blob: 01bdf814fd8605d8fbcdf27fa6c8a2a453eb82de [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk4e112c12003-06-03 23:54:09 +000015 any later version.
wdenk57b2d802003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk4e112c12003-06-03 23:54:09 +000020 more details.
wdenk57b2d802003-06-27 21:31:46 +000021
wdenk4e112c12003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk57b2d802003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk35f734f2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk57b2d802003-06-27 21:31:46 +000025
wdenk4e112c12003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk57b2d802003-06-27 21:31:46 +000028
wdenk4e112c12003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080043 *
44 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000045 */
46
47#include "e1000.h"
48
wdenk4e112c12003-06-03 23:54:09 +000049#define TOUT_LOOP 100000
50
Timur Tabiedc45b52009-08-17 15:55:38 -050051#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000052#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk4e112c12003-06-03 23:54:09 +000053
Roy Zang966172e2009-08-22 03:49:52 +080054#define E1000_DEFAULT_PCI_PBA 0x00000030
55#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000056
57/* NIC specific static variables go here */
58
59static char tx_pool[128 + 16];
60static char rx_pool[128 + 16];
61static char packet[2096];
62
63static struct e1000_tx_desc *tx_base;
64static struct e1000_rx_desc *rx_base;
65
66static int tx_tail;
67static int rx_tail, rx_last;
68
69static struct pci_device_id supported[] = {
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000080 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt1140ea52009-12-04 09:52:17 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010085 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020086 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080087 /* E1000 PCIe card */
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang181119b2011-01-21 11:29:38 +0800104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zang28f7a052009-07-31 13:34:02 +0800105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100110 {}
wdenk4e112c12003-06-03 23:54:09 +0000111};
112
113/* Function forward declarations */
114static int e1000_setup_link(struct eth_device *nic);
115static int e1000_setup_fiber_link(struct eth_device *nic);
116static int e1000_setup_copper_link(struct eth_device *nic);
117static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118static void e1000_config_collision_dist(struct e1000_hw *hw);
119static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121static int e1000_check_for_link(struct eth_device *nic);
122static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800123static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000124 uint16_t * duplex);
125static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t * phy_data);
127static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800129static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000130static int e1000_phy_reset(struct e1000_hw *hw);
131static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800132static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000134
Roy Zang28f7a052009-07-31 13:34:02 +0800135static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000137#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
138#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
139#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
140 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
141#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
wdenk57b2d802003-06-27 21:31:46 +0000142 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
wdenk4e112c12003-06-03 23:54:09 +0000143#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
144
Wolfgang Denk56811f62005-10-09 01:04:33 +0200145#ifndef CONFIG_AP1000 /* remove for warnings */
Roy Zang9b7c4302009-08-11 03:48:05 +0800146static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
147 uint16_t words,
148 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000149/******************************************************************************
150 * Raises the EEPROM's clock input.
151 *
152 * hw - Struct containing variables accessed by shared code
153 * eecd - EECD's current value
154 *****************************************************************************/
155static void
156e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157{
158 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
159 * wait 50 microseconds.
160 */
161 *eecd = *eecd | E1000_EECD_SK;
162 E1000_WRITE_REG(hw, EECD, *eecd);
163 E1000_WRITE_FLUSH(hw);
164 udelay(50);
165}
166
167/******************************************************************************
168 * Lowers the EEPROM's clock input.
169 *
wdenk57b2d802003-06-27 21:31:46 +0000170 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000171 * eecd - EECD's current value
172 *****************************************************************************/
173static void
174e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
175{
wdenk57b2d802003-06-27 21:31:46 +0000176 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
177 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000178 */
179 *eecd = *eecd & ~E1000_EECD_SK;
180 E1000_WRITE_REG(hw, EECD, *eecd);
181 E1000_WRITE_FLUSH(hw);
182 udelay(50);
183}
184
185/******************************************************************************
186 * Shift data bits out to the EEPROM.
187 *
188 * hw - Struct containing variables accessed by shared code
189 * data - data to send to the EEPROM
190 * count - number of bits to shift out
191 *****************************************************************************/
192static void
193e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
194{
195 uint32_t eecd;
196 uint32_t mask;
197
198 /* We need to shift "count" bits out to the EEPROM. So, value in the
199 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000200 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000201 */
202 mask = 0x01 << (count - 1);
203 eecd = E1000_READ_REG(hw, EECD);
204 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 do {
206 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
207 * and then raising and then lowering the clock (the SK bit controls
208 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
209 * by setting "DI" to "0" and then raising and then lowering the clock.
210 */
211 eecd &= ~E1000_EECD_DI;
212
213 if (data & mask)
214 eecd |= E1000_EECD_DI;
215
216 E1000_WRITE_REG(hw, EECD, eecd);
217 E1000_WRITE_FLUSH(hw);
218
219 udelay(50);
220
221 e1000_raise_ee_clk(hw, &eecd);
222 e1000_lower_ee_clk(hw, &eecd);
223
224 mask = mask >> 1;
225
226 } while (mask);
227
228 /* We leave the "DI" bit set to "0" when we leave this routine. */
229 eecd &= ~E1000_EECD_DI;
230 E1000_WRITE_REG(hw, EECD, eecd);
231}
232
233/******************************************************************************
234 * Shift data bits in from the EEPROM
235 *
236 * hw - Struct containing variables accessed by shared code
237 *****************************************************************************/
238static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800239e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000240{
241 uint32_t eecd;
242 uint32_t i;
243 uint16_t data;
244
Roy Zang28f7a052009-07-31 13:34:02 +0800245 /* In order to read a register from the EEPROM, we need to shift 'count'
246 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
247 * input to the EEPROM (setting the SK bit), and then reading the
248 * value of the "DO" bit. During this "shifting in" process the
249 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000250 */
251
252 eecd = E1000_READ_REG(hw, EECD);
253
254 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
255 data = 0;
256
Roy Zang28f7a052009-07-31 13:34:02 +0800257 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000258 data = data << 1;
259 e1000_raise_ee_clk(hw, &eecd);
260
261 eecd = E1000_READ_REG(hw, EECD);
262
263 eecd &= ~(E1000_EECD_DI);
264 if (eecd & E1000_EECD_DO)
265 data |= 1;
266
267 e1000_lower_ee_clk(hw, &eecd);
268 }
269
270 return data;
271}
272
273/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800274 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000275 *
276 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000277 *****************************************************************************/
278static void
Roy Zang28f7a052009-07-31 13:34:02 +0800279e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000280{
Roy Zang28f7a052009-07-31 13:34:02 +0800281 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000282 uint32_t eecd;
283
284 eecd = E1000_READ_REG(hw, EECD);
285
Roy Zang28f7a052009-07-31 13:34:02 +0800286 if (eeprom->type == e1000_eeprom_microwire) {
287 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
288 E1000_WRITE_REG(hw, EECD, eecd);
289 E1000_WRITE_FLUSH(hw);
290 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000291
Roy Zang28f7a052009-07-31 13:34:02 +0800292 /* Clock high */
293 eecd |= E1000_EECD_SK;
294 E1000_WRITE_REG(hw, EECD, eecd);
295 E1000_WRITE_FLUSH(hw);
296 udelay(eeprom->delay_usec);
297
298 /* Select EEPROM */
299 eecd |= E1000_EECD_CS;
300 E1000_WRITE_REG(hw, EECD, eecd);
301 E1000_WRITE_FLUSH(hw);
302 udelay(eeprom->delay_usec);
303
304 /* Clock low */
305 eecd &= ~E1000_EECD_SK;
306 E1000_WRITE_REG(hw, EECD, eecd);
307 E1000_WRITE_FLUSH(hw);
308 udelay(eeprom->delay_usec);
309 } else if (eeprom->type == e1000_eeprom_spi) {
310 /* Toggle CS to flush commands */
311 eecd |= E1000_EECD_CS;
312 E1000_WRITE_REG(hw, EECD, eecd);
313 E1000_WRITE_FLUSH(hw);
314 udelay(eeprom->delay_usec);
315 eecd &= ~E1000_EECD_CS;
316 E1000_WRITE_REG(hw, EECD, eecd);
317 E1000_WRITE_FLUSH(hw);
318 udelay(eeprom->delay_usec);
319 }
320}
321
322/***************************************************************************
323* Description: Determines if the onboard NVM is FLASH or EEPROM.
324*
325* hw - Struct containing variables accessed by shared code
326****************************************************************************/
327static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
328{
329 uint32_t eecd = 0;
330
331 DEBUGFUNC();
332
333 if (hw->mac_type == e1000_ich8lan)
334 return FALSE;
335
Roy Zang181119b2011-01-21 11:29:38 +0800336 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800337 eecd = E1000_READ_REG(hw, EECD);
338
339 /* Isolate bits 15 & 16 */
340 eecd = ((eecd >> 15) & 0x03);
341
342 /* If both bits are set, device is Flash type */
343 if (eecd == 0x03)
344 return FALSE;
345 }
346 return TRUE;
wdenk4e112c12003-06-03 23:54:09 +0000347}
348
349/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800350 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000351 *
wdenk4e112c12003-06-03 23:54:09 +0000352 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800353 *
354 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
355 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000356 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800357static int32_t
358e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000359{
Roy Zang28f7a052009-07-31 13:34:02 +0800360 struct e1000_eeprom_info *eeprom = &hw->eeprom;
361 uint32_t eecd, i = 0;
362
Timur Tabiedc45b52009-08-17 15:55:38 -0500363 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000364
Roy Zang28f7a052009-07-31 13:34:02 +0800365 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
366 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000367 eecd = E1000_READ_REG(hw, EECD);
368
Roy Zang181119b2011-01-21 11:29:38 +0800369 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800370 /* Request EEPROM Access */
371 if (hw->mac_type > e1000_82544) {
372 eecd |= E1000_EECD_REQ;
373 E1000_WRITE_REG(hw, EECD, eecd);
374 eecd = E1000_READ_REG(hw, EECD);
375 while ((!(eecd & E1000_EECD_GNT)) &&
376 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
377 i++;
378 udelay(5);
379 eecd = E1000_READ_REG(hw, EECD);
380 }
381 if (!(eecd & E1000_EECD_GNT)) {
382 eecd &= ~E1000_EECD_REQ;
383 E1000_WRITE_REG(hw, EECD, eecd);
384 DEBUGOUT("Could not acquire EEPROM grant\n");
385 return -E1000_ERR_EEPROM;
386 }
387 }
388 }
wdenk4e112c12003-06-03 23:54:09 +0000389
Roy Zang28f7a052009-07-31 13:34:02 +0800390 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000391
Roy Zang28f7a052009-07-31 13:34:02 +0800392 if (eeprom->type == e1000_eeprom_microwire) {
393 /* Clear SK and DI */
394 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
395 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000396
Roy Zang28f7a052009-07-31 13:34:02 +0800397 /* Set CS */
398 eecd |= E1000_EECD_CS;
399 E1000_WRITE_REG(hw, EECD, eecd);
400 } else if (eeprom->type == e1000_eeprom_spi) {
401 /* Clear SK and CS */
402 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
403 E1000_WRITE_REG(hw, EECD, eecd);
404 udelay(1);
405 }
406
407 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000408}
409
410/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800411 * Sets up eeprom variables in the hw struct. Must be called after mac_type
412 * is configured. Additionally, if this is ICH8, the flash controller GbE
413 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000414 *
415 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000416 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800417static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000418{
Roy Zang28f7a052009-07-31 13:34:02 +0800419 struct e1000_eeprom_info *eeprom = &hw->eeprom;
420 uint32_t eecd = E1000_READ_REG(hw, EECD);
421 int32_t ret_val = E1000_SUCCESS;
422 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000423
Timur Tabiedc45b52009-08-17 15:55:38 -0500424 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800425
426 switch (hw->mac_type) {
427 case e1000_82542_rev2_0:
428 case e1000_82542_rev2_1:
429 case e1000_82543:
430 case e1000_82544:
431 eeprom->type = e1000_eeprom_microwire;
432 eeprom->word_size = 64;
433 eeprom->opcode_bits = 3;
434 eeprom->address_bits = 6;
435 eeprom->delay_usec = 50;
436 eeprom->use_eerd = FALSE;
437 eeprom->use_eewr = FALSE;
438 break;
439 case e1000_82540:
440 case e1000_82545:
441 case e1000_82545_rev_3:
442 case e1000_82546:
443 case e1000_82546_rev_3:
444 eeprom->type = e1000_eeprom_microwire;
445 eeprom->opcode_bits = 3;
446 eeprom->delay_usec = 50;
447 if (eecd & E1000_EECD_SIZE) {
448 eeprom->word_size = 256;
449 eeprom->address_bits = 8;
450 } else {
451 eeprom->word_size = 64;
452 eeprom->address_bits = 6;
453 }
454 eeprom->use_eerd = FALSE;
455 eeprom->use_eewr = FALSE;
456 break;
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 case e1000_82547:
460 case e1000_82547_rev_2:
461 if (eecd & E1000_EECD_TYPE) {
462 eeprom->type = e1000_eeprom_spi;
463 eeprom->opcode_bits = 8;
464 eeprom->delay_usec = 1;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->page_size = 32;
467 eeprom->address_bits = 16;
468 } else {
469 eeprom->page_size = 8;
470 eeprom->address_bits = 8;
471 }
472 } else {
473 eeprom->type = e1000_eeprom_microwire;
474 eeprom->opcode_bits = 3;
475 eeprom->delay_usec = 50;
476 if (eecd & E1000_EECD_ADDR_BITS) {
477 eeprom->word_size = 256;
478 eeprom->address_bits = 8;
479 } else {
480 eeprom->word_size = 64;
481 eeprom->address_bits = 6;
482 }
483 }
484 eeprom->use_eerd = FALSE;
485 eeprom->use_eewr = FALSE;
486 break;
487 case e1000_82571:
488 case e1000_82572:
489 eeprom->type = e1000_eeprom_spi;
490 eeprom->opcode_bits = 8;
491 eeprom->delay_usec = 1;
492 if (eecd & E1000_EECD_ADDR_BITS) {
493 eeprom->page_size = 32;
494 eeprom->address_bits = 16;
495 } else {
496 eeprom->page_size = 8;
497 eeprom->address_bits = 8;
498 }
499 eeprom->use_eerd = FALSE;
500 eeprom->use_eewr = FALSE;
501 break;
502 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800503 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800504 eeprom->type = e1000_eeprom_spi;
505 eeprom->opcode_bits = 8;
506 eeprom->delay_usec = 1;
507 if (eecd & E1000_EECD_ADDR_BITS) {
508 eeprom->page_size = 32;
509 eeprom->address_bits = 16;
510 } else {
511 eeprom->page_size = 8;
512 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000513 }
Roy Zang28f7a052009-07-31 13:34:02 +0800514 eeprom->use_eerd = TRUE;
515 eeprom->use_eewr = TRUE;
516 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
517 eeprom->type = e1000_eeprom_flash;
518 eeprom->word_size = 2048;
519
520 /* Ensure that the Autonomous FLASH update bit is cleared due to
521 * Flash update issue on parts which use a FLASH for NVM. */
522 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000523 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000524 }
Roy Zang28f7a052009-07-31 13:34:02 +0800525 break;
526 case e1000_80003es2lan:
527 eeprom->type = e1000_eeprom_spi;
528 eeprom->opcode_bits = 8;
529 eeprom->delay_usec = 1;
530 if (eecd & E1000_EECD_ADDR_BITS) {
531 eeprom->page_size = 32;
532 eeprom->address_bits = 16;
533 } else {
534 eeprom->page_size = 8;
535 eeprom->address_bits = 8;
536 }
537 eeprom->use_eerd = TRUE;
538 eeprom->use_eewr = FALSE;
539 break;
wdenk4e112c12003-06-03 23:54:09 +0000540
Roy Zang28f7a052009-07-31 13:34:02 +0800541 /* ich8lan does not support currently. if needed, please
542 * add corresponding code and functions.
543 */
544#if 0
545 case e1000_ich8lan:
546 {
547 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000548
Roy Zang28f7a052009-07-31 13:34:02 +0800549 eeprom->type = e1000_eeprom_ich8;
550 eeprom->use_eerd = FALSE;
551 eeprom->use_eewr = FALSE;
552 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
553 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
554 ICH_FLASH_GFPREG);
555 /* Zero the shadow RAM structure. But don't load it from NVM
556 * so as to save time for driver init */
557 if (hw->eeprom_shadow_ram != NULL) {
558 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
559 hw->eeprom_shadow_ram[i].modified = FALSE;
560 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
561 }
562 }
wdenk4e112c12003-06-03 23:54:09 +0000563
Roy Zang28f7a052009-07-31 13:34:02 +0800564 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
565 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000566
Roy Zang28f7a052009-07-31 13:34:02 +0800567 hw->flash_bank_size = ((flash_size >> 16)
568 & ICH_GFPREG_BASE_MASK) + 1;
569 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000570
Roy Zang28f7a052009-07-31 13:34:02 +0800571 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
572
573 hw->flash_bank_size /= 2 * sizeof(uint16_t);
574 break;
575 }
576#endif
577 default:
578 break;
wdenk4e112c12003-06-03 23:54:09 +0000579 }
580
Roy Zang28f7a052009-07-31 13:34:02 +0800581 if (eeprom->type == e1000_eeprom_spi) {
582 /* eeprom_size will be an enum [0..8] that maps
583 * to eeprom sizes 128B to
584 * 32KB (incremented by powers of 2).
585 */
586 if (hw->mac_type <= e1000_82547_rev_2) {
587 /* Set to default value for initial eeprom read. */
588 eeprom->word_size = 64;
589 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
590 &eeprom_size);
591 if (ret_val)
592 return ret_val;
593 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
594 >> EEPROM_SIZE_SHIFT;
595 /* 256B eeprom size was not supported in earlier
596 * hardware, so we bump eeprom_size up one to
597 * ensure that "1" (which maps to 256B) is never
598 * the result used in the shifting logic below. */
599 if (eeprom_size)
600 eeprom_size++;
601 } else {
602 eeprom_size = (uint16_t)((eecd &
603 E1000_EECD_SIZE_EX_MASK) >>
604 E1000_EECD_SIZE_EX_SHIFT);
605 }
606
607 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
608 }
609 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000610}
611
Roy Zang28f7a052009-07-31 13:34:02 +0800612/******************************************************************************
613 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
614 *
615 * hw - Struct containing variables accessed by shared code
616 *****************************************************************************/
617static int32_t
618e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000619{
Roy Zang28f7a052009-07-31 13:34:02 +0800620 uint32_t attempts = 100000;
621 uint32_t i, reg = 0;
622 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000623
Roy Zang28f7a052009-07-31 13:34:02 +0800624 for (i = 0; i < attempts; i++) {
625 if (eerd == E1000_EEPROM_POLL_READ)
626 reg = E1000_READ_REG(hw, EERD);
627 else
628 reg = E1000_READ_REG(hw, EEWR);
629
630 if (reg & E1000_EEPROM_RW_REG_DONE) {
631 done = E1000_SUCCESS;
632 break;
633 }
634 udelay(5);
635 }
636
637 return done;
wdenk4e112c12003-06-03 23:54:09 +0000638}
639
Roy Zang28f7a052009-07-31 13:34:02 +0800640/******************************************************************************
641 * Reads a 16 bit word from the EEPROM using the EERD register.
