blob: 3388efe2b78ed340d8663402dc69f66d53ecd329 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Stefan Roese2fc10f62009-03-19 15:35:05 +01002/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
Stefan Roese2fc10f62009-03-19 15:35:05 +01007 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements functions needed to recover from unclean un-mounts.
13 * When UBIFS is mounted, it checks a flag on the master node to determine if
Heiko Schocherf5895d12014-06-24 10:10:04 +020014 * an un-mount was completed successfully. If not, the process of mounting
15 * incorporates additional checking and fixing of on-flash data structures.
Stefan Roese2fc10f62009-03-19 15:35:05 +010016 * UBIFS always cleans away all remnants of an unclean un-mount, so that
17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
18 * read-only, and the flash is not modified in that case.
Heiko Schocherf5895d12014-06-24 10:10:04 +020019 *
20 * The general UBIFS approach to the recovery is that it recovers from
21 * corruptions which could be caused by power cuts, but it refuses to recover
22 * from corruption caused by other reasons. And UBIFS tries to distinguish
23 * between these 2 reasons of corruptions and silently recover in the former
24 * case and loudly complain in the latter case.
25 *
26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
29 * writes in @c->max_write_size bytes at a time.
30 *
31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32 * I/O unit corresponding to offset X to contain corrupted data, all the
33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
34 * not true, the corruption cannot be the result of a power cut, and UBIFS
35 * refuses to mount.
Stefan Roese2fc10f62009-03-19 15:35:05 +010036 */
37
Heiko Schocherf5895d12014-06-24 10:10:04 +020038#ifndef __UBOOT__
Simon Glassd66c5f72020-02-03 07:36:15 -070039#include <dm/devres.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020040#include <linux/crc32.h>
41#include <linux/slab.h>
Simon Glass48b6c6b2019-11-14 12:57:16 -070042#include <u-boot/crc.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020043#else
44#include <linux/err.h>
45#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +010046#include "ubifs.h"
47
48/**
49 * is_empty - determine whether a buffer is empty (contains all 0xff).
50 * @buf: buffer to clean
51 * @len: length of buffer
52 *
53 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
54 * %0 is returned.
55 */
56static int is_empty(void *buf, int len)
57{
58 uint8_t *p = buf;
59 int i;
60
61 for (i = 0; i < len; i++)
62 if (*p++ != 0xff)
63 return 0;
64 return 1;
65}
66
67/**
Heiko Schocherf5895d12014-06-24 10:10:04 +020068 * first_non_ff - find offset of the first non-0xff byte.
69 * @buf: buffer to search in
70 * @len: length of buffer
71 *
72 * This function returns offset of the first non-0xff byte in @buf or %-1 if
73 * the buffer contains only 0xff bytes.
74 */
75static int first_non_ff(void *buf, int len)
76{
77 uint8_t *p = buf;
78 int i;
79
80 for (i = 0; i < len; i++)
81 if (*p++ != 0xff)
82 return i;
83 return -1;
84}
85
86/**
Stefan Roese2fc10f62009-03-19 15:35:05 +010087 * get_master_node - get the last valid master node allowing for corruption.
88 * @c: UBIFS file-system description object
89 * @lnum: LEB number
90 * @pbuf: buffer containing the LEB read, is returned here
91 * @mst: master node, if found, is returned here
92 * @cor: corruption, if found, is returned here
93 *
94 * This function allocates a buffer, reads the LEB into it, and finds and
95 * returns the last valid master node allowing for one area of corruption.
96 * The corrupt area, if there is one, must be consistent with the assumption
97 * that it is the result of an unclean unmount while the master node was being
98 * written. Under those circumstances, it is valid to use the previously written
99 * master node.
100 *
101 * This function returns %0 on success and a negative error code on failure.
102 */
103static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
104 struct ubifs_mst_node **mst, void **cor)
105{
106 const int sz = c->mst_node_alsz;
107 int err, offs, len;
108 void *sbuf, *buf;
109
110 sbuf = vmalloc(c->leb_size);
111 if (!sbuf)
112 return -ENOMEM;
113
Heiko Schocherf5895d12014-06-24 10:10:04 +0200114 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100115 if (err && err != -EBADMSG)
116 goto out_free;
117
118 /* Find the first position that is definitely not a node */
119 offs = 0;
120 buf = sbuf;
121 len = c->leb_size;
122 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
123 struct ubifs_ch *ch = buf;
124
125 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
126 break;
127 offs += sz;
128 buf += sz;
129 len -= sz;
130 }
131 /* See if there was a valid master node before that */
132 if (offs) {
133 int ret;
134
135 offs -= sz;
136 buf -= sz;
137 len += sz;
138 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139 if (ret != SCANNED_A_NODE && offs) {
140 /* Could have been corruption so check one place back */
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE)
146 /*
147 * We accept only one area of corruption because
148 * we are assuming that it was caused while
149 * trying to write a master node.
150 */
151 goto out_err;
152 }
153 if (ret == SCANNED_A_NODE) {
154 struct ubifs_ch *ch = buf;
155
156 if (ch->node_type != UBIFS_MST_NODE)
157 goto out_err;
158 dbg_rcvry("found a master node at %d:%d", lnum, offs);
159 *mst = buf;
160 offs += sz;
161 buf += sz;
162 len -= sz;
163 }
164 }
165 /* Check for corruption */
166 if (offs < c->leb_size) {
167 if (!is_empty(buf, min_t(int, len, sz))) {
168 *cor = buf;
169 dbg_rcvry("found corruption at %d:%d", lnum, offs);
170 }
171 offs += sz;
172 buf += sz;
173 len -= sz;
174 }
175 /* Check remaining empty space */
176 if (offs < c->leb_size)
177 if (!is_empty(buf, len))
178 goto out_err;
179 *pbuf = sbuf;
180 return 0;
181
182out_err:
183 err = -EINVAL;
184out_free:
185 vfree(sbuf);
186 *mst = NULL;
187 *cor = NULL;
188 return err;
189}
190
191/**
192 * write_rcvrd_mst_node - write recovered master node.
193 * @c: UBIFS file-system description object
194 * @mst: master node
195 *
196 * This function returns %0 on success and a negative error code on failure.
