1 high Clock Register */
184 u32 apb2enr; /* 0xf0 APB2 Clock Register */
185 u32 apb4enr; /* 0xf4 APB4 Clock Register */
186};
187
188#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
189#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
190#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
191#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
192#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
193#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
194#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
195#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
196#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
197
198struct clk_cfg {
199 u32 gate_offset;
200 u8 gate_bit_idx;
201 const char *name;
202};
203
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200204/*
205 * the way all these entries are sorted in this array could seem
206 * unlogical, but we are dependant of kernel DT_bindings,
207 * where clocks are separate in 2 banks, peripheral clocks and
208 * kernel clocks.
209 */
210
211static const struct clk_cfg clk_map[] = {
Patrice Chotardbb698ea2017-10-09 11:41:23 +0200212 {RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
213 {RCC_AHB3ENR, 30, "itcm"},
214 {RCC_AHB3ENR, 29, "dtcm2"},
215 {RCC_AHB3ENR, 28, "dtcm1"},
216 {RCC_AHB3ENR, 8, "flitf"},
217 {RCC_AHB3ENR, 5, "jpgdec"},
218 {RCC_AHB3ENR, 4, "dma2d"},
219 {RCC_AHB3ENR, 0, "mdma"},
220 {RCC_AHB1ENR, 28, "usb2ulpi"},
221 {RCC_AHB1ENR, 17, "eth1rx"},
222 {RCC_AHB1ENR, 16, "eth1tx"},
223 {RCC_AHB1ENR, 15, "eth1mac"},
224 {RCC_AHB1ENR, 14, "art"},
225 {RCC_AHB1ENR, 26, "usb1ulpi"},
226 {RCC_AHB1ENR, 1, "dma2"},
227 {RCC_AHB1ENR, 0, "dma1"},
228 {RCC_AHB2ENR, 31, "d2sram3"},
229 {RCC_AHB2ENR, 30, "d2sram2"},
230 {RCC_AHB2ENR, 29, "d2sram1"},
231 {RCC_AHB2ENR, 5, "hash"},
232 {RCC_AHB2ENR, 4, "crypt"},
233 {RCC_AHB2ENR, 0, "camitf"},
234 {RCC_AHB4ENR, 28, "bkpram"},
235 {RCC_AHB4ENR, 25, "hsem"},
236 {RCC_AHB4ENR, 21, "bdma"},
237 {RCC_AHB4ENR, 19, "crc"},
238 {RCC_AHB4ENR, 10, "gpiok"},
239 {RCC_AHB4ENR, 9, "gpioj"},
240 {RCC_AHB4ENR, 8, "gpioi"},
241 {RCC_AHB4ENR, 7, "gpioh"},
242 {RCC_AHB4ENR, 6, "gpiog"},
243 {RCC_AHB4ENR, 5, "gpiof"},
244 {RCC_AHB4ENR, 4, "gpioe"},
245 {RCC_AHB4ENR, 3, "gpiod"},
246 {RCC_AHB4ENR, 2, "gpioc"},
247 {RCC_AHB4ENR, 1, "gpiob"},
248 {RCC_AHB4ENR, 0, "gpioa"},
249 {RCC_APB3ENR, 6, "wwdg1"},
250 {RCC_APB1LENR, 29, "dac12"},
251 {RCC_APB1LENR, 11, "wwdg2"},
252 {RCC_APB1LENR, 8, "tim14"},
253 {RCC_APB1LENR, 7, "tim13"},
254 {RCC_APB1LENR, 6, "tim12"},
255 {RCC_APB1LENR, 5, "tim7"},
256 {RCC_APB1LENR, 4, "tim6"},
257 {RCC_APB1LENR, 3, "tim5"},
258 {RCC_APB1LENR, 2, "tim4"},
259 {RCC_APB1LENR, 1, "tim3"},
260 {RCC_APB1LENR, 0, "tim2"},
261 {RCC_APB1HENR, 5, "mdios"},
262 {RCC_APB1HENR, 4, "opamp"},
263 {RCC_APB1HENR, 1, "crs"},
264 {RCC_APB2ENR, 18, "tim17"},
265 {RCC_APB2ENR, 17, "tim16"},
266 {RCC_APB2ENR, 16, "tim15"},
267 {RCC_APB2ENR, 1, "tim8"},
268 {RCC_APB2ENR, 0, "tim1"},
269 {RCC_APB4ENR, 26, "tmpsens"},
270 {RCC_APB4ENR, 16, "rtcapb"},
271 {RCC_APB4ENR, 15, "vref"},
272 {RCC_APB4ENR, 14, "comp12"},
273 {RCC_APB4ENR, 1, "syscfg"},
274 {RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
275 {RCC_AHB3ENR, 14, "quadspi"},
276 {RCC_AHB3ENR, 12, "fmc"},
277 {RCC_AHB1ENR, 27, "usb2otg"},
278 {RCC_AHB1ENR, 25, "usb1otg"},
279 {RCC_AHB1ENR, 5, "adc12"},
280 {RCC_AHB2ENR, 9, "sdmmc2"},
281 {RCC_AHB2ENR, 6, "rng"},
282 {RCC_AHB4ENR, 24, "adc3"},
283 {RCC_APB3ENR, 4, "dsi"},
284 {RCC_APB3ENR, 3, "ltdc"},
285 {RCC_APB1LENR, 31, "usart8"},
286 {RCC_APB1LENR, 30, "usart7"},
287 {RCC_APB1LENR, 27, "hdmicec"},
288 {RCC_APB1LENR, 23, "i2c3"},
289 {RCC_APB1LENR, 22, "i2c2"},
290 {RCC_APB1LENR, 21, "i2c1"},
291 {RCC_APB1LENR, 20, "uart5"},
292 {RCC_APB1LENR, 19, "uart4"},
