blob: 9d9b259d644af00b61bb838a31d6ea91c4a25f0e [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
Wolfgang Denkd79de1d2013-07-08 09:37:19 +020012 * SPDX-License-Identifier: GPL-2.0+
wdenk57b2d802003-06-27 21:31:46 +000013
wdenk4e112c12003-06-03 23:54:09 +000014 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080028 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000030 */
31
32#include "e1000.h"
33
wdenk4e112c12003-06-03 23:54:09 +000034#define TOUT_LOOP 100000
35
Timur Tabiedc45b52009-08-17 15:55:38 -050036#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000037#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk4e112c12003-06-03 23:54:09 +000038
Roy Zang966172e2009-08-22 03:49:52 +080039#define E1000_DEFAULT_PCI_PBA 0x00000030
40#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000041
42/* NIC specific static variables go here */
43
44static char tx_pool[128 + 16];
45static char rx_pool[128 + 16];
46static char packet[2096];
47
48static struct e1000_tx_desc *tx_base;
49static struct e1000_rx_desc *rx_base;
50
51static int tx_tail;
52static int rx_tail, rx_last;
53
Kyle Moffett7b698d52011-10-18 11:05:26 +000054static struct pci_device_id e1000_supported[] = {
wdenk4e112c12003-06-03 23:54:09 +000055 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040064 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000065 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt1140ea52009-12-04 09:52:17 +010068 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000069 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010070 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020071 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080072 /* E1000 PCIe card */
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang181119b2011-01-21 11:29:38 +080089 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zang28f7a052009-07-31 13:34:02 +080090 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +010095 {}
wdenk4e112c12003-06-03 23:54:09 +000096};
97
98/* Function forward declarations */
99static int e1000_setup_link(struct eth_device *nic);
100static int e1000_setup_fiber_link(struct eth_device *nic);
101static int e1000_setup_copper_link(struct eth_device *nic);
102static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
103static void e1000_config_collision_dist(struct e1000_hw *hw);
104static int e1000_config_mac_to_phy(struct e1000_hw *hw);
105static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
106static int e1000_check_for_link(struct eth_device *nic);
107static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800108static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000109 uint16_t * duplex);
110static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
111 uint16_t * phy_data);
112static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
113 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800114static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000115static int e1000_phy_reset(struct e1000_hw *hw);
116static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800117static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000118
Roy Zang28f7a052009-07-31 13:34:02 +0800119static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
120static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000121
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200122#ifndef CONFIG_E1000_NO_NVM
123static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
Roy Zang9b7c4302009-08-11 03:48:05 +0800124static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
125 uint16_t words,
126 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000127/******************************************************************************
128 * Raises the EEPROM's clock input.
129 *
130 * hw - Struct containing variables accessed by shared code
131 * eecd - EECD's current value
132 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000133void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000134{
135 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
136 * wait 50 microseconds.
137 */
138 *eecd = *eecd | E1000_EECD_SK;
139 E1000_WRITE_REG(hw, EECD, *eecd);
140 E1000_WRITE_FLUSH(hw);
141 udelay(50);
142}
143
144/******************************************************************************
145 * Lowers the EEPROM's clock input.
146 *
wdenk57b2d802003-06-27 21:31:46 +0000147 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000148 * eecd - EECD's current value
149 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000150void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000151{
wdenk57b2d802003-06-27 21:31:46 +0000152 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
153 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000154 */
155 *eecd = *eecd & ~E1000_EECD_SK;
156 E1000_WRITE_REG(hw, EECD, *eecd);
157 E1000_WRITE_FLUSH(hw);
158 udelay(50);
159}
160
161/******************************************************************************
162 * Shift data bits out to the EEPROM.
163 *
164 * hw - Struct containing variables accessed by shared code
165 * data - data to send to the EEPROM
166 * count - number of bits to shift out
167 *****************************************************************************/
168static void
169e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
170{
171 uint32_t eecd;
172 uint32_t mask;
173
174 /* We need to shift "count" bits out to the EEPROM. So, value in the
175 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000176 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000177 */
178 mask = 0x01 << (count - 1);
179 eecd = E1000_READ_REG(hw, EECD);
180 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
181 do {
182 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
183 * and then raising and then lowering the clock (the SK bit controls
184 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
185 * by setting "DI" to "0" and then raising and then lowering the clock.
186 */
187 eecd &= ~E1000_EECD_DI;
188
189 if (data & mask)
190 eecd |= E1000_EECD_DI;
191
192 E1000_WRITE_REG(hw, EECD, eecd);
193 E1000_WRITE_FLUSH(hw);
194
195 udelay(50);
196
197 e1000_raise_ee_clk(hw, &eecd);
198 e1000_lower_ee_clk(hw, &eecd);
199
200 mask = mask >> 1;
201
202 } while (mask);
203
204 /* We leave the "DI" bit set to "0" when we leave this routine. */
205 eecd &= ~E1000_EECD_DI;
206 E1000_WRITE_REG(hw, EECD, eecd);
207}
208
209/******************************************************************************
210 * Shift data bits in from the EEPROM
211 *
212 * hw - Struct containing variables accessed by shared code
213 *****************************************************************************/
214static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800215e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000216{
217 uint32_t eecd;
218 uint32_t i;
219 uint16_t data;
220
Roy Zang28f7a052009-07-31 13:34:02 +0800221 /* In order to read a register from the EEPROM, we need to shift 'count'
222 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
223 * input to the EEPROM (setting the SK bit), and then reading the
224 * value of the "DO" bit. During this "shifting in" process the
225 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000226 */
227
228 eecd = E1000_READ_REG(hw, EECD);
229
230 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
231 data = 0;
232
Roy Zang28f7a052009-07-31 13:34:02 +0800233 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000234 data = data << 1;
235 e1000_raise_ee_clk(hw, &eecd);
236
237 eecd = E1000_READ_REG(hw, EECD);
238
239 eecd &= ~(E1000_EECD_DI);
240 if (eecd & E1000_EECD_DO)
241 data |= 1;
242
243 e1000_lower_ee_clk(hw, &eecd);
244 }
245
246 return data;
247}
248
249/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800250 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000251 *
252 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000253 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000254void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000255{
Roy Zang28f7a052009-07-31 13:34:02 +0800256 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000257 uint32_t eecd;
258
259 eecd = E1000_READ_REG(hw, EECD);
260
Roy Zang28f7a052009-07-31 13:34:02 +0800261 if (eeprom->type == e1000_eeprom_microwire) {
262 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263 E1000_WRITE_REG(hw, EECD, eecd);
264 E1000_WRITE_FLUSH(hw);
265 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000266
Roy Zang28f7a052009-07-31 13:34:02 +0800267 /* Clock high */
268 eecd |= E1000_EECD_SK;
269 E1000_WRITE_REG(hw, EECD, eecd);
270 E1000_WRITE_FLUSH(hw);
271 udelay(eeprom->delay_usec);
272
273 /* Select EEPROM */
274 eecd |= E1000_EECD_CS;
275 E1000_WRITE_REG(hw, EECD, eecd);
276 E1000_WRITE_FLUSH(hw);
277 udelay(eeprom->delay_usec);
278
279 /* Clock low */
280 eecd &= ~E1000_EECD_SK;
281 E1000_WRITE_REG(hw, EECD, eecd);
282 E1000_WRITE_FLUSH(hw);
283 udelay(eeprom->delay_usec);
284 } else if (eeprom->type == e1000_eeprom_spi) {
285 /* Toggle CS to flush commands */
286 eecd |= E1000_EECD_CS;
287 E1000_WRITE_REG(hw, EECD, eecd);
288 E1000_WRITE_FLUSH(hw);
289 udelay(eeprom->delay_usec);
290 eecd &= ~E1000_EECD_CS;
291 E1000_WRITE_REG(hw, EECD, eecd);
292 E1000_WRITE_FLUSH(hw);
293 udelay(eeprom->delay_usec);
294 }
295}
296
297/***************************************************************************
298* Description: Determines if the onboard NVM is FLASH or EEPROM.