197 */
198static int write_rcvrd_mst_node(struct ubifs_info *c,
199 struct ubifs_mst_node *mst)
200{
201 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
202 __le32 save_flags;
203
204 dbg_rcvry("recovery");
205
206 save_flags = mst->flags;
207 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
208
209 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200210 err = ubifs_leb_change(c, lnum, mst, sz);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100211 if (err)
212 goto out;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200213 err = ubifs_leb_change(c, lnum + 1, mst, sz);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100214 if (err)
215 goto out;
216out:
217 mst->flags = save_flags;
218 return err;
219}
220
221/**
222 * ubifs_recover_master_node - recover the master node.
223 * @c: UBIFS file-system description object
224 *
225 * This function recovers the master node from corruption that may occur due to
226 * an unclean unmount.
227 *
228 * This function returns %0 on success and a negative error code on failure.
229 */
230int ubifs_recover_master_node(struct ubifs_info *c)
231{
232 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
233 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
234 const int sz = c->mst_node_alsz;
235 int err, offs1, offs2;
236
237 dbg_rcvry("recovery");
238
239 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
240 if (err)
241 goto out_free;
242
243 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
244 if (err)
245 goto out_free;
246
247 if (mst1) {
248 offs1 = (void *)mst1 - buf1;
249 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
250 (offs1 == 0 && !cor1)) {
251 /*
252 * mst1 was written by recovery at offset 0 with no
253 * corruption.
254 */
255 dbg_rcvry("recovery recovery");
256 mst = mst1;
257 } else if (mst2) {
258 offs2 = (void *)mst2 - buf2;
259 if (offs1 == offs2) {
260 /* Same offset, so must be the same */
261 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
262 (void *)mst2 + UBIFS_CH_SZ,
263 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
264 goto out_err;
265 mst = mst1;
266 } else if (offs2 + sz == offs1) {
267 /* 1st LEB was written, 2nd was not */
268 if (cor1)
269 goto out_err;
270 mst = mst1;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200271 } else if (offs1 == 0 &&
272 c->leb_size - offs2 - sz < sz) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100273 /* 1st LEB was unmapped and written, 2nd not */
274 if (cor1)
275 goto out_err;
276 mst = mst1;
277 } else
278 goto out_err;
279 } else {
280 /*
281 * 2nd LEB was unmapped and about to be written, so
282 * there must be only one master node in the first LEB
283 * and no corruption.
284 */
285 if (offs1 != 0 || cor1)
286 goto out_err;
287 mst = mst1;
288 }
289 } else {
290 if (!mst2)
291 goto out_err;
292 /*
293 * 1st LEB was unmapped and about to be written, so there must
294 * be no room left in 2nd LEB.
295 */
296 offs2 = (void *)mst2 - buf2;
297 if (offs2 + sz + sz <= c->leb_size)
298 goto out_err;
299 mst = mst2;
300 }
301
Heiko Schocher94b66de2015-10-22 06:19:21 +0200302 ubifs_msg(c, "recovered master node from LEB %d",
Stefan Roese2fc10f62009-03-19 15:35:05 +0100303 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
304
305 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
306
Heiko Schocherf5895d12014-06-24 10:10:04 +0200307 if (c->ro_mount) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100308 /* Read-only mode. Keep a copy for switching to rw mode */
309 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
310 if (!c->rcvrd_mst_node) {
311 err = -ENOMEM;
312 goto out_free;
313 }
314 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200315
316 /*
317 * We had to recover the master node, which means there was an
318 * unclean reboot. However, it is possible that the master node
319 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
320 * E.g., consider the following chain of events:
321 *
322 * 1. UBIFS was cleanly unmounted, so the master node is clean
323 * 2. UBIFS is being mounted R/W and starts changing the master
324 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
325 * so this LEB ends up with some amount of garbage at the
326 * end.
327 * 3. UBIFS is being mounted R/O. We reach this place and
328 * recover the master node from the second LEB
329 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
330 * because we are being mounted R/O. We have to defer the
331 * operation.
332 * 4. However, this master node (@c->mst_node) is marked as
333 * clean (since the step 1). And if we just return, the
334 * mount code will be confused and won't recover the master
335 * node when it is re-mounter R/W later.
336 *
337 * Thus, to force the recovery by marking the master node as
338 * dirty.
339 */
340 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
341#ifndef __UBOOT__
342 } else {
343 /* Write the recovered master node */
344 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
345 err = write_rcvrd_mst_node(c, c->mst_node);
346 if (err)
347 goto out_free;
348#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +0100349 }
350
351 vfree(buf2);
352 vfree(buf1);
353
354 return 0;
355
356out_err:
357 err = -EINVAL;
358out_free:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200359 ubifs_err(c, "failed to recover master node");
Stefan Roese2fc10f62009-03-19 15:35:05 +0100360 if (mst1) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200361 ubifs_err(c, "dumping first master node");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200362 ubifs_dump_node(c, mst1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100363 }
364 if (mst2) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200365 ubifs_err(c, "dumping second master node");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200366 ubifs_dump_node(c, mst2);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100367 }
368 vfree(buf2);
369 vfree(buf1);
370 return err;
371}
372
373/**
374 * ubifs_write_rcvrd_mst_node - write the recovered master node.
375 * @c: UBIFS file-system description object
376 *
377 * This function writes the master node that was recovered during mounting in
378 * read-only mode and must now be written because we are remounting rw.
379 *
380 * This function returns %0 on success and a negative error code on failure.
381 */
382int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
383{
384 int err;
385
386 if (!c->rcvrd_mst_node)
387 return 0;
388 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
390 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
391 if (err)
392 return err;
393 kfree(c->rcvrd_mst_node);
394 c->rcvrd_mst_node = NULL;
395 return 0;
396}
397
398/**
399 * is_last_write - determine if an offset was in the last write to a LEB.
400 * @c: UBIFS file-system description object
401 * @buf: buffer to check
402 * @offs: offset to check
403 *
404 * This function returns %1 if @offs was in the last write to the LEB whose data
Heiko Schocherf5895d12014-06-24 10:10:04 +0200405 * is in @buf, otherwise %0 is returned. The determination is made by checking
406 * for subsequent empty space starting from the next @c->max_write_size
407 * boundary.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100408 */
409static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
410{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200411 int empty_offs, check_len;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100412 uint8_t *p;
413
Stefan Roese2fc10f62009-03-19 15:35:05 +0100414 /*
Heiko Schocherf5895d12014-06-24 10:10:04 +0200415 * Round up to the next @c->max_write_size boundary i.e. @offs is in
416 * the last wbuf written. After that should be empty space.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100417 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200418 empty_offs = ALIGN(offs + 1, c->max_write_size);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100419 check_len = c->leb_size - empty_offs;
420 p = buf + empty_offs - offs;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200421 return is_empty(p, check_len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100422}
423
424/**
425 * clean_buf - clean the data from an LEB sitting in a buffer.