642 *
643 * hw - Struct containing variables accessed by shared code
644 * offset - offset of word in the EEPROM to read
645 * data - word read from the EEPROM
646 * words - number of words to read
647 *****************************************************************************/
648static int32_t
649e1000_read_eeprom_eerd(struct e1000_hw *hw,
650 uint16_t offset,
651 uint16_t words,
652 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000653{
Roy Zang28f7a052009-07-31 13:34:02 +0800654 uint32_t i, eerd = 0;
655 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000656
Roy Zang28f7a052009-07-31 13:34:02 +0800657 for (i = 0; i < words; i++) {
658 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
659 E1000_EEPROM_RW_REG_START;
660
661 E1000_WRITE_REG(hw, EERD, eerd);
662 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
663
664 if (error)
665 break;
666 data[i] = (E1000_READ_REG(hw, EERD) >>
667 E1000_EEPROM_RW_REG_DATA);
668
wdenk4e112c12003-06-03 23:54:09 +0000669 }
Roy Zang28f7a052009-07-31 13:34:02 +0800670
671 return error;
wdenk4e112c12003-06-03 23:54:09 +0000672}
673
Roy Zang28f7a052009-07-31 13:34:02 +0800674static void
675e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000676{
677 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000678
Roy Zang28f7a052009-07-31 13:34:02 +0800679 DEBUGFUNC();
680
681 eecd = E1000_READ_REG(hw, EECD);
682
683 if (hw->eeprom.type == e1000_eeprom_spi) {
684 eecd |= E1000_EECD_CS; /* Pull CS high */
685 eecd &= ~E1000_EECD_SK; /* Lower SCK */
686
wdenk4e112c12003-06-03 23:54:09 +0000687 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800688
689 udelay(hw->eeprom.delay_usec);
690 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
691 /* cleanup eeprom */
692
693 /* CS on Microwire is active-high */
694 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
695
696 E1000_WRITE_REG(hw, EECD, eecd);
697
698 /* Rising edge of clock */
699 eecd |= E1000_EECD_SK;
700 E1000_WRITE_REG(hw, EECD, eecd);
701 E1000_WRITE_FLUSH(hw);
702 udelay(hw->eeprom.delay_usec);
703
704 /* Falling edge of clock */
705 eecd &= ~E1000_EECD_SK;
706 E1000_WRITE_REG(hw, EECD, eecd);
707 E1000_WRITE_FLUSH(hw);
708 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000709 }
wdenk4e112c12003-06-03 23:54:09 +0000710
711 /* Stop requesting EEPROM access */
712 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000713 eecd &= ~E1000_EECD_REQ;
714 E1000_WRITE_REG(hw, EECD, eecd);
715 }
wdenk4e112c12003-06-03 23:54:09 +0000716}
wdenk4e112c12003-06-03 23:54:09 +0000717/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800718 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000719 *
wdenk4e112c12003-06-03 23:54:09 +0000720 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000721 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800722static int32_t
723e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000724{
Roy Zang28f7a052009-07-31 13:34:02 +0800725 uint16_t retry_count = 0;
726 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000727
728 DEBUGFUNC();
729
Roy Zang28f7a052009-07-31 13:34:02 +0800730 /* Read "Status Register" repeatedly until the LSB is cleared. The
731 * EEPROM will signal that the command has been completed by clearing
732 * bit 0 of the internal status register. If it's not cleared within
733 * 5 milliseconds, then error out.
734 */
735 retry_count = 0;
736 do {
737 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
738 hw->eeprom.opcode_bits);
739 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
740 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
741 break;
wdenk57b2d802003-06-27 21:31:46 +0000742
Roy Zang28f7a052009-07-31 13:34:02 +0800743 udelay(5);
744 retry_count += 5;
745
746 e1000_standby_eeprom(hw);
747 } while (retry_count < EEPROM_MAX_RETRY_SPI);
748
749 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
750 * only 0-5mSec on 5V devices)
751 */
752 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
753 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000754 return -E1000_ERR_EEPROM;
755 }
Roy Zang28f7a052009-07-31 13:34:02 +0800756
757 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000758}
759
760/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800761 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000762 *
Roy Zang28f7a052009-07-31 13:34:02 +0800763 * hw - Struct containing variables accessed by shared code
764 * offset - offset of word in the EEPROM to read
765 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000766 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800767static int32_t
768e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
769 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000770{
Roy Zang28f7a052009-07-31 13:34:02 +0800771 struct e1000_eeprom_info *eeprom = &hw->eeprom;
772 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000773
774 DEBUGFUNC();
775
Roy Zang28f7a052009-07-31 13:34:02 +0800776 /* If eeprom is not yet detected, do so now */
777 if (eeprom->word_size == 0)
778 e1000_init_eeprom_params(hw);
779
780 /* A check for invalid values: offset too large, too many words,
781 * and not enough words.
782 */
783 if ((offset >= eeprom->word_size) ||
784 (words > eeprom->word_size - offset) ||
785 (words == 0)) {
786 DEBUGOUT("\"words\" parameter out of bounds."
787 "Words = %d, size = %d\n", offset, eeprom->word_size);
788 return -E1000_ERR_EEPROM;
789 }
790
791 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
792 * directly. In this case, we need to acquire the EEPROM so that
793 * FW or other port software does not interrupt.
794 */
795 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
796 hw->eeprom.use_eerd == FALSE) {
797
798 /* Prepare the EEPROM for bit-bang reading */
799 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
800 return -E1000_ERR_EEPROM;
801 }
802
803 /* Eerd register EEPROM access requires no eeprom aquire/release */
804 if (eeprom->use_eerd == TRUE)
805 return e1000_read_eeprom_eerd(hw, offset, words, data);
806
807 /* ich8lan does not support currently. if needed, please
808 * add corresponding code and functions.
809 */
810#if 0
811 /* ICH EEPROM access is done via the ICH flash controller */
812 if (eeprom->type == e1000_eeprom_ich8)
813 return e1000_read_eeprom_ich8(hw, offset, words, data);
814#endif
815 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
816 * acquired the EEPROM at this point, so any returns should relase it */
817 if (eeprom->type == e1000_eeprom_spi) {
818 uint16_t word_in;
819 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
820
821 if (e1000_spi_eeprom_ready(hw)) {
822 e1000_release_eeprom(hw);
823 return -E1000_ERR_EEPROM;
824 }
825
826 e1000_standby_eeprom(hw);
827
828 /* Some SPI eeproms use the 8th address bit embedded in
829 * the opcode */
830 if ((eeprom->address_bits == 8) && (offset >= 128))
831 read_opcode |= EEPROM_A8_OPCODE_SPI;
832
833 /* Send the READ command (opcode + addr) */
834 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
835 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
836 eeprom->address_bits);
837
838 /* Read the data. The address of the eeprom internally
839 * increments with each byte (spi) being read, saving on the
840 * overhead of eeprom setup and tear-down. The address
841 * counter will roll over if reading beyond the size of
842 * the eeprom, thus allowing the entire memory to be read
843 * starting from any offset. */
844 for (i = 0; i < words; i++) {
845 word_in = e1000_shift_in_ee_bits(hw, 16);
846 data[i] = (word_in >> 8) | (word_in << 8);
847 }
848 } else if (eeprom->type == e1000_eeprom_microwire) {
849 for (i = 0; i < words; i++) {
850 /* Send the READ command (opcode + addr) */
851 e1000_shift_out_ee_bits(hw,
852 EEPROM_READ_OPCODE_MICROWIRE,
853 eeprom->opcode_bits);
854 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
855 eeprom->address_bits);
856
857 /* Read the data. For microwire, each word requires
858 * the overhead of eeprom setup and tear-down. */
859 data[i] = e1000_shift_in_ee_bits(hw, 16);
860 e1000_standby_eeprom(hw);
861 }
862 }
863
864 /* End this read operation */
865 e1000_release_eeprom(hw);
866
867 return E1000_SUCCESS;
868}
869
870/******************************************************************************
871 * Verifies that the EEPROM has a valid checksum
872 *
873 * hw - Struct containing variables accessed by shared code
874 *
875 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
876 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
877 * valid.
878 *****************************************************************************/
879static int
880e1000_validate_eeprom_checksum(struct eth_device *nic)
881{
882 struct e1000_hw *hw = nic->priv;
883 uint16_t checksum = 0;
884 uint16_t i, eeprom_data;
885
886 DEBUGFUNC();
887
888 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
889 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
890 DEBUGOUT("EEPROM Read Error\n");
891 return -E1000_ERR_EEPROM;
892 }
893 checksum += eeprom_data;
894 }
895
896 if (checksum == (uint16_t) EEPROM_SUM) {
897 return 0;
898 } else {
899 DEBUGOUT("EEPROM Checksum Invalid\n");
900 return -E1000_ERR_EEPROM;
901 }
Roy Zang9b7c4302009-08-11 03:48:05 +0800902}
903
904/*****************************************************************************
905 * Set PHY to class A mode
906 * Assumes the following operations will follow to enable the new class mode.
907 * 1. Do a PHY soft reset
908 * 2. Restart auto-negotiation or force link.
909 *
910 * hw - Struct containing variables accessed by shared code
911 ****************************************************************************/
912static int32_t
913e1000_set_phy_mode(struct e1000_hw *hw)
914{
915 int32_t ret_val;
916 uint16_t eeprom_data;
917
918 DEBUGFUNC();
919
920 if ((hw->mac_type == e1000_82545_rev_3) &&
921 (hw->media_type == e1000_media_type_copper)) {
922 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
923 1, &eeprom_data);
924 if (ret_val)
925 return ret_val;
926
927 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
928 (eeprom_data & EEPROM_PHY_CLASS_A)) {
929 ret_val = e1000_write_phy_reg(hw,
930 M88E1000_PHY_PAGE_SELECT, 0x000B);
931 if (ret_val)
932 return ret_val;
933 ret_val = e1000_write_phy_reg(hw,
934 M88E1000_PHY_GEN_CONTROL, 0x8104);
935 if (ret_val)
936 return ret_val;
937
938 hw->phy_reset_disable = FALSE;
939 }
940 }
941
942 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800943}
944#endif /* #ifndef CONFIG_AP1000 */
945
946/***************************************************************************
947 *
948 * Obtaining software semaphore bit (SMBI) before resetting PHY.
949 *
950 * hw: Struct containing variables accessed by shared code
951 *
952 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
953 * E1000_SUCCESS at any other case.
954 *
955 ***************************************************************************/
956static int32_t
957e1000_get_software_semaphore(struct e1000_hw *hw)
958{
959 int32_t timeout = hw->eeprom.word_size + 1;
960 uint32_t swsm;
961
962 DEBUGFUNC();
963
964 if (hw->mac_type != e1000_80003es2lan)
965 return E1000_SUCCESS;
966
967 while (timeout) {
968 swsm = E1000_READ_REG(hw, SWSM);
969 /* If SMBI bit cleared, it is now set and we hold
970 * the semaphore */
971 if (!(swsm & E1000_SWSM_SMBI))
972 break;
973 mdelay(1);
974 timeout--;
975 }
976
977 if (!timeout) {
978 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
979 return -E1000_ERR_RESET;
980 }
981
982 return E1000_SUCCESS;
983}
984
985/***************************************************************************
986 * This function clears HW semaphore bits.
987 *
988 * hw: Struct containing variables accessed by shared code
989 *
990 * returns: - None.
991 *
992 ***************************************************************************/
993static void
994e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
995{
996 uint32_t swsm;
997
998 DEBUGFUNC();
999
1000 if (!hw->eeprom_semaphore_present)
1001 return;
1002
1003 swsm = E1000_READ_REG(hw, SWSM);
1004 if (hw->mac_type == e1000_80003es2lan) {
1005 /* Release both semaphores. */
1006 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1007 } else
1008 swsm &= ~(E1000_SWSM_SWESMBI);
1009 E1000_WRITE_REG(hw, SWSM, swsm);
1010}
1011
1012/***************************************************************************
1013 *
1014 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1015 * adapter or Eeprom access.
1016 *
1017 * hw: Struct containing variables accessed by shared code
1018 *
1019 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1020 * E1000_SUCCESS at any other case.
1021 *
1022 ***************************************************************************/
1023static int32_t
1024e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1025{
1026 int32_t timeout;
1027 uint32_t swsm;
1028
1029 DEBUGFUNC();
1030
1031 if (!hw->eeprom_semaphore_present)
1032 return E1000_SUCCESS;
1033
1034 if (hw->mac_type == e1000_80003es2lan) {
1035 /* Get the SW semaphore. */
1036 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1037 return -E1000_ERR_EEPROM;
1038 }
1039
1040 /* Get the FW semaphore. */
1041 timeout = hw->eeprom.word_size + 1;
1042 while (timeout) {
1043 swsm = E1000_READ_REG(hw, SWSM);
1044 swsm |= E1000_SWSM_SWESMBI;
1045 E1000_WRITE_REG(hw, SWSM, swsm);
1046 /* if we managed to set the bit we got the semaphore. */
1047 swsm = E1000_READ_REG(hw, SWSM);
1048 if (swsm & E1000_SWSM_SWESMBI)
1049 break;
1050
1051 udelay(50);
1052 timeout--;
1053 }
1054
1055 if (!timeout) {
1056 /* Release semaphores */
1057 e1000_put_hw_eeprom_semaphore(hw);
1058 DEBUGOUT("Driver can't access the Eeprom - "
1059 "SWESMBI bit is set.\n");
1060 return -E1000_ERR_EEPROM;
1061 }
1062
1063 return E1000_SUCCESS;
1064}
1065
1066static int32_t
1067e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1068{
1069 uint32_t swfw_sync = 0;
1070 uint32_t swmask = mask;
1071 uint32_t fwmask = mask << 16;
1072 int32_t timeout = 200;
1073
1074 DEBUGFUNC();
1075 while (timeout) {
1076 if (e1000_get_hw_eeprom_semaphore(hw))
1077 return -E1000_ERR_SWFW_SYNC;
1078
1079 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1080 if (!(swfw_sync & (fwmask | swmask)))
1081 break;
1082
1083 /* firmware currently using resource (fwmask) */
1084 /* or other software thread currently using resource (swmask) */
1085 e1000_put_hw_eeprom_semaphore(hw);
1086 mdelay(5);
1087 timeout--;
1088 }
1089
1090 if (!timeout) {
1091 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1092 return -E1000_ERR_SWFW_SYNC;
1093 }
1094
1095 swfw_sync |= swmask;
1096 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1097
1098 e1000_put_hw_eeprom_semaphore(hw);
1099 return E1000_SUCCESS;
1100}
1101
1102/******************************************************************************
1103 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1104 * second function of dual function devices
1105 *
1106 * nic - Struct containing variables accessed by shared code
1107 *****************************************************************************/
1108static int
1109e1000_read_mac_addr(struct eth_device *nic)
1110{
1111#ifndef CONFIG_AP1000
1112 struct e1000_hw *hw = nic->priv;
1113 uint16_t offset;
1114 uint16_t eeprom_data;
1115 int i;
1116
1117 DEBUGFUNC();
1118
1119 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001120 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001121 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001122 DEBUGOUT("EEPROM Read Error\n");
1123 return -E1000_ERR_EEPROM;
1124 }
1125 nic->enetaddr[i] = eeprom_data & 0xff;
1126 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1127 }
1128 if ((hw->mac_type == e1000_82546) &&
1129 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1130 /* Invert the last bit if this is the second device */
1131 nic->enetaddr[5] += 1;
1132 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001133#ifdef CONFIG_E1000_FALLBACK_MAC
Stefan Roese37628252008-08-06 14:05:38 +02001134 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1135 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1136
1137 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1138 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001139#endif
Wolfgang Denk56811f62005-10-09 01:04:33 +02001140#else
1141 /*
1142 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1143 * environment variables. Currently this does not support the addition
1144 * of a PMC e1000 card, which is certainly a possibility, so this should
1145 * be updated to properly use the env variable only for the onboard e1000
1146 */
1147
1148 int ii;
1149 char *s, *e;
1150
1151 DEBUGFUNC();
1152
1153 s = getenv ("ethaddr");
Stefan Roese37628252008-08-06 14:05:38 +02001154 if (s == NULL) {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001155 return -E1000_ERR_EEPROM;
Stefan Roese37628252008-08-06 14:05:38 +02001156 } else {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001157 for(ii = 0; ii < 6; ii++) {
1158 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1159 if (s){
1160 s = (*e) ? e + 1 : e;
1161 }
1162 }
1163 }
1164#endif
wdenk4e112c12003-06-03 23:54:09 +00001165 return 0;
1166}
1167
1168/******************************************************************************
1169 * Initializes receive address filters.
1170 *
wdenk57b2d802003-06-27 21:31:46 +00001171 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001172 *
1173 * Places the MAC address in receive address register 0 and clears the rest
1174 * of the receive addresss registers. Clears the multicast table. Assumes
1175 * the receiver is in reset when the routine is called.
1176 *****************************************************************************/
1177static void
1178e1000_init_rx_addrs(struct eth_device *nic)
1179{
1180 struct e1000_hw *hw = nic->priv;
1181 uint32_t i;
1182 uint32_t addr_low;
1183 uint32_t addr_high;
1184
1185 DEBUGFUNC();
1186
1187 /* Setup the receive address. */
1188 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1189 addr_low = (nic->enetaddr[0] |
1190 (nic->enetaddr[1] << 8) |
1191 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1192
1193 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1194
1195 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1196 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1197
1198 /* Zero out the other 15 receive addresses. */
1199 DEBUGOUT("Clearing RAR[1-15]\n");
1200 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1201 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1202 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1203 }
1204}
1205
1206/******************************************************************************
1207 * Clears the VLAN filer table
1208 *
1209 * hw - Struct containing variables accessed by shared code
1210 *****************************************************************************/
1211static void
1212e1000_clear_vfta(struct e1000_hw *hw)
1213{
1214 uint32_t offset;
1215
1216 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1217 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1218}
1219
1220/******************************************************************************
1221 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001222 *
wdenk4e112c12003-06-03 23:54:09 +00001223 * hw - Struct containing variables accessed by shared code
1224 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001225int32_t
wdenk4e112c12003-06-03 23:54:09 +00001226e1000_set_mac_type(struct e1000_hw *hw)
1227{
1228 DEBUGFUNC();
1229
1230 switch (hw->device_id) {
1231 case E1000_DEV_ID_82542:
1232 switch (hw->revision_id) {
1233 case E1000_82542_2_0_REV_ID:
1234 hw->mac_type = e1000_82542_rev2_0;
1235 break;
1236 case E1000_82542_2_1_REV_ID:
1237 hw->mac_type = e1000_82542_rev2_1;
1238 break;
1239 default:
1240 /* Invalid 82542 revision ID */
1241 return -E1000_ERR_MAC_TYPE;
1242 }
1243 break;
1244 case E1000_DEV_ID_82543GC_FIBER:
1245 case E1000_DEV_ID_82543GC_COPPER:
1246 hw->mac_type = e1000_82543;
1247 break;
1248 case E1000_DEV_ID_82544EI_COPPER:
1249 case E1000_DEV_ID_82544EI_FIBER:
1250 case E1000_DEV_ID_82544GC_COPPER:
1251 case E1000_DEV_ID_82544GC_LOM:
1252 hw->mac_type = e1000_82544;
1253 break;
1254 case E1000_DEV_ID_82540EM:
1255 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001256 case E1000_DEV_ID_82540EP:
1257 case E1000_DEV_ID_82540EP_LOM:
1258 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001259 hw->mac_type = e1000_82540;
1260 break;
1261 case E1000_DEV_ID_82545EM_COPPER:
1262 case E1000_DEV_ID_82545EM_FIBER:
1263 hw->mac_type = e1000_82545;
1264 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001265 case E1000_DEV_ID_82545GM_COPPER:
1266 case E1000_DEV_ID_82545GM_FIBER:
1267 case E1000_DEV_ID_82545GM_SERDES:
1268 hw->mac_type = e1000_82545_rev_3;
1269 break;
wdenk4e112c12003-06-03 23:54:09 +00001270 case E1000_DEV_ID_82546EB_COPPER:
1271 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001272 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001273 hw->mac_type = e1000_82546;
1274 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001275 case E1000_DEV_ID_82546GB_COPPER:
1276 case E1000_DEV_ID_82546GB_FIBER:
1277 case E1000_DEV_ID_82546GB_SERDES:
1278 case E1000_DEV_ID_82546GB_PCIE:
1279 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1280 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1281 hw->mac_type = e1000_82546_rev_3;
1282 break;
1283 case E1000_DEV_ID_82541EI:
1284 case E1000_DEV_ID_82541EI_MOBILE:
1285 case E1000_DEV_ID_82541ER_LOM:
1286 hw->mac_type = e1000_82541;
1287 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001288 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001289 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001290 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001291 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001292 hw->mac_type = e1000_82541_rev_2;
1293 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001294 case E1000_DEV_ID_82547EI:
1295 case E1000_DEV_ID_82547EI_MOBILE:
1296 hw->mac_type = e1000_82547;
1297 break;
1298 case E1000_DEV_ID_82547GI:
1299 hw->mac_type = e1000_82547_rev_2;
1300 break;
1301 case E1000_DEV_ID_82571EB_COPPER:
1302 case E1000_DEV_ID_82571EB_FIBER:
1303 case E1000_DEV_ID_82571EB_SERDES:
1304 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1305 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1306 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1307 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1308 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1309 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1310 hw->mac_type = e1000_82571;
1311 break;
1312 case E1000_DEV_ID_82572EI_COPPER:
1313 case E1000_DEV_ID_82572EI_FIBER:
1314 case E1000_DEV_ID_82572EI_SERDES:
1315 case E1000_DEV_ID_82572EI:
1316 hw->mac_type = e1000_82572;
1317 break;
1318 case E1000_DEV_ID_82573E:
1319 case E1000_DEV_ID_82573E_IAMT:
1320 case E1000_DEV_ID_82573L:
1321 hw->mac_type = e1000_82573;
1322 break;
Roy Zang181119b2011-01-21 11:29:38 +08001323 case E1000_DEV_ID_82574L:
1324 hw->mac_type = e1000_82574;
1325 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001326 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1327 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1328 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1329 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1330 hw->mac_type = e1000_80003es2lan;
1331 break;
1332 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1333 case E1000_DEV_ID_ICH8_IGP_AMT:
1334 case E1000_DEV_ID_ICH8_IGP_C:
1335 case E1000_DEV_ID_ICH8_IFE:
1336 case E1000_DEV_ID_ICH8_IFE_GT:
1337 case E1000_DEV_ID_ICH8_IFE_G:
1338 case E1000_DEV_ID_ICH8_IGP_M:
1339 hw->mac_type = e1000_ich8lan;
1340 break;
wdenk4e112c12003-06-03 23:54:09 +00001341 default:
1342 /* Should never have loaded on this device */
1343 return -E1000_ERR_MAC_TYPE;
1344 }
1345 return E1000_SUCCESS;
1346}
1347
1348/******************************************************************************
1349 * Reset the transmit and receive units; mask and clear all interrupts.