293 {RCC_APB1LENR, 18, "usart3"},
294 {RCC_APB1LENR, 17, "usart2"},
295 {RCC_APB1LENR, 16, "spdifrx"},
296 {RCC_APB1LENR, 15, "spi3"},
297 {RCC_APB1LENR, 14, "spi2"},
298 {RCC_APB1LENR, 9, "lptim1"},
299 {RCC_APB1HENR, 8, "fdcan"},
300 {RCC_APB1HENR, 2, "swp"},
301 {RCC_APB2ENR, 29, "hrtim"},
302 {RCC_APB2ENR, 28, "dfsdm1"},
303 {RCC_APB2ENR, 24, "sai3"},
304 {RCC_APB2ENR, 23, "sai2"},
305 {RCC_APB2ENR, 22, "sai1"},
306 {RCC_APB2ENR, 20, "spi5"},
307 {RCC_APB2ENR, 13, "spi4"},
308 {RCC_APB2ENR, 12, "spi1"},
309 {RCC_APB2ENR, 5, "usart6"},
310 {RCC_APB2ENR, 4, "usart1"},
311 {RCC_APB4ENR, 21, "sai4a"},
312 {RCC_APB4ENR, 21, "sai4b"},
313 {RCC_APB4ENR, 12, "lptim5"},
314 {RCC_APB4ENR, 11, "lptim4"},
315 {RCC_APB4ENR, 10, "lptim3"},
316 {RCC_APB4ENR, 9, "lptim2"},
317 {RCC_APB4ENR, 7, "i2c4"},
318 {RCC_APB4ENR, 5, "spi6"},
319 {RCC_APB4ENR, 3, "lpuart1"},
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200320};
321
322struct stm32_clk {
323 struct stm32_rcc_regs *rcc_base;
324 struct regmap *pwr_regmap;
325};
326
327struct pll_psc {
328 u8 divm;
329 u16 divn;
330 u8 divp;
331 u8 divq;
332 u8 divr;
333};
334
335/*
336 * OSC_HSE = 25 MHz
337 * VCO = 500MHz
338 * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
339 */
340struct pll_psc sys_pll_psc = {
341 .divm = 4,
342 .divn = 80,
343 .divp = 2,
344 .divq = 2,
345 .divr = 2,
346};
347
Patrice Chotard53016352018-02-07 10:44:47 +0100348enum apb {
349 APB1,
350 APB2,
351};
352
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200353int configure_clocks(struct udevice *dev)
354{
355 struct stm32_clk *priv = dev_get_priv(dev);
356 struct stm32_rcc_regs *regs = priv->rcc_base;
357 uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
358 uint32_t pllckselr = 0;
359 uint32_t pll1divr = 0;
360 uint32_t pllcfgr = 0;
361
362 /* Switch on HSI */
363 setbits_le32(&regs->cr, RCC_CR_HSION);
364 while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
365 ;
366
367 /* Reset CFGR, now HSI is the default system clock */
368 writel(0, &regs->cfgr);
369
370 /* Set all kernel domain clock registers to reset value*/
371 writel(0x0, &regs->d1ccipr);
372 writel(0x0, &regs->d2ccip1r);
373 writel(0x0, &regs->d2ccip2r);
374
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200375 /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200376 clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
377 VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200378 /* Lock supply configuration update */
Dario Binacchi58145422025-06-07 11:37:17 +0200379#if IS_ENABLED(CONFIG_TARGET_STM32H747_DISCO)
380 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_LDOEN);
381#else
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200382 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
Dario Binacchi58145422025-06-07 11:37:17 +0200383#endif
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200384 while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
385 ;
386
387 /* disable HSE to configure it */
388 clrbits_le32(&regs->cr, RCC_CR_HSEON);
389 while ((readl(&regs->cr) & RCC_CR_HSERDY))
390 ;
391
392 /* clear HSE bypass and set it ON */
393 clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
394 /* Switch on HSE */
395 setbits_le32(&regs->cr, RCC_CR_HSEON);
396 while (!(readl(&regs->cr) & RCC_CR_HSERDY))
397 ;
398
399 /* pll setup, disable it */
400 clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
401 while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
402 ;
403
404 /* Select HSE as PLL clock source */
405 pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
406 pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
407 writel(pllckselr, &regs->pllckselr);
408
409 pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
410 pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
