blob: 6acf2ff0a8fb44d47da1f944c74535e094a7847d [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Patrice Chotard5fffeab2017-09-13 18:00:06 +02002/*
Patrice Chotard789ee0e2017-10-23 09:53:58 +02003 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
Patrice Chotard5d9950d2020-12-02 18:47:30 +01004 * Author(s): Patrice Chotard, <patrice.chotard@foss.st.com> for STMicroelectronics.
Patrice Chotard5fffeab2017-09-13 18:00:06 +02005 */
6
Patrick Delaunay88c7eb72020-11-06 19:01:47 +01007#define LOG_CATEGORY UCLASS_CLK
8
Patrice Chotard5fffeab2017-09-13 18:00:06 +02009#include <clk-uclass.h>
10#include <dm.h>
Simon Glass0f2af882020-05-10 11:40:05 -060011#include <log.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020012#include <regmap.h>
13#include <syscon.h>
14#include <asm/io.h>
Patrick Delaunay88c7eb72020-11-06 19:01:47 +010015#include <dm/device_compat.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020016#include <dm/root.h>
Simon Glass4dcacfc2020-05-10 11:40:13 -060017#include <linux/bitops.h>
Patrice Chotard5fffeab2017-09-13 18:00:06 +020018
19#include <dt-bindings/clock/stm32h7-clks.h>
20
Patrick Delaunaye378d852024-11-27 17:23:09 +010021/* must be equal to last peripheral clock index */
22#define LAST_PERIF_BANK SYSCFG_CK
23
Patrice Chotard5fffeab2017-09-13 18:00:06 +020024/* RCC CR specific definitions */
25#define RCC_CR_HSION BIT(0)
26#define RCC_CR_HSIRDY BIT(2)
27
28#define RCC_CR_HSEON BIT(16)
29#define RCC_CR_HSERDY BIT(17)
30#define RCC_CR_HSEBYP BIT(18)
31#define RCC_CR_PLL1ON BIT(24)
32#define RCC_CR_PLL1RDY BIT(25)
33
34#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
35#define RCC_CR_HSIDIV_SHIFT 3
36
37#define RCC_CFGR_SW_MASK GENMASK(2, 0)
38#define RCC_CFGR_SW_HSI 0
39#define RCC_CFGR_SW_CSI 1
40#define RCC_CFGR_SW_HSE 2
41#define RCC_CFGR_SW_PLL1 3
Patrice Chotard53016352018-02-07 10:44:47 +010042#define RCC_CFGR_TIMPRE BIT(15)
Patrice Chotard5fffeab2017-09-13 18:00:06 +020043
44#define RCC_PLLCKSELR_PLLSRC_HSI 0
45#define RCC_PLLCKSELR_PLLSRC_CSI 1
46#define RCC_PLLCKSELR_PLLSRC_HSE 2
47#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
48
49#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
50
51#define RCC_PLLCKSELR_DIVM1_SHIFT 4
52#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
53
54#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
55
56#define RCC_PLL1DIVR_DIVP1_SHIFT 9
57#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
58
59#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
60#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
61
62#define RCC_PLL1DIVR_DIVR1_SHIFT 24
63#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
64
65#define RCC_PLL1FRACR_FRACN1_SHIFT 3
66#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
67
68#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
69#define PLL1RGE_1_2_MHZ 0
70#define PLL1RGE_2_4_MHZ 1
71#define PLL1RGE_4_8_MHZ 2
72#define PLL1RGE_8_16_MHZ 3
73#define RCC_PLLCFGR_DIVP1EN BIT(16)
74#define RCC_PLLCFGR_DIVQ1EN BIT(17)
75#define RCC_PLLCFGR_DIVR1EN BIT(18)
76
77#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
78#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
79#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
80
81#define RCC_D1CFGR_HPRE_DIV2 8
82
83#define RCC_D1CFGR_D1PPRE_SHIFT 4
84#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
85#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
86
87#define RCC_D1CFGR_D1CPRE_SHIFT 8
88#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
89#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
90
91#define RCC_D2CFGR_D2PPRE1_SHIFT 4
92#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
93#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
94
95#define RCC_D2CFGR_D2PPRE2_SHIFT 8
96#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
97#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
98
99#define RCC_D3CFGR_D3PPRE_SHIFT 4
100#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
101#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
102
103#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
104#define FMCSRC_HCLKD1 0
105#define FMCSRC_PLL1_Q_CK 1
106#define FMCSRC_PLL2_R_CK 2
107#define FMCSRC_PER_CK 3
108
109#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
110#define RCC_D1CCIPR_QSPISRC_SHIFT 4
111#define QSPISRC_HCLKD1 0
