blob: 744465005caf036f52e2347e6214c6d3cb53b999 [file] [log] [blame]
Stefan Roese2fc10f62009-03-19 15:35:05 +01001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed sucessfully. If not, the process of mounting
27 * incorparates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
31 */
32
33#include "ubifs.h"
34
35/**
36 * is_empty - determine whether a buffer is empty (contains all 0xff).
37 * @buf: buffer to clean
38 * @len: length of buffer
39 *
40 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
41 * %0 is returned.
42 */
43static int is_empty(void *buf, int len)
44{
45 uint8_t *p = buf;
46 int i;
47
48 for (i = 0; i < len; i++)
49 if (*p++ != 0xff)
50 return 0;
51 return 1;
52}
53
54/**
55 * get_master_node - get the last valid master node allowing for corruption.
56 * @c: UBIFS file-system description object
57 * @lnum: LEB number
58 * @pbuf: buffer containing the LEB read, is returned here
59 * @mst: master node, if found, is returned here
60 * @cor: corruption, if found, is returned here
61 *
62 * This function allocates a buffer, reads the LEB into it, and finds and
63 * returns the last valid master node allowing for one area of corruption.
64 * The corrupt area, if there is one, must be consistent with the assumption
65 * that it is the result of an unclean unmount while the master node was being
66 * written. Under those circumstances, it is valid to use the previously written
67 * master node.
68 *
69 * This function returns %0 on success and a negative error code on failure.
70 */
71static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
72 struct ubifs_mst_node **mst, void **cor)
73{
74 const int sz = c->mst_node_alsz;
75 int err, offs, len;
76 void *sbuf, *buf;
77
78 sbuf = vmalloc(c->leb_size);
79 if (!sbuf)
80 return -ENOMEM;
81
82 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
83 if (err && err != -EBADMSG)
84 goto out_free;
85
86 /* Find the first position that is definitely not a node */
87 offs = 0;
88 buf = sbuf;
89 len = c->leb_size;
90 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
91 struct ubifs_ch *ch = buf;
92
93 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
94 break;
95 offs += sz;
96 buf += sz;
97 len -= sz;
98 }
99 /* See if there was a valid master node before that */
100 if (offs) {
101 int ret;
102
103 offs -= sz;
104 buf -= sz;
105 len += sz;
106 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
107 if (ret != SCANNED_A_NODE && offs) {
108 /* Could have been corruption so check one place back */
109 offs -= sz;
110 buf -= sz;
111 len += sz;
112 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
113 if (ret != SCANNED_A_NODE)
114 /*
115 * We accept only one area of corruption because
116 * we are assuming that it was caused while
117 * trying to write a master node.
118 */
119 goto out_err;
120 }
121 if (ret == SCANNED_A_NODE) {
122 struct ubifs_ch *ch = buf;
123
124 if (ch->node_type != UBIFS_MST_NODE)
125 goto out_err;
126 dbg_rcvry("found a master node at %d:%d", lnum, offs);
127 *mst = buf;
128 offs += sz;
129 buf += sz;
130 len -= sz;
131 }
132 }
133 /* Check for corruption */
134 if (offs < c->leb_size) {
135 if (!is_empty(buf, min_t(int, len, sz))) {
136 *cor = buf;
137 dbg_rcvry("found corruption at %d:%d", lnum, offs);
138 }
139 offs += sz;
140 buf += sz;
141 len -= sz;
142 }
143 /* Check remaining empty space */
144 if (offs < c->leb_size)
145 if (!is_empty(buf, len))
146 goto out_err;
147 *pbuf = sbuf;
148 return 0;
149
150out_err:
151 err = -EINVAL;
152out_free:
153 vfree(sbuf);
154 *mst = NULL;
155 *cor = NULL;
156 return err;
157}
158
159/**
160 * write_rcvrd_mst_node - write recovered master node.
161 * @c: UBIFS file-system description object
162 * @mst: master node
163 *
164 * This function returns %0 on success and a negative error code on failure.
165 */
166static int write_rcvrd_mst_node(struct ubifs_info *c,
167 struct ubifs_mst_node *mst)
168{
169 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
170 __le32 save_flags;
171
172 dbg_rcvry("recovery");
173
174 save_flags = mst->flags;
175 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
176
177 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
178 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
179 if (err)
180 goto out;
181 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
182 if (err)
183 goto out;
184out:
185 mst->flags = save_flags;
186 return err;
187}
188
189/**
190 * ubifs_recover_master_node - recover the master node.