426 * @c: UBIFS file-system description object
427 * @buf: buffer to clean
428 * @lnum: LEB number to clean
429 * @offs: offset from which to clean
430 * @len: length of buffer
431 *
432 * This function pads up to the next min_io_size boundary (if there is one) and
433 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
Heiko Schocherf5895d12014-06-24 10:10:04 +0200434 * @c->min_io_size boundary.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100435 */
436static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
437 int *offs, int *len)
438{
439 int empty_offs, pad_len;
440
441 lnum = lnum;
442 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
443
Stefan Roese2fc10f62009-03-19 15:35:05 +0100444 ubifs_assert(!(*offs & 7));
445 empty_offs = ALIGN(*offs, c->min_io_size);
446 pad_len = empty_offs - *offs;
447 ubifs_pad(c, *buf, pad_len);
448 *offs += pad_len;
449 *buf += pad_len;
450 *len -= pad_len;
451 memset(*buf, 0xff, c->leb_size - empty_offs);
452}
453
454/**
455 * no_more_nodes - determine if there are no more nodes in a buffer.
456 * @c: UBIFS file-system description object
457 * @buf: buffer to check
458 * @len: length of buffer
459 * @lnum: LEB number of the LEB from which @buf was read
460 * @offs: offset from which @buf was read
461 *
Adrian Hunter542bcb92009-04-14 17:50:38 +0200462 * This function ensures that the corrupted node at @offs is the last thing
463 * written to a LEB. This function returns %1 if more data is not found and
464 * %0 if more data is found.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100465 */
466static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
467 int lnum, int offs)
468{
Adrian Hunter542bcb92009-04-14 17:50:38 +0200469 struct ubifs_ch *ch = buf;
470 int skip, dlen = le32_to_cpu(ch->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100471
Adrian Hunter542bcb92009-04-14 17:50:38 +0200472 /* Check for empty space after the corrupt node's common header */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200473 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
Adrian Hunter542bcb92009-04-14 17:50:38 +0200474 if (is_empty(buf + skip, len - skip))
475 return 1;
476 /*
477 * The area after the common header size is not empty, so the common
478 * header must be intact. Check it.
479 */
480 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
481 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
482 return 0;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100483 }
Adrian Hunter542bcb92009-04-14 17:50:38 +0200484 /* Now we know the corrupt node's length we can skip over it */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200485 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
Adrian Hunter542bcb92009-04-14 17:50:38 +0200486 /* After which there should be empty space */
487 if (is_empty(buf + skip, len - skip))
488 return 1;
489 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
490 return 0;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100491}
492
493/**
494 * fix_unclean_leb - fix an unclean LEB.
495 * @c: UBIFS file-system description object
496 * @sleb: scanned LEB information
497 * @start: offset where scan started
498 */
499static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
500 int start)
501{
502 int lnum = sleb->lnum, endpt = start;
503
504 /* Get the end offset of the last node we are keeping */
505 if (!list_empty(&sleb->nodes)) {
506 struct ubifs_scan_node *snod;
507
508 snod = list_entry(sleb->nodes.prev,
509 struct ubifs_scan_node, list);
510 endpt = snod->offs + snod->len;
511 }
512
Heiko Schocherf5895d12014-06-24 10:10:04 +0200513 if (c->ro_mount && !c->remounting_rw) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100514 /* Add to recovery list */
515 struct ubifs_unclean_leb *ucleb;
516
517 dbg_rcvry("need to fix LEB %d start %d endpt %d",
518 lnum, start, sleb->endpt);
519 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
520 if (!ucleb)
521 return -ENOMEM;
522 ucleb->lnum = lnum;
523 ucleb->endpt = endpt;
524 list_add_tail(&ucleb->list, &c->unclean_leb_list);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200525#ifndef __UBOOT__
526 } else {
527 /* Write the fixed LEB back to flash */
528 int err;
529
530 dbg_rcvry("fixing LEB %d start %d endpt %d",
531 lnum, start, sleb->endpt);
532 if (endpt == 0) {
533 err = ubifs_leb_unmap(c, lnum);
534 if (err)
535 return err;
536 } else {
537 int len = ALIGN(endpt, c->min_io_size);
538
539 if (start) {
540 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
541 start, 1);
542 if (err)
543 return err;
544 }
545 /* Pad to min_io_size */
546 if (len > endpt) {
547 int pad_len = len - ALIGN(endpt, 8);
548
549 if (pad_len > 0) {
550 void *buf = sleb->buf + len - pad_len;
551
552 ubifs_pad(c, buf, pad_len);
553 }
554 }
555 err = ubifs_leb_change(c, lnum, sleb->buf, len);
556 if (err)
557 return err;
558 }
559#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +0100560 }
561 return 0;
562}
563
564/**
Heiko Schocherf5895d12014-06-24 10:10:04 +0200565 * drop_last_group - drop the last group of nodes.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100566 * @sleb: scanned LEB information
567 * @offs: offset of dropped nodes is returned here
568 *
Heiko Schocherf5895d12014-06-24 10:10:04 +0200569 * This is a helper function for 'ubifs_recover_leb()' which drops the last
570 * group of nodes of the scanned LEB.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100571 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200572static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100573{
Stefan Roese2fc10f62009-03-19 15:35:05 +0100574 while (!list_empty(&sleb->nodes)) {
575 struct ubifs_scan_node *snod;
576 struct ubifs_ch *ch;
577
578 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
579 list);
580 ch = snod->node;
581 if (ch->group_type != UBIFS_IN_NODE_GROUP)
Heiko Schocherf5895d12014-06-24 10:10:04 +0200582 break;
583
584 dbg_rcvry("dropping grouped node at %d:%d",
585 sleb->lnum, snod->offs);
586 *offs = snod->offs;
587 list_del(&snod->list);
588 kfree(snod);
589 sleb->nodes_cnt -= 1;
590 }
591}
592
593/**
594 * drop_last_node - drop the last node.
595 * @sleb: scanned LEB information
596 * @offs: offset of dropped nodes is returned here
Heiko Schocherf5895d12014-06-24 10:10:04 +0200597 *
598 * This is a helper function for 'ubifs_recover_leb()' which drops the last
599 * node of the scanned LEB.