1350 *
1351 * hw - Struct containing variables accessed by shared code
1352 *****************************************************************************/
1353void
1354e1000_reset_hw(struct e1000_hw *hw)
1355{
1356 uint32_t ctrl;
1357 uint32_t ctrl_ext;
1358 uint32_t icr;
1359 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001360 uint32_t pba = 0;
wdenk4e112c12003-06-03 23:54:09 +00001361
1362 DEBUGFUNC();
1363
Roy Zang966172e2009-08-22 03:49:52 +08001364 /* get the correct pba value for both PCI and PCIe*/
1365 if (hw->mac_type < e1000_82571)
1366 pba = E1000_DEFAULT_PCI_PBA;
1367 else
1368 pba = E1000_DEFAULT_PCIE_PBA;
1369
wdenk4e112c12003-06-03 23:54:09 +00001370 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1371 if (hw->mac_type == e1000_82542_rev2_0) {
1372 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1373 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001374 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001375 }
1376
1377 /* Clear interrupt mask to stop board from generating interrupts */
1378 DEBUGOUT("Masking off all interrupts\n");
1379 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1380
1381 /* Disable the Transmit and Receive units. Then delay to allow
1382 * any pending transactions to complete before we hit the MAC with
1383 * the global reset.
1384 */
1385 E1000_WRITE_REG(hw, RCTL, 0);
1386 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1387 E1000_WRITE_FLUSH(hw);
1388
1389 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1390 hw->tbi_compatibility_on = FALSE;
1391
1392 /* Delay to allow any outstanding PCI transactions to complete before
1393 * resetting the device
1394 */
1395 mdelay(10);
1396
1397 /* Issue a global reset to the MAC. This will reset the chip's
1398 * transmit, receive, DMA, and link units. It will not effect
1399 * the current PCI configuration. The global reset bit is self-
1400 * clearing, and should clear within a microsecond.
1401 */
1402 DEBUGOUT("Issuing a global reset to MAC\n");
1403 ctrl = E1000_READ_REG(hw, CTRL);
1404
Roy Zang28f7a052009-07-31 13:34:02 +08001405 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001406
1407 /* Force a reload from the EEPROM if necessary */
1408 if (hw->mac_type < e1000_82540) {
1409 /* Wait for reset to complete */
1410 udelay(10);
1411 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1412 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1413 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1414 E1000_WRITE_FLUSH(hw);
1415 /* Wait for EEPROM reload */
1416 mdelay(2);
1417 } else {
1418 /* Wait for EEPROM reload (it happens automatically) */
1419 mdelay(4);
1420 /* Dissable HW ARPs on ASF enabled adapters */
1421 manc = E1000_READ_REG(hw, MANC);
1422 manc &= ~(E1000_MANC_ARP_EN);
1423 E1000_WRITE_REG(hw, MANC, manc);
1424 }
1425
1426 /* Clear interrupt mask to stop board from generating interrupts */
1427 DEBUGOUT("Masking off all interrupts\n");
1428 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1429
1430 /* Clear any pending interrupt events. */
1431 icr = E1000_READ_REG(hw, ICR);
1432
1433 /* If MWI was previously enabled, reenable it. */
1434 if (hw->mac_type == e1000_82542_rev2_0) {
1435 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1436 }
Roy Zang966172e2009-08-22 03:49:52 +08001437 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001438}
1439
1440/******************************************************************************
1441 *
1442 * Initialize a number of hardware-dependent bits
1443 *
1444 * hw: Struct containing variables accessed by shared code
1445 *
1446 * This function contains hardware limitation workarounds for PCI-E adapters
1447 *
1448 *****************************************************************************/
1449static void
1450e1000_initialize_hardware_bits(struct e1000_hw *hw)
1451{
1452 if ((hw->mac_type >= e1000_82571) &&
1453 (!hw->initialize_hw_bits_disable)) {
1454 /* Settings common to all PCI-express silicon */
1455 uint32_t reg_ctrl, reg_ctrl_ext;
1456 uint32_t reg_tarc0, reg_tarc1;
1457 uint32_t reg_tctl;
1458 uint32_t reg_txdctl, reg_txdctl1;
1459
1460 /* link autonegotiation/sync workarounds */
1461 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1462 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1463
1464 /* Enable not-done TX descriptor counting */
1465 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1466 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1467 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1468
1469 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1470 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1471 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1472
1473 switch (hw->mac_type) {
1474 case e1000_82571:
1475 case e1000_82572:
1476 /* Clear PHY TX compatible mode bits */
1477 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1478 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1479
1480 /* link autonegotiation/sync workarounds */
1481 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1482
1483 /* TX ring control fixes */
1484 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1485
1486 /* Multiple read bit is reversed polarity */
1487 reg_tctl = E1000_READ_REG(hw, TCTL);
1488 if (reg_tctl & E1000_TCTL_MULR)
1489 reg_tarc1 &= ~(1 << 28);
1490 else
1491 reg_tarc1 |= (1 << 28);
1492
1493 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1494 break;
1495 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001496 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001497 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1498 reg_ctrl_ext &= ~(1 << 23);
1499 reg_ctrl_ext |= (1 << 22);
1500
1501 /* TX byte count fix */
1502 reg_ctrl = E1000_READ_REG(hw, CTRL);
1503 reg_ctrl &= ~(1 << 29);
1504
1505 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1506 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1507 break;
1508 case e1000_80003es2lan:
1509 /* improve small packet performace for fiber/serdes */
1510 if ((hw->media_type == e1000_media_type_fiber)
1511 || (hw->media_type ==
1512 e1000_media_type_internal_serdes)) {
1513 reg_tarc0 &= ~(1 << 20);
1514 }
1515
1516 /* Multiple read bit is reversed polarity */
1517 reg_tctl = E1000_READ_REG(hw, TCTL);
1518 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1519 if (reg_tctl & E1000_TCTL_MULR)
1520 reg_tarc1 &= ~(1 << 28);
1521 else
1522 reg_tarc1 |= (1 << 28);
1523
1524 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1525 break;
1526 case e1000_ich8lan:
1527 /* Reduce concurrent DMA requests to 3 from 4 */
1528 if ((hw->revision_id < 3) ||
1529 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1530 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1531 reg_tarc0 |= ((1 << 29)|(1 << 28));
1532
1533 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1534 reg_ctrl_ext |= (1 << 22);
1535 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1536
1537 /* workaround TX hang with TSO=on */
1538 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1539
1540 /* Multiple read bit is reversed polarity */
1541 reg_tctl = E1000_READ_REG(hw, TCTL);
1542 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1543 if (reg_tctl & E1000_TCTL_MULR)
1544 reg_tarc1 &= ~(1 << 28);
1545 else
1546 reg_tarc1 |= (1 << 28);
1547
1548 /* workaround TX hang with TSO=on */
1549 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1550
1551 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1552 break;
1553 default:
1554 break;
1555 }
1556
1557 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1558 }
wdenk4e112c12003-06-03 23:54:09 +00001559}
1560
1561/******************************************************************************
1562 * Performs basic configuration of the adapter.
1563 *
1564 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001565 *
1566 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001567 * post-reset uninitialized state. Initializes the receive address registers,
1568 * multicast table, and VLAN filter table. Calls routines to setup link
1569 * configuration and flow control settings. Clears all on-chip counters. Leaves
1570 * the transmit and receive units disabled and uninitialized.
1571 *****************************************************************************/
1572static int
1573e1000_init_hw(struct eth_device *nic)
1574{
1575 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001576 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001577 uint32_t i;
1578 int32_t ret_val;
1579 uint16_t pcix_cmd_word;
1580 uint16_t pcix_stat_hi_word;
1581 uint16_t cmd_mmrbc;
1582 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001583 uint32_t mta_size;
1584 uint32_t reg_data;
1585 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001586 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001587 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1588 if ((hw->mac_type == e1000_ich8lan) &&
1589 ((hw->revision_id < 3) ||
1590 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1591 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1592 reg_data = E1000_READ_REG(hw, STATUS);
1593 reg_data &= ~0x80000000;
1594 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001595 }
Roy Zang28f7a052009-07-31 13:34:02 +08001596 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001597
Roy Zang28f7a052009-07-31 13:34:02 +08001598 /* Set the media type and TBI compatibility */
1599 e1000_set_media_type(hw);
1600
1601 /* Must be called after e1000_set_media_type
1602 * because media_type is used */
1603 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001604
1605 /* Disabling VLAN filtering. */
1606 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001607 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1608 if (hw->mac_type != e1000_ich8lan) {
1609 if (hw->mac_type < e1000_82545_rev_3)
1610 E1000_WRITE_REG(hw, VET, 0);
1611 e1000_clear_vfta(hw);
1612 }
wdenk4e112c12003-06-03 23:54:09 +00001613
1614 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1615 if (hw->mac_type == e1000_82542_rev2_0) {
1616 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1617 pci_write_config_word(hw->pdev, PCI_COMMAND,
1618 hw->
1619 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1620 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1621 E1000_WRITE_FLUSH(hw);
1622 mdelay(5);
1623 }
1624
1625 /* Setup the receive address. This involves initializing all of the Receive
1626 * Address Registers (RARs 0 - 15).
1627 */
1628 e1000_init_rx_addrs(nic);
1629
1630 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1631 if (hw->mac_type == e1000_82542_rev2_0) {
1632 E1000_WRITE_REG(hw, RCTL, 0);
1633 E1000_WRITE_FLUSH(hw);
1634 mdelay(1);
1635 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1636 }
1637
1638 /* Zero out the Multicast HASH table */
1639 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001640 mta_size = E1000_MC_TBL_SIZE;
1641 if (hw->mac_type == e1000_ich8lan)
1642 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1643 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001644 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001645 /* use write flush to prevent Memory Write Block (MWB) from
1646 * occuring when accessing our register space */
1647 E1000_WRITE_FLUSH(hw);
1648 }
wdenk4e112c12003-06-03 23:54:09 +00001649#if 0
1650 /* Set the PCI priority bit correctly in the CTRL register. This
1651 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001652 * gives equal priority to transmits and receives. Valid only on
1653 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001654 */
Roy Zang28f7a052009-07-31 13:34:02 +08001655 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001656 ctrl = E1000_READ_REG(hw, CTRL);
1657 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1658 }
1659#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001660 switch (hw->mac_type) {
1661 case e1000_82545_rev_3:
1662 case e1000_82546_rev_3:
1663 break;
1664 default:
wdenk4e112c12003-06-03 23:54:09 +00001665 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001666 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001667 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1668 &pcix_cmd_word);
1669 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1670 &pcix_stat_hi_word);
1671 cmd_mmrbc =
1672 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1673 PCIX_COMMAND_MMRBC_SHIFT;
1674 stat_mmrbc =
1675 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1676 PCIX_STATUS_HI_MMRBC_SHIFT;
1677 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1678 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1679 if (cmd_mmrbc > stat_mmrbc) {
1680 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1681 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1682 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1683 pcix_cmd_word);
1684 }
1685 }
Roy Zang28f7a052009-07-31 13:34:02 +08001686 break;
1687 }
wdenk4e112c12003-06-03 23:54:09 +00001688
Roy Zang28f7a052009-07-31 13:34:02 +08001689 /* More time needed for PHY to initialize */
1690 if (hw->mac_type == e1000_ich8lan)
1691 mdelay(15);
1692
wdenk4e112c12003-06-03 23:54:09 +00001693 /* Call a subroutine to configure the link and setup flow control. */
1694 ret_val = e1000_setup_link(nic);
1695
1696 /* Set the transmit descriptor write-back policy */
1697 if (hw->mac_type > e1000_82544) {
1698 ctrl = E1000_READ_REG(hw, TXDCTL);
1699 ctrl =
1700 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1701 E1000_TXDCTL_FULL_TX_DESC_WB;
1702 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1703 }
Roy Zang28f7a052009-07-31 13:34:02 +08001704
1705 switch (hw->mac_type) {
1706 default:
1707 break;
1708 case e1000_80003es2lan:
1709 /* Enable retransmit on late collisions */
1710 reg_data = E1000_READ_REG(hw, TCTL);
1711 reg_data |= E1000_TCTL_RTLC;
1712 E1000_WRITE_REG(hw, TCTL, reg_data);
1713
1714 /* Configure Gigabit Carry Extend Padding */
1715 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1716 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1717 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1718 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1719
1720 /* Configure Transmit Inter-Packet Gap */
1721 reg_data = E1000_READ_REG(hw, TIPG);
1722 reg_data &= ~E1000_TIPG_IPGT_MASK;
1723 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1724 E1000_WRITE_REG(hw, TIPG, reg_data);
1725
1726 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1727 reg_data &= ~0x00100000;
1728 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1729 /* Fall through */
1730 case e1000_82571:
1731 case e1000_82572:
1732 case e1000_ich8lan:
1733 ctrl = E1000_READ_REG(hw, TXDCTL1);
1734 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1735 | E1000_TXDCTL_FULL_TX_DESC_WB;
1736 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1737 break;
Roy Zang181119b2011-01-21 11:29:38 +08001738 case e1000_82573:
1739 case e1000_82574:
1740 reg_data = E1000_READ_REG(hw, GCR);
1741 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1742 E1000_WRITE_REG(hw, GCR, reg_data);
Roy Zang28f7a052009-07-31 13:34:02 +08001743 }
1744
wdenk4e112c12003-06-03 23:54:09 +00001745#if 0
1746 /* Clear all of the statistics registers (clear on read). It is
1747 * important that we do this after we have tried to establish link
1748 * because the symbol error count will increment wildly if there
1749 * is no link.
1750 */
1751 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001752
1753 /* ICH8 No-snoop bits are opposite polarity.
1754 * Set to snoop by default after reset. */
1755 if (hw->mac_type == e1000_ich8lan)
1756 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001757#endif
1758
Roy Zang28f7a052009-07-31 13:34:02 +08001759 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1760 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1761 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1762 /* Relaxed ordering must be disabled to avoid a parity
1763 * error crash in a PCI slot. */
1764 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1765 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1766 }
1767
1768 return ret_val;
1769}
wdenk4e112c12003-06-03 23:54:09 +00001770
1771/******************************************************************************
1772 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001773 *
wdenk4e112c12003-06-03 23:54:09 +00001774 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001775 *
wdenk4e112c12003-06-03 23:54:09 +00001776 * Determines which flow control settings to use. Calls the apropriate media-
1777 * specific link configuration function. Configures the flow control settings.
1778 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001779 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001780 * transmitter and receiver are not enabled.
1781 *****************************************************************************/
1782static int
1783e1000_setup_link(struct eth_device *nic)
1784{
1785 struct e1000_hw *hw = nic->priv;
1786 uint32_t ctrl_ext;
1787 int32_t ret_val;
1788 uint16_t eeprom_data;
1789
1790 DEBUGFUNC();
1791
Roy Zang28f7a052009-07-31 13:34:02 +08001792 /* In the case of the phy reset being blocked, we already have a link.
1793 * We do not have to set it up again. */
1794 if (e1000_check_phy_reset_block(hw))
1795 return E1000_SUCCESS;
1796
Wolfgang Denk56811f62005-10-09 01:04:33 +02001797#ifndef CONFIG_AP1000
wdenk4e112c12003-06-03 23:54:09 +00001798 /* Read and store word 0x0F of the EEPROM. This word contains bits
1799 * that determine the hardware's default PAUSE (flow control) mode,
1800 * a bit that determines whether the HW defaults to enabling or
1801 * disabling auto-negotiation, and the direction of the
1802 * SW defined pins. If there is no SW over-ride of the flow
1803 * control setting, then the variable hw->fc will
1804 * be initialized based on a value in the EEPROM.
1805 */
Roy Zang28f7a052009-07-31 13:34:02 +08001806 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1807 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001808 DEBUGOUT("EEPROM Read Error\n");
1809 return -E1000_ERR_EEPROM;
1810 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02001811#else
1812 /* we have to hardcode the proper value for our hardware. */
1813 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1814 eeprom_data = 0xb220;
1815#endif
wdenk4e112c12003-06-03 23:54:09 +00001816
1817 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001818 switch (hw->mac_type) {
1819 case e1000_ich8lan:
1820 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001821 case e1000_82574:
wdenk4e112c12003-06-03 23:54:09 +00001822 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001823 break;
1824 default:
1825#ifndef CONFIG_AP1000
1826 ret_val = e1000_read_eeprom(hw,
1827 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1828 if (ret_val) {
1829 DEBUGOUT("EEPROM Read Error\n");
1830 return -E1000_ERR_EEPROM;
1831 }
1832#else
1833 eeprom_data = 0xb220;
1834#endif
1835 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1836 hw->fc = e1000_fc_none;
1837 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1838 EEPROM_WORD0F_ASM_DIR)
1839 hw->fc = e1000_fc_tx_pause;
1840 else
1841 hw->fc = e1000_fc_full;
1842 break;
1843 }
wdenk4e112c12003-06-03 23:54:09 +00001844 }
1845
1846 /* We want to save off the original Flow Control configuration just
1847 * in case we get disconnected and then reconnected into a different
1848 * hub or switch with different Flow Control capabilities.
1849 */
1850 if (hw->mac_type == e1000_82542_rev2_0)
1851 hw->fc &= (~e1000_fc_tx_pause);
1852
1853 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1854 hw->fc &= (~e1000_fc_rx_pause);
1855
1856 hw->original_fc = hw->fc;
1857
1858 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1859
1860 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1861 * polarity value for the SW controlled pins, and setup the
1862 * Extended Device Control reg with that info.
1863 * This is needed because one of the SW controlled pins is used for
1864 * signal detection. So this should be done before e1000_setup_pcs_link()
1865 * or e1000_phy_setup() is called.
1866 */
1867 if (hw->mac_type == e1000_82543) {
1868 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1869 SWDPIO__EXT_SHIFT);
1870 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1871 }
1872
1873 /* Call the necessary subroutine to configure the link. */
1874 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1875 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1876 if (ret_val < 0) {
1877 return ret_val;
1878 }
1879
1880 /* Initialize the flow control address, type, and PAUSE timer
1881 * registers to their default values. This is done even if flow
1882 * control is disabled, because it does not hurt anything to
1883 * initialize these registers.
1884 */
Roy Zang28f7a052009-07-31 13:34:02 +08001885 DEBUGOUT("Initializing the Flow Control address, type"
1886 "and timer regs\n");
1887
1888 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1889 if (hw->mac_type != e1000_ich8lan) {
1890 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1891 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1892 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1893 }
wdenk4e112c12003-06-03 23:54:09 +00001894
wdenk4e112c12003-06-03 23:54:09 +00001895 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1896
1897 /* Set the flow control receive threshold registers. Normally,
1898 * these registers will be set to a default threshold that may be
1899 * adjusted later by the driver's runtime code. However, if the
1900 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001901 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001902 */
1903 if (!(hw->fc & e1000_fc_tx_pause)) {
1904 E1000_WRITE_REG(hw, FCRTL, 0);
1905 E1000_WRITE_REG(hw, FCRTH, 0);
1906 } else {
1907 /* We need to set up the Receive Threshold high and low water marks
1908 * as well as (optionally) enabling the transmission of XON frames.
1909 */
1910 if (hw->fc_send_xon) {
1911 E1000_WRITE_REG(hw, FCRTL,
1912 (hw->fc_low_water | E1000_FCRTL_XONE));
1913 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1914 } else {
1915 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1916 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1917 }
1918 }
1919 return ret_val;
1920}
1921
1922/******************************************************************************
1923 * Sets up link for a fiber based adapter
1924 *
1925 * hw - Struct containing variables accessed by shared code
1926 *
1927 * Manipulates Physical Coding Sublayer functions in order to configure
1928 * link. Assumes the hardware has been previously reset and the transmitter
1929 * and receiver are not enabled.
1930 *****************************************************************************/
1931static int
1932e1000_setup_fiber_link(struct eth_device *nic)
1933{
1934 struct e1000_hw *hw = nic->priv;
1935 uint32_t ctrl;
1936 uint32_t status;
1937 uint32_t txcw = 0;
1938 uint32_t i;
1939 uint32_t signal;
1940 int32_t ret_val;
1941
1942 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001943 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1944 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001945 * cleared when there is a signal
1946 */
1947 ctrl = E1000_READ_REG(hw, CTRL);
1948 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1949 signal = E1000_CTRL_SWDPIN1;
1950 else
1951 signal = 0;
1952
1953 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1954 ctrl);
1955 /* Take the link out of reset */
1956 ctrl &= ~(E1000_CTRL_LRST);
1957
1958 e1000_config_collision_dist(hw);
1959
1960 /* Check for a software override of the flow control settings, and setup
1961 * the device accordingly. If auto-negotiation is enabled, then software
1962 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1963 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001964 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001965 * configure the two flow control enable bits in the CTRL register.
