blob: c7fefd20319fcf1c0972c92ee92effdc100ff45d [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Simon Glass11d7a5b2013-04-17 16:13:36 +00002/*
3 * Copyright (c) 2012 The Chromium OS Authors.
4 *
Bin Meng49f70992014-11-09 22:19:13 +08005 * TSC calibration codes are adapted from Linux kernel
6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
Simon Glass11d7a5b2013-04-17 16:13:36 +00007 */
8
9#include <common.h>
Bin Meng976c2e82015-11-13 00:11:21 -080010#include <dm.h>
Simon Glass11d7a5b2013-04-17 16:13:36 +000011#include <malloc.h>
Bin Meng976c2e82015-11-13 00:11:21 -080012#include <timer.h>
Bin Mengd159ffb2017-07-25 20:12:01 -070013#include <asm/cpu.h>
Simon Glass11d7a5b2013-04-17 16:13:36 +000014#include <asm/io.h>
15#include <asm/i8254.h>
16#include <asm/ibmpc.h>
17#include <asm/msr.h>
18#include <asm/u-boot-x86.h>
19
Bin Meng7943dc22017-08-15 22:41:50 -070020#define MAX_NUM_FREQS 9
Bin Meng49f70992014-11-09 22:19:13 +080021
Simon Glass11d7a5b2013-04-17 16:13:36 +000022DECLARE_GLOBAL_DATA_PTR;
23
Bin Meng49f70992014-11-09 22:19:13 +080024/*
25 * According to Intel 64 and IA-32 System Programming Guide,
26 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
27 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
28 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
29 * so we need manually differentiate SoC families. This is what the
30 * field msr_plat does.
31 */
32struct freq_desc {
33 u8 x86_family; /* CPU family */
34 u8 x86_model; /* model */
Simon Glass40a8c352014-11-12 22:42:04 -070035 /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
36 u8 msr_plat;
Bin Meng49f70992014-11-09 22:19:13 +080037 u32 freqs[MAX_NUM_FREQS];
38};
39
40static struct freq_desc freq_desc_tables[] = {
41 /* PNW */
Bin Meng7943dc22017-08-15 22:41:50 -070042 { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
Bin Meng49f70992014-11-09 22:19:13 +080043 /* CLV+ */
Bin Meng7943dc22017-08-15 22:41:50 -070044 { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
Bin Mengaeb581a2017-07-25 20:12:03 -070045 /* TNG - Intel Atom processor Z3400 series */
Bin Meng7943dc22017-08-15 22:41:50 -070046 { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
Bin Mengaeb581a2017-07-25 20:12:03 -070047 /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
Bin Meng7943dc22017-08-15 22:41:50 -070048 { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
Bin Mengaeb581a2017-07-25 20:12:03 -070049 /* ANN - Intel Atom processor Z3500 series */
Bin Meng7943dc22017-08-15 22:41:50 -070050 { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
51 /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
52 { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
53 80000, 93300, 90000, 88900, 87500 } },
Simon Glass40a8c352014-11-12 22:42:04 -070054 /* Ivybridge */
Bin Meng7943dc22017-08-15 22:41:50 -070055 { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
Bin Meng49f70992014-11-09 22:19:13 +080056};
57
58static int match_cpu(u8 family, u8 model)
59{
60 int i;
61
62 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
63 if ((family == freq_desc_tables[i].x86_family) &&
64 (model == freq_desc_tables[i].x86_model))
65 return i;
66 }
67
68 return -1;
69}
70
71/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
72#define id_to_freq(cpu_index, freq_id) \
73 (freq_desc_tables[cpu_index].freqs[freq_id])
74
75/*
Bin Meng6ffad642017-07-25 20:12:05 -070076 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
77 * reliable and the frequency is known (provided by HW).
Bin Meng49f70992014-11-09 22:19:13 +080078 *
Bin Meng6ffad642017-07-25 20:12:05 -070079 * On these platforms PIT/HPET is generally not available so calibration won't
80 * work at all and there is no other clocksource to act as a watchdog for the
81 * TSC, so we have no other choice than to trust it.