600 */
601static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
602{
603 struct ubifs_scan_node *snod;
604
605 if (!list_empty(&sleb->nodes)) {
606 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
607 list);
608
609 dbg_rcvry("dropping last node at %d:%d",
610 sleb->lnum, snod->offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100611 *offs = snod->offs;
612 list_del(&snod->list);
613 kfree(snod);
614 sleb->nodes_cnt -= 1;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100615 }
Stefan Roese2fc10f62009-03-19 15:35:05 +0100616}
617
618/**
619 * ubifs_recover_leb - scan and recover a LEB.
620 * @c: UBIFS file-system description object
621 * @lnum: LEB number
622 * @offs: offset
623 * @sbuf: LEB-sized buffer to use
Heiko Schocherf5895d12014-06-24 10:10:04 +0200624 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
625 * belong to any journal head)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100626 *
627 * This function does a scan of a LEB, but caters for errors that might have
628 * been caused by the unclean unmount from which we are attempting to recover.
Heiko Schocher94b66de2015-10-22 06:19:21 +0200629 * Returns the scanned information on success and a negative error code on
630 * failure.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100631 */
632struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
Heiko Schocherf5895d12014-06-24 10:10:04 +0200633 int offs, void *sbuf, int jhead)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100634{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200635 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
636 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100637 struct ubifs_scan_leb *sleb;
638 void *buf = sbuf + offs;
639
Heiko Schocherf5895d12014-06-24 10:10:04 +0200640 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100641
642 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
643 if (IS_ERR(sleb))
644 return sleb;
645
Heiko Schocherf5895d12014-06-24 10:10:04 +0200646 ubifs_assert(len >= 8);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100647 while (len >= 8) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100648 dbg_scan("look at LEB %d:%d (%d bytes left)",
649 lnum, offs, len);
650
651 cond_resched();
652
653 /*
654 * Scan quietly until there is an error from which we cannot
655 * recover
656 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200657 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100658 if (ret == SCANNED_A_NODE) {
659 /* A valid node, and not a padding node */
660 struct ubifs_ch *ch = buf;
661 int node_len;
662
663 err = ubifs_add_snod(c, sleb, buf, offs);
664 if (err)
665 goto error;
666 node_len = ALIGN(le32_to_cpu(ch->len), 8);
667 offs += node_len;
668 buf += node_len;
669 len -= node_len;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200670 } else if (ret > 0) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100671 /* Padding bytes or a valid padding node */
672 offs += ret;
673 buf += ret;
674 len -= ret;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200675 } else if (ret == SCANNED_EMPTY_SPACE ||
676 ret == SCANNED_GARBAGE ||
677 ret == SCANNED_A_BAD_PAD_NODE ||
678 ret == SCANNED_A_CORRUPT_NODE) {
679 dbg_rcvry("found corruption (%d) at %d:%d",
680 ret, lnum, offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100681 break;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200682 } else {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200683 ubifs_err(c, "unexpected return value %d", ret);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200684 err = -EINVAL;
685 goto error;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100686 }
Heiko Schocherf5895d12014-06-24 10:10:04 +0200687 }
Stefan Roese2fc10f62009-03-19 15:35:05 +0100688
Heiko Schocherf5895d12014-06-24 10:10:04 +0200689 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
690 if (!is_last_write(c, buf, offs))
691 goto corrupted_rescan;
692 } else if (ret == SCANNED_A_CORRUPT_NODE) {
693 if (!no_more_nodes(c, buf, len, lnum, offs))
694 goto corrupted_rescan;
695 } else if (!is_empty(buf, len)) {
696 if (!is_last_write(c, buf, offs)) {
697 int corruption = first_non_ff(buf, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100698
Heiko Schocherf5895d12014-06-24 10:10:04 +0200699 /*
700 * See header comment for this file for more
701 * explanations about the reasons we have this check.
702 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200703 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200704 lnum, offs, corruption);
705 /* Make sure we dump interesting non-0xFF data */
706 offs += corruption;
707 buf += corruption;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100708 goto corrupted;
709 }
710 }
711
Heiko Schocherf5895d12014-06-24 10:10:04 +0200712 min_io_unit = round_down(offs, c->min_io_size);
713 if (grouped)
714 /*
715 * If nodes are grouped, always drop the incomplete group at
716 * the end.
717 */
718 drop_last_group(sleb, &offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100719
Heiko Schocherf5895d12014-06-24 10:10:04 +0200720 if (jhead == GCHD) {
721 /*
722 * If this LEB belongs to the GC head then while we are in the
723 * middle of the same min. I/O unit keep dropping nodes. So
724 * basically, what we want is to make sure that the last min.
725 * I/O unit where we saw the corruption is dropped completely
726 * with all the uncorrupted nodes which may possibly sit there.
727 *
728 * In other words, let's name the min. I/O unit where the
729 * corruption starts B, and the previous min. I/O unit A. The
730 * below code tries to deal with a situation when half of B
731 * contains valid nodes or the end of a valid node, and the
732 * second half of B contains corrupted data or garbage. This
733 * means that UBIFS had been writing to B just before the power
734 * cut happened. I do not know how realistic is this scenario
735 * that half of the min. I/O unit had been written successfully
736 * and the other half not, but this is possible in our 'failure
737 * mode emulation' infrastructure at least.
738 *
739 * So what is the problem, why we need to drop those nodes? Why
740 * can't we just clean-up the second half of B by putting a
741 * padding node there? We can, and this works fine with one
742 * exception which was reproduced with power cut emulation
743 * testing and happens extremely rarely.
744 *
745 * Imagine the file-system is full, we run GC which starts
746 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
747 * the current GC head LEB). The @c->gc_lnum is -1, which means
748 * that GC will retain LEB X and will try to continue. Imagine
749 * that LEB X is currently the dirtiest LEB, and the amount of
750 * used space in LEB Y is exactly the same as amount of free
751 * space in LEB X.
752 *
753 * And a power cut happens when nodes are moved from LEB X to
754 * LEB Y. We are here trying to recover LEB Y which is the GC
755 * head LEB. We find the min. I/O unit B as described above.
756 * Then we clean-up LEB Y by padding min. I/O unit. And later
757 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
758 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
759 * does not match because the amount of valid nodes there does
760 * not fit the free space in LEB Y any more! And this is
761 * because of the padding node which we added to LEB Y. The
762 * user-visible effect of this which I once observed and
763 * analysed is that we cannot mount the file-system with
764 * -ENOSPC error.