112#define QSPISRC_PLL1_Q_CK 1
113#define QSPISRC_PLL2_R_CK 2
114#define QSPISRC_PER_CK 3
115
116#define PWR_CR3 0x0c
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200117#define PWR_CR3_SCUEN BIT(2)
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200118#define PWR_D3CR 0x18
119#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
120#define PWR_D3CR_VOS_SHIFT 14
121#define VOS_SCALE_3 1
122#define VOS_SCALE_2 2
123#define VOS_SCALE_1 3
124#define PWR_D3CR_VOSREADY BIT(13)
125
126struct stm32_rcc_regs {
127 u32 cr; /* 0x00 Source Control Register */
128 u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
129 u32 crrcr; /* 0x08 Clock Recovery RC Register */
130 u32 reserved1; /* 0x0c reserved */
131 u32 cfgr; /* 0x10 Clock Configuration Register */
132 u32 reserved2; /* 0x14 reserved */
133 u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
134 u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
135 u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
136 u32 reserved3; /* 0x24 reserved */
137 u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
138 u32 pllcfgr; /* 0x2c PLLs Configuration Register */
139 u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
140 u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
141 u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
142 u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
143 u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
144 u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
145 u32 reserved4; /* 0x48 reserved */
146 u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
147 u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
148 u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
149 u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
150 u32 reserved5; /* 0x5c reserved */
151 u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
152 u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
153 u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
154 u32 reserved6; /* 0x6c reserved */
155 u32 bdcr; /* 0x70 Backup Domain Control Register */
156 u32 csr; /* 0x74 Clock Control and Status Register */
157 u32 reserved7; /* 0x78 reserved */
158
159 u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
160 u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
161 u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
162 u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
163
164 u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
165 u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
166 u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
167 u32 apb2rstr; /* 0x98 APB2 Clock Register */
168 u32 apb4rstr; /* 0x9c APB4 Clock Register */
169
170 u32 gcr; /* 0xa0 Global Control Register */
171 u32 reserved8; /* 0xa4 reserved */
172 u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
173 u32 reserved9[9];/* 0xac to 0xcc reserved */
174 u32 rsr; /* 0xd0 Reset Status Register */
175 u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
176 u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
177 u32 ahb2enr; /* 0xdc AHB2 Clock Register */
178 u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
179
180 u32 apb3enr; /* 0xe4 APB3 Clock Register */
181 u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
182 u32 apb1henr; /* 0xec APB1 high Clock Register */
183 u32 apb2enr; /* 0xf0 APB2 Clock Register */
184 u32 apb4enr; /* 0xf4 APB4 Clock Register */
185};
186
187#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
188#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
189#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
190#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
191#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
192#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
193#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
194#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
195#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
196
197struct clk_cfg {
198 u32 gate_offset;
199 u8 gate_bit_idx;
200 const char *name;
201};
202
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200203/*
204 * the way all these entries are sorted in this array could seem
205 * unlogical, but we are dependant of kernel DT_bindings,
206 * where clocks are separate in 2 banks, peripheral clocks and
207 * kernel clocks.