1966 *
1967 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001968 * 0: Flow control is completely disabled
1969 * 1: Rx flow control is enabled (we can receive pause frames, but
1970 * not send pause frames).
1971 * 2: Tx flow control is enabled (we can send pause frames but we do
1972 * not support receiving pause frames).
1973 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001974 */
1975 switch (hw->fc) {
1976 case e1000_fc_none:
1977 /* Flow control is completely disabled by a software over-ride. */
1978 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1979 break;
1980 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001981 /* RX Flow control is enabled and TX Flow control is disabled by a
1982 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001983 * that we are capable of RX Pause ONLY, we will advertise that we
1984 * support both symmetric and asymmetric RX PAUSE. Later, we will
1985 * disable the adapter's ability to send PAUSE frames.
1986 */
1987 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1988 break;
1989 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001990 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00001991 * software over-ride.
1992 */
1993 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1994 break;
1995 case e1000_fc_full:
1996 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1997 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1998 break;
1999 default:
2000 DEBUGOUT("Flow control param set incorrectly\n");
2001 return -E1000_ERR_CONFIG;
2002 break;
2003 }
2004
2005 /* Since auto-negotiation is enabled, take the link out of reset (the link
2006 * will be in reset, because we previously reset the chip). This will
2007 * restart auto-negotiation. If auto-neogtiation is successful then the
2008 * link-up status bit will be set and the flow control enable bits (RFCE
2009 * and TFCE) will be set according to their negotiated value.
2010 */
2011 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2012
2013 E1000_WRITE_REG(hw, TXCW, txcw);
2014 E1000_WRITE_REG(hw, CTRL, ctrl);
2015 E1000_WRITE_FLUSH(hw);
2016
2017 hw->txcw = txcw;
2018 mdelay(1);
2019
2020 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002021 * indication in the Device Status Register. Time-out if a link isn't
2022 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002023 * less than 500 milliseconds even if the other end is doing it in SW).
2024 */
2025 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2026 DEBUGOUT("Looking for Link\n");
2027 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2028 mdelay(10);
2029 status = E1000_READ_REG(hw, STATUS);
2030 if (status & E1000_STATUS_LU)
2031 break;
2032 }
2033 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002034 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002035 * e1000_check_for_link. This routine will force the link up if we
2036 * detect a signal. This will allow us to communicate with
2037 * non-autonegotiating link partners.
2038 */
2039 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2040 hw->autoneg_failed = 1;
2041 ret_val = e1000_check_for_link(nic);
2042 if (ret_val < 0) {
2043 DEBUGOUT("Error while checking for link\n");
2044 return ret_val;
2045 }
2046 hw->autoneg_failed = 0;
2047 } else {
2048 hw->autoneg_failed = 0;
2049 DEBUGOUT("Valid Link Found\n");
2050 }
2051 } else {
2052 DEBUGOUT("No Signal Detected\n");
2053 return -E1000_ERR_NOLINK;
2054 }
2055 return 0;
2056}
2057
2058/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002059* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002060*
2061* hw - Struct containing variables accessed by shared code
2062******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002063static int32_t
2064e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002065{
wdenk4e112c12003-06-03 23:54:09 +00002066 uint32_t ctrl;
2067 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002068 uint16_t phy_data;
2069
2070 DEBUGFUNC();
2071
2072 ctrl = E1000_READ_REG(hw, CTRL);
2073 /* With 82543, we need to force speed and duplex on the MAC equal to what
2074 * the PHY speed and duplex configuration is. In addition, we need to
2075 * perform a hardware reset on the PHY to take it out of reset.
2076 */
2077 if (hw->mac_type > e1000_82543) {
2078 ctrl |= E1000_CTRL_SLU;
2079 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2080 E1000_WRITE_REG(hw, CTRL, ctrl);
2081 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002082 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2083 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002084 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002085 ret_val = e1000_phy_hw_reset(hw);
2086 if (ret_val)
2087 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002088 }
2089
2090 /* Make sure we have a valid PHY */
2091 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002092 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002093 DEBUGOUT("Error, did not detect valid phy.\n");
2094 return ret_val;
2095 }
2096 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2097
Roy Zang28f7a052009-07-31 13:34:02 +08002098#ifndef CONFIG_AP1000
2099 /* Set PHY to class A mode (if necessary) */
2100 ret_val = e1000_set_phy_mode(hw);
2101 if (ret_val)
2102 return ret_val;
2103#endif
2104 if ((hw->mac_type == e1000_82545_rev_3) ||
2105 (hw->mac_type == e1000_82546_rev_3)) {
2106 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2107 &phy_data);
2108 phy_data |= 0x00000008;
2109 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2110 phy_data);
2111 }
2112
2113 if (hw->mac_type <= e1000_82543 ||
2114 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2115 hw->mac_type == e1000_82541_rev_2
2116 || hw->mac_type == e1000_82547_rev_2)
2117 hw->phy_reset_disable = FALSE;
2118
2119 return E1000_SUCCESS;
2120}
2121
2122/*****************************************************************************
2123 *
2124 * This function sets the lplu state according to the active flag. When
2125 * activating lplu this function also disables smart speed and vise versa.
2126 * lplu will not be activated unless the device autonegotiation advertisment
2127 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2128 * hw: Struct containing variables accessed by shared code
2129 * active - true to enable lplu false to disable lplu.
2130 *
2131 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2132 * E1000_SUCCESS at any other case.
2133 *
2134 ****************************************************************************/
2135
2136static int32_t
2137e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2138{
2139 uint32_t phy_ctrl = 0;
2140 int32_t ret_val;
2141 uint16_t phy_data;
2142 DEBUGFUNC();
2143
2144 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2145 && hw->phy_type != e1000_phy_igp_3)
2146 return E1000_SUCCESS;
2147
2148 /* During driver activity LPLU should not be used or it will attain link
2149 * from the lowest speeds starting from 10Mbps. The capability is used
2150 * for Dx transitions and states */
2151 if (hw->mac_type == e1000_82541_rev_2
2152 || hw->mac_type == e1000_82547_rev_2) {
2153 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2154 &phy_data);
2155 if (ret_val)
2156 return ret_val;
2157 } else if (hw->mac_type == e1000_ich8lan) {
2158 /* MAC writes into PHY register based on the state transition
2159 * and start auto-negotiation. SW driver can overwrite the
2160 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2161 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2162 } else {
2163 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2164 &phy_data);
2165 if (ret_val)
2166 return ret_val;
2167 }
2168
2169 if (!active) {
2170 if (hw->mac_type == e1000_82541_rev_2 ||
2171 hw->mac_type == e1000_82547_rev_2) {
2172 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2173 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2174 phy_data);
2175 if (ret_val)
2176 return ret_val;
2177 } else {
2178 if (hw->mac_type == e1000_ich8lan) {
2179 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2180 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2181 } else {
2182 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2183 ret_val = e1000_write_phy_reg(hw,
2184 IGP02E1000_PHY_POWER_MGMT, phy_data);
2185 if (ret_val)
2186 return ret_val;
2187 }
2188 }
2189
2190 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2191 * Dx states where the power conservation is most important. During
2192 * driver activity we should enable SmartSpeed, so performance is
2193 * maintained. */
2194 if (hw->smart_speed == e1000_smart_speed_on) {
2195 ret_val = e1000_read_phy_reg(hw,
2196 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2197 if (ret_val)
2198 return ret_val;
2199
2200 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2201 ret_val = e1000_write_phy_reg(hw,
2202 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2203 if (ret_val)
2204 return ret_val;
2205 } else if (hw->smart_speed == e1000_smart_speed_off) {
2206 ret_val = e1000_read_phy_reg(hw,
2207 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2208 if (ret_val)
2209 return ret_val;
2210
2211 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2212 ret_val = e1000_write_phy_reg(hw,
2213 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2214 if (ret_val)
2215 return ret_val;
2216 }
2217
2218 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2219 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2220 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2221
2222 if (hw->mac_type == e1000_82541_rev_2 ||
2223 hw->mac_type == e1000_82547_rev_2) {
2224 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2225 ret_val = e1000_write_phy_reg(hw,
2226 IGP01E1000_GMII_FIFO, phy_data);
2227 if (ret_val)
2228 return ret_val;
2229 } else {
2230 if (hw->mac_type == e1000_ich8lan) {
2231 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2232 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2233 } else {
2234 phy_data |= IGP02E1000_PM_D3_LPLU;
2235 ret_val = e1000_write_phy_reg(hw,
2236 IGP02E1000_PHY_POWER_MGMT, phy_data);
2237 if (ret_val)
2238 return ret_val;
2239 }
2240 }
2241
2242 /* When LPLU is enabled we should disable SmartSpeed */
2243 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2244 &phy_data);
2245 if (ret_val)
2246 return ret_val;
2247
2248 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2249 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2250 phy_data);
2251 if (ret_val)
2252 return ret_val;
2253 }
2254 return E1000_SUCCESS;
2255}
2256
2257/*****************************************************************************
2258 *
2259 * This function sets the lplu d0 state according to the active flag. When
2260 * activating lplu this function also disables smart speed and vise versa.
2261 * lplu will not be activated unless the device autonegotiation advertisment
2262 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2263 * hw: Struct containing variables accessed by shared code
2264 * active - true to enable lplu false to disable lplu.
2265 *
2266 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2267 * E1000_SUCCESS at any other case.
2268 *
2269 ****************************************************************************/
2270
2271static int32_t
2272e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2273{
2274 uint32_t phy_ctrl = 0;
2275 int32_t ret_val;
2276 uint16_t phy_data;
2277 DEBUGFUNC();
2278
2279 if (hw->mac_type <= e1000_82547_rev_2)
2280 return E1000_SUCCESS;
2281
2282 if (hw->mac_type == e1000_ich8lan) {
2283 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2284 } else {
2285 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2286 &phy_data);
2287 if (ret_val)
2288 return ret_val;
2289 }
2290
2291 if (!active) {
2292 if (hw->mac_type == e1000_ich8lan) {
2293 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2294 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2295 } else {
2296 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2297 ret_val = e1000_write_phy_reg(hw,
2298 IGP02E1000_PHY_POWER_MGMT, phy_data);
2299 if (ret_val)
2300 return ret_val;
2301 }
2302
2303 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2304 * Dx states where the power conservation is most important. During
2305 * driver activity we should enable SmartSpeed, so performance is
2306 * maintained. */
2307 if (hw->smart_speed == e1000_smart_speed_on) {
2308 ret_val = e1000_read_phy_reg(hw,
2309 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2310 if (ret_val)
2311 return ret_val;
2312
2313 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2314 ret_val = e1000_write_phy_reg(hw,
2315 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2316 if (ret_val)
2317 return ret_val;
2318 } else if (hw->smart_speed == e1000_smart_speed_off) {
2319 ret_val = e1000_read_phy_reg(hw,
2320 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2321 if (ret_val)
2322 return ret_val;
2323
2324 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2325 ret_val = e1000_write_phy_reg(hw,
2326 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2327 if (ret_val)
2328 return ret_val;
2329 }
2330
2331
2332 } else {
2333
2334 if (hw->mac_type == e1000_ich8lan) {
2335 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2336 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2337 } else {
2338 phy_data |= IGP02E1000_PM_D0_LPLU;
2339 ret_val = e1000_write_phy_reg(hw,
2340 IGP02E1000_PHY_POWER_MGMT, phy_data);
2341 if (ret_val)
2342 return ret_val;
2343 }
2344
2345 /* When LPLU is enabled we should disable SmartSpeed */
2346 ret_val = e1000_read_phy_reg(hw,
2347 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2348 if (ret_val)
2349 return ret_val;
2350
2351 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2352 ret_val = e1000_write_phy_reg(hw,
2353 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2354 if (ret_val)
2355 return ret_val;
2356
2357 }
2358 return E1000_SUCCESS;
2359}
2360
2361/********************************************************************
2362* Copper link setup for e1000_phy_igp series.
2363*
2364* hw - Struct containing variables accessed by shared code
2365*********************************************************************/
2366static int32_t
2367e1000_copper_link_igp_setup(struct e1000_hw *hw)
2368{
2369 uint32_t led_ctrl;
2370 int32_t ret_val;
2371 uint16_t phy_data;
2372
Timur Tabiedc45b52009-08-17 15:55:38 -05002373 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002374
2375 if (hw->phy_reset_disable)
2376 return E1000_SUCCESS;
2377
2378 ret_val = e1000_phy_reset(hw);
2379 if (ret_val) {
2380 DEBUGOUT("Error Resetting the PHY\n");
2381 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002382 }
Roy Zang28f7a052009-07-31 13:34:02 +08002383
2384 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2385 mdelay(15);
2386 if (hw->mac_type != e1000_ich8lan) {
2387 /* Configure activity LED after PHY reset */
2388 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2389 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2390 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2391 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2392 }
2393
2394 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2395 if (hw->phy_type == e1000_phy_igp) {
2396 /* disable lplu d3 during driver init */
2397 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2398 if (ret_val) {
2399 DEBUGOUT("Error Disabling LPLU D3\n");
2400 return ret_val;
2401 }
2402 }
2403
2404 /* disable lplu d0 during driver init */
2405 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2406 if (ret_val) {
2407 DEBUGOUT("Error Disabling LPLU D0\n");
2408 return ret_val;
2409 }
2410 /* Configure mdi-mdix settings */
2411 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2412 if (ret_val)
2413 return ret_val;
2414
2415 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2416 hw->dsp_config_state = e1000_dsp_config_disabled;
2417 /* Force MDI for earlier revs of the IGP PHY */
2418 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2419 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2420 hw->mdix = 1;
2421
2422 } else {
2423 hw->dsp_config_state = e1000_dsp_config_enabled;
2424 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2425
2426 switch (hw->mdix) {
2427 case 1:
2428 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2429 break;
2430 case 2:
2431 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2432 break;
2433 case 0:
2434 default:
2435 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2436 break;
2437 }
2438 }
2439 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2440 if (ret_val)
2441 return ret_val;
2442
2443 /* set auto-master slave resolution settings */
2444 if (hw->autoneg) {
2445 e1000_ms_type phy_ms_setting = hw->master_slave;
2446
2447 if (hw->ffe_config_state == e1000_ffe_config_active)
2448 hw->ffe_config_state = e1000_ffe_config_enabled;
2449
2450 if (hw->dsp_config_state == e1000_dsp_config_activated)
2451 hw->dsp_config_state = e1000_dsp_config_enabled;
2452
2453 /* when autonegotiation advertisment is only 1000Mbps then we
2454 * should disable SmartSpeed and enable Auto MasterSlave
2455 * resolution as hardware default. */
2456 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2457 /* Disable SmartSpeed */
2458 ret_val = e1000_read_phy_reg(hw,
2459 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2460 if (ret_val)
2461 return ret_val;
2462 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2463 ret_val = e1000_write_phy_reg(hw,
2464 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2465 if (ret_val)
2466 return ret_val;
2467 /* Set auto Master/Slave resolution process */
2468 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2469 &phy_data);
2470 if (ret_val)
2471 return ret_val;
2472 phy_data &= ~CR_1000T_MS_ENABLE;
2473 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2474 phy_data);
2475 if (ret_val)
2476 return ret_val;
2477 }
2478
2479 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2480 if (ret_val)
2481 return ret_val;
2482
2483 /* load defaults for future use */
2484 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2485 ((phy_data & CR_1000T_MS_VALUE) ?
2486 e1000_ms_force_master :
2487 e1000_ms_force_slave) :
2488 e1000_ms_auto;
2489
2490 switch (phy_ms_setting) {
2491 case e1000_ms_force_master:
2492 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2493 break;
2494 case e1000_ms_force_slave:
2495 phy_data |= CR_1000T_MS_ENABLE;
2496 phy_data &= ~(CR_1000T_MS_VALUE);
2497 break;
2498 case e1000_ms_auto:
2499 phy_data &= ~CR_1000T_MS_ENABLE;
2500 default:
2501 break;
2502 }
2503 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2504 if (ret_val)
2505 return ret_val;
2506 }
2507
2508 return E1000_SUCCESS;
2509}
2510
2511/*****************************************************************************
2512 * This function checks the mode of the firmware.
2513 *
2514 * returns - TRUE when the mode is IAMT or FALSE.
2515 ****************************************************************************/
2516boolean_t
2517e1000_check_mng_mode(struct e1000_hw *hw)
2518{
2519 uint32_t fwsm;
2520 DEBUGFUNC();
2521
2522 fwsm = E1000_READ_REG(hw, FWSM);
2523
2524 if (hw->mac_type == e1000_ich8lan) {
2525 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2526 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2527 return TRUE;
2528 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2529 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2530 return TRUE;
2531
2532 return FALSE;
2533}
2534
2535static int32_t
2536e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2537{
2538 uint32_t reg_val;
2539 uint16_t swfw;
2540 DEBUGFUNC();
2541
2542 if ((hw->mac_type == e1000_80003es2lan) &&
2543 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2544 swfw = E1000_SWFW_PHY1_SM;
2545 } else {
2546 swfw = E1000_SWFW_PHY0_SM;
2547 }
2548 if (e1000_swfw_sync_acquire(hw, swfw))
2549 return -E1000_ERR_SWFW_SYNC;
2550
2551 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2552 & E1000_KUMCTRLSTA_OFFSET) | data;
2553 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2554 udelay(2);
2555
2556 return E1000_SUCCESS;
2557}
2558
2559static int32_t
2560e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2561{
2562 uint32_t reg_val;
2563 uint16_t swfw;
2564 DEBUGFUNC();
2565
2566 if ((hw->mac_type == e1000_80003es2lan) &&
2567 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2568 swfw = E1000_SWFW_PHY1_SM;
2569 } else {
2570 swfw = E1000_SWFW_PHY0_SM;
2571 }
2572 if (e1000_swfw_sync_acquire(hw, swfw))
2573 return -E1000_ERR_SWFW_SYNC;
2574
2575 /* Write register address */
2576 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2577 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2578 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2579 udelay(2);
2580
2581 /* Read the data returned */
2582 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2583 *data = (uint16_t)reg_val;
2584
2585 return E1000_SUCCESS;
2586}
2587
2588/********************************************************************
2589* Copper link setup for e1000_phy_gg82563 series.
2590*
2591* hw - Struct containing variables accessed by shared code
2592*********************************************************************/
2593static int32_t
2594e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2595{
2596 int32_t ret_val;
2597 uint16_t phy_data;
2598 uint32_t reg_data;
2599
2600 DEBUGFUNC();
2601
2602 if (!hw->phy_reset_disable) {
2603 /* Enable CRS on TX for half-duplex operation. */
2604 ret_val = e1000_read_phy_reg(hw,
2605 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2606 if (ret_val)
2607 return ret_val;
2608
2609 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2610 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2611 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2612
2613 ret_val = e1000_write_phy_reg(hw,
2614 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2615 if (ret_val)
2616 return ret_val;
2617
2618 /* Options:
2619 * MDI/MDI-X = 0 (default)
2620 * 0 - Auto for all speeds
2621 * 1 - MDI mode
2622 * 2 - MDI-X mode
2623 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2624 */
2625 ret_val = e1000_read_phy_reg(hw,
2626 GG82563_PHY_SPEC_CTRL, &phy_data);
2627 if (ret_val)
2628 return ret_val;
2629
2630 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2631
2632 switch (hw->mdix) {
2633 case 1:
2634 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2635 break;
2636 case 2:
2637 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2638 break;
2639 case 0:
2640 default:
2641 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2642 break;
2643 }
2644
2645 /* Options:
2646 * disable_polarity_correction = 0 (default)
2647 * Automatic Correction for Reversed Cable Polarity
2648 * 0 - Disabled
2649 * 1 - Enabled
2650 */
2651 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2652 ret_val = e1000_write_phy_reg(hw,
2653 GG82563_PHY_SPEC_CTRL, phy_data);
2654
2655 if (ret_val)
2656 return ret_val;
2657
2658 /* SW Reset the PHY so all changes take effect */
2659 ret_val = e1000_phy_reset(hw);
2660 if (ret_val) {
2661 DEBUGOUT("Error Resetting the PHY\n");
2662 return ret_val;
2663 }
2664 } /* phy_reset_disable */
2665
2666 if (hw->mac_type == e1000_80003es2lan) {
2667 /* Bypass RX and TX FIFO's */
2668 ret_val = e1000_write_kmrn_reg(hw,
2669 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2670 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2671 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2672 if (ret_val)
2673 return ret_val;
2674
2675 ret_val = e1000_read_phy_reg(hw,
2676 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2677 if (ret_val)
2678 return ret_val;
2679
2680 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2681 ret_val = e1000_write_phy_reg(hw,
2682 GG82563_PHY_SPEC_CTRL_2, phy_data);
2683
2684 if (ret_val)
2685 return ret_val;
2686
2687 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2688 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2689 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2690
2691 ret_val = e1000_read_phy_reg(hw,
2692 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2693 if (ret_val)
2694 return ret_val;
2695
2696 /* Do not init these registers when the HW is in IAMT mode, since the
2697 * firmware will have already initialized them. We only initialize
2698 * them if the HW is not in IAMT mode.