299*
300* hw - Struct containing variables accessed by shared code
301****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -0700302static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800303{
304 uint32_t eecd = 0;
305
306 DEBUGFUNC();
307
308 if (hw->mac_type == e1000_ich8lan)
York Sun4a598092013-04-01 11:29:11 -0700309 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800310
Roy Zang181119b2011-01-21 11:29:38 +0800311 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800312 eecd = E1000_READ_REG(hw, EECD);
313
314 /* Isolate bits 15 & 16 */
315 eecd = ((eecd >> 15) & 0x03);
316
317 /* If both bits are set, device is Flash type */
318 if (eecd == 0x03)
York Sun4a598092013-04-01 11:29:11 -0700319 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800320 }
York Sun4a598092013-04-01 11:29:11 -0700321 return true;
wdenk4e112c12003-06-03 23:54:09 +0000322}
323
324/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800325 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000326 *
wdenk4e112c12003-06-03 23:54:09 +0000327 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800328 *
329 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
330 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000331 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000332int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000333{
Roy Zang28f7a052009-07-31 13:34:02 +0800334 struct e1000_eeprom_info *eeprom = &hw->eeprom;
335 uint32_t eecd, i = 0;
336
Timur Tabiedc45b52009-08-17 15:55:38 -0500337 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000338
Roy Zang28f7a052009-07-31 13:34:02 +0800339 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
340 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000341 eecd = E1000_READ_REG(hw, EECD);
342
Roy Zang181119b2011-01-21 11:29:38 +0800343 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800344 /* Request EEPROM Access */
345 if (hw->mac_type > e1000_82544) {
346 eecd |= E1000_EECD_REQ;
347 E1000_WRITE_REG(hw, EECD, eecd);
348 eecd = E1000_READ_REG(hw, EECD);
349 while ((!(eecd & E1000_EECD_GNT)) &&
350 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
351 i++;
352 udelay(5);
353 eecd = E1000_READ_REG(hw, EECD);
354 }
355 if (!(eecd & E1000_EECD_GNT)) {
356 eecd &= ~E1000_EECD_REQ;
357 E1000_WRITE_REG(hw, EECD, eecd);
358 DEBUGOUT("Could not acquire EEPROM grant\n");
359 return -E1000_ERR_EEPROM;
360 }
361 }
362 }
wdenk4e112c12003-06-03 23:54:09 +0000363
Roy Zang28f7a052009-07-31 13:34:02 +0800364 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000365
Roy Zang28f7a052009-07-31 13:34:02 +0800366 if (eeprom->type == e1000_eeprom_microwire) {
367 /* Clear SK and DI */
368 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
369 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000370
Roy Zang28f7a052009-07-31 13:34:02 +0800371 /* Set CS */
372 eecd |= E1000_EECD_CS;
373 E1000_WRITE_REG(hw, EECD, eecd);
374 } else if (eeprom->type == e1000_eeprom_spi) {
375 /* Clear SK and CS */
376 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
377 E1000_WRITE_REG(hw, EECD, eecd);
378 udelay(1);
379 }
380
381 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000382}
383
384/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800385 * Sets up eeprom variables in the hw struct. Must be called after mac_type
386 * is configured. Additionally, if this is ICH8, the flash controller GbE
387 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000388 *
389 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000390 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800391static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000392{
Roy Zang28f7a052009-07-31 13:34:02 +0800393 struct e1000_eeprom_info *eeprom = &hw->eeprom;
394 uint32_t eecd = E1000_READ_REG(hw, EECD);
395 int32_t ret_val = E1000_SUCCESS;
396 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000397
Timur Tabiedc45b52009-08-17 15:55:38 -0500398 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800399
400 switch (hw->mac_type) {
401 case e1000_82542_rev2_0:
402 case e1000_82542_rev2_1:
403 case e1000_82543:
404 case e1000_82544:
405 eeprom->type = e1000_eeprom_microwire;
406 eeprom->word_size = 64;
407 eeprom->opcode_bits = 3;
408 eeprom->address_bits = 6;
409 eeprom->delay_usec = 50;
York Sun4a598092013-04-01 11:29:11 -0700410 eeprom->use_eerd = false;
411 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800412 break;
413 case e1000_82540:
414 case e1000_82545:
415 case e1000_82545_rev_3:
416 case e1000_82546:
417 case e1000_82546_rev_3:
418 eeprom->type = e1000_eeprom_microwire;
419 eeprom->opcode_bits = 3;
420 eeprom->delay_usec = 50;
421 if (eecd & E1000_EECD_SIZE) {
422 eeprom->word_size = 256;
423 eeprom->address_bits = 8;
424 } else {
425 eeprom->word_size = 64;
426 eeprom->address_bits = 6;
427 }
York Sun4a598092013-04-01 11:29:11 -0700428 eeprom->use_eerd = false;
429 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800430 break;
431 case e1000_82541:
432 case e1000_82541_rev_2:
433 case e1000_82547:
434 case e1000_82547_rev_2:
435 if (eecd & E1000_EECD_TYPE) {
436 eeprom->type = e1000_eeprom_spi;
437 eeprom->opcode_bits = 8;
438 eeprom->delay_usec = 1;
439 if (eecd & E1000_EECD_ADDR_BITS) {
440 eeprom->page_size = 32;
441 eeprom->address_bits = 16;
442 } else {
443 eeprom->page_size = 8;
444 eeprom->address_bits = 8;
445 }
446 } else {
447 eeprom->type = e1000_eeprom_microwire;
448 eeprom->opcode_bits = 3;
449 eeprom->delay_usec = 50;
450 if (eecd & E1000_EECD_ADDR_BITS) {
451 eeprom->word_size = 256;
452 eeprom->address_bits = 8;
453 } else {
454 eeprom->word_size = 64;
455 eeprom->address_bits = 6;
456 }
457 }
York Sun4a598092013-04-01 11:29:11 -0700458 eeprom->use_eerd = false;
459 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800460 break;
461 case e1000_82571:
462 case e1000_82572:
463 eeprom->type = e1000_eeprom_spi;
464 eeprom->opcode_bits = 8;
465 eeprom->delay_usec = 1;
466 if (eecd & E1000_EECD_ADDR_BITS) {
467 eeprom->page_size = 32;
468 eeprom->address_bits = 16;
469 } else {
470 eeprom->page_size = 8;
471 eeprom->address_bits = 8;
472 }
York Sun4a598092013-04-01 11:29:11 -0700473 eeprom->use_eerd = false;
474 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800475 break;
476 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800477 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800478 eeprom->type = e1000_eeprom_spi;
479 eeprom->opcode_bits = 8;
480 eeprom->delay_usec = 1;
481 if (eecd & E1000_EECD_ADDR_BITS) {
482 eeprom->page_size = 32;
483 eeprom->address_bits = 16;
484 } else {
485 eeprom->page_size = 8;
486 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000487 }
York Sun4a598092013-04-01 11:29:11 -0700488 eeprom->use_eerd = true;
489 eeprom->use_eewr = true;
490 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
Roy Zang28f7a052009-07-31 13:34:02 +0800491 eeprom->type = e1000_eeprom_flash;
492 eeprom->word_size = 2048;
493
494 /* Ensure that the Autonomous FLASH update bit is cleared due to
495 * Flash update issue on parts which use a FLASH for NVM. */
496 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000497 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000498 }
Roy Zang28f7a052009-07-31 13:34:02 +0800499 break;
500 case e1000_80003es2lan:
501 eeprom->type = e1000_eeprom_spi;
502 eeprom->opcode_bits = 8;
503 eeprom->delay_usec = 1;
504 if (eecd & E1000_EECD_ADDR_BITS) {
505 eeprom->page_size = 32;
506 eeprom->address_bits = 16;
507 } else {
508 eeprom->page_size = 8;
509 eeprom->address_bits = 8;
510 }
York Sun4a598092013-04-01 11:29:11 -0700511 eeprom->use_eerd = true;
512 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800513 break;
wdenk4e112c12003-06-03 23:54:09 +0000514
Roy Zang28f7a052009-07-31 13:34:02 +0800515 /* ich8lan does not support currently. if needed, please
516 * add corresponding code and functions.
517 */
518#if 0
519 case e1000_ich8lan:
520 {
521 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000522
Roy Zang28f7a052009-07-31 13:34:02 +0800523 eeprom->type = e1000_eeprom_ich8;
York Sun4a598092013-04-01 11:29:11 -0700524 eeprom->use_eerd = false;
525 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800526 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
527 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
528 ICH_FLASH_GFPREG);
529 /* Zero the shadow RAM structure. But don't load it from NVM
530 * so as to save time for driver init */
531 if (hw->eeprom_shadow_ram != NULL) {
532 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
York Sun4a598092013-04-01 11:29:11 -0700533 hw->eeprom_shadow_ram[i].modified = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800534 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
535 }
536 }
wdenk4e112c12003-06-03 23:54:09 +0000537
Roy Zang28f7a052009-07-31 13:34:02 +0800538 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
539 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000540
Roy Zang28f7a052009-07-31 13:34:02 +0800541 hw->flash_bank_size = ((flash_size >> 16)
542 & ICH_GFPREG_BASE_MASK) + 1;
543 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000544
Roy Zang28f7a052009-07-31 13:34:02 +0800545 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
546
547 hw->flash_bank_size /= 2 * sizeof(uint16_t);
548 break;
549 }
550#endif
551 default:
552 break;
wdenk4e112c12003-06-03 23:54:09 +0000553 }
554
Roy Zang28f7a052009-07-31 13:34:02 +0800555 if (eeprom->type == e1000_eeprom_spi) {
556 /* eeprom_size will be an enum [0..8] that maps
557 * to eeprom sizes 128B to
558 * 32KB (incremented by powers of 2).
