blob: e7f68263a47352c1e169e5387f0f6b055e85ce97 [file] [log] [blame]
Simon Glasscece9042015-08-19 09:33:38 -06001#include <common.h>
Kyle Moffett64b94dd2011-10-18 11:05:29 +00002#include "e1000.h"
Anatolij Gustschin6711ee52011-12-20 02:29:03 +00003#include <linux/compiler.h>
Kyle Moffett64b94dd2011-10-18 11:05:29 +00004
5/*-----------------------------------------------------------------------
6 * SPI transfer
7 *
8 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
9 * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
10 *
11 * The source of the outgoing bits is the "dout" parameter and the
12 * destination of the input bits is the "din" parameter. Note that "dout"
13 * and "din" can point to the same memory location, in which case the
14 * input data overwrites the output data (since both are buffered by
15 * temporary variables, this is OK).
16 *
17 * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
18 * never return an error.
19 */
20static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
York Sun4a598092013-04-01 11:29:11 -070021 const void *dout_mem, void *din_mem, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +000022{
23 const uint8_t *dout = dout_mem;
24 uint8_t *din = din_mem;
25
26 uint8_t mask = 0;
27 uint32_t eecd;
28 unsigned long i;
29
30 /* Pre-read the control register */
31 eecd = E1000_READ_REG(hw, EECD);
32
33 /* Iterate over each bit */
34 for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
35 /* Check for interrupt */
36 if (intr && ctrlc())
37 return -1;
38
39 /* Determine the output bit */
40 if (dout && dout[i >> 3] & mask)
41 eecd |= E1000_EECD_DI;
42 else
43 eecd &= ~E1000_EECD_DI;
44
45 /* Write the output bit and wait 50us */
46 E1000_WRITE_REG(hw, EECD, eecd);
47 E1000_WRITE_FLUSH(hw);
48 udelay(50);
49
50 /* Poke the clock (waits 50us) */
51 e1000_raise_ee_clk(hw, &eecd);
52
53 /* Now read the input bit */
54 eecd = E1000_READ_REG(hw, EECD);
55 if (din) {
56 if (eecd & E1000_EECD_DO)
57 din[i >> 3] |= mask;
58 else
59 din[i >> 3] &= ~mask;
60 }
61
62 /* Poke the clock again (waits 50us) */
63 e1000_lower_ee_clk(hw, &eecd);
64 }
65
66 /* Now clear any remaining bits of the input */
67 if (din && (i & 7))
68 din[i >> 3] &= ~((mask << 1) - 1);
69
70 return 0;
71}
72
73#ifdef CONFIG_E1000_SPI_GENERIC
74static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
75{
76 return container_of(spi, struct e1000_hw, spi);
77}
78
79/* Not sure why all of these are necessary */
80void spi_init_r(void) { /* Nothing to do */ }
81void spi_init_f(void) { /* Nothing to do */ }
82void spi_init(void) { /* Nothing to do */ }
83
84struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
85 unsigned int max_hz, unsigned int mode)
86{
87 /* Find the right PCI device */
88 struct e1000_hw *hw = e1000_find_card(bus);
89 if (!hw) {
90 printf("ERROR: No such e1000 device: e1000#%u\n", bus);
91 return NULL;
92 }
93
94 /* Make sure it has an SPI chip */
95 if (hw->eeprom.type != e1000_eeprom_spi) {
96 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
97 return NULL;
98 }
99
100 /* Argument sanity checks */
101 if (cs != 0) {
102 E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
103 return NULL;
104 }
105 if (mode != SPI_MODE_0) {
106 E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
107 return NULL;
108 }
109
110 /* TODO: Use max_hz somehow */
111 E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
112 return &hw->spi;
113}
114
115void spi_free_slave(struct spi_slave *spi)
116{
Anatolij Gustschin6711ee52011-12-20 02:29:03 +0000117 __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi);
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000118 E1000_DBG(hw->nic, "EEPROM SPI access released\n");
119}
120
121int spi_claim_bus(struct spi_slave *spi)
122{
123 struct e1000_hw *hw = e1000_hw_from_spi(spi);
124
125 if (e1000_acquire_eeprom(hw)) {
126 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
127 return -1;
128 }
129
130 return 0;
131}
132
133void spi_release_bus(struct spi_slave *spi)
134{
135 struct e1000_hw *hw = e1000_hw_from_spi(spi);
136 e1000_release_eeprom(hw);
137}
138
139/* Skinny wrapper around e1000_spi_xfer */
140int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