765 *
766 * So obviously, to make sure that situation does not happen we
767 * should free min. I/O unit B in LEB Y completely and the last
768 * used min. I/O unit in LEB Y should be A. This is basically
769 * what the below code tries to do.
770 */
771 while (offs > min_io_unit)
772 drop_last_node(sleb, &offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100773 }
774
Heiko Schocherf5895d12014-06-24 10:10:04 +0200775 buf = sbuf + offs;
776 len = c->leb_size - offs;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100777
Heiko Schocherf5895d12014-06-24 10:10:04 +0200778 clean_buf(c, &buf, lnum, &offs, &len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100779 ubifs_end_scan(c, sleb, lnum, offs);
780
Heiko Schocherf5895d12014-06-24 10:10:04 +0200781 err = fix_unclean_leb(c, sleb, start);
782 if (err)
783 goto error;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100784
785 return sleb;
786
Heiko Schocherf5895d12014-06-24 10:10:04 +0200787corrupted_rescan:
788 /* Re-scan the corrupted data with verbose messages */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200789 ubifs_err(c, "corruption %d", ret);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200790 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100791corrupted:
792 ubifs_scanned_corruption(c, lnum, offs, buf);
793 err = -EUCLEAN;
794error:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200795 ubifs_err(c, "LEB %d scanning failed", lnum);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100796 ubifs_scan_destroy(sleb);
797 return ERR_PTR(err);
798}
799
800/**
801 * get_cs_sqnum - get commit start sequence number.
802 * @c: UBIFS file-system description object
803 * @lnum: LEB number of commit start node
804 * @offs: offset of commit start node
805 * @cs_sqnum: commit start sequence number is returned here
806 *
807 * This function returns %0 on success and a negative error code on failure.
808 */
809static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
810 unsigned long long *cs_sqnum)
811{
812 struct ubifs_cs_node *cs_node = NULL;
813 int err, ret;
814
815 dbg_rcvry("at %d:%d", lnum, offs);
816 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
817 if (!cs_node)
818 return -ENOMEM;
819 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
820 goto out_err;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200821 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
822 UBIFS_CS_NODE_SZ, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100823 if (err && err != -EBADMSG)
824 goto out_free;
825 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
826 if (ret != SCANNED_A_NODE) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200827 ubifs_err(c, "Not a valid node");
Stefan Roese2fc10f62009-03-19 15:35:05 +0100828 goto out_err;
829 }
830 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200831 ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100832 goto out_err;
833 }
834 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200835 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200836 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
837 c->cmt_no);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100838 goto out_err;
839 }
840 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
841 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
842 kfree(cs_node);
843 return 0;
844
845out_err:
846 err = -EINVAL;
847out_free:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200848 ubifs_err(c, "failed to get CS sqnum");
Stefan Roese2fc10f62009-03-19 15:35:05 +0100849 kfree(cs_node);
850 return err;
851}
852
853/**
854 * ubifs_recover_log_leb - scan and recover a log LEB.
855 * @c: UBIFS file-system description object
856 * @lnum: LEB number
857 * @offs: offset
858 * @sbuf: LEB-sized buffer to use
859 *
860 * This function does a scan of a LEB, but caters for errors that might have
Heiko Schocherf5895d12014-06-24 10:10:04 +0200861 * been caused by unclean reboots from which we are attempting to recover
862 * (assume that only the last log LEB can be corrupted by an unclean reboot).
Stefan Roese2fc10f62009-03-19 15:35:05 +0100863 *
864 * This function returns %0 on success and a negative error code on failure.
865 */
866struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
867 int offs, void *sbuf)
868{
869 struct ubifs_scan_leb *sleb;
870 int next_lnum;
871
872 dbg_rcvry("LEB %d", lnum);
873 next_lnum = lnum + 1;
874 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
875 next_lnum = UBIFS_LOG_LNUM;
876 if (next_lnum != c->ltail_lnum) {
877 /*
878 * We can only recover at the end of the log, so check that the
879 * next log LEB is empty or out of date.
880 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200881 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100882 if (IS_ERR(sleb))
883 return sleb;
884 if (sleb->nodes_cnt) {
885 struct ubifs_scan_node *snod;
886 unsigned long long cs_sqnum = c->cs_sqnum;
887
888 snod = list_entry(sleb->nodes.next,
889 struct ubifs_scan_node, list);
890 if (cs_sqnum == 0) {
891 int err;
892
893 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
894 if (err) {
895 ubifs_scan_destroy(sleb);
896 return ERR_PTR(err);
897 }
898 }
899 if (snod->sqnum > cs_sqnum) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200900 ubifs_err(c, "unrecoverable log corruption in LEB %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200901 lnum);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100902 ubifs_scan_destroy(sleb);
903 return ERR_PTR(-EUCLEAN);
904 }
905 }
906 ubifs_scan_destroy(sleb);
907 }
Heiko Schocherf5895d12014-06-24 10:10:04 +0200908 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100909}
910
911/**
912 * recover_head - recover a head.
913 * @c: UBIFS file-system description object
914 * @lnum: LEB number of head to recover
915 * @offs: offset of head to recover
916 * @sbuf: LEB-sized buffer to use
917 *
918 * This function ensures that there is no data on the flash at a head location.
919 *
920 * This function returns %0 on success and a negative error code on failure.
921 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200922static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100923{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200924 int len = c->max_write_size, err;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100925
Stefan Roese2fc10f62009-03-19 15:35:05 +0100926 if (offs + len > c->leb_size)
927 len = c->leb_size - offs;
928
929 if (!len)
930 return 0;
931
932 /* Read at the head location and check it is empty flash */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200933 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
934 if (err || !is_empty(sbuf, len)) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100935 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
936 if (offs == 0)
937 return ubifs_leb_unmap(c, lnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200938 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100939 if (err)
940 return err;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200941 return ubifs_leb_change(c, lnum, sbuf, offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100942 }
943
944 return 0;
945}
946
947/**
948 * ubifs_recover_inl_heads - recover index and LPT heads.
949 * @c: UBIFS file-system description object
950 * @sbuf: LEB-sized buffer to use
951 *
952 * This function ensures that there is no data on the flash at the index and
953 * LPT head locations.
954 *
955 * This deals with the recovery of a half-completed journal commit. UBIFS is
956 * careful never to overwrite the last version of the index or the LPT. Because
957 * the index and LPT are wandering trees, data from a half-completed commit will
958 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
959 * assumed to be empty and will be unmapped anyway before use, or in the index
960 * and LPT heads.
