Stefan Roese | 2fc10f6 | 2009-03-19 15:35:05 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Adrian Hunter |
| 20 | * Artem Bityutskiy (Битюцкий Артём) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file implements functions needed to recover from unclean un-mounts. |
| 25 | * When UBIFS is mounted, it checks a flag on the master node to determine if |
| 26 | * an un-mount was completed sucessfully. If not, the process of mounting |
| 27 | * incorparates additional checking and fixing of on-flash data structures. |
| 28 | * UBIFS always cleans away all remnants of an unclean un-mount, so that |
| 29 | * errors do not accumulate. However UBIFS defers recovery if it is mounted |
| 30 | * read-only, and the flash is not modified in that case. |
| 31 | */ |
| 32 | |
| 33 | #include "ubifs.h" |
| 34 | |
| 35 | /** |
| 36 | * is_empty - determine whether a buffer is empty (contains all 0xff). |
| 37 | * @buf: buffer to clean |
| 38 | * @len: length of buffer |
| 39 | * |
| 40 | * This function returns %1 if the buffer is empty (contains all 0xff) otherwise |
| 41 | * %0 is returned. |
| 42 | */ |
| 43 | static int is_empty(void *buf, int len) |
| 44 | { |
| 45 | uint8_t *p = buf; |
| 46 | int i; |
| 47 | |
| 48 | for (i = 0; i < len; i++) |
| 49 | if (*p++ != 0xff) |
| 50 | return 0; |
| 51 | return 1; |
| 52 | } |
| 53 | |
| 54 | /** |
| 55 | * get_master_node - get the last valid master node allowing for corruption. |
| 56 | * @c: UBIFS file-system description object |
| 57 | * @lnum: LEB number |
| 58 | * @pbuf: buffer containing the LEB read, is returned here |
| 59 | * @mst: master node, if found, is returned here |
| 60 | * @cor: corruption, if found, is returned here |
| 61 | * |
| 62 | * This function allocates a buffer, reads the LEB into it, and finds and |
| 63 | * returns the last valid master node allowing for one area of corruption. |
| 64 | * The corrupt area, if there is one, must be consistent with the assumption |
| 65 | * that it is the result of an unclean unmount while the master node was being |
| 66 | * written. Under those circumstances, it is valid to use the previously written |
| 67 | * master node. |
| 68 | * |
| 69 | * This function returns %0 on success and a negative error code on failure. |
| 70 | */ |
| 71 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, |
| 72 | struct ubifs_mst_node **mst, void **cor) |
| 73 | { |
| 74 | const int sz = c->mst_node_alsz; |
| 75 | int err, offs, len; |
| 76 | void *sbuf, *buf; |
| 77 | |
| 78 | sbuf = vmalloc(c->leb_size); |
| 79 | if (!sbuf) |
| 80 | return -ENOMEM; |
| 81 | |
| 82 | err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); |
| 83 | if (err && err != -EBADMSG) |
| 84 | goto out_free; |
| 85 | |
| 86 | /* Find the first position that is definitely not a node */ |
| 87 | offs = 0; |
| 88 | buf = sbuf; |
| 89 | len = c->leb_size; |
| 90 | while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { |
| 91 | struct ubifs_ch *ch = buf; |
| 92 | |
| 93 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) |
| 94 | break; |
| 95 | offs += sz; |
| 96 | buf += sz; |
| 97 | len -= sz; |
| 98 | } |
| 99 | /* See if there was a valid master node before that */ |
| 100 | if (offs) { |
| 101 | int ret; |
| 102 | |
| 103 | offs -= sz; |
| 104 | buf -= sz; |
| 105 | len += sz; |
| 106 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 107 | if (ret != SCANNED_A_NODE && offs) { |
| 108 | /* Could have been corruption so check one place back */ |
| 109 | offs -= sz; |
| 110 | buf -= sz; |
| 111 | len += sz; |
| 112 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 113 | if (ret != SCANNED_A_NODE) |
| 114 | /* |
| 115 | * We accept only one area of corruption because |
| 116 | * we are assuming that it was caused while |
| 117 | * trying to write a master node. |
| 118 | */ |
| 119 | goto out_err; |
| 120 | } |
| 121 | if (ret == SCANNED_A_NODE) { |
| 122 | struct ubifs_ch *ch = buf; |
| 123 | |
| 124 | if (ch->node_type != UBIFS_MST_NODE) |
| 125 | goto out_err; |
| 126 | dbg_rcvry("found a master node at %d:%d", lnum, offs); |
| 127 | *mst = buf; |
| 128 | offs += sz; |
| 129 | buf += sz; |
| 130 | len -= sz; |
| 131 | } |
| 132 | } |
| 133 | /* Check for corruption */ |
| 134 | if (offs < c->leb_size) { |
| 135 | if (!is_empty(buf, min_t(int, len, sz))) { |
| 136 | *cor = buf; |
| 137 | dbg_rcvry("found corruption at %d:%d", lnum, offs); |
| 138 | } |
| 139 | offs += sz; |
| 140 | buf += sz; |
| 141 | len -= sz; |
| 142 | } |
| 143 | /* Check remaining empty space */ |
| 144 | if (offs < c->leb_size) |
| 145 | if (!is_empty(buf, len)) |
| 146 | goto out_err; |
| 147 | *pbuf = sbuf; |
| 148 | return 0; |
| 149 | |
| 150 | out_err: |
| 151 | err = -EINVAL; |
| 152 | out_free: |
| 153 | vfree(sbuf); |
| 154 | *mst = NULL; |
| 155 | *cor = NULL; |
| 156 | return err; |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * write_rcvrd_mst_node - write recovered master node. |
| 161 | * @c: UBIFS file-system description object |
| 162 | * @mst: master node |
| 163 | * |
| 164 | * This function returns %0 on success and a negative error code on failure. |
| 165 | */ |
| 166 | static int write_rcvrd_mst_node(struct ubifs_info *c, |