208 */
209
210static const struct clk_cfg clk_map[] = {
Patrice Chotardbb698ea2017-10-09 11:41:23 +0200211 {RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
212 {RCC_AHB3ENR, 30, "itcm"},
213 {RCC_AHB3ENR, 29, "dtcm2"},
214 {RCC_AHB3ENR, 28, "dtcm1"},
215 {RCC_AHB3ENR, 8, "flitf"},
216 {RCC_AHB3ENR, 5, "jpgdec"},
217 {RCC_AHB3ENR, 4, "dma2d"},
218 {RCC_AHB3ENR, 0, "mdma"},
219 {RCC_AHB1ENR, 28, "usb2ulpi"},
220 {RCC_AHB1ENR, 17, "eth1rx"},
221 {RCC_AHB1ENR, 16, "eth1tx"},
222 {RCC_AHB1ENR, 15, "eth1mac"},
223 {RCC_AHB1ENR, 14, "art"},
224 {RCC_AHB1ENR, 26, "usb1ulpi"},
225 {RCC_AHB1ENR, 1, "dma2"},
226 {RCC_AHB1ENR, 0, "dma1"},
227 {RCC_AHB2ENR, 31, "d2sram3"},
228 {RCC_AHB2ENR, 30, "d2sram2"},
229 {RCC_AHB2ENR, 29, "d2sram1"},
230 {RCC_AHB2ENR, 5, "hash"},
231 {RCC_AHB2ENR, 4, "crypt"},
232 {RCC_AHB2ENR, 0, "camitf"},
233 {RCC_AHB4ENR, 28, "bkpram"},
234 {RCC_AHB4ENR, 25, "hsem"},
235 {RCC_AHB4ENR, 21, "bdma"},
236 {RCC_AHB4ENR, 19, "crc"},
237 {RCC_AHB4ENR, 10, "gpiok"},
238 {RCC_AHB4ENR, 9, "gpioj"},
239 {RCC_AHB4ENR, 8, "gpioi"},
240 {RCC_AHB4ENR, 7, "gpioh"},
241 {RCC_AHB4ENR, 6, "gpiog"},
242 {RCC_AHB4ENR, 5, "gpiof"},
243 {RCC_AHB4ENR, 4, "gpioe"},
244 {RCC_AHB4ENR, 3, "gpiod"},
245 {RCC_AHB4ENR, 2, "gpioc"},
246 {RCC_AHB4ENR, 1, "gpiob"},
247 {RCC_AHB4ENR, 0, "gpioa"},
248 {RCC_APB3ENR, 6, "wwdg1"},
249 {RCC_APB1LENR, 29, "dac12"},
250 {RCC_APB1LENR, 11, "wwdg2"},
251 {RCC_APB1LENR, 8, "tim14"},
252 {RCC_APB1LENR, 7, "tim13"},
253 {RCC_APB1LENR, 6, "tim12"},
254 {RCC_APB1LENR, 5, "tim7"},
255 {RCC_APB1LENR, 4, "tim6"},
256 {RCC_APB1LENR, 3, "tim5"},
257 {RCC_APB1LENR, 2, "tim4"},
258 {RCC_APB1LENR, 1, "tim3"},
259 {RCC_APB1LENR, 0, "tim2"},
260 {RCC_APB1HENR, 5, "mdios"},
261 {RCC_APB1HENR, 4, "opamp"},
262 {RCC_APB1HENR, 1, "crs"},
263 {RCC_APB2ENR, 18, "tim17"},
264 {RCC_APB2ENR, 17, "tim16"},
265 {RCC_APB2ENR, 16, "tim15"},
266 {RCC_APB2ENR, 1, "tim8"},
267 {RCC_APB2ENR, 0, "tim1"},
268 {RCC_APB4ENR, 26, "tmpsens"},
269 {RCC_APB4ENR, 16, "rtcapb"},
270 {RCC_APB4ENR, 15, "vref"},
271 {RCC_APB4ENR, 14, "comp12"},
272 {RCC_APB4ENR, 1, "syscfg"},
273 {RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
274 {RCC_AHB3ENR, 14, "quadspi"},
275 {RCC_AHB3ENR, 12, "fmc"},
276 {RCC_AHB1ENR, 27, "usb2otg"},
277 {RCC_AHB1ENR, 25, "usb1otg"},
278 {RCC_AHB1ENR, 5, "adc12"},
279 {RCC_AHB2ENR, 9, "sdmmc2"},
280 {RCC_AHB2ENR, 6, "rng"},
281 {RCC_AHB4ENR, 24, "adc3"},
282 {RCC_APB3ENR, 4, "dsi"},
283 {RCC_APB3ENR, 3, "ltdc"},
284 {RCC_APB1LENR, 31, "usart8"},
285 {RCC_APB1LENR, 30, "usart7"},
286 {RCC_APB1LENR, 27, "hdmicec"},
287 {RCC_APB1LENR, 23, "i2c3"},
288 {RCC_APB1LENR, 22, "i2c2"},
289 {RCC_APB1LENR, 21, "i2c1"},
290 {RCC_APB1LENR, 20, "uart5"},
291 {RCC_APB1LENR, 19, "uart4"},
292 {RCC_APB1LENR, 18, "usart3"},
293 {RCC_APB1LENR, 17, "usart2"},
294 {RCC_APB1LENR, 16, "spdifrx"},
295 {RCC_APB1LENR, 15, "spi3"},
296 {RCC_APB1LENR, 14, "spi2"},
297 {RCC_APB1LENR, 9, "lptim1"},
298 {RCC_APB1HENR, 8, "fdcan"},
299 {RCC_APB1HENR, 2, "swp"},
300 {RCC_APB2ENR, 29, "hrtim"},
301 {RCC_APB2ENR, 28, "dfsdm1"},
302 {RCC_APB2ENR, 24, "sai3"},
303 {RCC_APB2ENR, 23, "sai2"},
304 {RCC_APB2ENR, 22, "sai1"},
305 {RCC_APB2ENR, 20, "spi5"},
306 {RCC_APB2ENR, 13, "spi4"},
307 {RCC_APB2ENR, 12, "spi1"},
308 {RCC_APB2ENR, 5, "usart6"},
309 {RCC_APB2ENR, 4, "usart1"},
310 {RCC_APB4ENR, 21, "sai4a"},
311 {RCC_APB4ENR, 21, "sai4b"},
312 {RCC_APB4ENR, 12, "lptim5"},
313 {RCC_APB4ENR, 11, "lptim4"},
314 {RCC_APB4ENR, 10, "lptim3"},
315 {RCC_APB4ENR, 9, "lptim2"},
316 {RCC_APB4ENR, 7, "i2c4"},
317 {RCC_APB4ENR, 5, "spi6"},