141 const void *dout_mem, void *din_mem, unsigned long flags)
142{
143 struct e1000_hw *hw = e1000_hw_from_spi(spi);
144 int ret;
145
146 if (flags & SPI_XFER_BEGIN)
147 e1000_standby_eeprom(hw);
148
York Sun4a598092013-04-01 11:29:11 -0700149 ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true);
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000150
151 if (flags & SPI_XFER_END)
152 e1000_standby_eeprom(hw);
153
154 return ret;
155}
156
157#endif /* not CONFIG_E1000_SPI_GENERIC */
158
159#ifdef CONFIG_CMD_E1000
160
161/* The EEPROM opcodes */
162#define SPI_EEPROM_ENABLE_WR 0x06
163#define SPI_EEPROM_DISABLE_WR 0x04
164#define SPI_EEPROM_WRITE_STATUS 0x01
165#define SPI_EEPROM_READ_STATUS 0x05
166#define SPI_EEPROM_WRITE_PAGE 0x02
167#define SPI_EEPROM_READ_PAGE 0x03
168
169/* The EEPROM status bits */
170#define SPI_EEPROM_STATUS_BUSY 0x01
171#define SPI_EEPROM_STATUS_WREN 0x02
172
York Sun4a598092013-04-01 11:29:11 -0700173static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000174{
175 u8 op[] = { SPI_EEPROM_ENABLE_WR };
176 e1000_standby_eeprom(hw);
177 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
178}
179
180/*
181 * These have been tested to perform correctly, but they are not used by any
182 * of the EEPROM commands at this time.
183 */
184#if 0
York Sun4a598092013-04-01 11:29:11 -0700185static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000186{
187 u8 op[] = { SPI_EEPROM_DISABLE_WR };
188 e1000_standby_eeprom(hw);
189 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
190}
191
192static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
York Sun4a598092013-04-01 11:29:11 -0700193 u8 status, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000194{
195 u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
196 e1000_standby_eeprom(hw);
197 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
198}
199#endif
200
York Sun4a598092013-04-01 11:29:11 -0700201static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000202{
203 u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
204 e1000_standby_eeprom(hw);
205 if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
206 return -1;
207 return op[1];
208}
209
210static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
York Sun4a598092013-04-01 11:29:11 -0700211 const void *data, u16 off, u16 len, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000212{
213 u8 op[] = {
214 SPI_EEPROM_WRITE_PAGE,
215 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
216 };
217
218 e1000_standby_eeprom(hw);
219
220 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
221 return -1;
222 if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
223 return -1;
224
225 return 0;
226}
227
228static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
York Sun4a598092013-04-01 11:29:11 -0700229 void *data, u16 off, u16 len, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000230{
231 u8 op[] = {
232 SPI_EEPROM_READ_PAGE,
233 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
234 };
235
236 e1000_standby_eeprom(hw);
237
238 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
239 return -1;
240 if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
241 return -1;
242
243 return 0;
244}
245
York Sun4a598092013-04-01 11:29:11 -0700246static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000247{
248 int status;
249 while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
250 if (!(status & SPI_EEPROM_STATUS_BUSY))
251 return 0;
252 }
253 return -1;
254}
255
256static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
York Sun4a598092013-04-01 11:29:11 -0700257 void *data, u16 off, unsigned int len, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000258{
259 /* Interruptibly wait for the EEPROM to be ready */
260 if (e1000_spi_eeprom_poll_ready(hw, intr))
261 return -1;
262
263 /* Dump each page in sequence */
264 while (len) {
265 /* Calculate the data bytes on this page */
266 u16 pg_off = off & (hw->eeprom.page_size - 1);
267 u16 pg_len = hw->eeprom.page_size - pg_off;
268 if (pg_len > len)
269 pg_len = len;
270
271 /* Now dump the page */
272 if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
273 return -1;
274
275 /* Otherwise go on to the next page */