559 */
560 if (hw->mac_type <= e1000_82547_rev_2) {
561 /* Set to default value for initial eeprom read. */
562 eeprom->word_size = 64;
563 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
564 &eeprom_size);
565 if (ret_val)
566 return ret_val;
567 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
568 >> EEPROM_SIZE_SHIFT;
569 /* 256B eeprom size was not supported in earlier
570 * hardware, so we bump eeprom_size up one to
571 * ensure that "1" (which maps to 256B) is never
572 * the result used in the shifting logic below. */
573 if (eeprom_size)
574 eeprom_size++;
575 } else {
576 eeprom_size = (uint16_t)((eecd &
577 E1000_EECD_SIZE_EX_MASK) >>
578 E1000_EECD_SIZE_EX_SHIFT);
579 }
580
581 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
582 }
583 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000584}
585
Roy Zang28f7a052009-07-31 13:34:02 +0800586/******************************************************************************
587 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
588 *
589 * hw - Struct containing variables accessed by shared code
590 *****************************************************************************/
591static int32_t
592e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000593{
Roy Zang28f7a052009-07-31 13:34:02 +0800594 uint32_t attempts = 100000;
595 uint32_t i, reg = 0;
596 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000597
Roy Zang28f7a052009-07-31 13:34:02 +0800598 for (i = 0; i < attempts; i++) {
599 if (eerd == E1000_EEPROM_POLL_READ)
600 reg = E1000_READ_REG(hw, EERD);
601 else
602 reg = E1000_READ_REG(hw, EEWR);
603
604 if (reg & E1000_EEPROM_RW_REG_DONE) {
605 done = E1000_SUCCESS;
606 break;
607 }
608 udelay(5);
609 }
610
611 return done;
wdenk4e112c12003-06-03 23:54:09 +0000612}
613
Roy Zang28f7a052009-07-31 13:34:02 +0800614/******************************************************************************
615 * Reads a 16 bit word from the EEPROM using the EERD register.
616 *
617 * hw - Struct containing variables accessed by shared code
618 * offset - offset of word in the EEPROM to read
619 * data - word read from the EEPROM
620 * words - number of words to read
621 *****************************************************************************/
622static int32_t
623e1000_read_eeprom_eerd(struct e1000_hw *hw,
624 uint16_t offset,
625 uint16_t words,
626 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000627{
Roy Zang28f7a052009-07-31 13:34:02 +0800628 uint32_t i, eerd = 0;
629 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000630
Roy Zang28f7a052009-07-31 13:34:02 +0800631 for (i = 0; i < words; i++) {
632 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
633 E1000_EEPROM_RW_REG_START;
634
635 E1000_WRITE_REG(hw, EERD, eerd);
636 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
637
638 if (error)
639 break;
640 data[i] = (E1000_READ_REG(hw, EERD) >>
641 E1000_EEPROM_RW_REG_DATA);
642
wdenk4e112c12003-06-03 23:54:09 +0000643 }
Roy Zang28f7a052009-07-31 13:34:02 +0800644
645 return error;
wdenk4e112c12003-06-03 23:54:09 +0000646}
647
Kyle Moffett142cbf82011-10-18 11:05:28 +0000648void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000649{
650 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000651
Roy Zang28f7a052009-07-31 13:34:02 +0800652 DEBUGFUNC();
653
654 eecd = E1000_READ_REG(hw, EECD);
655
656 if (hw->eeprom.type == e1000_eeprom_spi) {
657 eecd |= E1000_EECD_CS; /* Pull CS high */
658 eecd &= ~E1000_EECD_SK; /* Lower SCK */
659
wdenk4e112c12003-06-03 23:54:09 +0000660 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800661
662 udelay(hw->eeprom.delay_usec);
663 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
664 /* cleanup eeprom */
665
666 /* CS on Microwire is active-high */
667 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
668
669 E1000_WRITE_REG(hw, EECD, eecd);
670
671 /* Rising edge of clock */
672 eecd |= E1000_EECD_SK;
673 E1000_WRITE_REG(hw, EECD, eecd);
674 E1000_WRITE_FLUSH(hw);
675 udelay(hw->eeprom.delay_usec);
676
677 /* Falling edge of clock */
678 eecd &= ~E1000_EECD_SK;
679 E1000_WRITE_REG(hw, EECD, eecd);
680 E1000_WRITE_FLUSH(hw);
681 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000682 }
wdenk4e112c12003-06-03 23:54:09 +0000683
684 /* Stop requesting EEPROM access */
685 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000686 eecd &= ~E1000_EECD_REQ;
687 E1000_WRITE_REG(hw, EECD, eecd);
688 }
wdenk4e112c12003-06-03 23:54:09 +0000689}
wdenk4e112c12003-06-03 23:54:09 +0000690/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800691 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000692 *
wdenk4e112c12003-06-03 23:54:09 +0000693 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000694 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800695static int32_t
696e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000697{
Roy Zang28f7a052009-07-31 13:34:02 +0800698 uint16_t retry_count = 0;
699 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000700
701 DEBUGFUNC();
702
Roy Zang28f7a052009-07-31 13:34:02 +0800703 /* Read "Status Register" repeatedly until the LSB is cleared. The
704 * EEPROM will signal that the command has been completed by clearing
705 * bit 0 of the internal status register. If it's not cleared within
706 * 5 milliseconds, then error out.
707 */
708 retry_count = 0;
709 do {
710 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
711 hw->eeprom.opcode_bits);
712 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
713 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
714 break;
wdenk57b2d802003-06-27 21:31:46 +0000715
Roy Zang28f7a052009-07-31 13:34:02 +0800716 udelay(5);
717 retry_count += 5;
718
719 e1000_standby_eeprom(hw);
720 } while (retry_count < EEPROM_MAX_RETRY_SPI);
721
722 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
723 * only 0-5mSec on 5V devices)
724 */
725 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
726 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000727 return -E1000_ERR_EEPROM;
728 }
Roy Zang28f7a052009-07-31 13:34:02 +0800729
730 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000731}
732
733/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800734 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000735 *
Roy Zang28f7a052009-07-31 13:34:02 +0800736 * hw - Struct containing variables accessed by shared code
737 * offset - offset of word in the EEPROM to read
738 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000739 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800740static int32_t
741e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
742 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000743{
Roy Zang28f7a052009-07-31 13:34:02 +0800744 struct e1000_eeprom_info *eeprom = &hw->eeprom;
745 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000746
747 DEBUGFUNC();
748
Roy Zang28f7a052009-07-31 13:34:02 +0800749 /* If eeprom is not yet detected, do so now */
750 if (eeprom->word_size == 0)
751 e1000_init_eeprom_params(hw);
752
753 /* A check for invalid values: offset too large, too many words,
754 * and not enough words.
755 */
756 if ((offset >= eeprom->word_size) ||
757 (words > eeprom->word_size - offset) ||
758 (words == 0)) {
759 DEBUGOUT("\"words\" parameter out of bounds."
760 "Words = %d, size = %d\n", offset, eeprom->word_size);
761 return -E1000_ERR_EEPROM;
762 }
763
764 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
765 * directly. In this case, we need to acquire the EEPROM so that
766 * FW or other port software does not interrupt.
767 */
York Sun4a598092013-04-01 11:29:11 -0700768 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
769 hw->eeprom.use_eerd == false) {
Roy Zang28f7a052009-07-31 13:34:02 +0800770
771 /* Prepare the EEPROM for bit-bang reading */
772 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
773 return -E1000_ERR_EEPROM;
774 }
775
776 /* Eerd register EEPROM access requires no eeprom aquire/release */
York Sun4a598092013-04-01 11:29:11 -0700777 if (eeprom->use_eerd == true)
Roy Zang28f7a052009-07-31 13:34:02 +0800778 return e1000_read_eeprom_eerd(hw, offset, words, data);
779
780 /* ich8lan does not support currently. if needed, please
781 * add corresponding code and functions.
782 */
783#if 0
784 /* ICH EEPROM access is done via the ICH flash controller */
785 if (eeprom->type == e1000_eeprom_ich8)
786 return e1000_read_eeprom_ich8(hw, offset, words, data);
787#endif
788 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
789 * acquired the EEPROM at this point, so any returns should relase it */
790 if (eeprom->type == e1000_eeprom_spi) {
791 uint16_t word_in;
792 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
793
794 if (e1000_spi_eeprom_ready(hw)) {
795 e1000_release_eeprom(hw);
796 return -E1000_ERR_EEPROM;
797 }
798
799 e1000_standby_eeprom(hw);
800
801 /* Some SPI eeproms use the 8th address bit embedded in
802 * the opcode */
803 if ((eeprom->address_bits == 8) && (offset >= 128))
804 read_opcode |= EEPROM_A8_OPCODE_SPI;
805
806 /* Send the READ command (opcode + addr) */
807 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
808 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
809 eeprom->address_bits);
810
811 /* Read the data. The address of the eeprom internally
812 * increments with each byte (spi) being read, saving on the
813 * overhead of eeprom setup and tear-down. The address
814 * counter will roll over if reading beyond the size of
815 * the eeprom, thus allowing the entire memory to be read
816 * starting from any offset. */
817 for (i = 0; i < words; i++) {
818 word_in = e1000_shift_in_ee_bits(hw, 16);
819 data[i] = (word_in >> 8) | (word_in << 8);
820 }
821 } else if (eeprom->type == e1000_eeprom_microwire) {
822 for (i = 0; i < words; i++) {
823 /* Send the READ command (opcode + addr) */
824 e1000_shift_out_ee_bits(hw,
825 EEPROM_READ_OPCODE_MICROWIRE,
826 eeprom->opcode_bits);
827 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
828 eeprom->address_bits);
829
830 /* Read the data. For microwire, each word requires
831 * the overhead of eeprom setup and tear-down. */
832 data[i] = e1000_shift_in_ee_bits(hw, 16);
833 e1000_standby_eeprom(hw);
834 }
835 }
836
837 /* End this read operation */
838 e1000_release_eeprom(hw);
839
840 return E1000_SUCCESS;
841}
842
843/******************************************************************************
844 * Verifies that the EEPROM has a valid checksum
845 *
846 * hw - Struct containing variables accessed by shared code
847 *
848 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
849 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
850 * valid.