318 {RCC_APB4ENR, 3, "lpuart1"},
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200319};
320
321struct stm32_clk {
322 struct stm32_rcc_regs *rcc_base;
323 struct regmap *pwr_regmap;
324};
325
326struct pll_psc {
327 u8 divm;
328 u16 divn;
329 u8 divp;
330 u8 divq;
331 u8 divr;
332};
333
334/*
335 * OSC_HSE = 25 MHz
336 * VCO = 500MHz
337 * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
338 */
339struct pll_psc sys_pll_psc = {
340 .divm = 4,
341 .divn = 80,
342 .divp = 2,
343 .divq = 2,
344 .divr = 2,
345};
346
Patrice Chotard53016352018-02-07 10:44:47 +0100347enum apb {
348 APB1,
349 APB2,
350};
351
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200352int configure_clocks(struct udevice *dev)
353{
354 struct stm32_clk *priv = dev_get_priv(dev);
355 struct stm32_rcc_regs *regs = priv->rcc_base;
356 uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
357 uint32_t pllckselr = 0;
358 uint32_t pll1divr = 0;
359 uint32_t pllcfgr = 0;
360
361 /* Switch on HSI */
362 setbits_le32(&regs->cr, RCC_CR_HSION);
363 while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
364 ;
365
366 /* Reset CFGR, now HSI is the default system clock */
367 writel(0, &regs->cfgr);
368
369 /* Set all kernel domain clock registers to reset value*/
370 writel(0x0, &regs->d1ccipr);
371 writel(0x0, &regs->d2ccip1r);
372 writel(0x0, &regs->d2ccip2r);
373
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200374 /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200375 clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
376 VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
Patrice Chotardaa69ee52017-10-09 11:41:24 +0200377 /* Lock supply configuration update */
378 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200379 while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
380 ;
381
382 /* disable HSE to configure it */
383 clrbits_le32(&regs->cr, RCC_CR_HSEON);
384 while ((readl(&regs->cr) & RCC_CR_HSERDY))
385 ;
386
387 /* clear HSE bypass and set it ON */
388 clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
389 /* Switch on HSE */
390 setbits_le32(&regs->cr, RCC_CR_HSEON);
391 while (!(readl(&regs->cr) & RCC_CR_HSERDY))
392 ;
393
394 /* pll setup, disable it */
395 clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
396 while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
397 ;
398
399 /* Select HSE as PLL clock source */
400 pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
401 pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
402 writel(pllckselr, &regs->pllckselr);
403
404 pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
405 pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
406 pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
407 pll1divr |= (sys_pll_psc.divn - 1);
408 writel(pll1divr, &regs->pll1divr);
409
410 pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
411 pllcfgr |= RCC_PLLCFGR_DIVP1EN;
412 pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
413 pllcfgr |= RCC_PLLCFGR_DIVR1EN;
414 writel(pllcfgr, &regs->pllcfgr);
415
416 /* pll setup, enable it */
417 setbits_le32(&regs->cr, RCC_CR_PLL1ON);
418
419 /* set HPRE (/2) DI clk --> 125MHz */
420 clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
421 RCC_D1CFGR_HPRE_DIV2);
422
423 /* select PLL1 as system clock source (sys_ck)*/
424 clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
425 while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
426 ;
427
428 /* sdram: use pll1_q as fmc_k clk */
429 clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