276 len -= pg_len;
277 off += pg_len;
278 data += pg_len;
279 }
280
281 /* We're done! */
282 return 0;
283}
284
285static int e1000_spi_eeprom_program(struct e1000_hw *hw,
York Sun4a598092013-04-01 11:29:11 -0700286 const void *data, u16 off, u16 len, bool intr)
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000287{
288 /* Program each page in sequence */
289 while (len) {
290 /* Calculate the data bytes on this page */
291 u16 pg_off = off & (hw->eeprom.page_size - 1);
292 u16 pg_len = hw->eeprom.page_size - pg_off;
293 if (pg_len > len)
294 pg_len = len;
295
296 /* Interruptibly wait for the EEPROM to be ready */
297 if (e1000_spi_eeprom_poll_ready(hw, intr))
298 return -1;
299
300 /* Enable write access */
301 if (e1000_spi_eeprom_enable_wr(hw, intr))
302 return -1;
303
304 /* Now program the page */
305 if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
306 return -1;
307
308 /* Otherwise go on to the next page */
309 len -= pg_len;
310 off += pg_len;
311 data += pg_len;
312 }
313
314 /* Wait for the last write to complete */
315 if (e1000_spi_eeprom_poll_ready(hw, intr))
316 return -1;
317
318 /* We're done! */
319 return 0;
320}
321
322static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
323 int argc, char * const argv[])
324{
325 unsigned int length = 0;
326 u16 i, offset = 0;
327 u8 *buffer;
328 int err;
329
330 if (argc > 2) {
331 cmd_usage(cmdtp);
332 return 1;
333 }
334
335 /* Parse the offset and length */
336 if (argc >= 1)
337 offset = simple_strtoul(argv[0], NULL, 0);
338 if (argc == 2)
339 length = simple_strtoul(argv[1], NULL, 0);
340 else if (offset < (hw->eeprom.word_size << 1))
341 length = (hw->eeprom.word_size << 1) - offset;
342
343 /* Extra sanity checks */
344 if (!length) {
345 E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
346 return 1;
347 }
348 if ((0x10000 < length) || (0x10000 - length < offset)) {
349 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
350 return 1;
351 }
352
353 /* Allocate a buffer to hold stuff */
354 buffer = malloc(length);
355 if (!buffer) {
356 E1000_ERR(hw->nic, "Out of Memory!\n");
357 return 1;
358 }
359
360 /* Acquire the EEPROM and perform the dump */
361 if (e1000_acquire_eeprom(hw)) {
362 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
363 free(buffer);
364 return 1;
365 }
York Sun4a598092013-04-01 11:29:11 -0700366 err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true);
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000367 e1000_release_eeprom(hw);
368 if (err) {
369 E1000_ERR(hw->nic, "Interrupted!\n");
370 free(buffer);
371 return 1;
372 }
373
374 /* Now hexdump the result */
375 printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
376 hw->nic->name, offset, offset + length - 1);
377 for (i = 0; i < length; i++) {
378 if ((i & 0xF) == 0)
379 printf("\n%s: %04hX: ", hw->nic->name, offset + i);
380 else if ((i & 0xF) == 0x8)
381 printf(" ");
382 printf(" %02hx", buffer[i]);
383 }
384 printf("\n");
385
386 /* Success! */
387 free(buffer);
388 return 0;
389}
390
391static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
392 int argc, char * const argv[])
393{
394 unsigned int length;
395 u16 offset;
396 void *dest;
397
398 if (argc != 3) {
399 cmd_usage(cmdtp);
400 return 1;
401 }
402
403 /* Parse the arguments */
404 dest = (void *)simple_strtoul(argv[0], NULL, 16);
405 offset = simple_strtoul(argv[1], NULL, 0);
406 length = simple_strtoul(argv[2], NULL, 0);
407
408 /* Extra sanity checks */
409 if (!length) {
410 E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
411 return 1;
412 }
413 if ((0x10000 < length) || (0x10000 - length < offset)) {
414 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
415 return 1;
416 }
417
418 /* Acquire the EEPROM */
419 if (e1000_acquire_eeprom(hw)) {
420 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
421 return 1;
422 }
423
424 /* Perform the programming operation */
York Sun4a598092013-04-01 11:29:11 -0700425 if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000426 E1000_ERR(hw->nic, "Interrupted!\n");
427 e1000_release_eeprom(hw);
428 return 1;
429 }
430
431 e1000_release_eeprom(hw);
432 printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
433 return 0;
434}
435