2699 */
2700 if (e1000_check_mng_mode(hw) == FALSE) {
2701 /* Enable Electrical Idle on the PHY */
2702 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2703 ret_val = e1000_write_phy_reg(hw,
2704 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2705 if (ret_val)
2706 return ret_val;
2707
2708 ret_val = e1000_read_phy_reg(hw,
2709 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2710 if (ret_val)
2711 return ret_val;
2712
2713 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2714 ret_val = e1000_write_phy_reg(hw,
2715 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2716
2717 if (ret_val)
2718 return ret_val;
2719 }
2720
2721 /* Workaround: Disable padding in Kumeran interface in the MAC
2722 * and in the PHY to avoid CRC errors.
2723 */
2724 ret_val = e1000_read_phy_reg(hw,
2725 GG82563_PHY_INBAND_CTRL, &phy_data);
2726 if (ret_val)
2727 return ret_val;
2728 phy_data |= GG82563_ICR_DIS_PADDING;
2729 ret_val = e1000_write_phy_reg(hw,
2730 GG82563_PHY_INBAND_CTRL, phy_data);
2731 if (ret_val)
2732 return ret_val;
2733 }
2734 return E1000_SUCCESS;
2735}
2736
2737/********************************************************************
2738* Copper link setup for e1000_phy_m88 series.
2739*
2740* hw - Struct containing variables accessed by shared code
2741*********************************************************************/
2742static int32_t
2743e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2744{
2745 int32_t ret_val;
2746 uint16_t phy_data;
2747
2748 DEBUGFUNC();
2749
2750 if (hw->phy_reset_disable)
2751 return E1000_SUCCESS;
2752
2753 /* Enable CRS on TX. This must be set for half-duplex operation. */
2754 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2755 if (ret_val)
2756 return ret_val;
2757
wdenk4e112c12003-06-03 23:54:09 +00002758 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2759
wdenk4e112c12003-06-03 23:54:09 +00002760 /* Options:
2761 * MDI/MDI-X = 0 (default)
2762 * 0 - Auto for all speeds
2763 * 1 - MDI mode
2764 * 2 - MDI-X mode
2765 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2766 */
2767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002768
wdenk4e112c12003-06-03 23:54:09 +00002769 switch (hw->mdix) {
2770 case 1:
2771 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2772 break;
2773 case 2:
2774 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2775 break;
2776 case 3:
2777 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2778 break;
2779 case 0:
2780 default:
2781 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2782 break;
2783 }
wdenk4e112c12003-06-03 23:54:09 +00002784
wdenk4e112c12003-06-03 23:54:09 +00002785 /* Options:
2786 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002787 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002788 * 0 - Disabled
2789 * 1 - Enabled
2790 */
2791 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002792 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2793 if (ret_val)
2794 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002795
Roy Zang28f7a052009-07-31 13:34:02 +08002796 if (hw->phy_revision < M88E1011_I_REV_4) {
2797 /* Force TX_CLK in the Extended PHY Specific Control Register
2798 * to 25MHz clock.
2799 */
2800 ret_val = e1000_read_phy_reg(hw,
2801 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2802 if (ret_val)
2803 return ret_val;
2804
2805 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2806
2807 if ((hw->phy_revision == E1000_REVISION_2) &&
2808 (hw->phy_id == M88E1111_I_PHY_ID)) {
2809 /* Vidalia Phy, set the downshift counter to 5x */
2810 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2811 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2812 ret_val = e1000_write_phy_reg(hw,
2813 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2814 if (ret_val)
2815 return ret_val;
2816 } else {
2817 /* Configure Master and Slave downshift values */
2818 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2819 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2820 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2821 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2822 ret_val = e1000_write_phy_reg(hw,
2823 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2824 if (ret_val)
2825 return ret_val;
2826 }
wdenk4e112c12003-06-03 23:54:09 +00002827 }
2828
2829 /* SW Reset the PHY so all changes take effect */
2830 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002831 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002832 DEBUGOUT("Error Resetting the PHY\n");
2833 return ret_val;
2834 }
2835
Roy Zang28f7a052009-07-31 13:34:02 +08002836 return E1000_SUCCESS;
2837}
wdenk4e112c12003-06-03 23:54:09 +00002838
Roy Zang28f7a052009-07-31 13:34:02 +08002839/********************************************************************
2840* Setup auto-negotiation and flow control advertisements,
2841* and then perform auto-negotiation.
2842*
2843* hw - Struct containing variables accessed by shared code
2844*********************************************************************/
2845static int32_t
2846e1000_copper_link_autoneg(struct e1000_hw *hw)
2847{
2848 int32_t ret_val;
2849 uint16_t phy_data;
2850
2851 DEBUGFUNC();
2852
wdenk4e112c12003-06-03 23:54:09 +00002853 /* Perform some bounds checking on the hw->autoneg_advertised
2854 * parameter. If this variable is zero, then set it to the default.
2855 */
2856 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2857
2858 /* If autoneg_advertised is zero, we assume it was not defaulted
2859 * by the calling code so we set to advertise full capability.
2860 */
2861 if (hw->autoneg_advertised == 0)
2862 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2863
Roy Zang28f7a052009-07-31 13:34:02 +08002864 /* IFE phy only supports 10/100 */
2865 if (hw->phy_type == e1000_phy_ife)
2866 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2867
wdenk4e112c12003-06-03 23:54:09 +00002868 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2869 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002870 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002871 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2872 return ret_val;
2873 }
2874 DEBUGOUT("Restarting Auto-Neg\n");
2875
2876 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2877 * the Auto Neg Restart bit in the PHY control register.
2878 */
Roy Zang28f7a052009-07-31 13:34:02 +08002879 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2880 if (ret_val)
2881 return ret_val;
2882
wdenk4e112c12003-06-03 23:54:09 +00002883 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002884 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2885 if (ret_val)
2886 return ret_val;
2887
wdenk4e112c12003-06-03 23:54:09 +00002888 /* Does the user want to wait for Auto-Neg to complete here, or
2889 * check at a later time (for example, callback routine).
2890 */
Roy Zang28f7a052009-07-31 13:34:02 +08002891 /* If we do not wait for autonegtation to complete I
2892 * do not see a valid link status.
2893 * wait_autoneg_complete = 1 .
2894 */
wdenk4e112c12003-06-03 23:54:09 +00002895 if (hw->wait_autoneg_complete) {
2896 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002897 if (ret_val) {
2898 DEBUGOUT("Error while waiting for autoneg"
2899 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002900 return ret_val;
2901 }
2902 }
Roy Zang28f7a052009-07-31 13:34:02 +08002903
2904 hw->get_link_status = TRUE;
2905
2906 return E1000_SUCCESS;
2907}
2908
2909/******************************************************************************
2910* Config the MAC and the PHY after link is up.
2911* 1) Set up the MAC to the current PHY speed/duplex
2912* if we are on 82543. If we
2913* are on newer silicon, we only need to configure
2914* collision distance in the Transmit Control Register.
2915* 2) Set up flow control on the MAC to that established with
2916* the link partner.
2917* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2918*
2919* hw - Struct containing variables accessed by shared code
2920******************************************************************************/
2921static int32_t
2922e1000_copper_link_postconfig(struct e1000_hw *hw)
2923{
2924 int32_t ret_val;
2925 DEBUGFUNC();
2926
2927 if (hw->mac_type >= e1000_82544) {
2928 e1000_config_collision_dist(hw);
2929 } else {
2930 ret_val = e1000_config_mac_to_phy(hw);
2931 if (ret_val) {
2932 DEBUGOUT("Error configuring MAC to PHY settings\n");
2933 return ret_val;
2934 }
2935 }
2936 ret_val = e1000_config_fc_after_link_up(hw);
2937 if (ret_val) {
2938 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002939 return ret_val;
2940 }
Roy Zang28f7a052009-07-31 13:34:02 +08002941 return E1000_SUCCESS;
2942}
2943
2944/******************************************************************************
2945* Detects which PHY is present and setup the speed and duplex
2946*
2947* hw - Struct containing variables accessed by shared code
2948******************************************************************************/
2949static int
2950e1000_setup_copper_link(struct eth_device *nic)
2951{
2952 struct e1000_hw *hw = nic->priv;
2953 int32_t ret_val;
2954 uint16_t i;
2955 uint16_t phy_data;
2956 uint16_t reg_data;
2957
2958 DEBUGFUNC();
2959
2960 switch (hw->mac_type) {
2961 case e1000_80003es2lan:
2962 case e1000_ich8lan:
2963 /* Set the mac to wait the maximum time between each
2964 * iteration and increase the max iterations when
2965 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2966 ret_val = e1000_write_kmrn_reg(hw,
2967 GG82563_REG(0x34, 4), 0xFFFF);
2968 if (ret_val)
2969 return ret_val;
2970 ret_val = e1000_read_kmrn_reg(hw,
2971 GG82563_REG(0x34, 9), &reg_data);
2972 if (ret_val)
2973 return ret_val;
2974 reg_data |= 0x3F;
2975 ret_val = e1000_write_kmrn_reg(hw,
2976 GG82563_REG(0x34, 9), reg_data);
2977 if (ret_val)
2978 return ret_val;
2979 default:
2980 break;
2981 }
2982
2983 /* Check if it is a valid PHY and set PHY mode if necessary. */
2984 ret_val = e1000_copper_link_preconfig(hw);
2985 if (ret_val)
2986 return ret_val;
2987 switch (hw->mac_type) {
2988 case e1000_80003es2lan:
2989 /* Kumeran registers are written-only */
2990 reg_data =
2991 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2992 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2993 ret_val = e1000_write_kmrn_reg(hw,
2994 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2995 if (ret_val)
2996 return ret_val;
2997 break;
2998 default:
2999 break;
3000 }
3001
3002 if (hw->phy_type == e1000_phy_igp ||
3003 hw->phy_type == e1000_phy_igp_3 ||
3004 hw->phy_type == e1000_phy_igp_2) {
3005 ret_val = e1000_copper_link_igp_setup(hw);
3006 if (ret_val)
3007 return ret_val;
3008 } else if (hw->phy_type == e1000_phy_m88) {
3009 ret_val = e1000_copper_link_mgp_setup(hw);
3010 if (ret_val)
3011 return ret_val;
3012 } else if (hw->phy_type == e1000_phy_gg82563) {
3013 ret_val = e1000_copper_link_ggp_setup(hw);
3014 if (ret_val)
3015 return ret_val;
3016 }
3017
3018 /* always auto */
3019 /* Setup autoneg and flow control advertisement
3020 * and perform autonegotiation */
3021 ret_val = e1000_copper_link_autoneg(hw);
3022 if (ret_val)
3023 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003024
3025 /* Check link status. Wait up to 100 microseconds for link to become
3026 * valid.
3027 */
3028 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003029 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3030 if (ret_val)
3031 return ret_val;
3032 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3033 if (ret_val)
3034 return ret_val;
3035
wdenk4e112c12003-06-03 23:54:09 +00003036 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003037 /* Config the MAC and PHY after link is up */
3038 ret_val = e1000_copper_link_postconfig(hw);
3039 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003040 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003041
wdenk4e112c12003-06-03 23:54:09 +00003042 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003043 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003044 }
3045 udelay(10);
3046 }
3047
3048 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003049 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003050}
3051
3052/******************************************************************************
3053* Configures PHY autoneg and flow control advertisement settings
3054*
3055* hw - Struct containing variables accessed by shared code
3056******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003057int32_t
wdenk4e112c12003-06-03 23:54:09 +00003058e1000_phy_setup_autoneg(struct e1000_hw *hw)
3059{
Roy Zang28f7a052009-07-31 13:34:02 +08003060 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003061 uint16_t mii_autoneg_adv_reg;
3062 uint16_t mii_1000t_ctrl_reg;
3063
3064 DEBUGFUNC();
3065
3066 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003067 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3068 if (ret_val)
3069 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003070
Roy Zang28f7a052009-07-31 13:34:02 +08003071 if (hw->phy_type != e1000_phy_ife) {
3072 /* Read the MII 1000Base-T Control Register (Address 9). */
3073 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3074 &mii_1000t_ctrl_reg);
3075 if (ret_val)
3076 return ret_val;
3077 } else
3078 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003079
3080 /* Need to parse both autoneg_advertised and fc and set up
3081 * the appropriate PHY registers. First we will parse for
3082 * autoneg_advertised software override. Since we can advertise
3083 * a plethora of combinations, we need to check each bit
3084 * individually.
3085 */
3086
3087 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3088 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003089 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003090 */
3091 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3092 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3093
3094 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3095
3096 /* Do we want to advertise 10 Mb Half Duplex? */
3097 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3098 DEBUGOUT("Advertise 10mb Half duplex\n");
3099 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3100 }
3101
3102 /* Do we want to advertise 10 Mb Full Duplex? */
3103 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3104 DEBUGOUT("Advertise 10mb Full duplex\n");
3105 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3106 }
3107
3108 /* Do we want to advertise 100 Mb Half Duplex? */
3109 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3110 DEBUGOUT("Advertise 100mb Half duplex\n");
3111 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3112 }
3113
3114 /* Do we want to advertise 100 Mb Full Duplex? */
3115 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3116 DEBUGOUT("Advertise 100mb Full duplex\n");
3117 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3118 }
3119
3120 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3121 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3122 DEBUGOUT
3123 ("Advertise 1000mb Half duplex requested, request denied!\n");
3124 }
3125
3126 /* Do we want to advertise 1000 Mb Full Duplex? */
3127 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3128 DEBUGOUT("Advertise 1000mb Full duplex\n");
3129 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3130 }
3131
3132 /* Check for a software override of the flow control settings, and
3133 * setup the PHY advertisement registers accordingly. If
3134 * auto-negotiation is enabled, then software will have to set the
3135 * "PAUSE" bits to the correct value in the Auto-Negotiation
3136 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3137 *
3138 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003139 * 0: Flow control is completely disabled
3140 * 1: Rx flow control is enabled (we can receive pause frames
3141 * but not send pause frames).
3142 * 2: Tx flow control is enabled (we can send pause frames
3143 * but we do not support receiving pause frames).
3144 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003145 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003146 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003147 */
3148 switch (hw->fc) {
3149 case e1000_fc_none: /* 0 */
3150 /* Flow control (RX & TX) is completely disabled by a
3151 * software over-ride.
3152 */
3153 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3154 break;
3155 case e1000_fc_rx_pause: /* 1 */
3156 /* RX Flow control is enabled, and TX Flow control is
3157 * disabled, by a software over-ride.
3158 */
3159 /* Since there really isn't a way to advertise that we are
3160 * capable of RX Pause ONLY, we will advertise that we
3161 * support both symmetric and asymmetric RX PAUSE. Later
3162 * (in e1000_config_fc_after_link_up) we will disable the
3163 *hw's ability to send PAUSE frames.
3164 */
3165 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3166 break;
3167 case e1000_fc_tx_pause: /* 2 */
3168 /* TX Flow control is enabled, and RX Flow control is
3169 * disabled, by a software over-ride.
3170 */
3171 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3172 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3173 break;
3174 case e1000_fc_full: /* 3 */
3175 /* Flow control (both RX and TX) is enabled by a software
3176 * over-ride.
3177 */
3178 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3179 break;
3180 default:
3181 DEBUGOUT("Flow control param set incorrectly\n");
3182 return -E1000_ERR_CONFIG;
3183 }
3184
Roy Zang28f7a052009-07-31 13:34:02 +08003185 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3186 if (ret_val)
3187 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003188
3189 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3190
Roy Zang28f7a052009-07-31 13:34:02 +08003191 if (hw->phy_type != e1000_phy_ife) {
3192 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3193 mii_1000t_ctrl_reg);
3194 if (ret_val)
3195 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003196 }
Roy Zang28f7a052009-07-31 13:34:02 +08003197
3198 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003199}
3200
3201/******************************************************************************
3202* Sets the collision distance in the Transmit Control register
3203*
3204* hw - Struct containing variables accessed by shared code
3205*
3206* Link should have been established previously. Reads the speed and duplex
3207* information from the Device Status register.
3208******************************************************************************/
3209static void
3210e1000_config_collision_dist(struct e1000_hw *hw)
3211{
Roy Zang28f7a052009-07-31 13:34:02 +08003212 uint32_t tctl, coll_dist;
3213
3214 DEBUGFUNC();
3215
3216 if (hw->mac_type < e1000_82543)
3217 coll_dist = E1000_COLLISION_DISTANCE_82542;
3218 else
3219 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003220
3221 tctl = E1000_READ_REG(hw, TCTL);
3222
3223 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003224 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003225
3226 E1000_WRITE_REG(hw, TCTL, tctl);
3227 E1000_WRITE_FLUSH(hw);
3228}
3229
3230/******************************************************************************
3231* Sets MAC speed and duplex settings to reflect the those in the PHY
3232*
3233* hw - Struct containing variables accessed by shared code
3234* mii_reg - data to write to the MII control register
3235*
3236* The contents of the PHY register containing the needed information need to
3237* be passed in.
3238******************************************************************************/
3239static int
3240e1000_config_mac_to_phy(struct e1000_hw *hw)
3241{
3242 uint32_t ctrl;
3243 uint16_t phy_data;
3244
3245 DEBUGFUNC();
3246
3247 /* Read the Device Control Register and set the bits to Force Speed
3248 * and Duplex.
3249 */
3250 ctrl = E1000_READ_REG(hw, CTRL);
3251 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3252 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3253
3254 /* Set up duplex in the Device Control and Transmit Control
3255 * registers depending on negotiated values.
3256 */
3257 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3258 DEBUGOUT("PHY Read Error\n");
3259 return -E1000_ERR_PHY;
3260 }
3261 if (phy_data & M88E1000_PSSR_DPLX)
3262 ctrl |= E1000_CTRL_FD;
3263 else
3264 ctrl &= ~E1000_CTRL_FD;
3265
3266 e1000_config_collision_dist(hw);
3267
3268 /* Set up speed in the Device Control register depending on
3269 * negotiated values.
3270 */
3271 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3272 ctrl |= E1000_CTRL_SPD_1000;
3273 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3274 ctrl |= E1000_CTRL_SPD_100;
3275 /* Write the configured values back to the Device Control Reg. */
3276 E1000_WRITE_REG(hw, CTRL, ctrl);
3277 return 0;
3278}
3279
3280/******************************************************************************
3281 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003282 *
wdenk4e112c12003-06-03 23:54:09 +00003283 * hw - Struct containing variables accessed by shared code
3284 *
3285 * Sets the TFCE and RFCE bits in the device control register to reflect
3286 * the adapter settings. TFCE and RFCE need to be explicitly set by
3287 * software when a Copper PHY is used because autonegotiation is managed
3288 * by the PHY rather than the MAC. Software must also configure these
3289 * bits when link is forced on a fiber connection.
3290 *****************************************************************************/
3291static int
3292e1000_force_mac_fc(struct e1000_hw *hw)
3293{
3294 uint32_t ctrl;
3295
3296 DEBUGFUNC();
3297
3298 /* Get the current configuration of the Device Control Register */
3299 ctrl = E1000_READ_REG(hw, CTRL);
3300
3301 /* Because we didn't get link via the internal auto-negotiation
3302 * mechanism (we either forced link or we got link via PHY
3303 * auto-neg), we have to manually enable/disable transmit an
3304 * receive flow control.
3305 *
3306 * The "Case" statement below enables/disable flow control
3307 * according to the "hw->fc" parameter.
3308 *
3309 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003310 * 0: Flow control is completely disabled
3311 * 1: Rx flow control is enabled (we can receive pause
3312 * frames but not send pause frames).
3313 * 2: Tx flow control is enabled (we can send pause frames
3314 * frames but we do not receive pause frames).
3315 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003316 * other: No other values should be possible at this point.