191 * @c: UBIFS file-system description object
192 *
193 * This function recovers the master node from corruption that may occur due to
194 * an unclean unmount.
195 *
196 * This function returns %0 on success and a negative error code on failure.
197 */
198int ubifs_recover_master_node(struct ubifs_info *c)
199{
200 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
201 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
202 const int sz = c->mst_node_alsz;
203 int err, offs1, offs2;
204
205 dbg_rcvry("recovery");
206
207 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
208 if (err)
209 goto out_free;
210
211 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
212 if (err)
213 goto out_free;
214
215 if (mst1) {
216 offs1 = (void *)mst1 - buf1;
217 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
218 (offs1 == 0 && !cor1)) {
219 /*
220 * mst1 was written by recovery at offset 0 with no
221 * corruption.
222 */
223 dbg_rcvry("recovery recovery");
224 mst = mst1;
225 } else if (mst2) {
226 offs2 = (void *)mst2 - buf2;
227 if (offs1 == offs2) {
228 /* Same offset, so must be the same */
229 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
230 (void *)mst2 + UBIFS_CH_SZ,
231 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
232 goto out_err;
233 mst = mst1;
234 } else if (offs2 + sz == offs1) {
235 /* 1st LEB was written, 2nd was not */
236 if (cor1)
237 goto out_err;
238 mst = mst1;
239 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
240 /* 1st LEB was unmapped and written, 2nd not */
241 if (cor1)
242 goto out_err;
243 mst = mst1;
244 } else
245 goto out_err;
246 } else {
247 /*
248 * 2nd LEB was unmapped and about to be written, so
249 * there must be only one master node in the first LEB
250 * and no corruption.
251 */
252 if (offs1 != 0 || cor1)
253 goto out_err;
254 mst = mst1;
255 }
256 } else {
257 if (!mst2)
258 goto out_err;
259 /*
260 * 1st LEB was unmapped and about to be written, so there must
261 * be no room left in 2nd LEB.
262 */
263 offs2 = (void *)mst2 - buf2;
264 if (offs2 + sz + sz <= c->leb_size)
265 goto out_err;
266 mst = mst2;
267 }
268
269 dbg_rcvry("recovered master node from LEB %d",
270 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
271
272 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
273
274 if ((c->vfs_sb->s_flags & MS_RDONLY)) {
275 /* Read-only mode. Keep a copy for switching to rw mode */
276 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
277 if (!c->rcvrd_mst_node) {
278 err = -ENOMEM;
279 goto out_free;
280 }
281 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
282 }
283
284 vfree(buf2);
285 vfree(buf1);
286
287 return 0;
288
289out_err:
290 err = -EINVAL;
291out_free:
292 ubifs_err("failed to recover master node");
293 if (mst1) {
294 dbg_err("dumping first master node");
295 dbg_dump_node(c, mst1);
296 }
297 if (mst2) {
298 dbg_err("dumping second master node");
299 dbg_dump_node(c, mst2);
300 }
301 vfree(buf2);
302 vfree(buf1);
303 return err;
304}
305
306/**
307 * ubifs_write_rcvrd_mst_node - write the recovered master node.
308 * @c: UBIFS file-system description object
309 *
310 * This function writes the master node that was recovered during mounting in
311 * read-only mode and must now be written because we are remounting rw.
312 *
313 * This function returns %0 on success and a negative error code on failure.
314 */
315int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
316{
317 int err;
318
319 if (!c->rcvrd_mst_node)
320 return 0;
321 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
322 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
323 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
324 if (err)
325 return err;
326 kfree(c->rcvrd_mst_node);
327 c->rcvrd_mst_node = NULL;
328 return 0;
329}
330
331/**
332 * is_last_write - determine if an offset was in the last write to a LEB.
333 * @c: UBIFS file-system description object
334 * @buf: buffer to check
335 * @offs: offset to check
336 *
337 * This function returns %1 if @offs was in the last write to the LEB whose data
338 * is in @buf, otherwise %0 is returned. The determination is made by checking
339 * for subsequent empty space starting from the next min_io_size boundary (or a
340 * bit less than the common header size if min_io_size is one).