| 167 | struct ubifs_mst_node *mst) |
| 168 | { |
| 169 | int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; |
| 170 | __le32 save_flags; |
| 171 | |
| 172 | dbg_rcvry("recovery"); |
| 173 | |
| 174 | save_flags = mst->flags; |
| 175 | mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); |
| 176 | |
| 177 | ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); |
| 178 | err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); |
| 179 | if (err) |
| 180 | goto out; |
| 181 | err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); |
| 182 | if (err) |
| 183 | goto out; |
| 184 | out: |
| 185 | mst->flags = save_flags; |
| 186 | return err; |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * ubifs_recover_master_node - recover the master node. |
| 191 | * @c: UBIFS file-system description object |
| 192 | * |
| 193 | * This function recovers the master node from corruption that may occur due to |
| 194 | * an unclean unmount. |
| 195 | * |
| 196 | * This function returns %0 on success and a negative error code on failure. |
| 197 | */ |
| 198 | int ubifs_recover_master_node(struct ubifs_info *c) |
| 199 | { |
| 200 | void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; |
| 201 | struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; |
| 202 | const int sz = c->mst_node_alsz; |
| 203 | int err, offs1, offs2; |
| 204 | |
| 205 | dbg_rcvry("recovery"); |
| 206 | |
| 207 | err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); |
| 208 | if (err) |
| 209 | goto out_free; |
| 210 | |
| 211 | err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); |
| 212 | if (err) |
| 213 | goto out_free; |
| 214 | |
| 215 | if (mst1) { |
| 216 | offs1 = (void *)mst1 - buf1; |
| 217 | if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && |
| 218 | (offs1 == 0 && !cor1)) { |
| 219 | /* |
| 220 | * mst1 was written by recovery at offset 0 with no |
| 221 | * corruption. |
| 222 | */ |
| 223 | dbg_rcvry("recovery recovery"); |
| 224 | mst = mst1; |
| 225 | } else if (mst2) { |
| 226 | offs2 = (void *)mst2 - buf2; |
| 227 | if (offs1 == offs2) { |
| 228 | /* Same offset, so must be the same */ |
| 229 | if (memcmp((void *)mst1 + UBIFS_CH_SZ, |
| 230 | (void *)mst2 + UBIFS_CH_SZ, |
| 231 | UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) |
| 232 | goto out_err; |
| 233 | mst = mst1; |
| 234 | } else if (offs2 + sz == offs1) { |
| 235 | /* 1st LEB was written, 2nd was not */ |
| 236 | if (cor1) |
| 237 | goto out_err; |
| 238 | mst = mst1; |
| 239 | } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { |
| 240 | /* 1st LEB was unmapped and written, 2nd not */ |
| 241 | if (cor1) |
| 242 | goto out_err; |
| 243 | mst = mst1; |
| 244 | } else |
| 245 | goto out_err; |
| 246 | } else { |
| 247 | /* |
| 248 | * 2nd LEB was unmapped and about to be written, so |
| 249 | * there must be only one master node in the first LEB |
| 250 | * and no corruption. |
| 251 | */ |
| 252 | if (offs1 != 0 || cor1) |
| 253 | goto out_err; |
| 254 | mst = mst1; |
| 255 | } |
| 256 | } else { |
| 257 | if (!mst2) |
| 258 | goto out_err; |
| 259 | /* |
| 260 | * 1st LEB was unmapped and about to be written, so there must |
| 261 | * be no room left in 2nd LEB. |
| 262 | */ |
| 263 | offs2 = (void *)mst2 - buf2; |
| 264 | if (offs2 + sz + sz <= c->leb_size) |
| 265 | goto out_err; |
| 266 | mst = mst2; |
| 267 | } |
| 268 | |
| 269 | dbg_rcvry("recovered master node from LEB %d", |
| 270 | (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); |
| 271 | |
| 272 | memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); |
| 273 | |
| 274 | if ((c->vfs_sb->s_flags & MS_RDONLY)) { |
| 275 | /* Read-only mode. Keep a copy for switching to rw mode */ |
| 276 | c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); |
| 277 | if (!c->rcvrd_mst_node) { |
| 278 | err = -ENOMEM; |
| 279 | goto out_free; |
| 280 | } |
| 281 | memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); |
| 282 | } |
| 283 | |
| 284 | vfree(buf2); |
| 285 | vfree(buf1); |
| 286 | |
| 287 | return 0; |
| 288 | |
| 289 | out_err: |
| 290 | err = -EINVAL; |
| 291 | out_free: |
| 292 | ubifs_err("failed to recover master node"); |
| 293 | if (mst1) { |
| 294 | dbg_err("dumping first master node"); |
| 295 | dbg_dump_node(c, mst1); |
| 296 | } |
| 297 | if (mst2) { |
| 298 | dbg_err("dumping second master node"); |
| 299 | dbg_dump_node(c, mst2); |
| 300 | } |
| 301 | vfree(buf2); |
| 302 | vfree(buf1); |
| 303 | return err; |
| 304 | } |
| 305 | |
| 306 | /** |
| 307 | * ubifs_write_rcvrd_mst_node - write the recovered master node. |
| 308 | * @c: UBIFS file-system description object |
| 309 | * |
| 310 | * This function writes the master node that was recovered during mounting in |
| 311 | * read-only mode and must now be written because we are remounting rw. |
| 312 | * |
| 313 | * This function returns %0 on success and a negative error code on failure. |
| 314 | */ |
| 315 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) |
| 316 | { |
| 317 | int err; |
| 318 | |
| 319 | if (!c->rcvrd_mst_node) |
| 320 | return 0; |