82 *
83 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
Bin Meng49f70992014-11-09 22:19:13 +080084 */
Bin Meng6ffad642017-07-25 20:12:05 -070085static unsigned long __maybe_unused cpu_mhz_from_msr(void)
Bin Meng49f70992014-11-09 22:19:13 +080086{
87 u32 lo, hi, ratio, freq_id, freq;
88 unsigned long res;
89 int cpu_index;
90
Bin Mengd159ffb2017-07-25 20:12:01 -070091 if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
92 return 0;
93
Bin Meng49f70992014-11-09 22:19:13 +080094 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
95 if (cpu_index < 0)
96 return 0;
97
98 if (freq_desc_tables[cpu_index].msr_plat) {
99 rdmsr(MSR_PLATFORM_INFO, lo, hi);
Bin Mengf4ed4d72017-07-25 20:12:00 -0700100 ratio = (lo >> 8) & 0xff;
Bin Meng49f70992014-11-09 22:19:13 +0800101 } else {
102 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
103 ratio = (hi >> 8) & 0x1f;
104 }
105 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
106
Simon Glass40a8c352014-11-12 22:42:04 -0700107 if (freq_desc_tables[cpu_index].msr_plat == 2) {
108 /* TODO: Figure out how best to deal with this */
Bin Meng23ee9ab2017-07-25 20:12:04 -0700109 freq = 100000;
Simon Glass40a8c352014-11-12 22:42:04 -0700110 debug("Using frequency: %u KHz\n", freq);
111 } else {
112 /* Get FSB FREQ ID */
113 rdmsr(MSR_FSB_FREQ, lo, hi);
114 freq_id = lo & 0x7;
115 freq = id_to_freq(cpu_index, freq_id);
116 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
117 freq_id, freq);
118 }
Bin Meng49f70992014-11-09 22:19:13 +0800119
120 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
121 res = freq * ratio / 1000;
122 debug("TSC runs at %lu MHz\n", res);
123
124 return res;
Bin Meng49f70992014-11-09 22:19:13 +0800125}
126
Bin Mengbba97052014-11-09 22:19:25 +0800127/*
128 * This reads the current MSB of the PIT counter, and
129 * checks if we are running on sufficiently fast and
130 * non-virtualized hardware.
131 *
132 * Our expectations are:
133 *
134 * - the PIT is running at roughly 1.19MHz
135 *
136 * - each IO is going to take about 1us on real hardware,
137 * but we allow it to be much faster (by a factor of 10) or
138 * _slightly_ slower (ie we allow up to a 2us read+counter
139 * update - anything else implies a unacceptably slow CPU
140 * or PIT for the fast calibration to work.
141 *
142 * - with 256 PIT ticks to read the value, we have 214us to
143 * see the same MSB (and overhead like doing a single TSC
144 * read per MSB value etc).
145 *
146 * - We're doing 2 reads per loop (LSB, MSB), and we expect
147 * them each to take about a microsecond on real hardware.
148 * So we expect a count value of around 100. But we'll be
149 * generous, and accept anything over 50.
150 *
151 * - if the PIT is stuck, and we see *many* more reads, we
152 * return early (and the next caller of pit_expect_msb()
153 * then consider it a failure when they don't see the
154 * next expected value).
155 *
156 * These expectations mean that we know that we have seen the
157 * transition from one expected value to another with a fairly
158 * high accuracy, and we didn't miss any events. We can thus
159 * use the TSC value at the transitions to calculate a pretty
160 * good value for the TSC frequencty.
161 */
162static inline int pit_verify_msb(unsigned char val)
163{
164 /* Ignore LSB */
165 inb(0x42);
166 return inb(0x42) == val;
167}
168
169static inline int pit_expect_msb(unsigned char val, u64 *tscp,
170 unsigned long *deltap)
171{
172 int count;
173 u64 tsc = 0, prev_tsc = 0;
174
175 for (count = 0; count < 50000; count++) {
176 if (!pit_verify_msb(val))
177 break;
178 prev_tsc = tsc;
179 tsc = rdtsc();
180 }
181 *deltap = rdtsc() - prev_tsc;
182 *tscp = tsc;
183
184 /*
185 * We require _some_ success, but the quality control
186 * will be based on the error terms on the TSC values.