341 */
342static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
343{
344 int empty_offs;
345 int check_len;
346 uint8_t *p;
347
348 if (c->min_io_size == 1) {
349 check_len = c->leb_size - offs;
350 p = buf + check_len;
351 for (; check_len > 0; check_len--)
352 if (*--p != 0xff)
353 break;
354 /*
355 * 'check_len' is the size of the corruption which cannot be
356 * more than the size of 1 node if it was caused by an unclean
357 * unmount.
358 */
359 if (check_len > UBIFS_MAX_NODE_SZ)
360 return 0;
361 return 1;
362 }
363
364 /*
365 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
366 * last wbuf written. After that should be empty space.
367 */
368 empty_offs = ALIGN(offs + 1, c->min_io_size);
369 check_len = c->leb_size - empty_offs;
370 p = buf + empty_offs - offs;
371
372 for (; check_len > 0; check_len--)
373 if (*p++ != 0xff)
374 return 0;
375 return 1;
376}
377
378/**
379 * clean_buf - clean the data from an LEB sitting in a buffer.
380 * @c: UBIFS file-system description object
381 * @buf: buffer to clean
382 * @lnum: LEB number to clean
383 * @offs: offset from which to clean
384 * @len: length of buffer
385 *
386 * This function pads up to the next min_io_size boundary (if there is one) and
387 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
388 * min_io_size boundary (if there is one).
389 */
390static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
391 int *offs, int *len)
392{
393 int empty_offs, pad_len;
394
395 lnum = lnum;
396 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
397
398 if (c->min_io_size == 1) {
399 memset(*buf, 0xff, c->leb_size - *offs);
400 return;
401 }
402
403 ubifs_assert(!(*offs & 7));
404 empty_offs = ALIGN(*offs, c->min_io_size);
405 pad_len = empty_offs - *offs;
406 ubifs_pad(c, *buf, pad_len);
407 *offs += pad_len;
408 *buf += pad_len;
409 *len -= pad_len;
410 memset(*buf, 0xff, c->leb_size - empty_offs);
411}
412
413/**
414 * no_more_nodes - determine if there are no more nodes in a buffer.
415 * @c: UBIFS file-system description object
416 * @buf: buffer to check
417 * @len: length of buffer
418 * @lnum: LEB number of the LEB from which @buf was read
419 * @offs: offset from which @buf was read
420 *
Adrian Hunter542bcb92009-04-14 17:50:38 +0200421 * This function ensures that the corrupted node at @offs is the last thing
422 * written to a LEB. This function returns %1 if more data is not found and
423 * %0 if more data is found.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100424 */
425static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
426 int lnum, int offs)
427{
Adrian Hunter542bcb92009-04-14 17:50:38 +0200428 struct ubifs_ch *ch = buf;
429 int skip, dlen = le32_to_cpu(ch->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100430
Adrian Hunter542bcb92009-04-14 17:50:38 +0200431 /* Check for empty space after the corrupt node's common header */
432 skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
433 if (is_empty(buf + skip, len - skip))
434 return 1;
435 /*
436 * The area after the common header size is not empty, so the common
437 * header must be intact. Check it.
438 */
439 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
440 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
441 return 0;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100442 }
Adrian Hunter542bcb92009-04-14 17:50:38 +0200443 /* Now we know the corrupt node's length we can skip over it */
444 skip = ALIGN(offs + dlen, c->min_io_size) - offs;
445 /* After which there should be empty space */
446 if (is_empty(buf + skip, len - skip))
447 return 1;
448 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
449 return 0;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100450}
451
452/**
453 * fix_unclean_leb - fix an unclean LEB.
454 * @c: UBIFS file-system description object
455 * @sleb: scanned LEB information
456 * @start: offset where scan started
457 */
458static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
459 int start)
460{
461 int lnum = sleb->lnum, endpt = start;
462
463 /* Get the end offset of the last node we are keeping */
464 if (!list_empty(&sleb->nodes)) {
465 struct ubifs_scan_node *snod;
466
467 snod = list_entry(sleb->nodes.prev,
468 struct ubifs_scan_node, list);
469 endpt = snod->offs + snod->len;
470 }
471
472 if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
473 /* Add to recovery list */
474 struct ubifs_unclean_leb *ucleb;
475
476 dbg_rcvry("need to fix LEB %d start %d endpt %d",
477 lnum, start, sleb->endpt);
478 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
479 if (!ucleb)
480 return -ENOMEM;
481 ucleb->lnum = lnum;
482 ucleb->endpt = endpt;
483 list_add_tail(&ucleb->list, &c->unclean_leb_list);
484 }
485 return 0;
486}
487
488/**
489 * drop_incomplete_group - drop nodes from an incomplete group.