851 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +0000852static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800853{
Kyle Moffett70946bc2011-10-18 11:05:27 +0000854 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +0800855
856 DEBUGFUNC();
857
Kyle Moffett70946bc2011-10-18 11:05:27 +0000858 /* Allocate a temporary buffer */
859 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
860 if (!buf) {
861 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
862 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +0800863 }
864
Kyle Moffett70946bc2011-10-18 11:05:27 +0000865 /* Read the EEPROM */
866 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
867 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +0800868 return -E1000_ERR_EEPROM;
869 }
Kyle Moffett70946bc2011-10-18 11:05:27 +0000870
871 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +0200872 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +0000873 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
874 checksum += buf[i];
875 checksum = ((uint16_t)EEPROM_SUM) - checksum;
876 checksum_reg = buf[i];
877
878 /* Verify it! */
879 if (checksum == checksum_reg)
880 return 0;
881
882 /* Hrm, verification failed, print an error */
883 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
884 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
885 checksum_reg, checksum);
886
887 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +0800888}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200889#endif /* CONFIG_E1000_NO_NVM */
Roy Zang9b7c4302009-08-11 03:48:05 +0800890
891/*****************************************************************************
892 * Set PHY to class A mode
893 * Assumes the following operations will follow to enable the new class mode.
894 * 1. Do a PHY soft reset
895 * 2. Restart auto-negotiation or force link.
896 *
897 * hw - Struct containing variables accessed by shared code
898 ****************************************************************************/
899static int32_t
900e1000_set_phy_mode(struct e1000_hw *hw)
901{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200902#ifndef CONFIG_E1000_NO_NVM
Roy Zang9b7c4302009-08-11 03:48:05 +0800903 int32_t ret_val;
904 uint16_t eeprom_data;
905
906 DEBUGFUNC();
907
908 if ((hw->mac_type == e1000_82545_rev_3) &&
909 (hw->media_type == e1000_media_type_copper)) {
910 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
911 1, &eeprom_data);
912 if (ret_val)
913 return ret_val;
914
915 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
916 (eeprom_data & EEPROM_PHY_CLASS_A)) {
917 ret_val = e1000_write_phy_reg(hw,
918 M88E1000_PHY_PAGE_SELECT, 0x000B);
919 if (ret_val)
920 return ret_val;
921 ret_val = e1000_write_phy_reg(hw,
922 M88E1000_PHY_GEN_CONTROL, 0x8104);
923 if (ret_val)
924 return ret_val;
925
York Sun4a598092013-04-01 11:29:11 -0700926 hw->phy_reset_disable = false;
Roy Zang9b7c4302009-08-11 03:48:05 +0800927 }
928 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200929#endif
Roy Zang9b7c4302009-08-11 03:48:05 +0800930 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800931}
Roy Zang28f7a052009-07-31 13:34:02 +0800932
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200933#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +0800934/***************************************************************************
935 *
936 * Obtaining software semaphore bit (SMBI) before resetting PHY.
937 *
938 * hw: Struct containing variables accessed by shared code
939 *
940 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
941 * E1000_SUCCESS at any other case.
942 *
943 ***************************************************************************/
944static int32_t
945e1000_get_software_semaphore(struct e1000_hw *hw)
946{
947 int32_t timeout = hw->eeprom.word_size + 1;
948 uint32_t swsm;
949
950 DEBUGFUNC();
951
952 if (hw->mac_type != e1000_80003es2lan)
953 return E1000_SUCCESS;
954
955 while (timeout) {
956 swsm = E1000_READ_REG(hw, SWSM);
957 /* If SMBI bit cleared, it is now set and we hold
958 * the semaphore */
959 if (!(swsm & E1000_SWSM_SMBI))
960 break;
961 mdelay(1);
962 timeout--;
963 }
964
965 if (!timeout) {
966 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
967 return -E1000_ERR_RESET;
968 }
969
970 return E1000_SUCCESS;
971}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200972#endif
Roy Zang28f7a052009-07-31 13:34:02 +0800973
974/***************************************************************************
975 * This function clears HW semaphore bits.
976 *
977 * hw: Struct containing variables accessed by shared code
978 *
979 * returns: - None.
980 *
981 ***************************************************************************/
982static void
983e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
984{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200985#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +0800986 uint32_t swsm;
987
988 DEBUGFUNC();
989
990 if (!hw->eeprom_semaphore_present)
991 return;
992
993 swsm = E1000_READ_REG(hw, SWSM);
994 if (hw->mac_type == e1000_80003es2lan) {
995 /* Release both semaphores. */
996 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
997 } else
998 swsm &= ~(E1000_SWSM_SWESMBI);
999 E1000_WRITE_REG(hw, SWSM, swsm);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001000#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001001}
1002
1003/***************************************************************************
1004 *
1005 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1006 * adapter or Eeprom access.
1007 *
1008 * hw: Struct containing variables accessed by shared code
1009 *
1010 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1011 * E1000_SUCCESS at any other case.
1012 *
1013 ***************************************************************************/
1014static int32_t
1015e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1016{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001017#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001018 int32_t timeout;
1019 uint32_t swsm;
1020
1021 DEBUGFUNC();
1022
1023 if (!hw->eeprom_semaphore_present)
1024 return E1000_SUCCESS;
1025
1026 if (hw->mac_type == e1000_80003es2lan) {
1027 /* Get the SW semaphore. */
1028 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1029 return -E1000_ERR_EEPROM;
1030 }
1031
1032 /* Get the FW semaphore. */
1033 timeout = hw->eeprom.word_size + 1;
1034 while (timeout) {
1035 swsm = E1000_READ_REG(hw, SWSM);
1036 swsm |= E1000_SWSM_SWESMBI;
1037 E1000_WRITE_REG(hw, SWSM, swsm);
1038 /* if we managed to set the bit we got the semaphore. */
1039 swsm = E1000_READ_REG(hw, SWSM);
1040 if (swsm & E1000_SWSM_SWESMBI)
1041 break;
1042
1043 udelay(50);
1044 timeout--;
1045 }
1046
1047 if (!timeout) {
1048 /* Release semaphores */
1049 e1000_put_hw_eeprom_semaphore(hw);
1050 DEBUGOUT("Driver can't access the Eeprom - "
1051 "SWESMBI bit is set.\n");
1052 return -E1000_ERR_EEPROM;
1053 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001054#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001055 return E1000_SUCCESS;
1056}
1057
1058static int32_t
1059e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1060{
1061 uint32_t swfw_sync = 0;
1062 uint32_t swmask = mask;
1063 uint32_t fwmask = mask << 16;
1064 int32_t timeout = 200;
1065
1066 DEBUGFUNC();
1067 while (timeout) {
1068 if (e1000_get_hw_eeprom_semaphore(hw))
1069 return -E1000_ERR_SWFW_SYNC;
1070
1071 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1072 if (!(swfw_sync & (fwmask | swmask)))
1073 break;
1074
1075 /* firmware currently using resource (fwmask) */
1076 /* or other software thread currently using resource (swmask) */
1077 e1000_put_hw_eeprom_semaphore(hw);
1078 mdelay(5);
1079 timeout--;
1080 }
1081
1082 if (!timeout) {
1083 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1084 return -E1000_ERR_SWFW_SYNC;
1085 }
1086
1087 swfw_sync |= swmask;
1088 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1089
1090 e1000_put_hw_eeprom_semaphore(hw);
1091 return E1000_SUCCESS;
1092}
1093
York Sun4a598092013-04-01 11:29:11 -07001094static bool e1000_is_second_port(struct e1000_hw *hw)
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001095{
1096 switch (hw->mac_type) {
1097 case e1000_80003es2lan:
1098 case e1000_82546:
1099 case e1000_82571:
1100 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
York Sun4a598092013-04-01 11:29:11 -07001101 return true;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001102 /* Fallthrough */
1103 default:
York Sun4a598092013-04-01 11:29:11 -07001104 return false;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001105 }
1106}
1107
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001108#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001109/******************************************************************************
1110 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1111 * second function of dual function devices
1112 *
1113 * nic - Struct containing variables accessed by shared code
1114 *****************************************************************************/
1115static int
1116e1000_read_mac_addr(struct eth_device *nic)
1117{
Roy Zang28f7a052009-07-31 13:34:02 +08001118 struct e1000_hw *hw = nic->priv;
1119 uint16_t offset;
1120 uint16_t eeprom_data;
1121 int i;
1122
1123 DEBUGFUNC();
1124
1125 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001126 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001127 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001128 DEBUGOUT("EEPROM Read Error\n");
1129 return -E1000_ERR_EEPROM;
1130 }
1131 nic->enetaddr[i] = eeprom_data & 0xff;
1132 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1133 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001134
1135 /* Invert the last bit if this is the second device */
1136 if (e1000_is_second_port(hw))
1137 nic->enetaddr[5] ^= 1;
1138
Andre Schwarz68c2a302008-03-06 16:45:44 +01001139#ifdef CONFIG_E1000_FALLBACK_MAC
Anatolij Gustschin25826ae2011-12-20 07:36:39 +00001140 if (!is_valid_ether_addr(nic->enetaddr)) {
Stefan Roese37628252008-08-06 14:05:38 +02001141 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1142
1143 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1144 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001145#endif
wdenk4e112c12003-06-03 23:54:09 +00001146 return 0;
1147}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001148#endif
wdenk4e112c12003-06-03 23:54:09 +00001149
1150/******************************************************************************
1151 * Initializes receive address filters.