3317 */
3318
3319 switch (hw->fc) {
3320 case e1000_fc_none:
3321 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3322 break;
3323 case e1000_fc_rx_pause:
3324 ctrl &= (~E1000_CTRL_TFCE);
3325 ctrl |= E1000_CTRL_RFCE;
3326 break;
3327 case e1000_fc_tx_pause:
3328 ctrl &= (~E1000_CTRL_RFCE);
3329 ctrl |= E1000_CTRL_TFCE;
3330 break;
3331 case e1000_fc_full:
3332 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3333 break;
3334 default:
3335 DEBUGOUT("Flow control param set incorrectly\n");
3336 return -E1000_ERR_CONFIG;
3337 }
3338
3339 /* Disable TX Flow Control for 82542 (rev 2.0) */
3340 if (hw->mac_type == e1000_82542_rev2_0)
3341 ctrl &= (~E1000_CTRL_TFCE);
3342
3343 E1000_WRITE_REG(hw, CTRL, ctrl);
3344 return 0;
3345}
3346
3347/******************************************************************************
3348 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003349 *
wdenk4e112c12003-06-03 23:54:09 +00003350 * hw - Struct containing variables accessed by shared code
3351 *
3352 * Should be called immediately after a valid link has been established.
3353 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3354 * and autonegotiation is enabled, the MAC flow control settings will be set
3355 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3356 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3357 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003358static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003359e1000_config_fc_after_link_up(struct e1000_hw *hw)
3360{
3361 int32_t ret_val;
3362 uint16_t mii_status_reg;
3363 uint16_t mii_nway_adv_reg;
3364 uint16_t mii_nway_lp_ability_reg;
3365 uint16_t speed;
3366 uint16_t duplex;
3367
3368 DEBUGFUNC();
3369
3370 /* Check for the case where we have fiber media and auto-neg failed
3371 * so we had to force link. In this case, we need to force the
3372 * configuration of the MAC to match the "fc" parameter.
3373 */
Roy Zang28f7a052009-07-31 13:34:02 +08003374 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3375 || ((hw->media_type == e1000_media_type_internal_serdes)
3376 && (hw->autoneg_failed))
3377 || ((hw->media_type == e1000_media_type_copper)
3378 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003379 ret_val = e1000_force_mac_fc(hw);
3380 if (ret_val < 0) {
3381 DEBUGOUT("Error forcing flow control settings\n");
3382 return ret_val;
3383 }
3384 }
3385
3386 /* Check for the case where we have copper media and auto-neg is
3387 * enabled. In this case, we need to check and see if Auto-Neg
3388 * has completed, and if so, how the PHY and link partner has
3389 * flow control configured.
3390 */
3391 if (hw->media_type == e1000_media_type_copper) {
3392 /* Read the MII Status Register and check to see if AutoNeg
3393 * has completed. We read this twice because this reg has
3394 * some "sticky" (latched) bits.
3395 */
3396 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3397 DEBUGOUT("PHY Read Error \n");
3398 return -E1000_ERR_PHY;
3399 }
3400 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3401 DEBUGOUT("PHY Read Error \n");
3402 return -E1000_ERR_PHY;
3403 }
3404
3405 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3406 /* The AutoNeg process has completed, so we now need to
3407 * read both the Auto Negotiation Advertisement Register
3408 * (Address 4) and the Auto_Negotiation Base Page Ability
3409 * Register (Address 5) to determine how flow control was
3410 * negotiated.
3411 */
3412 if (e1000_read_phy_reg
3413 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3414 DEBUGOUT("PHY Read Error\n");
3415 return -E1000_ERR_PHY;
3416 }
3417 if (e1000_read_phy_reg
3418 (hw, PHY_LP_ABILITY,
3419 &mii_nway_lp_ability_reg) < 0) {
3420 DEBUGOUT("PHY Read Error\n");
3421 return -E1000_ERR_PHY;
3422 }
3423
3424 /* Two bits in the Auto Negotiation Advertisement Register
3425 * (Address 4) and two bits in the Auto Negotiation Base
3426 * Page Ability Register (Address 5) determine flow control
3427 * for both the PHY and the link partner. The following
3428 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3429 * 1999, describes these PAUSE resolution bits and how flow
3430 * control is determined based upon these settings.
3431 * NOTE: DC = Don't Care
3432 *
3433 * LOCAL DEVICE | LINK PARTNER
3434 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3435 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003436 * 0 | 0 | DC | DC | e1000_fc_none
3437 * 0 | 1 | 0 | DC | e1000_fc_none
3438 * 0 | 1 | 1 | 0 | e1000_fc_none
3439 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3440 * 1 | 0 | 0 | DC | e1000_fc_none
3441 * 1 | DC | 1 | DC | e1000_fc_full
3442 * 1 | 1 | 0 | 0 | e1000_fc_none
3443 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003444 *
3445 */
3446 /* Are both PAUSE bits set to 1? If so, this implies
3447 * Symmetric Flow Control is enabled at both ends. The
3448 * ASM_DIR bits are irrelevant per the spec.
3449 *
3450 * For Symmetric Flow Control:
3451 *
3452 * LOCAL DEVICE | LINK PARTNER
3453 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3454 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003455 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003456 *
3457 */
3458 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3459 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3460 /* Now we need to check if the user selected RX ONLY
3461 * of pause frames. In this case, we had to advertise
3462 * FULL flow control because we could not advertise RX
3463 * ONLY. Hence, we must now check to see if we need to
3464 * turn OFF the TRANSMISSION of PAUSE frames.
3465 */
3466 if (hw->original_fc == e1000_fc_full) {
3467 hw->fc = e1000_fc_full;
3468 DEBUGOUT("Flow Control = FULL.\r\n");
3469 } else {
3470 hw->fc = e1000_fc_rx_pause;
3471 DEBUGOUT
3472 ("Flow Control = RX PAUSE frames only.\r\n");
3473 }
3474 }
3475 /* For receiving PAUSE frames ONLY.
3476 *
3477 * LOCAL DEVICE | LINK PARTNER
3478 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3479 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003480 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003481 *
3482 */
3483 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3484 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3485 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3486 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3487 {
3488 hw->fc = e1000_fc_tx_pause;
3489 DEBUGOUT
3490 ("Flow Control = TX PAUSE frames only.\r\n");
3491 }
3492 /* For transmitting PAUSE frames ONLY.
3493 *
3494 * LOCAL DEVICE | LINK PARTNER
3495 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3496 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003497 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003498 *
3499 */
3500 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3501 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3502 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3503 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3504 {
3505 hw->fc = e1000_fc_rx_pause;
3506 DEBUGOUT
3507 ("Flow Control = RX PAUSE frames only.\r\n");
3508 }
3509 /* Per the IEEE spec, at this point flow control should be
3510 * disabled. However, we want to consider that we could
3511 * be connected to a legacy switch that doesn't advertise
3512 * desired flow control, but can be forced on the link
3513 * partner. So if we advertised no flow control, that is
3514 * what we will resolve to. If we advertised some kind of
3515 * receive capability (Rx Pause Only or Full Flow Control)
3516 * and the link partner advertised none, we will configure
3517 * ourselves to enable Rx Flow Control only. We can do
3518 * this safely for two reasons: If the link partner really
3519 * didn't want flow control enabled, and we enable Rx, no
3520 * harm done since we won't be receiving any PAUSE frames
3521 * anyway. If the intent on the link partner was to have
3522 * flow control enabled, then by us enabling RX only, we
3523 * can at least receive pause frames and process them.
3524 * This is a good idea because in most cases, since we are
3525 * predominantly a server NIC, more times than not we will
3526 * be asked to delay transmission of packets than asking
3527 * our link partner to pause transmission of frames.
3528 */
3529 else if (hw->original_fc == e1000_fc_none ||
3530 hw->original_fc == e1000_fc_tx_pause) {
3531 hw->fc = e1000_fc_none;
3532 DEBUGOUT("Flow Control = NONE.\r\n");
3533 } else {
3534 hw->fc = e1000_fc_rx_pause;
3535 DEBUGOUT
3536 ("Flow Control = RX PAUSE frames only.\r\n");
3537 }
3538
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003539 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003540 * negotiated to HALF DUPLEX, flow control should not be
3541 * enabled per IEEE 802.3 spec.
3542 */
3543 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3544
3545 if (duplex == HALF_DUPLEX)
3546 hw->fc = e1000_fc_none;
3547
3548 /* Now we call a subroutine to actually force the MAC
3549 * controller to use the correct flow control settings.
3550 */
3551 ret_val = e1000_force_mac_fc(hw);
3552 if (ret_val < 0) {
3553 DEBUGOUT
3554 ("Error forcing flow control settings\n");
3555 return ret_val;
3556 }
3557 } else {
3558 DEBUGOUT
3559 ("Copper PHY and Auto Neg has not completed.\r\n");
3560 }
3561 }
Roy Zang28f7a052009-07-31 13:34:02 +08003562 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003563}
3564
3565/******************************************************************************
3566 * Checks to see if the link status of the hardware has changed.
3567 *
3568 * hw - Struct containing variables accessed by shared code
3569 *
3570 * Called by any function that needs to check the link status of the adapter.
3571 *****************************************************************************/
3572static int
3573e1000_check_for_link(struct eth_device *nic)
3574{
3575 struct e1000_hw *hw = nic->priv;
3576 uint32_t rxcw;
3577 uint32_t ctrl;
3578 uint32_t status;
3579 uint32_t rctl;
3580 uint32_t signal;
3581 int32_t ret_val;
3582 uint16_t phy_data;
3583 uint16_t lp_capability;
3584
3585 DEBUGFUNC();
3586
wdenk57b2d802003-06-27 21:31:46 +00003587 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3588 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003589 * cleared when there is a signal
3590 */
3591 ctrl = E1000_READ_REG(hw, CTRL);
3592 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3593 signal = E1000_CTRL_SWDPIN1;
3594 else
3595 signal = 0;
3596
3597 status = E1000_READ_REG(hw, STATUS);
3598 rxcw = E1000_READ_REG(hw, RXCW);
3599 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3600
3601 /* If we have a copper PHY then we only want to go out to the PHY
3602 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003603 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003604 * receive a Link Status Change interrupt or we have Rx Sequence
3605 * Errors.
3606 */
3607 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3608 /* First we want to see if the MII Status Register reports
3609 * link. If so, then we want to get the current speed/duplex
3610 * of the PHY.
3611 * Read the register twice since the link bit is sticky.
3612 */
3613 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3614 DEBUGOUT("PHY Read Error\n");
3615 return -E1000_ERR_PHY;
3616 }
3617 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3618 DEBUGOUT("PHY Read Error\n");
3619 return -E1000_ERR_PHY;
3620 }
3621
3622 if (phy_data & MII_SR_LINK_STATUS) {
3623 hw->get_link_status = FALSE;
3624 } else {
3625 /* No link detected */
3626 return -E1000_ERR_NOLINK;
3627 }
3628
3629 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3630 * have Si on board that is 82544 or newer, Auto
3631 * Speed Detection takes care of MAC speed/duplex
3632 * configuration. So we only need to configure Collision
3633 * Distance in the MAC. Otherwise, we need to force
3634 * speed/duplex on the MAC to the current PHY speed/duplex
3635 * settings.
3636 */
3637 if (hw->mac_type >= e1000_82544)
3638 e1000_config_collision_dist(hw);
3639 else {
3640 ret_val = e1000_config_mac_to_phy(hw);
3641 if (ret_val < 0) {
3642 DEBUGOUT
3643 ("Error configuring MAC to PHY settings\n");
3644 return ret_val;
3645 }
3646 }
3647
wdenk57b2d802003-06-27 21:31:46 +00003648 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003649 * need to restore the desired flow control settings because we may
3650 * have had to re-autoneg with a different link partner.
3651 */
3652 ret_val = e1000_config_fc_after_link_up(hw);
3653 if (ret_val < 0) {
3654 DEBUGOUT("Error configuring flow control\n");
3655 return ret_val;
3656 }
3657
3658 /* At this point we know that we are on copper and we have
3659 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003660 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003661 * determine if TBI Compatibility needs to be turned on or off. If
3662 * the link partner advertises any speed in addition to Gigabit, then
3663 * we assume that they are GMII-based, and TBI compatibility is not
3664 * needed. If no other speeds are advertised, we assume the link
3665 * partner is TBI-based, and we turn on TBI Compatibility.
3666 */
3667 if (hw->tbi_compatibility_en) {
3668 if (e1000_read_phy_reg
3669 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3670 DEBUGOUT("PHY Read Error\n");
3671 return -E1000_ERR_PHY;
3672 }
3673 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3674 NWAY_LPAR_10T_FD_CAPS |
3675 NWAY_LPAR_100TX_HD_CAPS |
3676 NWAY_LPAR_100TX_FD_CAPS |
3677 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003678 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003679 * gigabit, we do not need to enable TBI compatibility.
3680 */
3681 if (hw->tbi_compatibility_on) {
3682 /* If we previously were in the mode, turn it off. */
3683 rctl = E1000_READ_REG(hw, RCTL);
3684 rctl &= ~E1000_RCTL_SBP;
3685 E1000_WRITE_REG(hw, RCTL, rctl);
3686 hw->tbi_compatibility_on = FALSE;
3687 }
3688 } else {
3689 /* If TBI compatibility is was previously off, turn it on. For
3690 * compatibility with a TBI link partner, we will store bad
3691 * packets. Some frames have an additional byte on the end and
3692 * will look like CRC errors to to the hardware.
3693 */
3694 if (!hw->tbi_compatibility_on) {
3695 hw->tbi_compatibility_on = TRUE;
3696 rctl = E1000_READ_REG(hw, RCTL);
3697 rctl |= E1000_RCTL_SBP;
3698 E1000_WRITE_REG(hw, RCTL, rctl);
3699 }
3700 }
3701 }
3702 }
3703 /* If we don't have link (auto-negotiation failed or link partner cannot
3704 * auto-negotiate), the cable is plugged in (we have signal), and our
3705 * link partner is not trying to auto-negotiate with us (we are receiving
3706 * idles or data), we need to force link up. We also need to give
3707 * auto-negotiation time to complete, in case the cable was just plugged
3708 * in. The autoneg_failed flag does this.
3709 */
3710 else if ((hw->media_type == e1000_media_type_fiber) &&
3711 (!(status & E1000_STATUS_LU)) &&
3712 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3713 (!(rxcw & E1000_RXCW_C))) {
3714 if (hw->autoneg_failed == 0) {
3715 hw->autoneg_failed = 1;
3716 return 0;
3717 }
3718 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3719
3720 /* Disable auto-negotiation in the TXCW register */
3721 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3722
3723 /* Force link-up and also force full-duplex. */
3724 ctrl = E1000_READ_REG(hw, CTRL);
3725 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3726 E1000_WRITE_REG(hw, CTRL, ctrl);
3727
3728 /* Configure Flow Control after forcing link up. */
3729 ret_val = e1000_config_fc_after_link_up(hw);
3730 if (ret_val < 0) {
3731 DEBUGOUT("Error configuring flow control\n");
3732 return ret_val;
3733 }
3734 }
3735 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3736 * auto-negotiation in the TXCW register and disable forced link in the
3737 * Device Control register in an attempt to auto-negotiate with our link
3738 * partner.
3739 */
3740 else if ((hw->media_type == e1000_media_type_fiber) &&
3741 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3742 DEBUGOUT
3743 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3744 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3745 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3746 }
3747 return 0;
3748}
3749
3750/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003751* Configure the MAC-to-PHY interface for 10/100Mbps
3752*
3753* hw - Struct containing variables accessed by shared code
3754******************************************************************************/
3755static int32_t
3756e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3757{
3758 int32_t ret_val = E1000_SUCCESS;
3759 uint32_t tipg;
3760 uint16_t reg_data;
3761
3762 DEBUGFUNC();
3763
3764 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3765 ret_val = e1000_write_kmrn_reg(hw,
3766 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3767 if (ret_val)
3768 return ret_val;
3769
3770 /* Configure Transmit Inter-Packet Gap */
3771 tipg = E1000_READ_REG(hw, TIPG);
3772 tipg &= ~E1000_TIPG_IPGT_MASK;
3773 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3774 E1000_WRITE_REG(hw, TIPG, tipg);
3775
3776 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3777
3778 if (ret_val)
3779 return ret_val;
3780
3781 if (duplex == HALF_DUPLEX)
3782 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3783 else
3784 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3785
3786 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3787
3788 return ret_val;
3789}
3790
3791static int32_t
3792e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3793{
3794 int32_t ret_val = E1000_SUCCESS;
3795 uint16_t reg_data;
3796 uint32_t tipg;
3797
3798 DEBUGFUNC();
3799
3800 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3801 ret_val = e1000_write_kmrn_reg(hw,
3802 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3803 if (ret_val)
3804 return ret_val;
3805
3806 /* Configure Transmit Inter-Packet Gap */
3807 tipg = E1000_READ_REG(hw, TIPG);
3808 tipg &= ~E1000_TIPG_IPGT_MASK;
3809 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3810 E1000_WRITE_REG(hw, TIPG, tipg);
3811
3812 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3813
3814 if (ret_val)
3815 return ret_val;
3816
3817 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3818 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3819
3820 return ret_val;
3821}
3822
3823/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003824 * Detects the current speed and duplex settings of the hardware.
3825 *
3826 * hw - Struct containing variables accessed by shared code
3827 * speed - Speed of the connection
3828 * duplex - Duplex setting of the connection
3829 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003830static int
3831e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3832 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003833{
3834 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003835 int32_t ret_val;
3836 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003837
3838 DEBUGFUNC();
3839
3840 if (hw->mac_type >= e1000_82543) {
3841 status = E1000_READ_REG(hw, STATUS);
3842 if (status & E1000_STATUS_SPEED_1000) {
3843 *speed = SPEED_1000;
3844 DEBUGOUT("1000 Mbs, ");
3845 } else if (status & E1000_STATUS_SPEED_100) {
3846 *speed = SPEED_100;
3847 DEBUGOUT("100 Mbs, ");
3848 } else {
3849 *speed = SPEED_10;
3850 DEBUGOUT("10 Mbs, ");
3851 }
3852
3853 if (status & E1000_STATUS_FD) {
3854 *duplex = FULL_DUPLEX;
3855 DEBUGOUT("Full Duplex\r\n");
3856 } else {
3857 *duplex = HALF_DUPLEX;
3858 DEBUGOUT(" Half Duplex\r\n");
3859 }
3860 } else {
3861 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3862 *speed = SPEED_1000;
3863 *duplex = FULL_DUPLEX;
3864 }
Roy Zang28f7a052009-07-31 13:34:02 +08003865
3866 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3867 * even if it is operating at half duplex. Here we set the duplex
3868 * settings to match the duplex in the link partner's capabilities.
3869 */
3870 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3871 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3872 if (ret_val)
3873 return ret_val;
3874
3875 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3876 *duplex = HALF_DUPLEX;
3877 else {
3878 ret_val = e1000_read_phy_reg(hw,
3879 PHY_LP_ABILITY, &phy_data);
3880 if (ret_val)
3881 return ret_val;
3882 if ((*speed == SPEED_100 &&
3883 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3884 || (*speed == SPEED_10
3885 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3886 *duplex = HALF_DUPLEX;
3887 }
3888 }
3889
3890 if ((hw->mac_type == e1000_80003es2lan) &&
3891 (hw->media_type == e1000_media_type_copper)) {
3892 if (*speed == SPEED_1000)
3893 ret_val = e1000_configure_kmrn_for_1000(hw);
3894 else
3895 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3896 if (ret_val)
3897 return ret_val;
3898 }
3899 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003900}
3901
3902/******************************************************************************
3903* Blocks until autoneg completes or times out (~4.5 seconds)
3904*
3905* hw - Struct containing variables accessed by shared code
3906******************************************************************************/
3907static int
3908e1000_wait_autoneg(struct e1000_hw *hw)
3909{
3910 uint16_t i;
3911 uint16_t phy_data;
3912
3913 DEBUGFUNC();
3914 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3915
3916 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3917 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3918 /* Read the MII Status Register and wait for Auto-Neg
3919 * Complete bit to be set.
3920 */
3921 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3922 DEBUGOUT("PHY Read Error\n");
3923 return -E1000_ERR_PHY;
3924 }
3925 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3926 DEBUGOUT("PHY Read Error\n");
3927 return -E1000_ERR_PHY;
3928 }
3929 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3930 DEBUGOUT("Auto-Neg complete.\n");
3931 return 0;
3932 }
3933 mdelay(100);
3934 }
3935 DEBUGOUT("Auto-Neg timedout.\n");
3936 return -E1000_ERR_TIMEOUT;
3937}
3938
3939/******************************************************************************
3940* Raises the Management Data Clock
3941*
3942* hw - Struct containing variables accessed by shared code
3943* ctrl - Device control register's current value
3944******************************************************************************/
3945static void
3946e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3947{
3948 /* Raise the clock input to the Management Data Clock (by setting the MDC
3949 * bit), and then delay 2 microseconds.
3950 */
3951 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3952 E1000_WRITE_FLUSH(hw);
3953 udelay(2);
3954}
3955
3956/******************************************************************************
3957* Lowers the Management Data Clock
3958*
3959* hw - Struct containing variables accessed by shared code
3960* ctrl - Device control register's current value
3961******************************************************************************/
3962static void
3963e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3964{
3965 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3966 * bit), and then delay 2 microseconds.