490 * @sleb: scanned LEB information
491 * @offs: offset of dropped nodes is returned here
492 *
493 * This function returns %1 if nodes are dropped and %0 otherwise.
494 */
495static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
496{
497 int dropped = 0;
498
499 while (!list_empty(&sleb->nodes)) {
500 struct ubifs_scan_node *snod;
501 struct ubifs_ch *ch;
502
503 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
504 list);
505 ch = snod->node;
506 if (ch->group_type != UBIFS_IN_NODE_GROUP)
507 return dropped;
508 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
509 *offs = snod->offs;
510 list_del(&snod->list);
511 kfree(snod);
512 sleb->nodes_cnt -= 1;
513 dropped = 1;
514 }
515 return dropped;
516}
517
518/**
519 * ubifs_recover_leb - scan and recover a LEB.
520 * @c: UBIFS file-system description object
521 * @lnum: LEB number
522 * @offs: offset
523 * @sbuf: LEB-sized buffer to use
524 * @grouped: nodes may be grouped for recovery
525 *
526 * This function does a scan of a LEB, but caters for errors that might have
527 * been caused by the unclean unmount from which we are attempting to recover.
528 *
529 * This function returns %0 on success and a negative error code on failure.
530 */
531struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
532 int offs, void *sbuf, int grouped)
533{
534 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
535 int empty_chkd = 0, start = offs;
536 struct ubifs_scan_leb *sleb;
537 void *buf = sbuf + offs;
538
539 dbg_rcvry("%d:%d", lnum, offs);
540
541 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
542 if (IS_ERR(sleb))
543 return sleb;
544
545 if (sleb->ecc)
546 need_clean = 1;
547
548 while (len >= 8) {
549 int ret;
550
551 dbg_scan("look at LEB %d:%d (%d bytes left)",
552 lnum, offs, len);
553
554 cond_resched();
555
556 /*
557 * Scan quietly until there is an error from which we cannot
558 * recover
559 */
560 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
561
562 if (ret == SCANNED_A_NODE) {
563 /* A valid node, and not a padding node */
564 struct ubifs_ch *ch = buf;
565 int node_len;
566
567 err = ubifs_add_snod(c, sleb, buf, offs);
568 if (err)
569 goto error;
570 node_len = ALIGN(le32_to_cpu(ch->len), 8);
571 offs += node_len;
572 buf += node_len;
573 len -= node_len;
574 continue;
575 }
576
577 if (ret > 0) {
578 /* Padding bytes or a valid padding node */
579 offs += ret;
580 buf += ret;
581 len -= ret;
582 continue;
583 }
584
585 if (ret == SCANNED_EMPTY_SPACE) {
586 if (!is_empty(buf, len)) {
587 if (!is_last_write(c, buf, offs))
588 break;
589 clean_buf(c, &buf, lnum, &offs, &len);
590 need_clean = 1;
591 }
592 empty_chkd = 1;
593 break;
594 }
595
596 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
597 if (is_last_write(c, buf, offs)) {
598 clean_buf(c, &buf, lnum, &offs, &len);
599 need_clean = 1;
600 empty_chkd = 1;
601 break;
602 }
603
604 if (ret == SCANNED_A_CORRUPT_NODE)
605 if (no_more_nodes(c, buf, len, lnum, offs)) {
606 clean_buf(c, &buf, lnum, &offs, &len);
607 need_clean = 1;
608 empty_chkd = 1;
609 break;
610 }
611
612 if (quiet) {
613 /* Redo the last scan but noisily */
614 quiet = 0;
615 continue;
616 }
617
618 switch (ret) {
619 case SCANNED_GARBAGE:
620 dbg_err("garbage");
621 goto corrupted;
622 case SCANNED_A_CORRUPT_NODE:
623 case SCANNED_A_BAD_PAD_NODE:
624 dbg_err("bad node");
625 goto corrupted;
626 default:
627 dbg_err("unknown");
628 goto corrupted;
629 }
630 }
631
632 if (!empty_chkd && !is_empty(buf, len)) {
633 if (is_last_write(c, buf, offs)) {
634 clean_buf(c, &buf, lnum, &offs, &len);
635 need_clean = 1;
636 } else {
637 ubifs_err("corrupt empty space at LEB %d:%d",
638 lnum, offs);
639 goto corrupted;
640 }
641 }
642
643 /* Drop nodes from incomplete group */
644 if (grouped && drop_incomplete_group(sleb, &offs)) {
645 buf = sbuf + offs;
646 len = c->leb_size - offs;
647 clean_buf(c, &buf, lnum, &offs, &len);
648 need_clean = 1;
649 }
650
651 if (offs % c->min_io_size) {
652 clean_buf(c, &buf, lnum, &offs, &len);
653 need_clean = 1;
654 }
655
656 ubifs_end_scan(c, sleb, lnum, offs);
657
658 if (need_clean) {
659 err = fix_unclean_leb(c, sleb, start);
660 if (err)
661 goto error;
662 }
663
664 return sleb;
665
666corrupted:
667 ubifs_scanned_corruption(c, lnum, offs, buf);
668 err = -EUCLEAN;
669error:
670 ubifs_err("LEB %d scanning failed", lnum);
671 ubifs_scan_destroy(sleb);
672 return ERR_PTR(err);
673}
674
675/**
676 * get_cs_sqnum - get commit start sequence number.