961 *
962 * This function returns %0 on success and a negative error code on failure.
963 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200964int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100965{
966 int err;
967
Heiko Schocherf5895d12014-06-24 10:10:04 +0200968 ubifs_assert(!c->ro_mount || c->remounting_rw);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100969
970 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
971 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
972 if (err)
973 return err;
974
975 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100976
Heiko Schocher94b66de2015-10-22 06:19:21 +0200977 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100978}
979
980/**
Heiko Schocherf5895d12014-06-24 10:10:04 +0200981 * clean_an_unclean_leb - read and write a LEB to remove corruption.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100982 * @c: UBIFS file-system description object
983 * @ucleb: unclean LEB information
984 * @sbuf: LEB-sized buffer to use
985 *
986 * This function reads a LEB up to a point pre-determined by the mount recovery,
987 * checks the nodes, and writes the result back to the flash, thereby cleaning
988 * off any following corruption, or non-fatal ECC errors.
989 *
990 * This function returns %0 on success and a negative error code on failure.
991 */
Heiko Schocherf5895d12014-06-24 10:10:04 +0200992static int clean_an_unclean_leb(struct ubifs_info *c,
Stefan Roese2fc10f62009-03-19 15:35:05 +0100993 struct ubifs_unclean_leb *ucleb, void *sbuf)
994{
995 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
996 void *buf = sbuf;
997
998 dbg_rcvry("LEB %d len %d", lnum, len);
999
1000 if (len == 0) {
1001 /* Nothing to read, just unmap it */
Heiko Schocher94b66de2015-10-22 06:19:21 +02001002 return ubifs_leb_unmap(c, lnum);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001003 }
1004
Heiko Schocherf5895d12014-06-24 10:10:04 +02001005 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001006 if (err && err != -EBADMSG)
1007 return err;
1008
1009 while (len >= 8) {
1010 int ret;
1011
1012 cond_resched();
1013
1014 /* Scan quietly until there is an error */
1015 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1016
1017 if (ret == SCANNED_A_NODE) {
1018 /* A valid node, and not a padding node */
1019 struct ubifs_ch *ch = buf;
1020 int node_len;
1021
1022 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1023 offs += node_len;
1024 buf += node_len;
1025 len -= node_len;
1026 continue;
1027 }
1028
1029 if (ret > 0) {
1030 /* Padding bytes or a valid padding node */
1031 offs += ret;
1032 buf += ret;
1033 len -= ret;
1034 continue;
1035 }
1036
1037 if (ret == SCANNED_EMPTY_SPACE) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001038 ubifs_err(c, "unexpected empty space at %d:%d",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001039 lnum, offs);
1040 return -EUCLEAN;
1041 }
1042
1043 if (quiet) {
1044 /* Redo the last scan but noisily */
1045 quiet = 0;
1046 continue;
1047 }
1048
1049 ubifs_scanned_corruption(c, lnum, offs, buf);
1050 return -EUCLEAN;
1051 }
1052
1053 /* Pad to min_io_size */
1054 len = ALIGN(ucleb->endpt, c->min_io_size);
1055 if (len > ucleb->endpt) {
1056 int pad_len = len - ALIGN(ucleb->endpt, 8);
1057
1058 if (pad_len > 0) {
1059 buf = c->sbuf + len - pad_len;
1060 ubifs_pad(c, buf, pad_len);
1061 }
1062 }
1063
1064 /* Write back the LEB atomically */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001065 err = ubifs_leb_change(c, lnum, sbuf, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001066 if (err)
1067 return err;
1068
1069 dbg_rcvry("cleaned LEB %d", lnum);
1070
1071 return 0;
1072}
1073
1074/**
1075 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1076 * @c: UBIFS file-system description object
1077 * @sbuf: LEB-sized buffer to use
1078 *
1079 * This function cleans a LEB identified during recovery that needs to be
1080 * written but was not because UBIFS was mounted read-only. This happens when
1081 * remounting to read-write mode.
1082 *
1083 * This function returns %0 on success and a negative error code on failure.
1084 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001085int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
Stefan Roese2fc10f62009-03-19 15:35:05 +01001086{
1087 dbg_rcvry("recovery");
1088 while (!list_empty(&c->unclean_leb_list)) {
1089 struct ubifs_unclean_leb *ucleb;
1090 int err;
1091
1092 ucleb = list_entry(c->unclean_leb_list.next,
1093 struct ubifs_unclean_leb, list);
1094 err = clean_an_unclean_leb(c, ucleb, sbuf);
1095 if (err)
1096 return err;
1097 list_del(&ucleb->list);
1098 kfree(ucleb);
1099 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02001100 return 0;
1101}
1102
1103#ifndef __UBOOT__
1104/**
1105 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1106 * @c: UBIFS file-system description object
1107 *
1108 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1109 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1110 * zero in case of success and a negative error code in case of failure.
1111 */
1112static int grab_empty_leb(struct ubifs_info *c)
1113{
1114 int lnum, err;
1115
1116 /*
1117 * Note, it is very important to first search for an empty LEB and then
1118 * run the commit, not vice-versa. The reason is that there might be
1119 * only one empty LEB at the moment, the one which has been the
1120 * @c->gc_lnum just before the power cut happened. During the regular
1121 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1122 * one but GC can grab it. But at this moment this single empty LEB is
1123 * not marked as taken, so if we run commit - what happens? Right, the
1124 * commit will grab it and write the index there. Remember that the
1125 * index always expands as long as there is free space, and it only
1126 * starts consolidating when we run out of space.
1127 *
1128 * IOW, if we run commit now, we might not be able to find a free LEB
1129 * after this.
1130 */
1131 lnum = ubifs_find_free_leb_for_idx(c);
1132 if (lnum < 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001133 ubifs_err(c, "could not find an empty LEB");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001134 ubifs_dump_lprops(c);
1135 ubifs_dump_budg(c, &c->bi);
1136 return lnum;
1137 }
1138
1139 /* Reset the index flag */
1140 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1141 LPROPS_INDEX, 0);
1142 if (err)
1143 return err;
1144
1145 c->gc_lnum = lnum;
1146 dbg_rcvry("found empty LEB %d, run commit", lnum);
1147
1148 return ubifs_run_commit(c);
1149}
1150
1151/**
1152 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1153 * @c: UBIFS file-system description object
1154 *
1155 * Out-of-place garbage collection requires always one empty LEB with which to
1156 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1157 * written to the master node on unmounting. In the case of an unclean unmount
1158 * the value of gc_lnum recorded in the master node is out of date and cannot
1159 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1160 * However, there may not be enough empty space, in which case it must be
1161 * possible to GC the dirtiest LEB into the GC head LEB.