411 pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
412 pll1divr |= (sys_pll_psc.divn - 1);
413 writel(pll1divr, &regs->pll1divr);
414
415 pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
416 pllcfgr |= RCC_PLLCFGR_DIVP1EN;
417 pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
418 pllcfgr |= RCC_PLLCFGR_DIVR1EN;
419 writel(pllcfgr, &regs->pllcfgr);
420
421 /* pll setup, enable it */
422 setbits_le32(&regs->cr, RCC_CR_PLL1ON);
423
424 /* set HPRE (/2) DI clk --> 125MHz */
425 clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
426 RCC_D1CFGR_HPRE_DIV2);
427
428 /* select PLL1 as system clock source (sys_ck)*/
429 clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
430 while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
431 ;
432
433 /* sdram: use pll1_q as fmc_k clk */
434 clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
435 FMCSRC_PLL1_Q_CK);
436
437 return 0;
438}
439
440static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
441{
442 u32 divider;
443
444 /* get HSI divider value */
445 divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
446 divider = divider >> RCC_CR_HSIDIV_SHIFT;
447
448 return divider;
449};
450
451enum pllsrc {
452 HSE,
453 LSE,
454 HSI,
455 CSI,
456 I2S,
457 TIMER,
458 PLLSRC_NB,
459};
460
461static const char * const pllsrc_name[PLLSRC_NB] = {
462 [HSE] = "clk-hse",
463 [LSE] = "clk-lse",
464 [HSI] = "clk-hsi",
465 [CSI] = "clk-csi",
466 [I2S] = "clk-i2s",
467 [TIMER] = "timer-clk"
468};
469
470static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
471{
472 struct clk clk;
473 struct udevice *fixed_clock_dev = NULL;
474 u32 divider;
475 int ret;
476 const char *name = pllsrc_name[pllsrc];
477
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100478 log_debug("pllsrc name %s\n", name);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200479
480 clk.id = 0;
481 ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
482 if (ret) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100483 log_err("Can't find clk %s (%d)", name, ret);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200484 return 0;
485 }
486
487 ret = clk_request(fixed_clock_dev, &clk);
488 if (ret) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100489 log_err("Can't request %s clk (%d)", name, ret);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200490 return 0;
491 }
492
493 divider = 0;
494 if (pllsrc == HSI)
495 divider = stm32_get_HSI_divider(regs);
496
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100497 log_debug("divider %d rate %ld\n", divider, clk_get_rate(&clk));
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200498
499 return clk_get_rate(&clk) >> divider;
500};
501
502enum pll1_output {
503 PLL1_P_CK,
504 PLL1_Q_CK,
505 PLL1_R_CK,
506};
507
508static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
509 enum pll1_output output)
510{
511 ulong pllsrc = 0;
512 u32 divm1, divn1, divp1, divq1, divr1, fracn1;
513 ulong vco, rate;
514
515 /* get the PLLSRC */
516 switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
517 case RCC_PLLCKSELR_PLLSRC_HSI:
518 pllsrc = stm32_get_rate(regs, HSI);
519 break;
520 case RCC_PLLCKSELR_PLLSRC_CSI:
521 pllsrc = stm32_get_rate(regs, CSI);
522 break;
523 case RCC_PLLCKSELR_PLLSRC_HSE:
524 pllsrc = stm32_get_rate(regs, HSE);
525 break;
526 case RCC_PLLCKSELR_PLLSRC_NO_CLK:
527 /* shouldn't happen */
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100528 log_err("wrong value for RCC_PLLCKSELR register\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200529 pllsrc = 0;
530 break;
531 }
532
533 /* pllsrc = 0 ? no need to go ahead */
534 if (!pllsrc)
535 return pllsrc;
536
537 /* get divm1, divp1, divn1 and divr1 */
538 divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