1152 *
wdenk57b2d802003-06-27 21:31:46 +00001153 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001154 *
1155 * Places the MAC address in receive address register 0 and clears the rest
1156 * of the receive addresss registers. Clears the multicast table. Assumes
1157 * the receiver is in reset when the routine is called.
1158 *****************************************************************************/
1159static void
1160e1000_init_rx_addrs(struct eth_device *nic)
1161{
1162 struct e1000_hw *hw = nic->priv;
1163 uint32_t i;
1164 uint32_t addr_low;
1165 uint32_t addr_high;
1166
1167 DEBUGFUNC();
1168
1169 /* Setup the receive address. */
1170 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1171 addr_low = (nic->enetaddr[0] |
1172 (nic->enetaddr[1] << 8) |
1173 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1174
1175 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1176
1177 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1178 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1179
1180 /* Zero out the other 15 receive addresses. */
1181 DEBUGOUT("Clearing RAR[1-15]\n");
1182 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1183 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1184 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1185 }
1186}
1187
1188/******************************************************************************
1189 * Clears the VLAN filer table
1190 *
1191 * hw - Struct containing variables accessed by shared code
1192 *****************************************************************************/
1193static void
1194e1000_clear_vfta(struct e1000_hw *hw)
1195{
1196 uint32_t offset;
1197
1198 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1199 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1200}
1201
1202/******************************************************************************
1203 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001204 *
wdenk4e112c12003-06-03 23:54:09 +00001205 * hw - Struct containing variables accessed by shared code
1206 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001207int32_t
wdenk4e112c12003-06-03 23:54:09 +00001208e1000_set_mac_type(struct e1000_hw *hw)
1209{
1210 DEBUGFUNC();
1211
1212 switch (hw->device_id) {
1213 case E1000_DEV_ID_82542:
1214 switch (hw->revision_id) {
1215 case E1000_82542_2_0_REV_ID:
1216 hw->mac_type = e1000_82542_rev2_0;
1217 break;
1218 case E1000_82542_2_1_REV_ID:
1219 hw->mac_type = e1000_82542_rev2_1;
1220 break;
1221 default:
1222 /* Invalid 82542 revision ID */
1223 return -E1000_ERR_MAC_TYPE;
1224 }
1225 break;
1226 case E1000_DEV_ID_82543GC_FIBER:
1227 case E1000_DEV_ID_82543GC_COPPER:
1228 hw->mac_type = e1000_82543;
1229 break;
1230 case E1000_DEV_ID_82544EI_COPPER:
1231 case E1000_DEV_ID_82544EI_FIBER:
1232 case E1000_DEV_ID_82544GC_COPPER:
1233 case E1000_DEV_ID_82544GC_LOM:
1234 hw->mac_type = e1000_82544;
1235 break;
1236 case E1000_DEV_ID_82540EM:
1237 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001238 case E1000_DEV_ID_82540EP:
1239 case E1000_DEV_ID_82540EP_LOM:
1240 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001241 hw->mac_type = e1000_82540;
1242 break;
1243 case E1000_DEV_ID_82545EM_COPPER:
1244 case E1000_DEV_ID_82545EM_FIBER:
1245 hw->mac_type = e1000_82545;
1246 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001247 case E1000_DEV_ID_82545GM_COPPER:
1248 case E1000_DEV_ID_82545GM_FIBER:
1249 case E1000_DEV_ID_82545GM_SERDES:
1250 hw->mac_type = e1000_82545_rev_3;
1251 break;
wdenk4e112c12003-06-03 23:54:09 +00001252 case E1000_DEV_ID_82546EB_COPPER:
1253 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001254 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001255 hw->mac_type = e1000_82546;
1256 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001257 case E1000_DEV_ID_82546GB_COPPER:
1258 case E1000_DEV_ID_82546GB_FIBER:
1259 case E1000_DEV_ID_82546GB_SERDES:
1260 case E1000_DEV_ID_82546GB_PCIE:
1261 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1262 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1263 hw->mac_type = e1000_82546_rev_3;
1264 break;
1265 case E1000_DEV_ID_82541EI:
1266 case E1000_DEV_ID_82541EI_MOBILE:
1267 case E1000_DEV_ID_82541ER_LOM:
1268 hw->mac_type = e1000_82541;
1269 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001270 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001271 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001272 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001273 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001274 hw->mac_type = e1000_82541_rev_2;
1275 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001276 case E1000_DEV_ID_82547EI:
1277 case E1000_DEV_ID_82547EI_MOBILE:
1278 hw->mac_type = e1000_82547;
1279 break;
1280 case E1000_DEV_ID_82547GI:
1281 hw->mac_type = e1000_82547_rev_2;
1282 break;
1283 case E1000_DEV_ID_82571EB_COPPER:
1284 case E1000_DEV_ID_82571EB_FIBER:
1285 case E1000_DEV_ID_82571EB_SERDES:
1286 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1287 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1288 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1289 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1290 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1291 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1292 hw->mac_type = e1000_82571;
1293 break;
1294 case E1000_DEV_ID_82572EI_COPPER:
1295 case E1000_DEV_ID_82572EI_FIBER:
1296 case E1000_DEV_ID_82572EI_SERDES:
1297 case E1000_DEV_ID_82572EI:
1298 hw->mac_type = e1000_82572;
1299 break;
1300 case E1000_DEV_ID_82573E:
1301 case E1000_DEV_ID_82573E_IAMT:
1302 case E1000_DEV_ID_82573L:
1303 hw->mac_type = e1000_82573;
1304 break;
Roy Zang181119b2011-01-21 11:29:38 +08001305 case E1000_DEV_ID_82574L:
1306 hw->mac_type = e1000_82574;
1307 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001308 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1309 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1310 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1311 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1312 hw->mac_type = e1000_80003es2lan;
1313 break;
1314 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1315 case E1000_DEV_ID_ICH8_IGP_AMT:
1316 case E1000_DEV_ID_ICH8_IGP_C:
1317 case E1000_DEV_ID_ICH8_IFE:
1318 case E1000_DEV_ID_ICH8_IFE_GT:
1319 case E1000_DEV_ID_ICH8_IFE_G:
1320 case E1000_DEV_ID_ICH8_IGP_M:
1321 hw->mac_type = e1000_ich8lan;
1322 break;
wdenk4e112c12003-06-03 23:54:09 +00001323 default:
1324 /* Should never have loaded on this device */
1325 return -E1000_ERR_MAC_TYPE;
1326 }
1327 return E1000_SUCCESS;
1328}
1329
1330/******************************************************************************
1331 * Reset the transmit and receive units; mask and clear all interrupts.
1332 *
1333 * hw - Struct containing variables accessed by shared code
1334 *****************************************************************************/
1335void
1336e1000_reset_hw(struct e1000_hw *hw)
1337{
1338 uint32_t ctrl;
1339 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001340 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001341 uint32_t pba = 0;
wdenk4e112c12003-06-03 23:54:09 +00001342
1343 DEBUGFUNC();
1344
Roy Zang966172e2009-08-22 03:49:52 +08001345 /* get the correct pba value for both PCI and PCIe*/
1346 if (hw->mac_type < e1000_82571)
1347 pba = E1000_DEFAULT_PCI_PBA;
1348 else
1349 pba = E1000_DEFAULT_PCIE_PBA;
1350
wdenk4e112c12003-06-03 23:54:09 +00001351 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1352 if (hw->mac_type == e1000_82542_rev2_0) {
1353 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1354 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001355 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001356 }
1357
1358 /* Clear interrupt mask to stop board from generating interrupts */
1359 DEBUGOUT("Masking off all interrupts\n");
1360 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1361
1362 /* Disable the Transmit and Receive units. Then delay to allow
1363 * any pending transactions to complete before we hit the MAC with
1364 * the global reset.