1162 *
1163 * This function also runs the commit which causes the TNC updates from
1164 * size-recovery and orphans to be written to the flash. That is important to
1165 * ensure correct replay order for subsequent mounts.
1166 *
1167 * This function returns %0 on success and a negative error code on failure.
1168 */
1169int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1170{
1171 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1172 struct ubifs_lprops lp;
1173 int err;
1174
1175 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1176
1177 c->gc_lnum = -1;
1178 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1179 return grab_empty_leb(c);
1180
1181 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1182 if (err) {
1183 if (err != -ENOSPC)
1184 return err;
1185
1186 dbg_rcvry("could not find a dirty LEB");
1187 return grab_empty_leb(c);
1188 }
1189
1190 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1191 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1192
1193 /*
1194 * We run the commit before garbage collection otherwise subsequent
1195 * mounts will see the GC and orphan deletion in a different order.
1196 */
1197 dbg_rcvry("committing");
1198 err = ubifs_run_commit(c);
1199 if (err)
1200 return err;
1201
1202 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1203 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1204 err = ubifs_garbage_collect_leb(c, &lp);
1205 if (err >= 0) {
1206 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1207
1208 if (err2)
1209 err = err2;
1210 }
1211 mutex_unlock(&wbuf->io_mutex);
1212 if (err < 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001213 ubifs_err(c, "GC failed, error %d", err);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001214 if (err == -EAGAIN)
1215 err = -EINVAL;
1216 return err;
1217 }
1218
1219 ubifs_assert(err == LEB_RETAINED);
1220 if (err != LEB_RETAINED)
1221 return -EINVAL;
1222
1223 err = ubifs_leb_unmap(c, c->gc_lnum);
1224 if (err)
1225 return err;
1226
1227 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1228 return 0;
1229}
1230#else
1231int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1232{
Stefan Roese2fc10f62009-03-19 15:35:05 +01001233 return 0;
1234}
Heiko Schocherf5895d12014-06-24 10:10:04 +02001235#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +01001236
1237/**
1238 * struct size_entry - inode size information for recovery.
1239 * @rb: link in the RB-tree of sizes
1240 * @inum: inode number
1241 * @i_size: size on inode
1242 * @d_size: maximum size based on data nodes
1243 * @exists: indicates whether the inode exists
1244 * @inode: inode if pinned in memory awaiting rw mode to fix it
1245 */
1246struct size_entry {
1247 struct rb_node rb;
1248 ino_t inum;
1249 loff_t i_size;
1250 loff_t d_size;
1251 int exists;
1252 struct inode *inode;
1253};
1254
1255/**
1256 * add_ino - add an entry to the size tree.
1257 * @c: UBIFS file-system description object
1258 * @inum: inode number
1259 * @i_size: size on inode
1260 * @d_size: maximum size based on data nodes
1261 * @exists: indicates whether the inode exists
1262 */
1263static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1264 loff_t d_size, int exists)
1265{
1266 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1267 struct size_entry *e;
1268
1269 while (*p) {
1270 parent = *p;
1271 e = rb_entry(parent, struct size_entry, rb);
1272 if (inum < e->inum)
1273 p = &(*p)->rb_left;
1274 else
1275 p = &(*p)->rb_right;
1276 }
1277
1278 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1279 if (!e)
1280 return -ENOMEM;
1281
1282 e->inum = inum;
1283 e->i_size = i_size;
1284 e->d_size = d_size;
1285 e->exists = exists;
1286
1287 rb_link_node(&e->rb, parent, p);
1288 rb_insert_color(&e->rb, &c->size_tree);
1289
1290 return 0;
1291}
1292
1293/**
1294 * find_ino - find an entry on the size tree.
1295 * @c: UBIFS file-system description object
1296 * @inum: inode number
1297 */
1298static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1299{
1300 struct rb_node *p = c->size_tree.rb_node;
1301 struct size_entry *e;
1302
1303 while (p) {
1304 e = rb_entry(p, struct size_entry, rb);
1305 if (inum < e->inum)
1306 p = p->rb_left;
1307 else if (inum > e->inum)
1308 p = p->rb_right;
1309 else
1310 return e;
1311 }
1312 return NULL;
1313}
1314
1315/**
1316 * remove_ino - remove an entry from the size tree.
1317 * @c: UBIFS file-system description object
1318 * @inum: inode number
1319 */
1320static void remove_ino(struct ubifs_info *c, ino_t inum)
1321{
1322 struct size_entry *e = find_ino(c, inum);
1323
1324 if (!e)
1325 return;
1326 rb_erase(&e->rb, &c->size_tree);
1327 kfree(e);
1328}
1329
1330/**
Heiko Schocherf5895d12014-06-24 10:10:04 +02001331 * ubifs_destroy_size_tree - free resources related to the size tree.
1332 * @c: UBIFS file-system description object
1333 */
1334void ubifs_destroy_size_tree(struct ubifs_info *c)
1335{
1336 struct size_entry *e, *n;
1337
1338 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1339 if (e->inode)
1340 iput(e->inode);
1341 kfree(e);
1342 }
1343
1344 c->size_tree = RB_ROOT;
1345}
1346
1347/**
Stefan Roese2fc10f62009-03-19 15:35:05 +01001348 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1349 * @c: UBIFS file-system description object
1350 * @key: node key
1351 * @deletion: node is for a deletion
1352 * @new_size: inode size
1353 *
1354 * This function has two purposes:
1355 * 1) to ensure there are no data nodes that fall outside the inode size
1356 * 2) to ensure there are no data nodes for inodes that do not exist
1357 * To accomplish those purposes, a rb-tree is constructed containing an entry
1358 * for each inode number in the journal that has not been deleted, and recording
1359 * the size from the inode node, the maximum size of any data node (also altered
1360 * by truncations) and a flag indicating a inode number for which no inode node
1361 * was present in the journal.
1362 *
1363 * Note that there is still the possibility that there are data nodes that have
1364 * been committed that are beyond the inode size, however the only way to find
1365 * them would be to scan the entire index. Alternatively, some provision could
1366 * be made to record the size of inodes at the start of commit, which would seem
1367 * very cumbersome for a scenario that is quite unlikely and the only negative
1368 * consequence of which is wasted space.