430 FMCSRC_PLL1_Q_CK);
431
432 return 0;
433}
434
435static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
436{
437 u32 divider;
438
439 /* get HSI divider value */
440 divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
441 divider = divider >> RCC_CR_HSIDIV_SHIFT;
442
443 return divider;
444};
445
446enum pllsrc {
447 HSE,
448 LSE,
449 HSI,
450 CSI,
451 I2S,
452 TIMER,
453 PLLSRC_NB,
454};
455
456static const char * const pllsrc_name[PLLSRC_NB] = {
457 [HSE] = "clk-hse",
458 [LSE] = "clk-lse",
459 [HSI] = "clk-hsi",
460 [CSI] = "clk-csi",
461 [I2S] = "clk-i2s",
462 [TIMER] = "timer-clk"
463};
464
465static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
466{
467 struct clk clk;
468 struct udevice *fixed_clock_dev = NULL;
469 u32 divider;
470 int ret;
471 const char *name = pllsrc_name[pllsrc];
472
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100473 log_debug("pllsrc name %s\n", name);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200474
475 clk.id = 0;
476 ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
477 if (ret) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100478 log_err("Can't find clk %s (%d)", name, ret);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200479 return 0;
480 }
481
482 ret = clk_request(fixed_clock_dev, &clk);
483 if (ret) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100484 log_err("Can't request %s clk (%d)", name, ret);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200485 return 0;
486 }
487
488 divider = 0;
489 if (pllsrc == HSI)
490 divider = stm32_get_HSI_divider(regs);
491
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100492 log_debug("divider %d rate %ld\n", divider, clk_get_rate(&clk));
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200493
494 return clk_get_rate(&clk) >> divider;
495};
496
497enum pll1_output {
498 PLL1_P_CK,
499 PLL1_Q_CK,
500 PLL1_R_CK,
501};
502
503static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
504 enum pll1_output output)
505{
506 ulong pllsrc = 0;
507 u32 divm1, divn1, divp1, divq1, divr1, fracn1;
508 ulong vco, rate;
509
510 /* get the PLLSRC */
511 switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
512 case RCC_PLLCKSELR_PLLSRC_HSI:
513 pllsrc = stm32_get_rate(regs, HSI);
514 break;
515 case RCC_PLLCKSELR_PLLSRC_CSI:
516 pllsrc = stm32_get_rate(regs, CSI);
517 break;
518 case RCC_PLLCKSELR_PLLSRC_HSE:
519 pllsrc = stm32_get_rate(regs, HSE);
520 break;
521 case RCC_PLLCKSELR_PLLSRC_NO_CLK:
522 /* shouldn't happen */
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100523 log_err("wrong value for RCC_PLLCKSELR register\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200524 pllsrc = 0;
525 break;
526 }
527
528 /* pllsrc = 0 ? no need to go ahead */
529 if (!pllsrc)
530 return pllsrc;
531
532 /* get divm1, divp1, divn1 and divr1 */
533 divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
534 divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
535
536 divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
537
538 divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
539 divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
540
541 divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
542 divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
543
544 divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
545 divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
546
547 fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
548 fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
549
550 vco = (pllsrc / divm1) * divn1;