| 321 | c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 322 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 323 | err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); |
| 324 | if (err) |
| 325 | return err; |
| 326 | kfree(c->rcvrd_mst_node); |
| 327 | c->rcvrd_mst_node = NULL; |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | /** |
| 332 | * is_last_write - determine if an offset was in the last write to a LEB. |
| 333 | * @c: UBIFS file-system description object |
| 334 | * @buf: buffer to check |
| 335 | * @offs: offset to check |
| 336 | * |
| 337 | * This function returns %1 if @offs was in the last write to the LEB whose data |
| 338 | * is in @buf, otherwise %0 is returned. The determination is made by checking |
| 339 | * for subsequent empty space starting from the next min_io_size boundary (or a |
| 340 | * bit less than the common header size if min_io_size is one). |
| 341 | */ |
| 342 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) |
| 343 | { |
| 344 | int empty_offs; |
| 345 | int check_len; |
| 346 | uint8_t *p; |
| 347 | |
| 348 | if (c->min_io_size == 1) { |
| 349 | check_len = c->leb_size - offs; |
| 350 | p = buf + check_len; |
| 351 | for (; check_len > 0; check_len--) |
| 352 | if (*--p != 0xff) |
| 353 | break; |
| 354 | /* |
| 355 | * 'check_len' is the size of the corruption which cannot be |
| 356 | * more than the size of 1 node if it was caused by an unclean |
| 357 | * unmount. |
| 358 | */ |
| 359 | if (check_len > UBIFS_MAX_NODE_SZ) |
| 360 | return 0; |
| 361 | return 1; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Round up to the next c->min_io_size boundary i.e. 'offs' is in the |
| 366 | * last wbuf written. After that should be empty space. |
| 367 | */ |
| 368 | empty_offs = ALIGN(offs + 1, c->min_io_size); |
| 369 | check_len = c->leb_size - empty_offs; |
| 370 | p = buf + empty_offs - offs; |
| 371 | |
| 372 | for (; check_len > 0; check_len--) |
| 373 | if (*p++ != 0xff) |
| 374 | return 0; |
| 375 | return 1; |
| 376 | } |
| 377 | |
| 378 | /** |
| 379 | * clean_buf - clean the data from an LEB sitting in a buffer. |
| 380 | * @c: UBIFS file-system description object |
| 381 | * @buf: buffer to clean |
| 382 | * @lnum: LEB number to clean |
| 383 | * @offs: offset from which to clean |
| 384 | * @len: length of buffer |
| 385 | * |
| 386 | * This function pads up to the next min_io_size boundary (if there is one) and |
| 387 | * sets empty space to all 0xff. @buf, @offs and @len are updated to the next |
| 388 | * min_io_size boundary (if there is one). |
| 389 | */ |
| 390 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, |
| 391 | int *offs, int *len) |
| 392 | { |
| 393 | int empty_offs, pad_len; |
| 394 | |
| 395 | lnum = lnum; |
| 396 | dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); |
| 397 | |
| 398 | if (c->min_io_size == 1) { |
| 399 | memset(*buf, 0xff, c->leb_size - *offs); |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | ubifs_assert(!(*offs & 7)); |
| 404 | empty_offs = ALIGN(*offs, c->min_io_size); |
| 405 | pad_len = empty_offs - *offs; |
| 406 | ubifs_pad(c, *buf, pad_len); |
| 407 | *offs += pad_len; |
| 408 | *buf += pad_len; |
| 409 | *len -= pad_len; |
| 410 | memset(*buf, 0xff, c->leb_size - empty_offs); |
| 411 | } |
| 412 | |
| 413 | /** |
| 414 | * no_more_nodes - determine if there are no more nodes in a buffer. |
| 415 | * @c: UBIFS file-system description object |
| 416 | * @buf: buffer to check |
| 417 | * @len: length of buffer |
| 418 | * @lnum: LEB number of the LEB from which @buf was read |
| 419 | * @offs: offset from which @buf was read |
| 420 | * |
| 421 | * This function scans @buf for more nodes and returns %0 is a node is found and |
| 422 | * %1 if no more nodes are found. |
| 423 | */ |
| 424 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, |
| 425 | int lnum, int offs) |
| 426 | { |
| 427 | int skip, next_offs = 0; |
| 428 | |
| 429 | if (len > UBIFS_DATA_NODE_SZ) { |
| 430 | struct ubifs_ch *ch = buf; |
| 431 | int dlen = le32_to_cpu(ch->len); |
| 432 | |
| 433 | if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ && |
| 434 | dlen <= UBIFS_MAX_DATA_NODE_SZ) |
| 435 | /* The corrupt node looks like a data node */ |
| 436 | next_offs = ALIGN(offs + dlen, 8); |
| 437 | } |
| 438 | |
| 439 | if (c->min_io_size == 1) |
| 440 | skip = 8; |
| 441 | else |
| 442 | skip = ALIGN(offs + 1, c->min_io_size) - offs; |
| 443 | |
| 444 | offs += skip; |
| 445 | buf += skip; |
| 446 | len -= skip; |
| 447 | while (len > 8) { |
| 448 | struct ubifs_ch *ch = buf; |
| 449 | uint32_t magic = le32_to_cpu(ch->magic); |
| 450 | int ret; |
| 451 | |
| 452 | if (magic == UBIFS_NODE_MAGIC) { |
| 453 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 454 | if (ret == SCANNED_A_NODE || ret > 0) { |
| 455 | /* |
| 456 | * There is a small chance this is just data in |
| 457 | * a data node, so check that possibility. e.g. |
| 458 | * this is part of a file that itself contains |
| 459 | * a UBIFS image. |
| 460 | */ |
| 461 | if (next_offs && offs + le32_to_cpu(ch->len) <= |
| 462 | next_offs) |
| 463 | continue; |
| 464 | dbg_rcvry("unexpected node at %d:%d", lnum, |
| 465 | offs); |
| 466 | return 0; |
| 467 | } |