539 divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
540
541 divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
542
543 divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
544 divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
545
546 divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
547 divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
548
549 divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
550 divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
551
552 fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
553 fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
554
555 vco = (pllsrc / divm1) * divn1;
556 rate = (pllsrc * fracn1) / (divm1 * 8192);
557
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100558 log_debug("divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
559 divm1, divn1, divp1, divq1, divr1);
560 log_debug("fracn1 = %d vco = %ld rate = %ld\n",
561 fracn1, vco, rate);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200562
563 switch (output) {
564 case PLL1_P_CK:
565 return (vco + rate) / divp1;
566 break;
567 case PLL1_Q_CK:
568 return (vco + rate) / divq1;
569 break;
570
571 case PLL1_R_CK:
572 return (vco + rate) / divr1;
573 break;
574 }
575
576 return -EINVAL;
577}
578
Patrice Chotard53016352018-02-07 10:44:47 +0100579static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
580{
581 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
582 u32 d2cfgr = readl(&regs->d2cfgr);
583
584 if (apb == APB1) {
585 if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
586 /* get D2 domain APB1 prescaler */
587 return prescaler_table[
588 ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
589 >> RCC_D2CFGR_D2PPRE1_SHIFT)];
590 } else { /* APB2 */
591 if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
592 /* get D2 domain APB2 prescaler */
593 return prescaler_table[
594 ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
595 >> RCC_D2CFGR_D2PPRE2_SHIFT)];
596 }
597
598 return 1;
599};
600
601static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
602 enum apb apb)
603{
604 struct stm32_rcc_regs *regs = priv->rcc_base;
605u32 psc = stm32_get_apb_psc(regs, apb);
606
607 if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
608 /*
609 * if APB prescaler is configured to a
610 * division factor of 1, 2 or 4
611 */
612 switch (psc) {
613 case 1:
614 case 2:
615 case 4:
616 return sysclk;
617 case 8:
618 return sysclk / 2;
619 case 16:
620 return sysclk / 4;
621 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100622 log_err("unexpected prescaler value (%d)\n", psc);
Patrice Chotard53016352018-02-07 10:44:47 +0100623 return 0;
624 }
625 else
626 switch (psc) {
627 case 1:
628 return sysclk;
629 case 2:
630 case 4:
631 case 8:
632 case 16:
633 return sysclk / psc;
634 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100635 log_err("unexpected prescaler value (%d)\n", psc);
Patrice Chotard53016352018-02-07 10:44:47 +0100636 return 0;
637 }
638};
639
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200640static ulong stm32_clk_get_rate(struct clk *clk)
641{
642 struct stm32_clk *priv = dev_get_priv(clk->dev);
643 struct stm32_rcc_regs *regs = priv->rcc_base;
644 ulong sysclk = 0;
645 u32 gate_offset;
Patrice Chotard78df5772018-02-07 10:44:48 +0100646 u32 d1cfgr, d3cfgr;
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200647 /* prescaler table lookups for clock computation */
648 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
649 u8 source, idx;
650
651 /*
652 * get system clock (sys_ck) source
653 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
654 */
655 source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
656 switch (source) {
657 case RCC_CFGR_SW_PLL1:
658 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