551 rate = (pllsrc * fracn1) / (divm1 * 8192);
552
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100553 log_debug("divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
554 divm1, divn1, divp1, divq1, divr1);
555 log_debug("fracn1 = %d vco = %ld rate = %ld\n",
556 fracn1, vco, rate);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200557
558 switch (output) {
559 case PLL1_P_CK:
560 return (vco + rate) / divp1;
561 break;
562 case PLL1_Q_CK:
563 return (vco + rate) / divq1;
564 break;
565
566 case PLL1_R_CK:
567 return (vco + rate) / divr1;
568 break;
569 }
570
571 return -EINVAL;
572}
573
Patrice Chotard53016352018-02-07 10:44:47 +0100574static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
575{
576 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
577 u32 d2cfgr = readl(&regs->d2cfgr);
578
579 if (apb == APB1) {
580 if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
581 /* get D2 domain APB1 prescaler */
582 return prescaler_table[
583 ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
584 >> RCC_D2CFGR_D2PPRE1_SHIFT)];
585 } else { /* APB2 */
586 if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
587 /* get D2 domain APB2 prescaler */
588 return prescaler_table[
589 ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
590 >> RCC_D2CFGR_D2PPRE2_SHIFT)];
591 }
592
593 return 1;
594};
595
596static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
597 enum apb apb)
598{
599 struct stm32_rcc_regs *regs = priv->rcc_base;
600u32 psc = stm32_get_apb_psc(regs, apb);
601
602 if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
603 /*
604 * if APB prescaler is configured to a
605 * division factor of 1, 2 or 4
606 */
607 switch (psc) {
608 case 1:
609 case 2:
610 case 4:
611 return sysclk;
612 case 8:
613 return sysclk / 2;
614 case 16:
615 return sysclk / 4;
616 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100617 log_err("unexpected prescaler value (%d)\n", psc);
Patrice Chotard53016352018-02-07 10:44:47 +0100618 return 0;
619 }
620 else
621 switch (psc) {
622 case 1:
623 return sysclk;
624 case 2:
625 case 4:
626 case 8:
627 case 16:
628 return sysclk / psc;
629 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100630 log_err("unexpected prescaler value (%d)\n", psc);
Patrice Chotard53016352018-02-07 10:44:47 +0100631 return 0;
632 }
633};
634
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200635static ulong stm32_clk_get_rate(struct clk *clk)
636{
637 struct stm32_clk *priv = dev_get_priv(clk->dev);
638 struct stm32_rcc_regs *regs = priv->rcc_base;
639 ulong sysclk = 0;
640 u32 gate_offset;
Patrice Chotard78df5772018-02-07 10:44:48 +0100641 u32 d1cfgr, d3cfgr;
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200642 /* prescaler table lookups for clock computation */
643 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
644 u8 source, idx;
645
646 /*
647 * get system clock (sys_ck) source
648 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
649 */
650 source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
651 switch (source) {
652 case RCC_CFGR_SW_PLL1:
653 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
654 break;
655 case RCC_CFGR_SW_HSE:
656 sysclk = stm32_get_rate(regs, HSE);
657 break;
658
659 case RCC_CFGR_SW_CSI:
660 sysclk = stm32_get_rate(regs, CSI);
661 break;
662
663 case RCC_CFGR_SW_HSI:
664 sysclk = stm32_get_rate(regs, HSI);
665 break;
666 }
667
668 /* sysclk = 0 ? no need to go ahead */
669 if (!sysclk)
670 return sysclk;
671
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100672 dev_dbg(clk->dev, "system clock: source = %d freq = %ld\n",