3967 */
3968 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3969 E1000_WRITE_FLUSH(hw);
3970 udelay(2);
3971}
3972
3973/******************************************************************************
3974* Shifts data bits out to the PHY
3975*
3976* hw - Struct containing variables accessed by shared code
3977* data - Data to send out to the PHY
3978* count - Number of bits to shift out
3979*
3980* Bits are shifted out in MSB to LSB order.
3981******************************************************************************/
3982static void
3983e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3984{
3985 uint32_t ctrl;
3986 uint32_t mask;
3987
3988 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003989 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003990 * time. In order to do this, "data" must be broken down into bits.
3991 */
3992 mask = 0x01;
3993 mask <<= (count - 1);
3994
3995 ctrl = E1000_READ_REG(hw, CTRL);
3996
3997 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3998 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3999
4000 while (mask) {
4001 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4002 * then raising and lowering the Management Data Clock. A "0" is
4003 * shifted out to the PHY by setting the MDIO bit to "0" and then
4004 * raising and lowering the clock.
4005 */
4006 if (data & mask)
4007 ctrl |= E1000_CTRL_MDIO;
4008 else
4009 ctrl &= ~E1000_CTRL_MDIO;
4010
4011 E1000_WRITE_REG(hw, CTRL, ctrl);
4012 E1000_WRITE_FLUSH(hw);
4013
4014 udelay(2);
4015
4016 e1000_raise_mdi_clk(hw, &ctrl);
4017 e1000_lower_mdi_clk(hw, &ctrl);
4018
4019 mask = mask >> 1;
4020 }
4021}
4022
4023/******************************************************************************
4024* Shifts data bits in from the PHY
4025*
4026* hw - Struct containing variables accessed by shared code
4027*
wdenk57b2d802003-06-27 21:31:46 +00004028* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004029******************************************************************************/
4030static uint16_t
4031e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4032{
4033 uint32_t ctrl;
4034 uint16_t data = 0;
4035 uint8_t i;
4036
4037 /* In order to read a register from the PHY, we need to shift in a total
4038 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4039 * to avoid contention on the MDIO pin when a read operation is performed.
4040 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4041 * by raising the input to the Management Data Clock (setting the MDC bit),
4042 * and then reading the value of the MDIO bit.
4043 */
4044 ctrl = E1000_READ_REG(hw, CTRL);
4045
4046 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4047 ctrl &= ~E1000_CTRL_MDIO_DIR;
4048 ctrl &= ~E1000_CTRL_MDIO;
4049
4050 E1000_WRITE_REG(hw, CTRL, ctrl);
4051 E1000_WRITE_FLUSH(hw);
4052
4053 /* Raise and Lower the clock before reading in the data. This accounts for
4054 * the turnaround bits. The first clock occurred when we clocked out the
4055 * last bit of the Register Address.
4056 */
4057 e1000_raise_mdi_clk(hw, &ctrl);
4058 e1000_lower_mdi_clk(hw, &ctrl);
4059
4060 for (data = 0, i = 0; i < 16; i++) {
4061 data = data << 1;
4062 e1000_raise_mdi_clk(hw, &ctrl);
4063 ctrl = E1000_READ_REG(hw, CTRL);
4064 /* Check to see if we shifted in a "1". */
4065 if (ctrl & E1000_CTRL_MDIO)
4066 data |= 1;
4067 e1000_lower_mdi_clk(hw, &ctrl);
4068 }
4069
4070 e1000_raise_mdi_clk(hw, &ctrl);
4071 e1000_lower_mdi_clk(hw, &ctrl);
4072
4073 return data;
4074}
4075
4076/*****************************************************************************
4077* Reads the value from a PHY register
4078*
4079* hw - Struct containing variables accessed by shared code
4080* reg_addr - address of the PHY register to read
4081******************************************************************************/
4082static int
4083e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4084{
4085 uint32_t i;
4086 uint32_t mdic = 0;
4087 const uint32_t phy_addr = 1;
4088
4089 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4090 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4091 return -E1000_ERR_PARAM;
4092 }
4093
4094 if (hw->mac_type > e1000_82543) {
4095 /* Set up Op-code, Phy Address, and register address in the MDI
4096 * Control register. The MAC will take care of interfacing with the
4097 * PHY to retrieve the desired data.
4098 */
4099 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4100 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4101 (E1000_MDIC_OP_READ));
4102
4103 E1000_WRITE_REG(hw, MDIC, mdic);
4104
4105 /* Poll the ready bit to see if the MDI read completed */
4106 for (i = 0; i < 64; i++) {
4107 udelay(10);
4108 mdic = E1000_READ_REG(hw, MDIC);
4109 if (mdic & E1000_MDIC_READY)
4110 break;
4111 }
4112 if (!(mdic & E1000_MDIC_READY)) {
4113 DEBUGOUT("MDI Read did not complete\n");
4114 return -E1000_ERR_PHY;
4115 }
4116 if (mdic & E1000_MDIC_ERROR) {
4117 DEBUGOUT("MDI Error\n");
4118 return -E1000_ERR_PHY;
4119 }
4120 *phy_data = (uint16_t) mdic;
4121 } else {
4122 /* We must first send a preamble through the MDIO pin to signal the
4123 * beginning of an MII instruction. This is done by sending 32
4124 * consecutive "1" bits.
4125 */
4126 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4127
4128 /* Now combine the next few fields that are required for a read
4129 * operation. We use this method instead of calling the
4130 * e1000_shift_out_mdi_bits routine five different times. The format of
4131 * a MII read instruction consists of a shift out of 14 bits and is
4132 * defined as follows:
4133 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4134 * followed by a shift in of 18 bits. This first two bits shifted in
4135 * are TurnAround bits used to avoid contention on the MDIO pin when a
4136 * READ operation is performed. These two bits are thrown away
4137 * followed by a shift in of 16 bits which contains the desired data.
4138 */
4139 mdic = ((reg_addr) | (phy_addr << 5) |
4140 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4141
4142 e1000_shift_out_mdi_bits(hw, mdic, 14);
4143
4144 /* Now that we've shifted out the read command to the MII, we need to
4145 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4146 * register address.
4147 */
4148 *phy_data = e1000_shift_in_mdi_bits(hw);
4149 }
4150 return 0;
4151}
4152
4153/******************************************************************************
4154* Writes a value to a PHY register
4155*
4156* hw - Struct containing variables accessed by shared code
4157* reg_addr - address of the PHY register to write
4158* data - data to write to the PHY
4159******************************************************************************/
4160static int
4161e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4162{
4163 uint32_t i;
4164 uint32_t mdic = 0;
4165 const uint32_t phy_addr = 1;
4166
4167 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4168 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4169 return -E1000_ERR_PARAM;
4170 }
4171
4172 if (hw->mac_type > e1000_82543) {
4173 /* Set up Op-code, Phy Address, register address, and data intended
4174 * for the PHY register in the MDI Control register. The MAC will take
4175 * care of interfacing with the PHY to send the desired data.
4176 */
4177 mdic = (((uint32_t) phy_data) |
4178 (reg_addr << E1000_MDIC_REG_SHIFT) |
4179 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4180 (E1000_MDIC_OP_WRITE));
4181
4182 E1000_WRITE_REG(hw, MDIC, mdic);
4183
4184 /* Poll the ready bit to see if the MDI read completed */
4185 for (i = 0; i < 64; i++) {
4186 udelay(10);
4187 mdic = E1000_READ_REG(hw, MDIC);
4188 if (mdic & E1000_MDIC_READY)
4189 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004190 }
4191 if (!(mdic & E1000_MDIC_READY)) {
4192 DEBUGOUT("MDI Write did not complete\n");
4193 return -E1000_ERR_PHY;
4194 }
4195 } else {
4196 /* We'll need to use the SW defined pins to shift the write command
4197 * out to the PHY. We first send a preamble to the PHY to signal the
4198 * beginning of the MII instruction. This is done by sending 32
4199 * consecutive "1" bits.
4200 */
4201 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4202
4203 /* Now combine the remaining required fields that will indicate a
4204 * write operation. We use this method instead of calling the
4205 * e1000_shift_out_mdi_bits routine for each field in the command. The
4206 * format of a MII write instruction is as follows:
4207 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4208 */
4209 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4210 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4211 mdic <<= 16;
4212 mdic |= (uint32_t) phy_data;
4213
4214 e1000_shift_out_mdi_bits(hw, mdic, 32);
4215 }
4216 return 0;
4217}
4218
4219/******************************************************************************
4220 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4221 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4222 * the caller to figure out how to deal with it.
4223 *
4224 * hw - Struct containing variables accessed by shared code
4225 *
4226 * returns: - E1000_BLK_PHY_RESET
4227 * E1000_SUCCESS
4228 *
4229 *****************************************************************************/
4230int32_t
4231e1000_check_phy_reset_block(struct e1000_hw *hw)
4232{
4233 uint32_t manc = 0;
4234 uint32_t fwsm = 0;
4235
4236 if (hw->mac_type == e1000_ich8lan) {
4237 fwsm = E1000_READ_REG(hw, FWSM);
4238 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4239 : E1000_BLK_PHY_RESET;
4240 }
4241
4242 if (hw->mac_type > e1000_82547_rev_2)
4243 manc = E1000_READ_REG(hw, MANC);
4244 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4245 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4246}
4247
4248/***************************************************************************
4249 * Checks if the PHY configuration is done
4250 *
4251 * hw: Struct containing variables accessed by shared code
4252 *
4253 * returns: - E1000_ERR_RESET if fail to reset MAC
4254 * E1000_SUCCESS at any other case.
4255 *
4256 ***************************************************************************/
4257static int32_t
4258e1000_get_phy_cfg_done(struct e1000_hw *hw)
4259{
4260 int32_t timeout = PHY_CFG_TIMEOUT;
4261 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4262
4263 DEBUGFUNC();
4264
4265 switch (hw->mac_type) {
4266 default:
4267 mdelay(10);
4268 break;
4269 case e1000_80003es2lan:
4270 /* Separate *_CFG_DONE_* bit for each port */
4271 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4272 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4273 /* Fall Through */
4274 case e1000_82571:
4275 case e1000_82572:
4276 while (timeout) {
4277 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4278 break;
4279 else
4280 mdelay(1);
4281 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004282 }
Roy Zang28f7a052009-07-31 13:34:02 +08004283 if (!timeout) {
4284 DEBUGOUT("MNG configuration cycle has not "
4285 "completed.\n");
4286 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004287 }
Roy Zang28f7a052009-07-31 13:34:02 +08004288 break;
wdenk4e112c12003-06-03 23:54:09 +00004289 }
Roy Zang28f7a052009-07-31 13:34:02 +08004290
4291 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004292}
4293
4294/******************************************************************************
4295* Returns the PHY to the power-on reset state
4296*
4297* hw - Struct containing variables accessed by shared code
4298******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004299int32_t
wdenk4e112c12003-06-03 23:54:09 +00004300e1000_phy_hw_reset(struct e1000_hw *hw)
4301{
Roy Zang28f7a052009-07-31 13:34:02 +08004302 uint32_t ctrl, ctrl_ext;
4303 uint32_t led_ctrl;
4304 int32_t ret_val;
4305 uint16_t swfw;
wdenk4e112c12003-06-03 23:54:09 +00004306
4307 DEBUGFUNC();
4308
Roy Zang28f7a052009-07-31 13:34:02 +08004309 /* In the case of the phy reset being blocked, it's not an error, we
4310 * simply return success without performing the reset. */
4311 ret_val = e1000_check_phy_reset_block(hw);
4312 if (ret_val)
4313 return E1000_SUCCESS;
4314
wdenk4e112c12003-06-03 23:54:09 +00004315 DEBUGOUT("Resetting Phy...\n");
4316
4317 if (hw->mac_type > e1000_82543) {
Roy Zang28f7a052009-07-31 13:34:02 +08004318 if ((hw->mac_type == e1000_80003es2lan) &&
4319 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4320 swfw = E1000_SWFW_PHY1_SM;
4321 } else {
4322 swfw = E1000_SWFW_PHY0_SM;
4323 }
4324 if (e1000_swfw_sync_acquire(hw, swfw)) {
4325 DEBUGOUT("Unable to acquire swfw sync\n");
4326 return -E1000_ERR_SWFW_SYNC;
4327 }
wdenk4e112c12003-06-03 23:54:09 +00004328 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4329 * bit. Then, take it out of reset.
4330 */
4331 ctrl = E1000_READ_REG(hw, CTRL);
4332 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4333 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004334
4335 if (hw->mac_type < e1000_82571)
4336 udelay(10);
4337 else
4338 udelay(100);
4339
wdenk4e112c12003-06-03 23:54:09 +00004340 E1000_WRITE_REG(hw, CTRL, ctrl);
4341 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004342
4343 if (hw->mac_type >= e1000_82571)
4344 mdelay(10);
4345
wdenk4e112c12003-06-03 23:54:09 +00004346 } else {
4347 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4348 * bit to put the PHY into reset. Then, take it out of reset.
4349 */
4350 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4351 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4352 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4353 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4354 E1000_WRITE_FLUSH(hw);
4355 mdelay(10);
4356 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4357 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4358 E1000_WRITE_FLUSH(hw);
4359 }
4360 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004361
4362 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4363 /* Configure activity LED after PHY reset */
4364 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4365 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4366 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4367 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4368 }
4369
4370 /* Wait for FW to finish PHY configuration. */
4371 ret_val = e1000_get_phy_cfg_done(hw);
4372 if (ret_val != E1000_SUCCESS)
4373 return ret_val;
4374
4375 return ret_val;
4376}
4377
4378/******************************************************************************
4379 * IGP phy init script - initializes the GbE PHY
4380 *
4381 * hw - Struct containing variables accessed by shared code
4382 *****************************************************************************/
4383static void
4384e1000_phy_init_script(struct e1000_hw *hw)
4385{
4386 uint32_t ret_val;
4387 uint16_t phy_saved_data;
4388 DEBUGFUNC();
4389
4390 if (hw->phy_init_script) {
4391 mdelay(20);
4392
4393 /* Save off the current value of register 0x2F5B to be
4394 * restored at the end of this routine. */
4395 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4396
4397 /* Disabled the PHY transmitter */
4398 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4399
4400 mdelay(20);
4401
4402 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4403
4404 mdelay(5);
4405
4406 switch (hw->mac_type) {
4407 case e1000_82541:
4408 case e1000_82547:
4409 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4410
4411 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4412
4413 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4414
4415 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4416
4417 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4418
4419 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4420
4421 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4422
4423 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4424
4425 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4426 break;
4427
4428 case e1000_82541_rev_2:
4429 case e1000_82547_rev_2:
4430 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4431 break;
4432 default:
4433 break;
4434 }
4435
4436 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4437
4438 mdelay(20);
4439
4440 /* Now enable the transmitter */
4441 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4442
4443 if (hw->mac_type == e1000_82547) {
4444 uint16_t fused, fine, coarse;
4445
4446 /* Move to analog registers page */
4447 e1000_read_phy_reg(hw,
4448 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4449
4450 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4451 e1000_read_phy_reg(hw,
4452 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4453
4454 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4455 coarse = fused
4456 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4457
4458 if (coarse >
4459 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4460 coarse -=
4461 IGP01E1000_ANALOG_FUSE_COARSE_10;
4462 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4463 } else if (coarse
4464 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4465 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4466
4467 fused = (fused
4468 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4469 (fine
4470 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4471 (coarse
4472 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4473
4474 e1000_write_phy_reg(hw,
4475 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4476 e1000_write_phy_reg(hw,
4477 IGP01E1000_ANALOG_FUSE_BYPASS,
4478 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4479 }
4480 }
4481 }
wdenk4e112c12003-06-03 23:54:09 +00004482}
4483
4484/******************************************************************************
4485* Resets the PHY
4486*
4487* hw - Struct containing variables accessed by shared code
4488*
Roy Zang28f7a052009-07-31 13:34:02 +08004489* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004490******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004491int32_t
wdenk4e112c12003-06-03 23:54:09 +00004492e1000_phy_reset(struct e1000_hw *hw)
4493{
Roy Zang28f7a052009-07-31 13:34:02 +08004494 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004495 uint16_t phy_data;
4496
4497 DEBUGFUNC();
4498
Roy Zang28f7a052009-07-31 13:34:02 +08004499 /* In the case of the phy reset being blocked, it's not an error, we
4500 * simply return success without performing the reset. */
4501 ret_val = e1000_check_phy_reset_block(hw);
4502 if (ret_val)
4503 return E1000_SUCCESS;
4504
4505 switch (hw->phy_type) {
4506 case e1000_phy_igp:
4507 case e1000_phy_igp_2:
4508 case e1000_phy_igp_3:
4509 case e1000_phy_ife:
4510 ret_val = e1000_phy_hw_reset(hw);
4511 if (ret_val)
4512 return ret_val;
4513 break;
4514 default:
4515 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4516 if (ret_val)
4517 return ret_val;
4518
4519 phy_data |= MII_CR_RESET;
4520 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4521 if (ret_val)
4522 return ret_val;
4523
4524 udelay(1);
4525 break;
wdenk4e112c12003-06-03 23:54:09 +00004526 }
Roy Zang28f7a052009-07-31 13:34:02 +08004527
4528 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4529 e1000_phy_init_script(hw);
4530
4531 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004532}
4533
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004534static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004535{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004536 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004537
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004538 if (hw->mac_type == e1000_undefined)
4539 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004540
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004541 switch (hw->phy_id) {
4542 case M88E1000_E_PHY_ID:
4543 case M88E1000_I_PHY_ID:
4544 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004545 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004546 hw->phy_type = e1000_phy_m88;
4547 break;
4548 case IGP01E1000_I_PHY_ID:
4549 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004550 hw->mac_type == e1000_82541_rev_2 ||
4551 hw->mac_type == e1000_82547 ||
4552 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004553 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004554 hw->phy_type = e1000_phy_igp;
4555 break;
4556 }
4557 case IGP03E1000_E_PHY_ID:
4558 hw->phy_type = e1000_phy_igp_3;
4559 break;
4560 case IFE_E_PHY_ID:
4561 case IFE_PLUS_E_PHY_ID:
4562 case IFE_C_E_PHY_ID:
4563 hw->phy_type = e1000_phy_ife;
4564 break;
4565 case GG82563_E_PHY_ID:
4566 if (hw->mac_type == e1000_80003es2lan) {
4567 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004568 break;
4569 }
Roy Zang181119b2011-01-21 11:29:38 +08004570 case BME1000_E_PHY_ID:
4571 hw->phy_type = e1000_phy_bm;
4572 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004573 /* Fall Through */
4574 default:
4575 /* Should never have loaded on this device */
4576 hw->phy_type = e1000_phy_undefined;
4577 return -E1000_ERR_PHY_TYPE;
4578 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004579
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004580 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004581}
4582
wdenk4e112c12003-06-03 23:54:09 +00004583/******************************************************************************
4584* Probes the expected PHY address for known PHY IDs
4585*
4586* hw - Struct containing variables accessed by shared code
4587******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004588static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004589e1000_detect_gig_phy(struct e1000_hw *hw)
4590{
Roy Zang28f7a052009-07-31 13:34:02 +08004591 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004592 uint16_t phy_id_high, phy_id_low;
Roy Zang28f7a052009-07-31 13:34:02 +08004593 boolean_t match = FALSE;
wdenk4e112c12003-06-03 23:54:09 +00004594
4595 DEBUGFUNC();
4596
Roy Zang28f7a052009-07-31 13:34:02 +08004597 /* The 82571 firmware may still be configuring the PHY. In this
4598 * case, we cannot access the PHY until the configuration is done. So
4599 * we explicitly set the PHY values. */
4600 if (hw->mac_type == e1000_82571 ||
4601 hw->mac_type == e1000_82572) {
4602 hw->phy_id = IGP01E1000_I_PHY_ID;
4603 hw->phy_type = e1000_phy_igp_2;
4604 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004605 }
Roy Zang28f7a052009-07-31 13:34:02 +08004606
4607 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4608 * work- around that forces PHY page 0 to be set or the reads fail.