677 * @c: UBIFS file-system description object
678 * @lnum: LEB number of commit start node
679 * @offs: offset of commit start node
680 * @cs_sqnum: commit start sequence number is returned here
681 *
682 * This function returns %0 on success and a negative error code on failure.
683 */
684static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
685 unsigned long long *cs_sqnum)
686{
687 struct ubifs_cs_node *cs_node = NULL;
688 int err, ret;
689
690 dbg_rcvry("at %d:%d", lnum, offs);
691 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
692 if (!cs_node)
693 return -ENOMEM;
694 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
695 goto out_err;
696 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
697 if (err && err != -EBADMSG)
698 goto out_free;
699 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
700 if (ret != SCANNED_A_NODE) {
701 dbg_err("Not a valid node");
702 goto out_err;
703 }
704 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
705 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
706 goto out_err;
707 }
708 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
709 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
710 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
711 c->cmt_no);
712 goto out_err;
713 }
714 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
715 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
716 kfree(cs_node);
717 return 0;
718
719out_err:
720 err = -EINVAL;
721out_free:
722 ubifs_err("failed to get CS sqnum");
723 kfree(cs_node);
724 return err;
725}
726
727/**
728 * ubifs_recover_log_leb - scan and recover a log LEB.
729 * @c: UBIFS file-system description object
730 * @lnum: LEB number
731 * @offs: offset
732 * @sbuf: LEB-sized buffer to use
733 *
734 * This function does a scan of a LEB, but caters for errors that might have
735 * been caused by the unclean unmount from which we are attempting to recover.
736 *
737 * This function returns %0 on success and a negative error code on failure.
738 */
739struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
740 int offs, void *sbuf)
741{
742 struct ubifs_scan_leb *sleb;
743 int next_lnum;
744
745 dbg_rcvry("LEB %d", lnum);
746 next_lnum = lnum + 1;
747 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
748 next_lnum = UBIFS_LOG_LNUM;
749 if (next_lnum != c->ltail_lnum) {
750 /*
751 * We can only recover at the end of the log, so check that the
752 * next log LEB is empty or out of date.
753 */
754 sleb = ubifs_scan(c, next_lnum, 0, sbuf);
755 if (IS_ERR(sleb))
756 return sleb;
757 if (sleb->nodes_cnt) {
758 struct ubifs_scan_node *snod;
759 unsigned long long cs_sqnum = c->cs_sqnum;
760
761 snod = list_entry(sleb->nodes.next,
762 struct ubifs_scan_node, list);
763 if (cs_sqnum == 0) {
764 int err;
765
766 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
767 if (err) {
768 ubifs_scan_destroy(sleb);
769 return ERR_PTR(err);
770 }
771 }
772 if (snod->sqnum > cs_sqnum) {
773 ubifs_err("unrecoverable log corruption "
774 "in LEB %d", lnum);
775 ubifs_scan_destroy(sleb);
776 return ERR_PTR(-EUCLEAN);
777 }
778 }
779 ubifs_scan_destroy(sleb);
780 }
781 return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
782}
783
784/**
785 * recover_head - recover a head.