| 468 | } |
| 469 | offs += 8; |
| 470 | buf += 8; |
| 471 | len -= 8; |
| 472 | } |
| 473 | return 1; |
| 474 | } |
| 475 | |
| 476 | /** |
| 477 | * fix_unclean_leb - fix an unclean LEB. |
| 478 | * @c: UBIFS file-system description object |
| 479 | * @sleb: scanned LEB information |
| 480 | * @start: offset where scan started |
| 481 | */ |
| 482 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| 483 | int start) |
| 484 | { |
| 485 | int lnum = sleb->lnum, endpt = start; |
| 486 | |
| 487 | /* Get the end offset of the last node we are keeping */ |
| 488 | if (!list_empty(&sleb->nodes)) { |
| 489 | struct ubifs_scan_node *snod; |
| 490 | |
| 491 | snod = list_entry(sleb->nodes.prev, |
| 492 | struct ubifs_scan_node, list); |
| 493 | endpt = snod->offs + snod->len; |
| 494 | } |
| 495 | |
| 496 | if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { |
| 497 | /* Add to recovery list */ |
| 498 | struct ubifs_unclean_leb *ucleb; |
| 499 | |
| 500 | dbg_rcvry("need to fix LEB %d start %d endpt %d", |
| 501 | lnum, start, sleb->endpt); |
| 502 | ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); |
| 503 | if (!ucleb) |
| 504 | return -ENOMEM; |
| 505 | ucleb->lnum = lnum; |
| 506 | ucleb->endpt = endpt; |
| 507 | list_add_tail(&ucleb->list, &c->unclean_leb_list); |
| 508 | } |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | /** |
| 513 | * drop_incomplete_group - drop nodes from an incomplete group. |
| 514 | * @sleb: scanned LEB information |
| 515 | * @offs: offset of dropped nodes is returned here |
| 516 | * |
| 517 | * This function returns %1 if nodes are dropped and %0 otherwise. |
| 518 | */ |
| 519 | static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) |
| 520 | { |
| 521 | int dropped = 0; |
| 522 | |
| 523 | while (!list_empty(&sleb->nodes)) { |
| 524 | struct ubifs_scan_node *snod; |
| 525 | struct ubifs_ch *ch; |
| 526 | |
| 527 | snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, |
| 528 | list); |
| 529 | ch = snod->node; |
| 530 | if (ch->group_type != UBIFS_IN_NODE_GROUP) |
| 531 | return dropped; |
| 532 | dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); |
| 533 | *offs = snod->offs; |
| 534 | list_del(&snod->list); |
| 535 | kfree(snod); |
| 536 | sleb->nodes_cnt -= 1; |
| 537 | dropped = 1; |
| 538 | } |
| 539 | return dropped; |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * ubifs_recover_leb - scan and recover a LEB. |
| 544 | * @c: UBIFS file-system description object |
| 545 | * @lnum: LEB number |
| 546 | * @offs: offset |
| 547 | * @sbuf: LEB-sized buffer to use |
| 548 | * @grouped: nodes may be grouped for recovery |
| 549 | * |
| 550 | * This function does a scan of a LEB, but caters for errors that might have |
| 551 | * been caused by the unclean unmount from which we are attempting to recover. |
| 552 | * |
| 553 | * This function returns %0 on success and a negative error code on failure. |
| 554 | */ |
| 555 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, |
| 556 | int offs, void *sbuf, int grouped) |
| 557 | { |
| 558 | int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; |
| 559 | int empty_chkd = 0, start = offs; |
| 560 | struct ubifs_scan_leb *sleb; |
| 561 | void *buf = sbuf + offs; |
| 562 | |
| 563 | dbg_rcvry("%d:%d", lnum, offs); |
| 564 | |
| 565 | sleb = ubifs_start_scan(c, lnum, offs, sbuf); |
| 566 | if (IS_ERR(sleb)) |
| 567 | return sleb; |
| 568 | |
| 569 | if (sleb->ecc) |
| 570 | need_clean = 1; |
| 571 | |
| 572 | while (len >= 8) { |
| 573 | int ret; |
| 574 | |
| 575 | dbg_scan("look at LEB %d:%d (%d bytes left)", |
| 576 | lnum, offs, len); |
| 577 | |
| 578 | cond_resched(); |
| 579 | |
| 580 | /* |
| 581 | * Scan quietly until there is an error from which we cannot |
| 582 | * recover |
| 583 | */ |
| 584 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); |
| 585 | |
| 586 | if (ret == SCANNED_A_NODE) { |
| 587 | /* A valid node, and not a padding node */ |
| 588 | struct ubifs_ch *ch = buf; |
| 589 | int node_len; |
| 590 | |
| 591 | err = ubifs_add_snod(c, sleb, buf, offs); |
| 592 | if (err) |
| 593 | goto error; |
| 594 | node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| 595 | offs += node_len; |
| 596 | buf += node_len; |
| 597 | len -= node_len; |
| 598 | continue; |
| 599 | } |
| 600 | |
| 601 | if (ret > 0) { |
| 602 | /* Padding bytes or a valid padding node */ |
| 603 | offs += ret; |
| 604 | buf += ret; |
| 605 | len -= ret; |
| 606 | continue; |
| 607 | } |
| 608 | |
| 609 | if (ret == SCANNED_EMPTY_SPACE) { |
| 610 | if (!is_empty(buf, len)) { |
| 611 | if (!is_last_write(c, buf, offs)) |
| 612 | break; |
| 613 | clean_buf(c, &buf, lnum, &offs, &len); |
| 614 | need_clean = 1; |
| 615 | } |
| 616 | empty_chkd = 1; |
| 617 | break; |
| 618 | } |
| 619 | |
| 620 | if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) |
| 621 | if (is_last_write(c, buf, offs)) { |
| 622 | clean_buf(c, &buf, lnum, &offs, &len); |
| 623 | need_clean = 1; |
| 624 | empty_chkd = 1; |
| 625 | break; |
| 626 | } |
| 627 | |
| 628 | if (ret == SCANNED_A_CORRUPT_NODE) |
| 629 | if (no_more_nodes(c, buf, len, lnum, offs)) { |
| 630 | clean_buf(c, &buf, lnum, &offs, &len); |