4609 * The rest of the code in this routine uses e1000_read_phy_reg to
4610 * read the PHY ID. So for ESB-2 we need to have this set so our
4611 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4612 * the routines below will figure this out as well. */
4613 if (hw->mac_type == e1000_80003es2lan)
4614 hw->phy_type = e1000_phy_gg82563;
4615
4616 /* Read the PHY ID Registers to identify which PHY is onboard. */
4617 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4618 if (ret_val)
4619 return ret_val;
4620
wdenk4e112c12003-06-03 23:54:09 +00004621 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004622 udelay(20);
4623 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4624 if (ret_val)
4625 return ret_val;
4626
wdenk4e112c12003-06-03 23:54:09 +00004627 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004628 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004629
4630 switch (hw->mac_type) {
4631 case e1000_82543:
4632 if (hw->phy_id == M88E1000_E_PHY_ID)
4633 match = TRUE;
4634 break;
4635 case e1000_82544:
4636 if (hw->phy_id == M88E1000_I_PHY_ID)
4637 match = TRUE;
4638 break;
4639 case e1000_82540:
4640 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004641 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004642 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004643 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004644 if (hw->phy_id == M88E1011_I_PHY_ID)
4645 match = TRUE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004646 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004647 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004648 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004649 case e1000_82547:
4650 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004651 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4652 match = TRUE;
4653
wdenk4e112c12003-06-03 23:54:09 +00004654 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004655 case e1000_82573:
4656 if (hw->phy_id == M88E1111_I_PHY_ID)
4657 match = TRUE;
4658 break;
Roy Zang181119b2011-01-21 11:29:38 +08004659 case e1000_82574:
4660 if (hw->phy_id == BME1000_E_PHY_ID)
4661 match = TRUE;
4662 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004663 case e1000_80003es2lan:
4664 if (hw->phy_id == GG82563_E_PHY_ID)
4665 match = TRUE;
4666 break;
4667 case e1000_ich8lan:
4668 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4669 match = TRUE;
4670 if (hw->phy_id == IFE_E_PHY_ID)
4671 match = TRUE;
4672 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4673 match = TRUE;
4674 if (hw->phy_id == IFE_C_E_PHY_ID)
4675 match = TRUE;
4676 break;
wdenk4e112c12003-06-03 23:54:09 +00004677 default:
4678 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4679 return -E1000_ERR_CONFIG;
4680 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004681
4682 phy_init_status = e1000_set_phy_type(hw);
4683
4684 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004685 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4686 return 0;
4687 }
4688 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4689 return -E1000_ERR_PHY;
4690}
4691
Roy Zang28f7a052009-07-31 13:34:02 +08004692/*****************************************************************************
4693 * Set media type and TBI compatibility.
4694 *
4695 * hw - Struct containing variables accessed by shared code
4696 * **************************************************************************/
4697void
4698e1000_set_media_type(struct e1000_hw *hw)
4699{
4700 uint32_t status;
4701
4702 DEBUGFUNC();
4703
4704 if (hw->mac_type != e1000_82543) {
4705 /* tbi_compatibility is only valid on 82543 */
4706 hw->tbi_compatibility_en = FALSE;
4707 }
4708
4709 switch (hw->device_id) {
4710 case E1000_DEV_ID_82545GM_SERDES:
4711 case E1000_DEV_ID_82546GB_SERDES:
4712 case E1000_DEV_ID_82571EB_SERDES:
4713 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4714 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4715 case E1000_DEV_ID_82572EI_SERDES:
4716 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4717 hw->media_type = e1000_media_type_internal_serdes;
4718 break;
4719 default:
4720 switch (hw->mac_type) {
4721 case e1000_82542_rev2_0:
4722 case e1000_82542_rev2_1:
4723 hw->media_type = e1000_media_type_fiber;
4724 break;
4725 case e1000_ich8lan:
4726 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08004727 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08004728 /* The STATUS_TBIMODE bit is reserved or reused
4729 * for the this device.
4730 */
4731 hw->media_type = e1000_media_type_copper;
4732 break;
4733 default:
4734 status = E1000_READ_REG(hw, STATUS);
4735 if (status & E1000_STATUS_TBIMODE) {
4736 hw->media_type = e1000_media_type_fiber;
4737 /* tbi_compatibility not valid on fiber */
4738 hw->tbi_compatibility_en = FALSE;
4739 } else {
4740 hw->media_type = e1000_media_type_copper;
4741 }
4742 break;
4743 }
4744 }
4745}
4746
wdenk4e112c12003-06-03 23:54:09 +00004747/**
4748 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4749 *
4750 * e1000_sw_init initializes the Adapter private data structure.
4751 * Fields are initialized based on PCI device information and
4752 * OS network device settings (MTU size).
4753 **/
4754
4755static int
4756e1000_sw_init(struct eth_device *nic, int cardnum)
4757{
4758 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4759 int result;
4760
4761 /* PCI config space info */
4762 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4763 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4764 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4765 &hw->subsystem_vendor_id);
4766 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4767
4768 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4769 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4770
4771 /* identify the MAC */
4772 result = e1000_set_mac_type(hw);
4773 if (result) {
4774 E1000_ERR("Unknown MAC Type\n");
4775 return result;
4776 }
4777
Roy Zang28f7a052009-07-31 13:34:02 +08004778 switch (hw->mac_type) {
4779 default:
4780 break;
4781 case e1000_82541:
4782 case e1000_82547:
4783 case e1000_82541_rev_2:
4784 case e1000_82547_rev_2:
4785 hw->phy_init_script = 1;
4786 break;
4787 }
4788
wdenk4e112c12003-06-03 23:54:09 +00004789 /* lan a vs. lan b settings */
4790 if (hw->mac_type == e1000_82546)
4791 /*this also works w/ multiple 82546 cards */
4792 /*but not if they're intermingled /w other e1000s */
4793 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4794 else
4795 hw->lan_loc = e1000_lan_a;
4796
4797 /* flow control settings */
4798 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4799 hw->fc_low_water = E1000_FC_LOW_THRESH;
4800 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4801 hw->fc_send_xon = 1;
4802
4803 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004804 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004805
4806 if (hw->mac_type >= e1000_82543) {
4807 uint32_t status = E1000_READ_REG(hw, STATUS);
4808
4809 if (status & E1000_STATUS_TBIMODE) {
4810 DEBUGOUT("fiber interface\n");
4811 hw->media_type = e1000_media_type_fiber;
4812 } else {
4813 DEBUGOUT("copper interface\n");
4814 hw->media_type = e1000_media_type_copper;
4815 }
4816 } else {
4817 hw->media_type = e1000_media_type_fiber;
4818 }
4819
Roy Zang28f7a052009-07-31 13:34:02 +08004820 hw->tbi_compatibility_en = TRUE;
4821 hw->wait_autoneg_complete = TRUE;
wdenk4e112c12003-06-03 23:54:09 +00004822 if (hw->mac_type < e1000_82543)
4823 hw->report_tx_early = 0;
4824 else
4825 hw->report_tx_early = 1;
4826
wdenk4e112c12003-06-03 23:54:09 +00004827 return E1000_SUCCESS;
4828}
4829
4830void
4831fill_rx(struct e1000_hw *hw)
4832{
4833 struct e1000_rx_desc *rd;
4834
4835 rx_last = rx_tail;
4836 rd = rx_base + rx_tail;
4837 rx_tail = (rx_tail + 1) % 8;
4838 memset(rd, 0, 16);
4839 rd->buffer_addr = cpu_to_le64((u32) & packet);
4840 E1000_WRITE_REG(hw, RDT, rx_tail);
4841}
4842
4843/**
4844 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4845 * @adapter: board private structure
4846 *
4847 * Configure the Tx unit of the MAC after a reset.
4848 **/
4849
4850static void
4851e1000_configure_tx(struct e1000_hw *hw)
4852{
4853 unsigned long ptr;
4854 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004855 unsigned long tipg, tarc;
4856 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004857
4858 ptr = (u32) tx_pool;
4859 if (ptr & 0xf)
4860 ptr = (ptr + 0x10) & (~0xf);
4861
4862 tx_base = (typeof(tx_base)) ptr;
4863
4864 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4865 E1000_WRITE_REG(hw, TDBAH, 0);
4866
4867 E1000_WRITE_REG(hw, TDLEN, 128);
4868
4869 /* Setup the HW Tx Head and Tail descriptor pointers */
4870 E1000_WRITE_REG(hw, TDH, 0);
4871 E1000_WRITE_REG(hw, TDT, 0);
4872 tx_tail = 0;
4873
4874 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004875 if (hw->mac_type <= e1000_82547_rev_2 &&
4876 (hw->media_type == e1000_media_type_fiber ||
4877 hw->media_type == e1000_media_type_internal_serdes))
4878 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4879 else
4880 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4881
4882 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004883 switch (hw->mac_type) {
4884 case e1000_82542_rev2_0:
4885 case e1000_82542_rev2_1:
4886 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004887 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4888 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4889 break;
4890 case e1000_80003es2lan:
4891 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4892 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004893 break;
4894 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004895 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4896 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4897 break;
wdenk4e112c12003-06-03 23:54:09 +00004898 }
Roy Zang28f7a052009-07-31 13:34:02 +08004899 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4900 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004901 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004902 /* Program the Transmit Control Register */
4903 tctl = E1000_READ_REG(hw, TCTL);
4904 tctl &= ~E1000_TCTL_CT;
4905 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4906 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004907
4908 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4909 tarc = E1000_READ_REG(hw, TARC0);
4910 /* set the speed mode bit, we'll clear it if we're not at
4911 * gigabit link later */
4912 /* git bit can be set to 1*/
4913 } else if (hw->mac_type == e1000_80003es2lan) {
4914 tarc = E1000_READ_REG(hw, TARC0);
4915 tarc |= 1;
4916 E1000_WRITE_REG(hw, TARC0, tarc);
4917 tarc = E1000_READ_REG(hw, TARC1);
4918 tarc |= 1;
4919 E1000_WRITE_REG(hw, TARC1, tarc);
4920 }
4921
wdenk4e112c12003-06-03 23:54:09 +00004922
4923 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004924 /* Setup Transmit Descriptor Settings for eop descriptor */
4925 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004926
Roy Zang28f7a052009-07-31 13:34:02 +08004927 /* Need to set up RS bit */
4928 if (hw->mac_type < e1000_82543)
4929 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004930 else
Roy Zang28f7a052009-07-31 13:34:02 +08004931 hw->txd_cmd |= E1000_TXD_CMD_RS;
4932 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004933}
4934
4935/**
4936 * e1000_setup_rctl - configure the receive control register
4937 * @adapter: Board private structure
4938 **/
4939static void
4940e1000_setup_rctl(struct e1000_hw *hw)
4941{
4942 uint32_t rctl;
4943
4944 rctl = E1000_READ_REG(hw, RCTL);
4945
4946 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4947
Roy Zang28f7a052009-07-31 13:34:02 +08004948 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4949 | E1000_RCTL_RDMTS_HALF; /* |
4950 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004951
4952 if (hw->tbi_compatibility_on == 1)
4953 rctl |= E1000_RCTL_SBP;
4954 else
4955 rctl &= ~E1000_RCTL_SBP;
4956
4957 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004958 rctl |= E1000_RCTL_SZ_2048;
4959 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004960 E1000_WRITE_REG(hw, RCTL, rctl);
4961}
4962
4963/**
4964 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4965 * @adapter: board private structure
4966 *
4967 * Configure the Rx unit of the MAC after a reset.
4968 **/
4969static void
4970e1000_configure_rx(struct e1000_hw *hw)
4971{
4972 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004973 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004974 rx_tail = 0;
4975 /* make sure receives are disabled while setting up the descriptors */
4976 rctl = E1000_READ_REG(hw, RCTL);
4977 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004978 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004979 /* Set the interrupt throttling rate. Value is calculated
4980 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004981#define MAX_INTS_PER_SEC 8000
4982#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004983 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4984 }
4985
Roy Zang28f7a052009-07-31 13:34:02 +08004986 if (hw->mac_type >= e1000_82571) {
4987 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4988 /* Reset delay timers after every interrupt */
4989 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4990 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4991 E1000_WRITE_FLUSH(hw);
4992 }
wdenk4e112c12003-06-03 23:54:09 +00004993 /* Setup the Base and Length of the Rx Descriptor Ring */
4994 ptr = (u32) rx_pool;
4995 if (ptr & 0xf)
4996 ptr = (ptr + 0x10) & (~0xf);
4997 rx_base = (typeof(rx_base)) ptr;
4998 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4999 E1000_WRITE_REG(hw, RDBAH, 0);
5000
5001 E1000_WRITE_REG(hw, RDLEN, 128);
5002
5003 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5004 E1000_WRITE_REG(hw, RDH, 0);
5005 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00005006 /* Enable Receives */
5007
5008 E1000_WRITE_REG(hw, RCTL, rctl);
5009 fill_rx(hw);
5010}
5011
5012/**************************************************************************
5013POLL - Wait for a frame
5014***************************************************************************/
5015static int
5016e1000_poll(struct eth_device *nic)
5017{
5018 struct e1000_hw *hw = nic->priv;
5019 struct e1000_rx_desc *rd;
5020 /* return true if there's an ethernet packet ready to read */
5021 rd = rx_base + rx_last;
5022 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5023 return 0;
5024 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02005025 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00005026 fill_rx(hw);
5027 return 1;
5028}
5029
5030/**************************************************************************
5031TRANSMIT - Transmit a frame
5032***************************************************************************/
5033static int
5034e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5035{
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005036 void * nv_packet = (void *)packet;
wdenk4e112c12003-06-03 23:54:09 +00005037 struct e1000_hw *hw = nic->priv;
5038 struct e1000_tx_desc *txp;
5039 int i = 0;
5040
5041 txp = tx_base + tx_tail;
5042 tx_tail = (tx_tail + 1) % 8;
5043
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005044 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005045 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005046 txp->upper.data = 0;
5047 E1000_WRITE_REG(hw, TDT, tx_tail);
5048
Roy Zang28f7a052009-07-31 13:34:02 +08005049 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005050 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5051 if (i++ > TOUT_LOOP) {
5052 DEBUGOUT("e1000: tx timeout\n");
5053 return 0;
5054 }
5055 udelay(10); /* give the nic a chance to write to the register */
5056 }
5057 return 1;
5058}
5059
5060/*reset function*/
5061static inline int
5062e1000_reset(struct eth_device *nic)
5063{
5064 struct e1000_hw *hw = nic->priv;
5065
5066 e1000_reset_hw(hw);
5067 if (hw->mac_type >= e1000_82544) {
5068 E1000_WRITE_REG(hw, WUC, 0);
5069 }
5070 return e1000_init_hw(nic);
5071}
5072
5073/**************************************************************************
5074DISABLE - Turn off ethernet interface
5075***************************************************************************/
5076static void
5077e1000_disable(struct eth_device *nic)
5078{
5079 struct e1000_hw *hw = nic->priv;
5080
5081 /* Turn off the ethernet interface */
5082 E1000_WRITE_REG(hw, RCTL, 0);
5083 E1000_WRITE_REG(hw, TCTL, 0);
5084
5085 /* Clear the transmit ring */
5086 E1000_WRITE_REG(hw, TDH, 0);
5087 E1000_WRITE_REG(hw, TDT, 0);
5088
5089 /* Clear the receive ring */
5090 E1000_WRITE_REG(hw, RDH, 0);
5091 E1000_WRITE_REG(hw, RDT, 0);
5092
5093 /* put the card in its initial state */
5094#if 0
5095 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5096#endif
5097 mdelay(10);
5098
5099}
5100
5101/**************************************************************************
5102INIT - set up ethernet interface(s)
5103***************************************************************************/
5104static int
5105e1000_init(struct eth_device *nic, bd_t * bis)
5106{
5107 struct e1000_hw *hw = nic->priv;
5108 int ret_val = 0;
5109
5110 ret_val = e1000_reset(nic);
5111 if (ret_val < 0) {
5112 if ((ret_val == -E1000_ERR_NOLINK) ||
5113 (ret_val == -E1000_ERR_TIMEOUT)) {
5114 E1000_ERR("Valid Link not detected\n");
5115 } else {
5116 E1000_ERR("Hardware Initialization Failed\n");
5117 }
5118 return 0;
5119 }
5120 e1000_configure_tx(hw);
5121 e1000_setup_rctl(hw);
5122 e1000_configure_rx(hw);
5123 return 1;
5124}
5125
Roy Zang28f7a052009-07-31 13:34:02 +08005126/******************************************************************************
5127 * Gets the current PCI bus type of hardware
5128 *
5129 * hw - Struct containing variables accessed by shared code
5130 *****************************************************************************/
5131void e1000_get_bus_type(struct e1000_hw *hw)
5132{
5133 uint32_t status;
5134
5135 switch (hw->mac_type) {
5136 case e1000_82542_rev2_0:
5137 case e1000_82542_rev2_1:
5138 hw->bus_type = e1000_bus_type_pci;
5139 break;
5140 case e1000_82571:
5141 case e1000_82572:
5142 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005143 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005144 case e1000_80003es2lan:
5145 hw->bus_type = e1000_bus_type_pci_express;
5146 break;
5147 case e1000_ich8lan:
5148 hw->bus_type = e1000_bus_type_pci_express;
5149 break;
5150 default:
5151 status = E1000_READ_REG(hw, STATUS);
5152 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5153 e1000_bus_type_pcix : e1000_bus_type_pci;
5154 break;
5155 }
5156}
5157
wdenk4e112c12003-06-03 23:54:09 +00005158/**************************************************************************
5159PROBE - Look for an adapter, this routine's visible to the outside
5160You should omit the last argument struct pci_device * for a non-PCI NIC
5161***************************************************************************/
5162int
5163e1000_initialize(bd_t * bis)
5164{
5165 pci_dev_t devno;
5166 int card_number = 0;
5167 struct eth_device *nic = NULL;
5168 struct e1000_hw *hw = NULL;
5169 u32 iobase;
5170 int idx = 0;
5171 u32 PciCommandWord;
5172
Timur Tabiedc45b52009-08-17 15:55:38 -05005173 DEBUGFUNC();
5174
wdenk4e112c12003-06-03 23:54:09 +00005175 while (1) { /* Find PCI device(s) */
5176 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5177 break;
5178 }
5179
5180 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5181 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5182 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5183
5184 pci_write_config_dword(devno, PCI_COMMAND,
5185 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5186 /* Check if I/O accesses and Bus Mastering are enabled. */
5187 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5188 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5189 printf("Error: Can not enable MEM access.\n");
5190 continue;
5191 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5192 printf("Error: Can not enable Bus Mastering.\n");
5193 continue;
5194 }
5195
5196 nic = (struct eth_device *) malloc(sizeof (*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005197 if (!nic) {
5198 printf("Error: e1000 - Can not alloc memory\n");
5199 return 0;
5200 }
5201
wdenk4e112c12003-06-03 23:54:09 +00005202 hw = (struct e1000_hw *) malloc(sizeof (*hw));
Kumar Gala76933572010-11-12 04:13:06 -06005203 if (!hw) {
5204 free(nic);
5205 printf("Error: e1000 - Can not alloc memory\n");
5206 return 0;
5207 }
5208
Matthew McClintock5761ce42010-11-15 18:02:53 -06005209 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005210 memset(hw, 0, sizeof(*hw));
5211
wdenk4e112c12003-06-03 23:54:09 +00005212 hw->pdev = devno;
5213 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005214
5215 sprintf(nic->name, "e1000#%d", card_number);
5216
5217 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005218 hw->fc = e1000_fc_default;
5219 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005220 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005221 hw->autoneg = 1;
wdenk4e112c12003-06-03 23:54:09 +00005222 hw->get_link_status = TRUE;
Timur Tabiedc45b52009-08-17 15:55:38 -05005223 hw->hw_addr =
5224 pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
wdenk4e112c12003-06-03 23:54:09 +00005225 hw->mac_type = e1000_undefined;
5226
5227 /* MAC and Phy settings */
5228 if (e1000_sw_init(nic, card_number) < 0) {
5229 free(hw);
5230 free(nic);
5231 return 0;
5232 }
Roy Zang28f7a052009-07-31 13:34:02 +08005233 if (e1000_check_phy_reset_block(hw))
5234 printf("phy reset block error \n");
5235 e1000_reset_hw(hw);
Andre Schwarz68c2a302008-03-06 16:45:44 +01005236#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
Roy Zang28f7a052009-07-31 13:34:02 +08005237 if (e1000_init_eeprom_params(hw)) {
5238 printf("The EEPROM Checksum Is Not Valid\n");
5239 free(hw);
5240 free(nic);
5241 return 0;
5242 }
wdenk4e112c12003-06-03 23:54:09 +00005243 if (e1000_validate_eeprom_checksum(nic) < 0) {
5244 printf("The EEPROM Checksum Is Not Valid\n");
5245 free(hw);
5246 free(nic);
5247 return 0;
5248 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02005249#endif
wdenk4e112c12003-06-03 23:54:09 +00005250 e1000_read_mac_addr(nic);
5251
Roy Zang28f7a052009-07-31 13:34:02 +08005252 /* get the bus type information */
5253 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005254
5255 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5256 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5257 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5258
5259 nic->init = e1000_init;
5260 nic->recv = e1000_poll;
5261 nic->send = e1000_transmit;
5262 nic->halt = e1000_disable;
5263
5264 eth_register(nic);
5265
5266 card_number++;
5267 }
Ben Warren050019d2008-08-31 10:44:19 -07005268 return card_number;
wdenk4e112c12003-06-03 23:54:09 +00005269}