786 * @c: UBIFS file-system description object
787 * @lnum: LEB number of head to recover
788 * @offs: offset of head to recover
789 * @sbuf: LEB-sized buffer to use
790 *
791 * This function ensures that there is no data on the flash at a head location.
792 *
793 * This function returns %0 on success and a negative error code on failure.
794 */
795static int recover_head(const struct ubifs_info *c, int lnum, int offs,
796 void *sbuf)
797{
798 int len, err, need_clean = 0;
799
800 if (c->min_io_size > 1)
801 len = c->min_io_size;
802 else
803 len = 512;
804 if (offs + len > c->leb_size)
805 len = c->leb_size - offs;
806
807 if (!len)
808 return 0;
809
810 /* Read at the head location and check it is empty flash */
811 err = ubi_read(c->ubi, lnum, sbuf, offs, len);
812 if (err)
813 need_clean = 1;
814 else {
815 uint8_t *p = sbuf;
816
817 while (len--)
818 if (*p++ != 0xff) {
819 need_clean = 1;
820 break;
821 }
822 }
823
824 if (need_clean) {
825 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
826 if (offs == 0)
827 return ubifs_leb_unmap(c, lnum);
828 err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
829 if (err)
830 return err;
831 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
832 }
833
834 return 0;
835}
836
837/**
838 * ubifs_recover_inl_heads - recover index and LPT heads.
839 * @c: UBIFS file-system description object
840 * @sbuf: LEB-sized buffer to use
841 *
842 * This function ensures that there is no data on the flash at the index and
843 * LPT head locations.
844 *
845 * This deals with the recovery of a half-completed journal commit. UBIFS is
846 * careful never to overwrite the last version of the index or the LPT. Because
847 * the index and LPT are wandering trees, data from a half-completed commit will
848 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
849 * assumed to be empty and will be unmapped anyway before use, or in the index
850 * and LPT heads.
851 *
852 * This function returns %0 on success and a negative error code on failure.
853 */
854int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
855{
856 int err;
857
858 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
859
860 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
861 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
862 if (err)
863 return err;
864
865 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
866 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
867 if (err)
868 return err;
869
870 return 0;
871}
872
873/**
874 * clean_an_unclean_leb - read and write a LEB to remove corruption.
875 * @c: UBIFS file-system description object
876 * @ucleb: unclean LEB information
877 * @sbuf: LEB-sized buffer to use
878 *
879 * This function reads a LEB up to a point pre-determined by the mount recovery,
880 * checks the nodes, and writes the result back to the flash, thereby cleaning
881 * off any following corruption, or non-fatal ECC errors.
882 *
883 * This function returns %0 on success and a negative error code on failure.
884 */
885static int clean_an_unclean_leb(const struct ubifs_info *c,
886 struct ubifs_unclean_leb *ucleb, void *sbuf)
887{
888 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
889 void *buf = sbuf;
890
891 dbg_rcvry("LEB %d len %d", lnum, len);
892
893 if (len == 0) {
894 /* Nothing to read, just unmap it */
895 err = ubifs_leb_unmap(c, lnum);
896 if (err)
897 return err;
898 return 0;
899 }
900
901 err = ubi_read(c->ubi, lnum, buf, offs, len);
902 if (err && err != -EBADMSG)
903 return err;
904
905 while (len >= 8) {
906 int ret;
907
908 cond_resched();
909
910 /* Scan quietly until there is an error */
911 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
912
913 if (ret == SCANNED_A_NODE) {
914 /* A valid node, and not a padding node */
915 struct ubifs_ch *ch = buf;
916 int node_len;
917
918 node_len = ALIGN(le32_to_cpu(ch->len), 8);
919 offs += node_len;
920 buf += node_len;
921 len -= node_len;
922 continue;
923 }
924
925 if (ret > 0) {
926 /* Padding bytes or a valid padding node */
927 offs += ret;
928 buf += ret;
929 len -= ret;
930 continue;
931 }
932
933 if (ret == SCANNED_EMPTY_SPACE) {
934 ubifs_err("unexpected empty space at %d:%d",
935 lnum, offs);
936 return -EUCLEAN;
937 }
938
939 if (quiet) {
940 /* Redo the last scan but noisily */
941 quiet = 0;
942 continue;
943 }
944
945 ubifs_scanned_corruption(c, lnum, offs, buf);
946 return -EUCLEAN;
947 }
948
949 /* Pad to min_io_size */
950 len = ALIGN(ucleb->endpt, c->min_io_size);
951 if (len > ucleb->endpt) {
952 int pad_len = len - ALIGN(ucleb->endpt, 8);
953
954 if (pad_len > 0) {
955 buf = c->sbuf + len - pad_len;
956 ubifs_pad(c, buf, pad_len);
957 }
958 }
959
960 /* Write back the LEB atomically */
961 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
962 if (err)
963 return err;
964
965 dbg_rcvry("cleaned LEB %d", lnum);
966
967 return 0;
968}
969
970/**
971 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
972 * @c: UBIFS file-system description object
973 * @sbuf: LEB-sized buffer to use
974 *
975 * This function cleans a LEB identified during recovery that needs to be
976 * written but was not because UBIFS was mounted read-only. This happens when
977 * remounting to read-write mode.