| 631 | need_clean = 1; |
| 632 | empty_chkd = 1; |
| 633 | break; |
| 634 | } |
| 635 | |
| 636 | if (quiet) { |
| 637 | /* Redo the last scan but noisily */ |
| 638 | quiet = 0; |
| 639 | continue; |
| 640 | } |
| 641 | |
| 642 | switch (ret) { |
| 643 | case SCANNED_GARBAGE: |
| 644 | dbg_err("garbage"); |
| 645 | goto corrupted; |
| 646 | case SCANNED_A_CORRUPT_NODE: |
| 647 | case SCANNED_A_BAD_PAD_NODE: |
| 648 | dbg_err("bad node"); |
| 649 | goto corrupted; |
| 650 | default: |
| 651 | dbg_err("unknown"); |
| 652 | goto corrupted; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | if (!empty_chkd && !is_empty(buf, len)) { |
| 657 | if (is_last_write(c, buf, offs)) { |
| 658 | clean_buf(c, &buf, lnum, &offs, &len); |
| 659 | need_clean = 1; |
| 660 | } else { |
| 661 | ubifs_err("corrupt empty space at LEB %d:%d", |
| 662 | lnum, offs); |
| 663 | goto corrupted; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | /* Drop nodes from incomplete group */ |
| 668 | if (grouped && drop_incomplete_group(sleb, &offs)) { |
| 669 | buf = sbuf + offs; |
| 670 | len = c->leb_size - offs; |
| 671 | clean_buf(c, &buf, lnum, &offs, &len); |
| 672 | need_clean = 1; |
| 673 | } |
| 674 | |
| 675 | if (offs % c->min_io_size) { |
| 676 | clean_buf(c, &buf, lnum, &offs, &len); |
| 677 | need_clean = 1; |
| 678 | } |
| 679 | |
| 680 | ubifs_end_scan(c, sleb, lnum, offs); |
| 681 | |
| 682 | if (need_clean) { |
| 683 | err = fix_unclean_leb(c, sleb, start); |
| 684 | if (err) |
| 685 | goto error; |
| 686 | } |
| 687 | |
| 688 | return sleb; |
| 689 | |
| 690 | corrupted: |
| 691 | ubifs_scanned_corruption(c, lnum, offs, buf); |
| 692 | err = -EUCLEAN; |
| 693 | error: |
| 694 | ubifs_err("LEB %d scanning failed", lnum); |
| 695 | ubifs_scan_destroy(sleb); |
| 696 | return ERR_PTR(err); |
| 697 | } |
| 698 | |
| 699 | /** |
| 700 | * get_cs_sqnum - get commit start sequence number. |
| 701 | * @c: UBIFS file-system description object |
| 702 | * @lnum: LEB number of commit start node |
| 703 | * @offs: offset of commit start node |
| 704 | * @cs_sqnum: commit start sequence number is returned here |
| 705 | * |
| 706 | * This function returns %0 on success and a negative error code on failure. |
| 707 | */ |
| 708 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, |
| 709 | unsigned long long *cs_sqnum) |
| 710 | { |
| 711 | struct ubifs_cs_node *cs_node = NULL; |
| 712 | int err, ret; |
| 713 | |
| 714 | dbg_rcvry("at %d:%d", lnum, offs); |
| 715 | cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); |
| 716 | if (!cs_node) |
| 717 | return -ENOMEM; |
| 718 | if (c->leb_size - offs < UBIFS_CS_NODE_SZ) |
| 719 | goto out_err; |
| 720 | err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); |
| 721 | if (err && err != -EBADMSG) |
| 722 | goto out_free; |
| 723 | ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); |
| 724 | if (ret != SCANNED_A_NODE) { |
| 725 | dbg_err("Not a valid node"); |
| 726 | goto out_err; |
| 727 | } |
| 728 | if (cs_node->ch.node_type != UBIFS_CS_NODE) { |
| 729 | dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); |
| 730 | goto out_err; |
| 731 | } |
| 732 | if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { |
| 733 | dbg_err("CS node cmt_no %llu != current cmt_no %llu", |
| 734 | (unsigned long long)le64_to_cpu(cs_node->cmt_no), |
| 735 | c->cmt_no); |
| 736 | goto out_err; |
| 737 | } |
| 738 | *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); |
| 739 | dbg_rcvry("commit start sqnum %llu", *cs_sqnum); |
| 740 | kfree(cs_node); |
| 741 | return 0; |
| 742 | |
| 743 | out_err: |
| 744 | err = -EINVAL; |
| 745 | out_free: |
| 746 | ubifs_err("failed to get CS sqnum"); |
| 747 | kfree(cs_node); |
| 748 | return err; |
| 749 | } |
| 750 | |
| 751 | /** |
| 752 | * ubifs_recover_log_leb - scan and recover a log LEB. |
| 753 | * @c: UBIFS file-system description object |
| 754 | * @lnum: LEB number |
| 755 | * @offs: offset |
| 756 | * @sbuf: LEB-sized buffer to use |
| 757 | * |
| 758 | * This function does a scan of a LEB, but caters for errors that might have |
| 759 | * been caused by the unclean unmount from which we are attempting to recover. |
| 760 | * |
| 761 | * This function returns %0 on success and a negative error code on failure. |
| 762 | */ |
| 763 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, |
| 764 | int offs, void *sbuf) |
| 765 | { |
| 766 | struct ubifs_scan_leb *sleb; |
| 767 | int next_lnum; |
| 768 | |
| 769 | dbg_rcvry("LEB %d", lnum); |
| 770 | next_lnum = lnum + 1; |
| 771 | if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| 772 | next_lnum = UBIFS_LOG_LNUM; |
| 773 | if (next_lnum != c->ltail_lnum) { |
| 774 | /* |
| 775 | * We can only recover at the end of the log, so check that the |
| 776 | * next log LEB is empty or out of date. |
| 777 | */ |
| 778 | sleb = ubifs_scan(c, next_lnum, 0, sbuf); |
| 779 | if (IS_ERR(sleb)) |
| 780 | return sleb; |
| 781 | if (sleb->nodes_cnt) { |
| 782 | struct ubifs_scan_node *snod; |
| 783 | unsigned long long cs_sqnum = c->cs_sqnum; |
| 784 | |
| 785 | snod = list_entry(sleb->nodes.next, |
| 786 | struct ubifs_scan_node, list); |
| 787 | if (cs_sqnum == 0) { |