187 */
188 return count > 5;
189}
190
191/*
192 * How many MSB values do we want to see? We aim for
193 * a maximum error rate of 500ppm (in practice the
194 * real error is much smaller), but refuse to spend
195 * more than 50ms on it.
196 */
197#define MAX_QUICK_PIT_MS 50
198#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
199
Bin Mengb2eb48b2015-01-06 22:14:14 +0800200static unsigned long __maybe_unused quick_pit_calibrate(void)
Bin Mengbba97052014-11-09 22:19:25 +0800201{
202 int i;
203 u64 tsc, delta;
204 unsigned long d1, d2;
205
206 /* Set the Gate high, disable speaker */
207 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
208
209 /*
210 * Counter 2, mode 0 (one-shot), binary count
211 *
212 * NOTE! Mode 2 decrements by two (and then the
213 * output is flipped each time, giving the same
214 * final output frequency as a decrement-by-one),
215 * so mode 0 is much better when looking at the
216 * individual counts.
217 */
218 outb(0xb0, 0x43);
219
220 /* Start at 0xffff */
221 outb(0xff, 0x42);
222 outb(0xff, 0x42);
223
224 /*
225 * The PIT starts counting at the next edge, so we
226 * need to delay for a microsecond. The easiest way
227 * to do that is to just read back the 16-bit counter
228 * once from the PIT.
229 */
230 pit_verify_msb(0);
231
232 if (pit_expect_msb(0xff, &tsc, &d1)) {
233 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
234 if (!pit_expect_msb(0xff-i, &delta, &d2))
235 break;
236
237 /*
238 * Iterate until the error is less than 500 ppm
239 */
240 delta -= tsc;
241 if (d1+d2 >= delta >> 11)
242 continue;
243
244 /*
245 * Check the PIT one more time to verify that
246 * all TSC reads were stable wrt the PIT.
247 *
248 * This also guarantees serialization of the
249 * last cycle read ('d2') in pit_expect_msb.
250 */
251 if (!pit_verify_msb(0xfe - i))
252 break;
253 goto success;
254 }
255 }
256 debug("Fast TSC calibration failed\n");
257 return 0;
258
259success:
260 /*
261 * Ok, if we get here, then we've seen the
262 * MSB of the PIT decrement 'i' times, and the
263 * error has shrunk to less than 500 ppm.
264 *
265 * As a result, we can depend on there not being
266 * any odd delays anywhere, and the TSC reads are
267 * reliable (within the error).
268 *
269 * kHz = ticks / time-in-seconds / 1000;
270 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
271 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
272 */
273 delta *= PIT_TICK_RATE;
274 delta /= (i*256*1000);
275 debug("Fast TSC calibration using PIT\n");
276 return delta / 1000;
277}
278
Simon Glass11d7a5b2013-04-17 16:13:36 +0000279/* Get the speed of the TSC timer in MHz */
Bin Meng500361e2015-11-13 00:11:20 -0800280unsigned notrace long get_tbclk_mhz(void)
Simon Glass11d7a5b2013-04-17 16:13:36 +0000281{
Bin Meng976c2e82015-11-13 00:11:21 -0800282 return get_tbclk() / 1000000;
Simon Glass11d7a5b2013-04-17 16:13:36 +0000283}
284
Simon Glass11d7a5b2013-04-17 16:13:36 +0000285static ulong get_ms_timer(void)
286{
287 return (get_ticks() * 1000) / get_tbclk();
288}
289
290ulong get_timer(ulong base)
291{
292 return get_ms_timer() - base;
293}
294
Bin Meng500361e2015-11-13 00:11:20 -0800295ulong notrace timer_get_us(void)
Simon Glass11d7a5b2013-04-17 16:13:36 +0000296{
297 return get_ticks() / get_tbclk_mhz();
298}
299
300ulong timer_get_boot_us(void)
301{
302 return timer_get_us();
303}
304
305void __udelay(unsigned long usec)
306{
307 u64 now = get_ticks();
308 u64 stop;
309
310 stop = now + usec * get_tbclk_mhz();
311
312 while ((int64_t)(stop - get_ticks()) > 0)
Miao Yanb9f32772015-07-27 19:16:07 +0800313#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
314 /*
315 * Add a 'pause' instruction on qemu target,
316 * to give other VCPUs a chance to run.