978 *
979 * This function returns %0 on success and a negative error code on failure.
980 */
981int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
982{
983 dbg_rcvry("recovery");
984 while (!list_empty(&c->unclean_leb_list)) {
985 struct ubifs_unclean_leb *ucleb;
986 int err;
987
988 ucleb = list_entry(c->unclean_leb_list.next,
989 struct ubifs_unclean_leb, list);
990 err = clean_an_unclean_leb(c, ucleb, sbuf);
991 if (err)
992 return err;
993 list_del(&ucleb->list);
994 kfree(ucleb);
995 }
996 return 0;
997}
998
999/**
1000 * struct size_entry - inode size information for recovery.
1001 * @rb: link in the RB-tree of sizes
1002 * @inum: inode number
1003 * @i_size: size on inode
1004 * @d_size: maximum size based on data nodes
1005 * @exists: indicates whether the inode exists
1006 * @inode: inode if pinned in memory awaiting rw mode to fix it
1007 */
1008struct size_entry {
1009 struct rb_node rb;
1010 ino_t inum;
1011 loff_t i_size;
1012 loff_t d_size;
1013 int exists;
1014 struct inode *inode;
1015};
1016
1017/**
1018 * add_ino - add an entry to the size tree.
1019 * @c: UBIFS file-system description object
1020 * @inum: inode number
1021 * @i_size: size on inode
1022 * @d_size: maximum size based on data nodes
1023 * @exists: indicates whether the inode exists
1024 */
1025static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1026 loff_t d_size, int exists)
1027{
1028 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1029 struct size_entry *e;
1030
1031 while (*p) {
1032 parent = *p;
1033 e = rb_entry(parent, struct size_entry, rb);
1034 if (inum < e->inum)
1035 p = &(*p)->rb_left;
1036 else
1037 p = &(*p)->rb_right;
1038 }
1039
1040 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1041 if (!e)
1042 return -ENOMEM;
1043
1044 e->inum = inum;
1045 e->i_size = i_size;
1046 e->d_size = d_size;
1047 e->exists = exists;
1048
1049 rb_link_node(&e->rb, parent, p);
1050 rb_insert_color(&e->rb, &c->size_tree);
1051
1052 return 0;
1053}
1054
1055/**
1056 * find_ino - find an entry on the size tree.
1057 * @c: UBIFS file-system description object
1058 * @inum: inode number
1059 */
1060static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1061{
1062 struct rb_node *p = c->size_tree.rb_node;
1063 struct size_entry *e;
1064
1065 while (p) {
1066 e = rb_entry(p, struct size_entry, rb);
1067 if (inum < e->inum)
1068 p = p->rb_left;
1069 else if (inum > e->inum)
1070 p = p->rb_right;
1071 else
1072 return e;
1073 }
1074 return NULL;
1075}
1076
1077/**
1078 * remove_ino - remove an entry from the size tree.
1079 * @c: UBIFS file-system description object
1080 * @inum: inode number
1081 */
1082static void remove_ino(struct ubifs_info *c, ino_t inum)
1083{
1084 struct size_entry *e = find_ino(c, inum);
1085
1086 if (!e)
1087 return;
1088 rb_erase(&e->rb, &c->size_tree);
1089 kfree(e);
1090}
1091
1092/**
1093 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1094 * @c: UBIFS file-system description object
1095 * @key: node key
1096 * @deletion: node is for a deletion
1097 * @new_size: inode size
1098 *
1099 * This function has two purposes:
1100 * 1) to ensure there are no data nodes that fall outside the inode size
1101 * 2) to ensure there are no data nodes for inodes that do not exist
1102 * To accomplish those purposes, a rb-tree is constructed containing an entry
1103 * for each inode number in the journal that has not been deleted, and recording
1104 * the size from the inode node, the maximum size of any data node (also altered
1105 * by truncations) and a flag indicating a inode number for which no inode node
1106 * was present in the journal.