| 788 | int err; |
| 789 | |
| 790 | err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); |
| 791 | if (err) { |
| 792 | ubifs_scan_destroy(sleb); |
| 793 | return ERR_PTR(err); |
| 794 | } |
| 795 | } |
| 796 | if (snod->sqnum > cs_sqnum) { |
| 797 | ubifs_err("unrecoverable log corruption " |
| 798 | "in LEB %d", lnum); |
| 799 | ubifs_scan_destroy(sleb); |
| 800 | return ERR_PTR(-EUCLEAN); |
| 801 | } |
| 802 | } |
| 803 | ubifs_scan_destroy(sleb); |
| 804 | } |
| 805 | return ubifs_recover_leb(c, lnum, offs, sbuf, 0); |
| 806 | } |
| 807 | |
| 808 | /** |
| 809 | * recover_head - recover a head. |
| 810 | * @c: UBIFS file-system description object |
| 811 | * @lnum: LEB number of head to recover |
| 812 | * @offs: offset of head to recover |
| 813 | * @sbuf: LEB-sized buffer to use |
| 814 | * |
| 815 | * This function ensures that there is no data on the flash at a head location. |
| 816 | * |
| 817 | * This function returns %0 on success and a negative error code on failure. |
| 818 | */ |
| 819 | static int recover_head(const struct ubifs_info *c, int lnum, int offs, |
| 820 | void *sbuf) |
| 821 | { |
| 822 | int len, err, need_clean = 0; |
| 823 | |
| 824 | if (c->min_io_size > 1) |
| 825 | len = c->min_io_size; |
| 826 | else |
| 827 | len = 512; |
| 828 | if (offs + len > c->leb_size) |
| 829 | len = c->leb_size - offs; |
| 830 | |
| 831 | if (!len) |
| 832 | return 0; |
| 833 | |
| 834 | /* Read at the head location and check it is empty flash */ |
| 835 | err = ubi_read(c->ubi, lnum, sbuf, offs, len); |
| 836 | if (err) |
| 837 | need_clean = 1; |
| 838 | else { |
| 839 | uint8_t *p = sbuf; |
| 840 | |
| 841 | while (len--) |
| 842 | if (*p++ != 0xff) { |
| 843 | need_clean = 1; |
| 844 | break; |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | if (need_clean) { |
| 849 | dbg_rcvry("cleaning head at %d:%d", lnum, offs); |
| 850 | if (offs == 0) |
| 851 | return ubifs_leb_unmap(c, lnum); |
| 852 | err = ubi_read(c->ubi, lnum, sbuf, 0, offs); |
| 853 | if (err) |
| 854 | return err; |
| 855 | return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); |
| 856 | } |
| 857 | |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /** |
| 862 | * ubifs_recover_inl_heads - recover index and LPT heads. |
| 863 | * @c: UBIFS file-system description object |
| 864 | * @sbuf: LEB-sized buffer to use |
| 865 | * |
| 866 | * This function ensures that there is no data on the flash at the index and |
| 867 | * LPT head locations. |
| 868 | * |
| 869 | * This deals with the recovery of a half-completed journal commit. UBIFS is |
| 870 | * careful never to overwrite the last version of the index or the LPT. Because |
| 871 | * the index and LPT are wandering trees, data from a half-completed commit will |
| 872 | * not be referenced anywhere in UBIFS. The data will be either in LEBs that are |
| 873 | * assumed to be empty and will be unmapped anyway before use, or in the index |
| 874 | * and LPT heads. |
| 875 | * |
| 876 | * This function returns %0 on success and a negative error code on failure. |
| 877 | */ |
| 878 | int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) |
| 879 | { |
| 880 | int err; |
| 881 | |
| 882 | ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); |
| 883 | |
| 884 | dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); |
| 885 | err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); |
| 886 | if (err) |
| 887 | return err; |
| 888 | |
| 889 | dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); |
| 890 | err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); |
| 891 | if (err) |
| 892 | return err; |
| 893 | |
| 894 | return 0; |
| 895 | } |
| 896 | |
| 897 | /** |
| 898 | * clean_an_unclean_leb - read and write a LEB to remove corruption. |
| 899 | * @c: UBIFS file-system description object |
| 900 | * @ucleb: unclean LEB information |
| 901 | * @sbuf: LEB-sized buffer to use |
| 902 | * |
| 903 | * This function reads a LEB up to a point pre-determined by the mount recovery, |
| 904 | * checks the nodes, and writes the result back to the flash, thereby cleaning |
| 905 | * off any following corruption, or non-fatal ECC errors. |
| 906 | * |
| 907 | * This function returns %0 on success and a negative error code on failure. |
| 908 | */ |
| 909 | static int clean_an_unclean_leb(const struct ubifs_info *c, |
| 910 | struct ubifs_unclean_leb *ucleb, void *sbuf) |
| 911 | { |
| 912 | int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; |
| 913 | void *buf = sbuf; |
| 914 | |
| 915 | dbg_rcvry("LEB %d len %d", lnum, len); |
| 916 | |
| 917 | if (len == 0) { |
| 918 | /* Nothing to read, just unmap it */ |
| 919 | err = ubifs_leb_unmap(c, lnum); |
| 920 | if (err) |
| 921 | return err; |
| 922 | return 0; |
| 923 | } |
| 924 | |
| 925 | err = ubi_read(c->ubi, lnum, buf, offs, len); |
| 926 | if (err && err != -EBADMSG) |
| 927 | return err; |
| 928 | |
| 929 | while (len >= 8) { |
| 930 | int ret; |
| 931 | |
| 932 | cond_resched(); |
| 933 | |
| 934 | /* Scan quietly until there is an error */ |
| 935 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); |
| 936 | |
| 937 | if (ret == SCANNED_A_NODE) { |