673 source, sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200674
675 d1cfgr = readl(&regs->d1cfgr);
676
677 if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
678 /* get D1 domain Core prescaler */
679 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
680 RCC_D1CFGR_D1CPRE_SHIFT;
681 sysclk = sysclk / prescaler_table[idx];
682 }
683
684 if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
685 /* get D1 domain AHB prescaler */
686 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
687 sysclk = sysclk / prescaler_table[idx];
688 }
689
690 gate_offset = clk_map[clk->id].gate_offset;
691
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100692 dev_dbg(clk->dev, "clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
693 clk->id, gate_offset, sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200694
695 switch (gate_offset) {
696 case RCC_AHB3ENR:
697 case RCC_AHB1ENR:
698 case RCC_AHB2ENR:
699 case RCC_AHB4ENR:
700 return sysclk;
701 break;
702
703 case RCC_APB3ENR:
704 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
705 /* get D1 domain APB3 prescaler */
706 idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
707 RCC_D1CFGR_D1PPRE_SHIFT;
708 sysclk = sysclk / prescaler_table[idx];
709 }
710
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100711 dev_dbg(clk->dev, "system clock: freq after APB3 prescaler = %ld\n",
712 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200713
714 return sysclk;
715 break;
716
717 case RCC_APB4ENR:
Patrice Chotard78df5772018-02-07 10:44:48 +0100718 d3cfgr = readl(&regs->d3cfgr);
719 if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200720 /* get D3 domain APB4 prescaler */
Patrice Chotard78df5772018-02-07 10:44:48 +0100721 idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200722 RCC_D3CFGR_D3PPRE_SHIFT;
723 sysclk = sysclk / prescaler_table[idx];
724 }
725
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100726 dev_dbg(clk->dev,
727 "system clock: freq after APB4 prescaler = %ld\n",
728 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200729
730 return sysclk;
731 break;
732
733 case RCC_APB1LENR:
734 case RCC_APB1HENR:
Patrice Chotard53016352018-02-07 10:44:47 +0100735 /* special case for GPT timers */
736 switch (clk->id) {
737 case TIM14_CK:
738 case TIM13_CK:
739 case TIM12_CK:
740 case TIM7_CK:
741 case TIM6_CK:
742 case TIM5_CK:
743 case TIM4_CK:
744 case TIM3_CK:
745 case TIM2_CK:
746 return stm32_get_timer_rate(priv, sysclk, APB1);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200747 }
748
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100749 dev_dbg(clk->dev,
750 "system clock: freq after APB1 prescaler = %ld\n",
751 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200752
Patrice Chotard53016352018-02-07 10:44:47 +0100753 return (sysclk / stm32_get_apb_psc(regs, APB1));
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200754 break;
755
756 case RCC_APB2ENR:
Patrice Chotard53016352018-02-07 10:44:47 +0100757 /* special case for timers */
758 switch (clk->id) {
759 case TIM17_CK:
760 case TIM16_CK:
761 case TIM15_CK:
762 case TIM8_CK:
763 case TIM1_CK:
764 return stm32_get_timer_rate(priv, sysclk, APB2);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200765 }
766
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100767 dev_dbg(clk->dev,
768 "system clock: freq after APB2 prescaler = %ld\n",
769 sysclk);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200770
Patrice Chotard53016352018-02-07 10:44:47 +0100771 return (sysclk / stm32_get_apb_psc(regs, APB2));