1107 *
1108 * Note that there is still the possibility that there are data nodes that have
1109 * been committed that are beyond the inode size, however the only way to find
1110 * them would be to scan the entire index. Alternatively, some provision could
1111 * be made to record the size of inodes at the start of commit, which would seem
1112 * very cumbersome for a scenario that is quite unlikely and the only negative
1113 * consequence of which is wasted space.
1114 *
1115 * This functions returns %0 on success and a negative error code on failure.
1116 */
1117int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1118 int deletion, loff_t new_size)
1119{
1120 ino_t inum = key_inum(c, key);
1121 struct size_entry *e;
1122 int err;
1123
1124 switch (key_type(c, key)) {
1125 case UBIFS_INO_KEY:
1126 if (deletion)
1127 remove_ino(c, inum);
1128 else {
1129 e = find_ino(c, inum);
1130 if (e) {
1131 e->i_size = new_size;
1132 e->exists = 1;
1133 } else {
1134 err = add_ino(c, inum, new_size, 0, 1);
1135 if (err)
1136 return err;
1137 }
1138 }
1139 break;
1140 case UBIFS_DATA_KEY:
1141 e = find_ino(c, inum);
1142 if (e) {
1143 if (new_size > e->d_size)
1144 e->d_size = new_size;
1145 } else {
1146 err = add_ino(c, inum, 0, new_size, 0);
1147 if (err)
1148 return err;
1149 }
1150 break;
1151 case UBIFS_TRUN_KEY:
1152 e = find_ino(c, inum);
1153 if (e)
1154 e->d_size = new_size;
1155 break;
1156 }
1157 return 0;
1158}
1159
1160/**
1161 * ubifs_recover_size - recover inode size.
1162 * @c: UBIFS file-system description object
1163 *
1164 * This function attempts to fix inode size discrepancies identified by the
1165 * 'ubifs_recover_size_accum()' function.
1166 *
1167 * This functions returns %0 on success and a negative error code on failure.
1168 */
1169int ubifs_recover_size(struct ubifs_info *c)
1170{
1171 struct rb_node *this = rb_first(&c->size_tree);
1172
1173 while (this) {
1174 struct size_entry *e;
1175 int err;
1176
1177 e = rb_entry(this, struct size_entry, rb);
1178 if (!e->exists) {
1179 union ubifs_key key;
1180
1181 ino_key_init(c, &key, e->inum);
1182 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1183 if (err && err != -ENOENT)
1184 return err;
1185 if (err == -ENOENT) {
1186 /* Remove data nodes that have no inode */
1187 dbg_rcvry("removing ino %lu",
1188 (unsigned long)e->inum);
1189 err = ubifs_tnc_remove_ino(c, e->inum);
1190 if (err)
1191 return err;
1192 } else {
1193 struct ubifs_ino_node *ino = c->sbuf;
1194
1195 e->exists = 1;
1196 e->i_size = le64_to_cpu(ino->size);
1197 }
1198 }
1199 if (e->exists && e->i_size < e->d_size) {
1200 if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1201 /* Fix the inode size and pin it in memory */
1202 struct inode *inode;
1203
1204 inode = ubifs_iget(c->vfs_sb, e->inum);
1205 if (IS_ERR(inode))
1206 return PTR_ERR(inode);
1207 if (inode->i_size < e->d_size) {
1208 dbg_rcvry("ino %lu size %lld -> %lld",
1209 (unsigned long)e->inum,
1210 e->d_size, inode->i_size);
1211 inode->i_size = e->d_size;
1212 ubifs_inode(inode)->ui_size = e->d_size;
1213 e->inode = inode;
1214 this = rb_next(this);
1215 continue;
1216 }
1217 iput(inode);
1218 }
1219 }
1220 this = rb_next(this);
1221 rb_erase(&e->rb, &c->size_tree);
1222 kfree(e);
1223 }
1224 return 0;
1225}