| 938 | /* A valid node, and not a padding node */ |
| 939 | struct ubifs_ch *ch = buf; |
| 940 | int node_len; |
| 941 | |
| 942 | node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| 943 | offs += node_len; |
| 944 | buf += node_len; |
| 945 | len -= node_len; |
| 946 | continue; |
| 947 | } |
| 948 | |
| 949 | if (ret > 0) { |
| 950 | /* Padding bytes or a valid padding node */ |
| 951 | offs += ret; |
| 952 | buf += ret; |
| 953 | len -= ret; |
| 954 | continue; |
| 955 | } |
| 956 | |
| 957 | if (ret == SCANNED_EMPTY_SPACE) { |
| 958 | ubifs_err("unexpected empty space at %d:%d", |
| 959 | lnum, offs); |
| 960 | return -EUCLEAN; |
| 961 | } |
| 962 | |
| 963 | if (quiet) { |
| 964 | /* Redo the last scan but noisily */ |
| 965 | quiet = 0; |
| 966 | continue; |
| 967 | } |
| 968 | |
| 969 | ubifs_scanned_corruption(c, lnum, offs, buf); |
| 970 | return -EUCLEAN; |
| 971 | } |
| 972 | |
| 973 | /* Pad to min_io_size */ |
| 974 | len = ALIGN(ucleb->endpt, c->min_io_size); |
| 975 | if (len > ucleb->endpt) { |
| 976 | int pad_len = len - ALIGN(ucleb->endpt, 8); |
| 977 | |
| 978 | if (pad_len > 0) { |
| 979 | buf = c->sbuf + len - pad_len; |
| 980 | ubifs_pad(c, buf, pad_len); |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | /* Write back the LEB atomically */ |
| 985 | err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); |
| 986 | if (err) |
| 987 | return err; |
| 988 | |
| 989 | dbg_rcvry("cleaned LEB %d", lnum); |
| 990 | |
| 991 | return 0; |
| 992 | } |
| 993 | |
| 994 | /** |
| 995 | * ubifs_clean_lebs - clean LEBs recovered during read-only mount. |
| 996 | * @c: UBIFS file-system description object |
| 997 | * @sbuf: LEB-sized buffer to use |
| 998 | * |
| 999 | * This function cleans a LEB identified during recovery that needs to be |
| 1000 | * written but was not because UBIFS was mounted read-only. This happens when |
| 1001 | * remounting to read-write mode. |
| 1002 | * |
| 1003 | * This function returns %0 on success and a negative error code on failure. |
| 1004 | */ |
| 1005 | int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) |
| 1006 | { |
| 1007 | dbg_rcvry("recovery"); |
| 1008 | while (!list_empty(&c->unclean_leb_list)) { |
| 1009 | struct ubifs_unclean_leb *ucleb; |
| 1010 | int err; |
| 1011 | |
| 1012 | ucleb = list_entry(c->unclean_leb_list.next, |
| 1013 | struct ubifs_unclean_leb, list); |
| 1014 | err = clean_an_unclean_leb(c, ucleb, sbuf); |
| 1015 | if (err) |
| 1016 | return err; |
| 1017 | list_del(&ucleb->list); |
| 1018 | kfree(ucleb); |
| 1019 | } |
| 1020 | return 0; |
| 1021 | } |
| 1022 | |
| 1023 | /** |
| 1024 | * struct size_entry - inode size information for recovery. |
| 1025 | * @rb: link in the RB-tree of sizes |
| 1026 | * @inum: inode number |
| 1027 | * @i_size: size on inode |
| 1028 | * @d_size: maximum size based on data nodes |
| 1029 | * @exists: indicates whether the inode exists |
| 1030 | * @inode: inode if pinned in memory awaiting rw mode to fix it |
| 1031 | */ |
| 1032 | struct size_entry { |
| 1033 | struct rb_node rb; |
| 1034 | ino_t inum; |
| 1035 | loff_t i_size; |
| 1036 | loff_t d_size; |
| 1037 | int exists; |
| 1038 | struct inode *inode; |
| 1039 | }; |
| 1040 | |
| 1041 | /** |
| 1042 | * add_ino - add an entry to the size tree. |
| 1043 | * @c: UBIFS file-system description object |
| 1044 | * @inum: inode number |
| 1045 | * @i_size: size on inode |
| 1046 | * @d_size: maximum size based on data nodes |
| 1047 | * @exists: indicates whether the inode exists |
| 1048 | */ |
| 1049 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, |
| 1050 | loff_t d_size, int exists) |
| 1051 | { |
| 1052 | struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; |
| 1053 | struct size_entry *e; |
| 1054 | |
| 1055 | while (*p) { |
| 1056 | parent = *p; |
| 1057 | e = rb_entry(parent, struct size_entry, rb); |
| 1058 | if (inum < e->inum) |
| 1059 | p = &(*p)->rb_left; |
| 1060 | else |
| 1061 | p = &(*p)->rb_right; |
| 1062 | } |
| 1063 | |
| 1064 | e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); |
| 1065 | if (!e) |
| 1066 | return -ENOMEM; |
| 1067 | |
| 1068 | e->inum = inum; |
| 1069 | e->i_size = i_size; |
| 1070 | e->d_size = d_size; |
| 1071 | e->exists = exists; |
| 1072 | |
| 1073 | rb_link_node(&e->rb, parent, p); |
| 1074 | rb_insert_color(&e->rb, &c->size_tree); |
| 1075 | |
| 1076 | return 0; |
| 1077 | } |
| 1078 | |
| 1079 | /** |
| 1080 | * find_ino - find an entry on the size tree. |
| 1081 | * @c: UBIFS file-system description object |
| 1082 | * @inum: inode number |
| 1083 | */ |
| 1084 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) |
| 1085 | { |
| 1086 | struct rb_node *p = c->size_tree.rb_node; |
| 1087 | struct size_entry *e; |
| 1088 | |
| 1089 | while (p) { |
| 1090 | e = rb_entry(p, struct size_entry, rb); |
| 1091 | if (inum < e->inum) |
| 1092 | p = p->rb_left; |
| 1093 | else if (inum > e->inum) |
| 1094 | p = p->rb_right; |
| 1095 | else |
| 1096 | return e; |
| 1097 | } |
| 1098 | return NULL; |
| 1099 | } |
| 1100 | |
| 1101 | /** |
| 1102 | * remove_ino - remove an entry from the size tree. |
| 1103 | * @c: UBIFS file-system description object |