1365 */
1366 E1000_WRITE_REG(hw, RCTL, 0);
1367 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1368 E1000_WRITE_FLUSH(hw);
1369
1370 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
York Sun4a598092013-04-01 11:29:11 -07001371 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00001372
1373 /* Delay to allow any outstanding PCI transactions to complete before
1374 * resetting the device
1375 */
1376 mdelay(10);
1377
1378 /* Issue a global reset to the MAC. This will reset the chip's
1379 * transmit, receive, DMA, and link units. It will not effect
1380 * the current PCI configuration. The global reset bit is self-
1381 * clearing, and should clear within a microsecond.
1382 */
1383 DEBUGOUT("Issuing a global reset to MAC\n");
1384 ctrl = E1000_READ_REG(hw, CTRL);
1385
Roy Zang28f7a052009-07-31 13:34:02 +08001386 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001387
1388 /* Force a reload from the EEPROM if necessary */
1389 if (hw->mac_type < e1000_82540) {
1390 /* Wait for reset to complete */
1391 udelay(10);
1392 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1393 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1394 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1395 E1000_WRITE_FLUSH(hw);
1396 /* Wait for EEPROM reload */
1397 mdelay(2);
1398 } else {
1399 /* Wait for EEPROM reload (it happens automatically) */
1400 mdelay(4);
1401 /* Dissable HW ARPs on ASF enabled adapters */
1402 manc = E1000_READ_REG(hw, MANC);
1403 manc &= ~(E1000_MANC_ARP_EN);
1404 E1000_WRITE_REG(hw, MANC, manc);
1405 }
1406
1407 /* Clear interrupt mask to stop board from generating interrupts */
1408 DEBUGOUT("Masking off all interrupts\n");
1409 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1410
1411 /* Clear any pending interrupt events. */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00001412 E1000_READ_REG(hw, ICR);
wdenk4e112c12003-06-03 23:54:09 +00001413
1414 /* If MWI was previously enabled, reenable it. */
1415 if (hw->mac_type == e1000_82542_rev2_0) {
1416 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1417 }
Roy Zang966172e2009-08-22 03:49:52 +08001418 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001419}
1420
1421/******************************************************************************
1422 *
1423 * Initialize a number of hardware-dependent bits
1424 *
1425 * hw: Struct containing variables accessed by shared code
1426 *
1427 * This function contains hardware limitation workarounds for PCI-E adapters
1428 *
1429 *****************************************************************************/
1430static void
1431e1000_initialize_hardware_bits(struct e1000_hw *hw)
1432{
1433 if ((hw->mac_type >= e1000_82571) &&
1434 (!hw->initialize_hw_bits_disable)) {
1435 /* Settings common to all PCI-express silicon */
1436 uint32_t reg_ctrl, reg_ctrl_ext;
1437 uint32_t reg_tarc0, reg_tarc1;
1438 uint32_t reg_tctl;
1439 uint32_t reg_txdctl, reg_txdctl1;
1440
1441 /* link autonegotiation/sync workarounds */
1442 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1443 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1444
1445 /* Enable not-done TX descriptor counting */
1446 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1447 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1448 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1449
1450 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1451 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1452 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1453
1454 switch (hw->mac_type) {
1455 case e1000_82571:
1456 case e1000_82572:
1457 /* Clear PHY TX compatible mode bits */
1458 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1459 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1460
1461 /* link autonegotiation/sync workarounds */
1462 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1463
1464 /* TX ring control fixes */
1465 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1466
1467 /* Multiple read bit is reversed polarity */
1468 reg_tctl = E1000_READ_REG(hw, TCTL);
1469 if (reg_tctl & E1000_TCTL_MULR)
1470 reg_tarc1 &= ~(1 << 28);
1471 else
1472 reg_tarc1 |= (1 << 28);
1473
1474 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1475 break;
1476 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001477 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001478 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1479 reg_ctrl_ext &= ~(1 << 23);
1480 reg_ctrl_ext |= (1 << 22);
1481
1482 /* TX byte count fix */
1483 reg_ctrl = E1000_READ_REG(hw, CTRL);
1484 reg_ctrl &= ~(1 << 29);
1485
1486 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1487 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1488 break;
1489 case e1000_80003es2lan:
1490 /* improve small packet performace for fiber/serdes */
1491 if ((hw->media_type == e1000_media_type_fiber)
1492 || (hw->media_type ==
1493 e1000_media_type_internal_serdes)) {
1494 reg_tarc0 &= ~(1 << 20);
1495 }
1496
1497 /* Multiple read bit is reversed polarity */
1498 reg_tctl = E1000_READ_REG(hw, TCTL);
1499 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1500 if (reg_tctl & E1000_TCTL_MULR)
1501 reg_tarc1 &= ~(1 << 28);
1502 else
1503 reg_tarc1 |= (1 << 28);
1504
1505 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1506 break;
1507 case e1000_ich8lan:
1508 /* Reduce concurrent DMA requests to 3 from 4 */
1509 if ((hw->revision_id < 3) ||
1510 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1511 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1512 reg_tarc0 |= ((1 << 29)|(1 << 28));
1513
1514 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1515 reg_ctrl_ext |= (1 << 22);
1516 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1517
1518 /* workaround TX hang with TSO=on */
1519 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1520
1521 /* Multiple read bit is reversed polarity */
1522 reg_tctl = E1000_READ_REG(hw, TCTL);
1523 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1524 if (reg_tctl & E1000_TCTL_MULR)
1525 reg_tarc1 &= ~(1 << 28);
1526 else
1527 reg_tarc1 |= (1 << 28);
1528
1529 /* workaround TX hang with TSO=on */
1530 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1531
1532 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1533 break;
1534 default:
1535 break;
1536 }
1537
1538 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1539 }
wdenk4e112c12003-06-03 23:54:09 +00001540}
1541
1542/******************************************************************************
1543 * Performs basic configuration of the adapter.
1544 *
1545 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001546 *
1547 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001548 * post-reset uninitialized state. Initializes the receive address registers,
1549 * multicast table, and VLAN filter table. Calls routines to setup link
1550 * configuration and flow control settings. Clears all on-chip counters. Leaves
1551 * the transmit and receive units disabled and uninitialized.
1552 *****************************************************************************/
1553static int
1554e1000_init_hw(struct eth_device *nic)
1555{
1556 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001557 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001558 uint32_t i;
1559 int32_t ret_val;
1560 uint16_t pcix_cmd_word;
1561 uint16_t pcix_stat_hi_word;
1562 uint16_t cmd_mmrbc;
1563 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001564 uint32_t mta_size;
1565 uint32_t reg_data;
1566 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001567 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001568 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1569 if ((hw->mac_type == e1000_ich8lan) &&
1570 ((hw->revision_id < 3) ||
1571 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1572 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1573 reg_data = E1000_READ_REG(hw, STATUS);
1574 reg_data &= ~0x80000000;
1575 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001576 }
Roy Zang28f7a052009-07-31 13:34:02 +08001577 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001578
Roy Zang28f7a052009-07-31 13:34:02 +08001579 /* Set the media type and TBI compatibility */
1580 e1000_set_media_type(hw);
1581
1582 /* Must be called after e1000_set_media_type
1583 * because media_type is used */
1584 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001585
1586 /* Disabling VLAN filtering. */
1587 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001588 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1589 if (hw->mac_type != e1000_ich8lan) {
1590 if (hw->mac_type < e1000_82545_rev_3)
1591 E1000_WRITE_REG(hw, VET, 0);
1592 e1000_clear_vfta(hw);
1593 }
wdenk4e112c12003-06-03 23:54:09 +00001594
1595 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1596 if (hw->mac_type == e1000_82542_rev2_0) {
1597 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1598 pci_write_config_word(hw->pdev, PCI_COMMAND,
1599 hw->
1600 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1601 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1602 E1000_WRITE_FLUSH(hw);
1603 mdelay(5);
1604 }
1605
1606 /* Setup the receive address. This involves initializing all of the Receive
1607 * Address Registers (RARs 0 - 15).