659 break;
660 case RCC_CFGR_SW_HSE:
661 sysclk = stm32_get_rate(regs, HSE);
662 break;
663
664 case RCC_CFGR_SW_CSI:
665 sysclk = stm32_get_rate(regs, CSI);
666 break;
667
668 case RCC_CFGR_SW_HSI:
669 sysclk = stm32_get_rate(regs, HSI);
670 break;
671 }
672
673 /* sysclk = 0 ? no need to go ahead */
674 if (!sysclk)
675 return sysclk;
676
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100677 dev_dbg(clk->dev, "system clock: source = %d freq = %ld\n",
678 source, sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200679
680 d1cfgr = readl(&regs->d1cfgr);
681
682 if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
683 /* get D1 domain Core prescaler */
684 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
685 RCC_D1CFGR_D1CPRE_SHIFT;
686 sysclk = sysclk / prescaler_table[idx];
687 }
688
689 if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
690 /* get D1 domain AHB prescaler */
691 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
692 sysclk = sysclk / prescaler_table[idx];
693 }
694
695 gate_offset = clk_map[clk->id].gate_offset;
696
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100697 dev_dbg(clk->dev, "clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
698 clk->id, gate_offset, sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200699
700 switch (gate_offset) {
701 case RCC_AHB3ENR:
702 case RCC_AHB1ENR:
703 case RCC_AHB2ENR:
704 case RCC_AHB4ENR:
705 return sysclk;
706 break;
707
708 case RCC_APB3ENR:
709 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
710 /* get D1 domain APB3 prescaler */
711 idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
712 RCC_D1CFGR_D1PPRE_SHIFT;
713 sysclk = sysclk / prescaler_table[idx];
714 }
715
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100716 dev_dbg(clk->dev, "system clock: freq after APB3 prescaler = %ld\n",
717 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200718
719 return sysclk;
720 break;
721
722 case RCC_APB4ENR:
Patrice Chotard78df5772018-02-07 10:44:48 +0100723 d3cfgr = readl(&regs->d3cfgr);
724 if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200725 /* get D3 domain APB4 prescaler */
Patrice Chotard78df5772018-02-07 10:44:48 +0100726 idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200727 RCC_D3CFGR_D3PPRE_SHIFT;
728 sysclk = sysclk / prescaler_table[idx];
729 }
730
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100731 dev_dbg(clk->dev,
732 "system clock: freq after APB4 prescaler = %ld\n",
733 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200734
735 return sysclk;
736 break;
737
738 case RCC_APB1LENR:
739 case RCC_APB1HENR:
Patrice Chotard53016352018-02-07 10:44:47 +0100740 /* special case for GPT timers */
741 switch (clk->id) {
742 case TIM14_CK:
743 case TIM13_CK:
744 case TIM12_CK:
745 case TIM7_CK:
746 case TIM6_CK:
747 case TIM5_CK:
748 case TIM4_CK:
749 case TIM3_CK:
750 case TIM2_CK:
751 return stm32_get_timer_rate(priv, sysclk, APB1);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200752 }
753
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100754 dev_dbg(clk->dev,
755 "system clock: freq after APB1 prescaler = %ld\n",
756 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200757
Patrice Chotard53016352018-02-07 10:44:47 +0100758 return (sysclk / stm32_get_apb_psc(regs, APB1));
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200759 break;
760
761 case RCC_APB2ENR:
Patrice Chotard53016352018-02-07 10:44:47 +0100762 /* special case for timers */
763 switch (clk->id) {
764 case TIM17_CK:
765 case TIM16_CK:
766 case TIM15_CK:
767 case TIM8_CK:
768 case TIM1_CK:
769 return stm32_get_timer_rate(priv, sysclk, APB2);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200770 }
771
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100772 dev_dbg(clk->dev,