317 */
318 asm volatile("pause");
319#else
Simon Glass11d7a5b2013-04-17 16:13:36 +0000320 ;
Miao Yanb9f32772015-07-27 19:16:07 +0800321#endif
Simon Glass11d7a5b2013-04-17 16:13:36 +0000322}
323
Bin Meng976c2e82015-11-13 00:11:21 -0800324static int tsc_timer_get_count(struct udevice *dev, u64 *count)
325{
326 u64 now_tick = rdtsc();
327
328 *count = now_tick - gd->arch.tsc_base;
329
330 return 0;
331}
332
Simon Glass471919d2017-09-05 19:49:46 -0600333static void tsc_timer_ensure_setup(void)
Bin Meng976c2e82015-11-13 00:11:21 -0800334{
Simon Glass471919d2017-09-05 19:49:46 -0600335 if (gd->arch.tsc_base)
336 return;
Bin Meng976c2e82015-11-13 00:11:21 -0800337 gd->arch.tsc_base = rdtsc();
338
339 /*
340 * If there is no clock frequency specified in the device tree,
341 * calibrate it by ourselves.
342 */
Simon Glass471919d2017-09-05 19:49:46 -0600343 if (!gd->arch.clock_rate) {
Bin Meng976c2e82015-11-13 00:11:21 -0800344 unsigned long fast_calibrate;
345
Bin Meng6ffad642017-07-25 20:12:05 -0700346 fast_calibrate = cpu_mhz_from_msr();
Bin Meng976c2e82015-11-13 00:11:21 -0800347 if (!fast_calibrate) {
348 fast_calibrate = quick_pit_calibrate();
349 if (!fast_calibrate)
350 panic("TSC frequency is ZERO");
351 }
352
Simon Glass471919d2017-09-05 19:49:46 -0600353 gd->arch.clock_rate = fast_calibrate * 1000000;
Bin Meng976c2e82015-11-13 00:11:21 -0800354 }
Simon Glass471919d2017-09-05 19:49:46 -0600355}
356
357static int tsc_timer_probe(struct udevice *dev)
358{
359 struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
360
361 tsc_timer_ensure_setup();
362 uc_priv->clock_rate = gd->arch.clock_rate;
Bin Meng976c2e82015-11-13 00:11:21 -0800363
364 return 0;
365}
366
Simon Glass471919d2017-09-05 19:49:46 -0600367unsigned long notrace timer_early_get_rate(void)
368{
369 tsc_timer_ensure_setup();
370
371 return gd->arch.clock_rate;
372}
373
374u64 notrace timer_early_get_count(void)
375{
376 return rdtsc() - gd->arch.tsc_base;
377}
378
Bin Meng976c2e82015-11-13 00:11:21 -0800379static const struct timer_ops tsc_timer_ops = {
380 .get_count = tsc_timer_get_count,
381};
382
383static const struct udevice_id tsc_timer_ids[] = {
384 { .compatible = "x86,tsc-timer", },
385 { }
386};
387
388U_BOOT_DRIVER(tsc_timer) = {
389 .name = "tsc_timer",
390 .id = UCLASS_TIMER,
391 .of_match = tsc_timer_ids,
392 .probe = tsc_timer_probe,
393 .ops = &tsc_timer_ops,
394 .flags = DM_FLAG_PRE_RELOC,
395};