1608 */
1609 e1000_init_rx_addrs(nic);
1610
1611 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1612 if (hw->mac_type == e1000_82542_rev2_0) {
1613 E1000_WRITE_REG(hw, RCTL, 0);
1614 E1000_WRITE_FLUSH(hw);
1615 mdelay(1);
1616 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1617 }
1618
1619 /* Zero out the Multicast HASH table */
1620 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001621 mta_size = E1000_MC_TBL_SIZE;
1622 if (hw->mac_type == e1000_ich8lan)
1623 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1624 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001625 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001626 /* use write flush to prevent Memory Write Block (MWB) from
1627 * occuring when accessing our register space */
1628 E1000_WRITE_FLUSH(hw);
1629 }
wdenk4e112c12003-06-03 23:54:09 +00001630#if 0
1631 /* Set the PCI priority bit correctly in the CTRL register. This
1632 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001633 * gives equal priority to transmits and receives. Valid only on
1634 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001635 */
Roy Zang28f7a052009-07-31 13:34:02 +08001636 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001637 ctrl = E1000_READ_REG(hw, CTRL);
1638 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1639 }
1640#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001641 switch (hw->mac_type) {
1642 case e1000_82545_rev_3:
1643 case e1000_82546_rev_3:
1644 break;
1645 default:
wdenk4e112c12003-06-03 23:54:09 +00001646 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001647 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001648 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1649 &pcix_cmd_word);
1650 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1651 &pcix_stat_hi_word);
1652 cmd_mmrbc =
1653 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1654 PCIX_COMMAND_MMRBC_SHIFT;
1655 stat_mmrbc =
1656 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1657 PCIX_STATUS_HI_MMRBC_SHIFT;
1658 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1659 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1660 if (cmd_mmrbc > stat_mmrbc) {
1661 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1662 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1663 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1664 pcix_cmd_word);
1665 }
1666 }
Roy Zang28f7a052009-07-31 13:34:02 +08001667 break;
1668 }
wdenk4e112c12003-06-03 23:54:09 +00001669
Roy Zang28f7a052009-07-31 13:34:02 +08001670 /* More time needed for PHY to initialize */
1671 if (hw->mac_type == e1000_ich8lan)
1672 mdelay(15);
1673
wdenk4e112c12003-06-03 23:54:09 +00001674 /* Call a subroutine to configure the link and setup flow control. */
1675 ret_val = e1000_setup_link(nic);
1676
1677 /* Set the transmit descriptor write-back policy */
1678 if (hw->mac_type > e1000_82544) {
1679 ctrl = E1000_READ_REG(hw, TXDCTL);
1680 ctrl =
1681 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1682 E1000_TXDCTL_FULL_TX_DESC_WB;
1683 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1684 }
Roy Zang28f7a052009-07-31 13:34:02 +08001685
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001686 /* Set the receive descriptor write back policy */
1687
1688 if (hw->mac_type >= e1000_82571) {
1689 ctrl = E1000_READ_REG(hw, RXDCTL);
1690 ctrl =
1691 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1692 E1000_RXDCTL_FULL_RX_DESC_WB;
1693 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1694 }
1695
Roy Zang28f7a052009-07-31 13:34:02 +08001696 switch (hw->mac_type) {
1697 default:
1698 break;
1699 case e1000_80003es2lan:
1700 /* Enable retransmit on late collisions */
1701 reg_data = E1000_READ_REG(hw, TCTL);
1702 reg_data |= E1000_TCTL_RTLC;
1703 E1000_WRITE_REG(hw, TCTL, reg_data);
1704
1705 /* Configure Gigabit Carry Extend Padding */
1706 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1707 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1708 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1709 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1710
1711 /* Configure Transmit Inter-Packet Gap */
1712 reg_data = E1000_READ_REG(hw, TIPG);
1713 reg_data &= ~E1000_TIPG_IPGT_MASK;
1714 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1715 E1000_WRITE_REG(hw, TIPG, reg_data);
1716
1717 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1718 reg_data &= ~0x00100000;
1719 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1720 /* Fall through */
1721 case e1000_82571:
1722 case e1000_82572:
1723 case e1000_ich8lan:
1724 ctrl = E1000_READ_REG(hw, TXDCTL1);
1725 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1726 | E1000_TXDCTL_FULL_TX_DESC_WB;
1727 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1728 break;
Roy Zang181119b2011-01-21 11:29:38 +08001729 case e1000_82573:
1730 case e1000_82574:
1731 reg_data = E1000_READ_REG(hw, GCR);
1732 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1733 E1000_WRITE_REG(hw, GCR, reg_data);
Roy Zang28f7a052009-07-31 13:34:02 +08001734 }
1735
wdenk4e112c12003-06-03 23:54:09 +00001736#if 0
1737 /* Clear all of the statistics registers (clear on read). It is
1738 * important that we do this after we have tried to establish link
1739 * because the symbol error count will increment wildly if there
1740 * is no link.
1741 */
1742 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001743
1744 /* ICH8 No-snoop bits are opposite polarity.
1745 * Set to snoop by default after reset. */
1746 if (hw->mac_type == e1000_ich8lan)
1747 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001748#endif
1749
Roy Zang28f7a052009-07-31 13:34:02 +08001750 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1751 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1752 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1753 /* Relaxed ordering must be disabled to avoid a parity
1754 * error crash in a PCI slot. */
1755 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1756 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1757 }
1758
1759 return ret_val;
1760}
wdenk4e112c12003-06-03 23:54:09 +00001761
1762/******************************************************************************
1763 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001764 *
wdenk4e112c12003-06-03 23:54:09 +00001765 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001766 *
wdenk4e112c12003-06-03 23:54:09 +00001767 * Determines which flow control settings to use. Calls the apropriate media-
1768 * specific link configuration function. Configures the flow control settings.
1769 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001770 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001771 * transmitter and receiver are not enabled.
1772 *****************************************************************************/
1773static int
1774e1000_setup_link(struct eth_device *nic)
1775{
1776 struct e1000_hw *hw = nic->priv;
wdenk4e112c12003-06-03 23:54:09 +00001777 int32_t ret_val;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001778#ifndef CONFIG_E1000_NO_NVM
1779 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001780 uint16_t eeprom_data;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001781#endif
wdenk4e112c12003-06-03 23:54:09 +00001782
1783 DEBUGFUNC();
1784
Roy Zang28f7a052009-07-31 13:34:02 +08001785 /* In the case of the phy reset being blocked, we already have a link.
1786 * We do not have to set it up again. */
1787 if (e1000_check_phy_reset_block(hw))
1788 return E1000_SUCCESS;
1789
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001790#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00001791 /* Read and store word 0x0F of the EEPROM. This word contains bits
1792 * that determine the hardware's default PAUSE (flow control) mode,
1793 * a bit that determines whether the HW defaults to enabling or
1794 * disabling auto-negotiation, and the direction of the
1795 * SW defined pins. If there is no SW over-ride of the flow
1796 * control setting, then the variable hw->fc will
1797 * be initialized based on a value in the EEPROM.
1798 */
Roy Zang28f7a052009-07-31 13:34:02 +08001799 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1800 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001801 DEBUGOUT("EEPROM Read Error\n");
1802 return -E1000_ERR_EEPROM;
1803 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001804#endif
wdenk4e112c12003-06-03 23:54:09 +00001805 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001806 switch (hw->mac_type) {
1807 case e1000_ich8lan:
1808 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001809 case e1000_82574:
wdenk4e112c12003-06-03 23:54:09 +00001810 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001811 break;
1812 default:
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001813#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001814 ret_val = e1000_read_eeprom(hw,
1815 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1816 if (ret_val) {
1817 DEBUGOUT("EEPROM Read Error\n");
1818 return -E1000_ERR_EEPROM;
1819 }
Roy Zang28f7a052009-07-31 13:34:02 +08001820 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1821 hw->fc = e1000_fc_none;
1822 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1823 EEPROM_WORD0F_ASM_DIR)
1824 hw->fc = e1000_fc_tx_pause;
1825 else
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001826#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001827 hw->fc = e1000_fc_full;
1828 break;
1829 }
wdenk4e112c12003-06-03 23:54:09 +00001830 }
1831
1832 /* We want to save off the original Flow Control configuration just
1833 * in case we get disconnected and then reconnected into a different
1834 * hub or switch with different Flow Control capabilities.
1835 */
1836 if (hw->mac_type == e1000_82542_rev2_0)
1837 hw->fc &= (~e1000_fc_tx_pause);
1838
1839 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1840 hw->fc &= (~e1000_fc_rx_pause);
1841
1842 hw->original_fc = hw->fc;
1843
1844 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1845
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001846#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00001847 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1848 * polarity value for the SW controlled pins, and setup the
1849 * Extended Device Control reg with that info.
1850 * This is needed because one of the SW controlled pins is used for
1851 * signal detection. So this should be done before e1000_setup_pcs_link()
1852 * or e1000_phy_setup() is called.
1853 */
1854 if (hw->mac_type == e1000_82543) {
1855 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1856 SWDPIO__EXT_SHIFT);
1857 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1858 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001859#endif
wdenk4e112c12003-06-03 23:54:09 +00001860
1861 /* Call the necessary subroutine to configure the link. */
1862 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1863 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1864 if (ret_val < 0) {
1865 return ret_val;
1866 }
1867
1868 /* Initialize the flow control address, type, and PAUSE timer
1869 * registers to their default values. This is done even if flow
1870 * control is disabled, because it does not hurt anything to
1871 * initialize these registers.