| 1104 | * @inum: inode number |
| 1105 | */ |
| 1106 | static void remove_ino(struct ubifs_info *c, ino_t inum) |
| 1107 | { |
| 1108 | struct size_entry *e = find_ino(c, inum); |
| 1109 | |
| 1110 | if (!e) |
| 1111 | return; |
| 1112 | rb_erase(&e->rb, &c->size_tree); |
| 1113 | kfree(e); |
| 1114 | } |
| 1115 | |
| 1116 | /** |
| 1117 | * ubifs_recover_size_accum - accumulate inode sizes for recovery. |
| 1118 | * @c: UBIFS file-system description object |
| 1119 | * @key: node key |
| 1120 | * @deletion: node is for a deletion |
| 1121 | * @new_size: inode size |
| 1122 | * |
| 1123 | * This function has two purposes: |
| 1124 | * 1) to ensure there are no data nodes that fall outside the inode size |
| 1125 | * 2) to ensure there are no data nodes for inodes that do not exist |
| 1126 | * To accomplish those purposes, a rb-tree is constructed containing an entry |
| 1127 | * for each inode number in the journal that has not been deleted, and recording |
| 1128 | * the size from the inode node, the maximum size of any data node (also altered |
| 1129 | * by truncations) and a flag indicating a inode number for which no inode node |
| 1130 | * was present in the journal. |
| 1131 | * |
| 1132 | * Note that there is still the possibility that there are data nodes that have |
| 1133 | * been committed that are beyond the inode size, however the only way to find |
| 1134 | * them would be to scan the entire index. Alternatively, some provision could |
| 1135 | * be made to record the size of inodes at the start of commit, which would seem |
| 1136 | * very cumbersome for a scenario that is quite unlikely and the only negative |
| 1137 | * consequence of which is wasted space. |
| 1138 | * |
| 1139 | * This functions returns %0 on success and a negative error code on failure. |
| 1140 | */ |
| 1141 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, |
| 1142 | int deletion, loff_t new_size) |
| 1143 | { |
| 1144 | ino_t inum = key_inum(c, key); |
| 1145 | struct size_entry *e; |
| 1146 | int err; |
| 1147 | |
| 1148 | switch (key_type(c, key)) { |
| 1149 | case UBIFS_INO_KEY: |
| 1150 | if (deletion) |
| 1151 | remove_ino(c, inum); |
| 1152 | else { |
| 1153 | e = find_ino(c, inum); |
| 1154 | if (e) { |
| 1155 | e->i_size = new_size; |
| 1156 | e->exists = 1; |
| 1157 | } else { |
| 1158 | err = add_ino(c, inum, new_size, 0, 1); |
| 1159 | if (err) |
| 1160 | return err; |
| 1161 | } |
| 1162 | } |
| 1163 | break; |
| 1164 | case UBIFS_DATA_KEY: |
| 1165 | e = find_ino(c, inum); |
| 1166 | if (e) { |
| 1167 | if (new_size > e->d_size) |
| 1168 | e->d_size = new_size; |
| 1169 | } else { |
| 1170 | err = add_ino(c, inum, 0, new_size, 0); |
| 1171 | if (err) |
| 1172 | return err; |
| 1173 | } |
| 1174 | break; |
| 1175 | case UBIFS_TRUN_KEY: |
| 1176 | e = find_ino(c, inum); |
| 1177 | if (e) |
| 1178 | e->d_size = new_size; |
| 1179 | break; |
| 1180 | } |
| 1181 | return 0; |
| 1182 | } |
| 1183 | |
| 1184 | /** |
| 1185 | * ubifs_recover_size - recover inode size. |
| 1186 | * @c: UBIFS file-system description object |
| 1187 | * |
| 1188 | * This function attempts to fix inode size discrepancies identified by the |
| 1189 | * 'ubifs_recover_size_accum()' function. |
| 1190 | * |
| 1191 | * This functions returns %0 on success and a negative error code on failure. |
| 1192 | */ |
| 1193 | int ubifs_recover_size(struct ubifs_info *c) |
| 1194 | { |
| 1195 | struct rb_node *this = rb_first(&c->size_tree); |
| 1196 | |
| 1197 | while (this) { |
| 1198 | struct size_entry *e; |
| 1199 | int err; |
| 1200 | |
| 1201 | e = rb_entry(this, struct size_entry, rb); |
| 1202 | if (!e->exists) { |
| 1203 | union ubifs_key key; |
| 1204 | |
| 1205 | ino_key_init(c, &key, e->inum); |
| 1206 | err = ubifs_tnc_lookup(c, &key, c->sbuf); |
| 1207 | if (err && err != -ENOENT) |
| 1208 | return err; |
| 1209 | if (err == -ENOENT) { |
| 1210 | /* Remove data nodes that have no inode */ |
| 1211 | dbg_rcvry("removing ino %lu", |
| 1212 | (unsigned long)e->inum); |
| 1213 | err = ubifs_tnc_remove_ino(c, e->inum); |
| 1214 | if (err) |
| 1215 | return err; |
| 1216 | } else { |
| 1217 | struct ubifs_ino_node *ino = c->sbuf; |
| 1218 | |
| 1219 | e->exists = 1; |
| 1220 | e->i_size = le64_to_cpu(ino->size); |
| 1221 | } |
| 1222 | } |
| 1223 | if (e->exists && e->i_size < e->d_size) { |
| 1224 | if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { |
| 1225 | /* Fix the inode size and pin it in memory */ |
| 1226 | struct inode *inode; |
| 1227 | |
| 1228 | inode = ubifs_iget(c->vfs_sb, e->inum); |
| 1229 | if (IS_ERR(inode)) |
| 1230 | return PTR_ERR(inode); |
| 1231 | if (inode->i_size < e->d_size) { |
| 1232 | dbg_rcvry("ino %lu size %lld -> %lld", |
| 1233 | (unsigned long)e->inum, |
| 1234 | e->d_size, inode->i_size); |
| 1235 | inode->i_size = e->d_size; |
| 1236 | ubifs_inode(inode)->ui_size = e->d_size; |
| 1237 | e->inode = inode; |
| 1238 | this = rb_next(this); |
| 1239 | continue; |
| 1240 | } |
| 1241 | iput(inode); |
| 1242 | } |
| 1243 | } |
| 1244 | this = rb_next(this); |
| 1245 | rb_erase(&e->rb, &c->size_tree); |
| 1246 | kfree(e); |
| 1247 | } |
| 1248 | return 0; |
| 1249 | } |