436static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
437 int argc, char * const argv[])
438{
439 unsigned int length;
440 const void *source;
441 u16 offset;
442
443 if (argc != 3) {
444 cmd_usage(cmdtp);
445 return 1;
446 }
447
448 /* Parse the arguments */
449 source = (const void *)simple_strtoul(argv[0], NULL, 16);
450 offset = simple_strtoul(argv[1], NULL, 0);
451 length = simple_strtoul(argv[2], NULL, 0);
452
453 /* Acquire the EEPROM */
454 if (e1000_acquire_eeprom(hw)) {
455 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
456 return 1;
457 }
458
459 /* Perform the programming operation */
York Sun4a598092013-04-01 11:29:11 -0700460 if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000461 E1000_ERR(hw->nic, "Interrupted!\n");
462 e1000_release_eeprom(hw);
463 return 1;
464 }
465
466 e1000_release_eeprom(hw);
467 printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
468 return 0;
469}
470
471static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
472 int argc, char * const argv[])
473{
Anatolij Gustschin6711ee52011-12-20 02:29:03 +0000474 uint16_t i, length, checksum = 0, checksum_reg;
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000475 uint16_t *buffer;
York Sun4a598092013-04-01 11:29:11 -0700476 bool upd;
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000477
478 if (argc == 0)
479 upd = 0;
480 else if ((argc == 1) && !strcmp(argv[0], "update"))
481 upd = 1;
482 else {
483 cmd_usage(cmdtp);
484 return 1;
485 }
486
487 /* Allocate a temporary buffer */
488 length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
489 buffer = malloc(length);
490 if (!buffer) {
491 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
492 return 1;
493 }
494
495 /* Acquire the EEPROM */
496 if (e1000_acquire_eeprom(hw)) {
497 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
498 return 1;
499 }
500
501 /* Read the EEPROM */
York Sun4a598092013-04-01 11:29:11 -0700502 if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000503 E1000_ERR(hw->nic, "Interrupted!\n");
504 e1000_release_eeprom(hw);
505 return 1;
506 }
507
508 /* Compute the checksum and read the expected value */
509 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
510 checksum += le16_to_cpu(buffer[i]);
511 checksum = ((uint16_t)EEPROM_SUM) - checksum;
512 checksum_reg = le16_to_cpu(buffer[i]);
513
514 /* Verify it! */
515 if (checksum_reg == checksum) {
516 printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
517 hw->nic->name, checksum);
518 e1000_release_eeprom(hw);
519 return 0;
520 }
521
522 /* Hrm, verification failed, print an error */
523 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
524 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
525 checksum_reg, checksum);
526
527 /* If they didn't ask us to update it, just return an error */
528 if (!upd) {
529 e1000_release_eeprom(hw);
530 return 1;
531 }
532
533 /* Ok, correct it! */
534 printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
535 buffer[i] = cpu_to_le16(checksum);
536 if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
York Sun4a598092013-04-01 11:29:11 -0700537 sizeof(uint16_t), true)) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +0000538 E1000_ERR(hw->nic, "Interrupted!\n");
539 e1000_release_eeprom(hw);
540 return 1;
541 }
542
543 e1000_release_eeprom(hw);
544 return 0;
545}
546
547int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
548 int argc, char * const argv[])
549{
550 if (argc < 1) {
551 cmd_usage(cmdtp);
552 return 1;
553 }
554
555 /* Make sure it has an SPI chip */
556 if (hw->eeprom.type != e1000_eeprom_spi) {
557 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
558 return 1;
559 }
560
561 /* Check the eeprom sub-sub-command arguments */
562 if (!strcmp(argv[0], "show"))
563 return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
564
565 if (!strcmp(argv[0], "dump"))
566 return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
567
568 if (!strcmp(argv[0], "program"))
569 return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
570
571 if (!strcmp(argv[0], "checksum"))
572 return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
573
574 cmd_usage(cmdtp);
575 return 1;
576}
577
578#endif /* not CONFIG_CMD_E1000 */