773 "system clock: freq after APB2 prescaler = %ld\n",
774 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200775
Patrice Chotard53016352018-02-07 10:44:47 +0100776 return (sysclk / stm32_get_apb_psc(regs, APB2));
777
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200778 break;
779
780 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100781 dev_err(clk->dev, "unexpected gate_offset value (0x%x)\n",
782 gate_offset);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200783 return -EINVAL;
784 break;
785 }
786}
787
788static int stm32_clk_enable(struct clk *clk)
789{
790 struct stm32_clk *priv = dev_get_priv(clk->dev);
791 struct stm32_rcc_regs *regs = priv->rcc_base;
792 u32 gate_offset;
793 u32 gate_bit_index;
794 unsigned long clk_id = clk->id;
795
796 gate_offset = clk_map[clk_id].gate_offset;
797 gate_bit_index = clk_map[clk_id].gate_bit_idx;
798
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100799 dev_dbg(clk->dev, "clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
800 clk->id, gate_offset, gate_bit_index,
801 clk_map[clk_id].name);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200802
803 setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
804
805 return 0;
806}
807
808static int stm32_clk_probe(struct udevice *dev)
809{
810 struct stm32_clk *priv = dev_get_priv(dev);
811 struct udevice *syscon;
812 fdt_addr_t addr;
813 int err;
814
815 addr = dev_read_addr(dev);
816 if (addr == FDT_ADDR_T_NONE)
817 return -EINVAL;
818
819 priv->rcc_base = (struct stm32_rcc_regs *)addr;
820
821 /* get corresponding syscon phandle */
822 err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
823 "st,syscfg", &syscon);
824
825 if (err) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100826 dev_err(dev, "unable to find syscon device\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200827 return err;
828 }
829
830 priv->pwr_regmap = syscon_get_regmap(syscon);
831 if (!priv->pwr_regmap) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100832 dev_err(dev, "unable to find regmap\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200833 return -ENODEV;
834 }
835
836 configure_clocks(dev);
837
838 return 0;
839}
840
841static int stm32_clk_of_xlate(struct clk *clk,
842 struct ofnode_phandle_args *args)
843{
844 if (args->args_count != 1) {
Sean Andersona1b654b2021-12-01 14:26:53 -0500845 dev_dbg(clk->dev, "Invalid args_count: %d\n", args->args_count);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200846 return -EINVAL;
847 }
848
849 if (args->args_count) {
850 clk->id = args->args[0];
851 /*
852 * this computation convert DT clock index which is used to
853 * point into 2 separate clock arrays (peripheral and kernel
854 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
855 * into index to point into only one array where peripheral
856 * and kernel clocks are consecutive
857 */
858 if (clk->id >= KERN_BANK) {
859 clk->id -= KERN_BANK;
860 clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
861 } else {
862 clk->id -= PERIF_BANK;
863 }
864 } else {
865 clk->id = 0;
866 }
867
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100868 dev_dbg(clk->dev, "clk->id %ld\n", clk->id);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200869
870 return 0;
871}
872
873static struct clk_ops stm32_clk_ops = {
874 .of_xlate = stm32_clk_of_xlate,
875 .enable = stm32_clk_enable,
876 .get_rate = stm32_clk_get_rate,
877};
878
879U_BOOT_DRIVER(stm32h7_clk) = {
880 .name = "stm32h7_rcc_clock",
881 .id = UCLASS_CLK,
882 .ops = &stm32_clk_ops,
883 .probe = stm32_clk_probe,
Simon Glass8a2b47f2020-12-03 16:55:17 -0700884 .priv_auto = sizeof(struct stm32_clk),
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200885 .flags = DM_FLAG_PRE_RELOC,
886};