1369 *
1370 * This functions returns %0 on success and a negative error code on failure.
1371 */
1372int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1373 int deletion, loff_t new_size)
1374{
1375 ino_t inum = key_inum(c, key);
1376 struct size_entry *e;
1377 int err;
1378
1379 switch (key_type(c, key)) {
1380 case UBIFS_INO_KEY:
1381 if (deletion)
1382 remove_ino(c, inum);
1383 else {
1384 e = find_ino(c, inum);
1385 if (e) {
1386 e->i_size = new_size;
1387 e->exists = 1;
1388 } else {
1389 err = add_ino(c, inum, new_size, 0, 1);
1390 if (err)
1391 return err;
1392 }
1393 }
1394 break;
1395 case UBIFS_DATA_KEY:
1396 e = find_ino(c, inum);
1397 if (e) {
1398 if (new_size > e->d_size)
1399 e->d_size = new_size;
1400 } else {
1401 err = add_ino(c, inum, 0, new_size, 0);
1402 if (err)
1403 return err;
1404 }
1405 break;
1406 case UBIFS_TRUN_KEY:
1407 e = find_ino(c, inum);
1408 if (e)
1409 e->d_size = new_size;
1410 break;
1411 }
1412 return 0;
1413}
1414
Heiko Schocherf5895d12014-06-24 10:10:04 +02001415#ifndef __UBOOT__
1416/**
1417 * fix_size_in_place - fix inode size in place on flash.
1418 * @c: UBIFS file-system description object
1419 * @e: inode size information for recovery
1420 */
1421static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1422{
1423 struct ubifs_ino_node *ino = c->sbuf;
1424 unsigned char *p;
1425 union ubifs_key key;
1426 int err, lnum, offs, len;
1427 loff_t i_size;
1428 uint32_t crc;
1429
1430 /* Locate the inode node LEB number and offset */
1431 ino_key_init(c, &key, e->inum);
1432 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1433 if (err)
1434 goto out;
1435 /*
1436 * If the size recorded on the inode node is greater than the size that
1437 * was calculated from nodes in the journal then don't change the inode.
1438 */
1439 i_size = le64_to_cpu(ino->size);
1440 if (i_size >= e->d_size)
1441 return 0;
1442 /* Read the LEB */
1443 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1444 if (err)
1445 goto out;
1446 /* Change the size field and recalculate the CRC */
1447 ino = c->sbuf + offs;
1448 ino->size = cpu_to_le64(e->d_size);
1449 len = le32_to_cpu(ino->ch.len);
1450 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1451 ino->ch.crc = cpu_to_le32(crc);
1452 /* Work out where data in the LEB ends and free space begins */
1453 p = c->sbuf;
1454 len = c->leb_size - 1;
1455 while (p[len] == 0xff)
1456 len -= 1;
1457 len = ALIGN(len + 1, c->min_io_size);
1458 /* Atomically write the fixed LEB back again */
1459 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1460 if (err)
1461 goto out;
1462 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1463 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1464 return 0;
1465
1466out:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001467 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001468 (unsigned long)e->inum, e->i_size, e->d_size, err);
1469 return err;
1470}
1471#endif
1472
Stefan Roese2fc10f62009-03-19 15:35:05 +01001473/**
1474 * ubifs_recover_size - recover inode size.
1475 * @c: UBIFS file-system description object
1476 *
1477 * This function attempts to fix inode size discrepancies identified by the
1478 * 'ubifs_recover_size_accum()' function.
1479 *
1480 * This functions returns %0 on success and a negative error code on failure.
1481 */
1482int ubifs_recover_size(struct ubifs_info *c)
1483{
1484 struct rb_node *this = rb_first(&c->size_tree);
1485
1486 while (this) {
1487 struct size_entry *e;
1488 int err;
1489
1490 e = rb_entry(this, struct size_entry, rb);
1491 if (!e->exists) {
1492 union ubifs_key key;
1493
1494 ino_key_init(c, &key, e->inum);
1495 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1496 if (err && err != -ENOENT)
1497 return err;
1498 if (err == -ENOENT) {
1499 /* Remove data nodes that have no inode */
1500 dbg_rcvry("removing ino %lu",
1501 (unsigned long)e->inum);
1502 err = ubifs_tnc_remove_ino(c, e->inum);
1503 if (err)
1504 return err;
1505 } else {
1506 struct ubifs_ino_node *ino = c->sbuf;
1507
1508 e->exists = 1;
1509 e->i_size = le64_to_cpu(ino->size);
1510 }
1511 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02001512
Stefan Roese2fc10f62009-03-19 15:35:05 +01001513 if (e->exists && e->i_size < e->d_size) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02001514 if (c->ro_mount) {
Stefan Roese2fc10f62009-03-19 15:35:05 +01001515 /* Fix the inode size and pin it in memory */
1516 struct inode *inode;
Heiko Schocherf5895d12014-06-24 10:10:04 +02001517 struct ubifs_inode *ui;
1518
1519 ubifs_assert(!e->inode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001520
1521 inode = ubifs_iget(c->vfs_sb, e->inum);
1522 if (IS_ERR(inode))
1523 return PTR_ERR(inode);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001524
1525 ui = ubifs_inode(inode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001526 if (inode->i_size < e->d_size) {
1527 dbg_rcvry("ino %lu size %lld -> %lld",
1528 (unsigned long)e->inum,
Heiko Schocherf5895d12014-06-24 10:10:04 +02001529 inode->i_size, e->d_size);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001530 inode->i_size = e->d_size;
Heiko Schocherf5895d12014-06-24 10:10:04 +02001531 ui->ui_size = e->d_size;
1532 ui->synced_i_size = e->d_size;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001533 e->inode = inode;
1534 this = rb_next(this);
1535 continue;
1536 }
1537 iput(inode);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001538#ifndef __UBOOT__
1539 } else {
1540 /* Fix the size in place */
1541 err = fix_size_in_place(c, e);
1542 if (err)
1543 return err;
1544 if (e->inode)
1545 iput(e->inode);
1546#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +01001547 }
1548 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02001549
Stefan Roese2fc10f62009-03-19 15:35:05 +01001550 this = rb_next(this);
1551 rb_erase(&e->rb, &c->size_tree);
1552 kfree(e);
1553 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02001554
Stefan Roese2fc10f62009-03-19 15:35:05 +01001555 return 0;
1556}