772
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200773 break;
774
775 default:
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100776 dev_err(clk->dev, "unexpected gate_offset value (0x%x)\n",
777 gate_offset);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200778 return -EINVAL;
779 break;
780 }
781}
782
783static int stm32_clk_enable(struct clk *clk)
784{
785 struct stm32_clk *priv = dev_get_priv(clk->dev);
786 struct stm32_rcc_regs *regs = priv->rcc_base;
787 u32 gate_offset;
788 u32 gate_bit_index;
789 unsigned long clk_id = clk->id;
790
791 gate_offset = clk_map[clk_id].gate_offset;
792 gate_bit_index = clk_map[clk_id].gate_bit_idx;
793
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100794 dev_dbg(clk->dev, "clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
795 clk->id, gate_offset, gate_bit_index,
796 clk_map[clk_id].name);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200797
798 setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
799
800 return 0;
801}
802
803static int stm32_clk_probe(struct udevice *dev)
804{
805 struct stm32_clk *priv = dev_get_priv(dev);
806 struct udevice *syscon;
807 fdt_addr_t addr;
808 int err;
809
810 addr = dev_read_addr(dev);
811 if (addr == FDT_ADDR_T_NONE)
812 return -EINVAL;
813
814 priv->rcc_base = (struct stm32_rcc_regs *)addr;
815
816 /* get corresponding syscon phandle */
817 err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
818 "st,syscfg", &syscon);
819
820 if (err) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100821 dev_err(dev, "unable to find syscon device\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200822 return err;
823 }
824
825 priv->pwr_regmap = syscon_get_regmap(syscon);
826 if (!priv->pwr_regmap) {
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100827 dev_err(dev, "unable to find regmap\n");
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200828 return -ENODEV;
829 }
830
831 configure_clocks(dev);
832
833 return 0;
834}
835
836static int stm32_clk_of_xlate(struct clk *clk,
837 struct ofnode_phandle_args *args)
838{
839 if (args->args_count != 1) {
Sean Andersona1b654b2021-12-01 14:26:53 -0500840 dev_dbg(clk->dev, "Invalid args_count: %d\n", args->args_count);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200841 return -EINVAL;
842 }
843
844 if (args->args_count) {
845 clk->id = args->args[0];
846 /*
847 * this computation convert DT clock index which is used to
848 * point into 2 separate clock arrays (peripheral and kernel
849 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
850 * into index to point into only one array where peripheral
851 * and kernel clocks are consecutive
852 */
853 if (clk->id >= KERN_BANK) {
854 clk->id -= KERN_BANK;
855 clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
856 } else {
857 clk->id -= PERIF_BANK;
858 }
859 } else {
860 clk->id = 0;
861 }
862
Patrick Delaunay88c7eb72020-11-06 19:01:47 +0100863 dev_dbg(clk->dev, "clk->id %ld\n", clk->id);
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200864
865 return 0;
866}
867
868static struct clk_ops stm32_clk_ops = {
869 .of_xlate = stm32_clk_of_xlate,
870 .enable = stm32_clk_enable,
871 .get_rate = stm32_clk_get_rate,
872};
873
874U_BOOT_DRIVER(stm32h7_clk) = {
875 .name = "stm32h7_rcc_clock",
876 .id = UCLASS_CLK,
877 .ops = &stm32_clk_ops,
878 .probe = stm32_clk_probe,
Simon Glass8a2b47f2020-12-03 16:55:17 -0700879 .priv_auto = sizeof(struct stm32_clk),
Patrice Chotard5fffeab2017-09-13 18:00:06 +0200880 .flags = DM_FLAG_PRE_RELOC,
881};