1872 */
Roy Zang28f7a052009-07-31 13:34:02 +08001873 DEBUGOUT("Initializing the Flow Control address, type"
1874 "and timer regs\n");
1875
1876 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1877 if (hw->mac_type != e1000_ich8lan) {
1878 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1879 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1880 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1881 }
wdenk4e112c12003-06-03 23:54:09 +00001882
wdenk4e112c12003-06-03 23:54:09 +00001883 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1884
1885 /* Set the flow control receive threshold registers. Normally,
1886 * these registers will be set to a default threshold that may be
1887 * adjusted later by the driver's runtime code. However, if the
1888 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001889 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001890 */
1891 if (!(hw->fc & e1000_fc_tx_pause)) {
1892 E1000_WRITE_REG(hw, FCRTL, 0);
1893 E1000_WRITE_REG(hw, FCRTH, 0);
1894 } else {
1895 /* We need to set up the Receive Threshold high and low water marks
1896 * as well as (optionally) enabling the transmission of XON frames.
1897 */
1898 if (hw->fc_send_xon) {
1899 E1000_WRITE_REG(hw, FCRTL,
1900 (hw->fc_low_water | E1000_FCRTL_XONE));
1901 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1902 } else {
1903 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1904 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1905 }
1906 }
1907 return ret_val;
1908}
1909
1910/******************************************************************************
1911 * Sets up link for a fiber based adapter
1912 *
1913 * hw - Struct containing variables accessed by shared code
1914 *
1915 * Manipulates Physical Coding Sublayer functions in order to configure
1916 * link. Assumes the hardware has been previously reset and the transmitter
1917 * and receiver are not enabled.
1918 *****************************************************************************/
1919static int
1920e1000_setup_fiber_link(struct eth_device *nic)
1921{
1922 struct e1000_hw *hw = nic->priv;
1923 uint32_t ctrl;
1924 uint32_t status;
1925 uint32_t txcw = 0;
1926 uint32_t i;
1927 uint32_t signal;
1928 int32_t ret_val;
1929
1930 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001931 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1932 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001933 * cleared when there is a signal
1934 */
1935 ctrl = E1000_READ_REG(hw, CTRL);
1936 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1937 signal = E1000_CTRL_SWDPIN1;
1938 else
1939 signal = 0;
1940
1941 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1942 ctrl);
1943 /* Take the link out of reset */
1944 ctrl &= ~(E1000_CTRL_LRST);
1945
1946 e1000_config_collision_dist(hw);
1947
1948 /* Check for a software override of the flow control settings, and setup
1949 * the device accordingly. If auto-negotiation is enabled, then software
1950 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1951 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001952 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001953 * configure the two flow control enable bits in the CTRL register.
1954 *
1955 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001956 * 0: Flow control is completely disabled
1957 * 1: Rx flow control is enabled (we can receive pause frames, but
1958 * not send pause frames).
1959 * 2: Tx flow control is enabled (we can send pause frames but we do
1960 * not support receiving pause frames).
1961 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001962 */
1963 switch (hw->fc) {
1964 case e1000_fc_none:
1965 /* Flow control is completely disabled by a software over-ride. */
1966 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1967 break;
1968 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001969 /* RX Flow control is enabled and TX Flow control is disabled by a
1970 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001971 * that we are capable of RX Pause ONLY, we will advertise that we
1972 * support both symmetric and asymmetric RX PAUSE. Later, we will
1973 * disable the adapter's ability to send PAUSE frames.
1974 */
1975 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1976 break;
1977 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001978 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00001979 * software over-ride.
1980 */
1981 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1982 break;
1983 case e1000_fc_full:
1984 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1985 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1986 break;
1987 default:
1988 DEBUGOUT("Flow control param set incorrectly\n");
1989 return -E1000_ERR_CONFIG;
1990 break;
1991 }
1992
1993 /* Since auto-negotiation is enabled, take the link out of reset (the link
1994 * will be in reset, because we previously reset the chip). This will
1995 * restart auto-negotiation. If auto-neogtiation is successful then the
1996 * link-up status bit will be set and the flow control enable bits (RFCE
1997 * and TFCE) will be set according to their negotiated value.
1998 */
1999 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2000
2001 E1000_WRITE_REG(hw, TXCW, txcw);
2002 E1000_WRITE_REG(hw, CTRL, ctrl);
2003 E1000_WRITE_FLUSH(hw);
2004
2005 hw->txcw = txcw;
2006 mdelay(1);
2007
2008 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002009 * indication in the Device Status Register. Time-out if a link isn't
2010 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002011 * less than 500 milliseconds even if the other end is doing it in SW).
2012 */
2013 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2014 DEBUGOUT("Looking for Link\n");
2015 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2016 mdelay(10);
2017 status = E1000_READ_REG(hw, STATUS);
2018 if (status & E1000_STATUS_LU)
2019 break;
2020 }
2021 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002022 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002023 * e1000_check_for_link. This routine will force the link up if we
2024 * detect a signal. This will allow us to communicate with
2025 * non-autonegotiating link partners.
2026 */
2027 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2028 hw->autoneg_failed = 1;
2029 ret_val = e1000_check_for_link(nic);
2030 if (ret_val < 0) {
2031 DEBUGOUT("Error while checking for link\n");
2032 return ret_val;
2033 }
2034 hw->autoneg_failed = 0;
2035 } else {
2036 hw->autoneg_failed = 0;
2037 DEBUGOUT("Valid Link Found\n");
2038 }
2039 } else {
2040 DEBUGOUT("No Signal Detected\n");
2041 return -E1000_ERR_NOLINK;
2042 }
2043 return 0;
2044}
2045
2046/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002047* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002048*
2049* hw - Struct containing variables accessed by shared code
2050******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002051static int32_t
2052e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002053{
wdenk4e112c12003-06-03 23:54:09 +00002054 uint32_t ctrl;
2055 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002056 uint16_t phy_data;
2057
2058 DEBUGFUNC();
2059
2060 ctrl = E1000_READ_REG(hw, CTRL);
2061 /* With 82543, we need to force speed and duplex on the MAC equal to what
2062 * the PHY speed and duplex configuration is. In addition, we need to
2063 * perform a hardware reset on the PHY to take it out of reset.
2064 */
2065 if (hw->mac_type > e1000_82543) {
2066 ctrl |= E1000_CTRL_SLU;
2067 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2068 E1000_WRITE_REG(hw, CTRL, ctrl);
2069 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002070 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2071 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002072 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002073 ret_val = e1000_phy_hw_reset(hw);
2074 if (ret_val)
2075 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002076 }
2077
2078 /* Make sure we have a valid PHY */
2079 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002080 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002081 DEBUGOUT("Error, did not detect valid phy.\n");
2082 return ret_val;
2083 }
2084 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2085
Roy Zang28f7a052009-07-31 13:34:02 +08002086 /* Set PHY to class A mode (if necessary) */
2087 ret_val = e1000_set_phy_mode(hw);
2088 if (ret_val)
2089 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002090 if ((hw->mac_type == e1000_82545_rev_3) ||
2091 (hw->mac_type == e1000_82546_rev_3)) {
2092 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2093 &phy_data);
2094 phy_data |= 0x00000008;
2095 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2096 phy_data);
2097 }
2098
2099 if (hw->mac_type <= e1000_82543 ||
2100 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2101 hw->mac_type == e1000_82541_rev_2
2102 || hw->mac_type == e1000_82547_rev_2)
York Sun4a598092013-04-01 11:29:11 -07002103 hw->phy_reset_disable = false;
Roy Zang28f7a052009-07-31 13:34:02 +08002104
2105 return E1000_SUCCESS;
2106}
2107
2108/*****************************************************************************
2109 *
2110 * This function sets the lplu state according to the active flag. When
2111 * activating lplu this function also disables smart speed and vise versa.
2112 * lplu will not be activated unless the device autonegotiation advertisment
2113 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2114 * hw: Struct containing variables accessed by shared code
2115 * active - true to enable lplu false to disable lplu.
2116 *
2117 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2118 * E1000_SUCCESS at any other case.
2119 *
2120 ****************************************************************************/
2121
2122static int32_t
York Sun4a598092013-04-01 11:29:11 -07002123e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002124{
2125 uint32_t phy_ctrl = 0;
2126 int32_t ret_val;
2127 uint16_t phy_data;
2128 DEBUGFUNC();
2129
2130 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2131 && hw->phy_type != e1000_phy_igp_3)
2132 return E1000_SUCCESS;
2133
2134 /* During driver activity LPLU should not be used or it will attain link
2135 * from the lowest speeds starting from 10Mbps. The capability is used
2136 * for Dx transitions and states */
2137 if (hw->mac_type == e1000_82541_rev_2
2138 || hw->mac_type == e1000_82547_rev_2) {
2139 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2140 &phy_data);
2141 if (ret_val)
2142 return ret_val;
2143 } else if (hw->mac_type == e1000_ich8lan) {
2144 /* MAC writes into PHY register based on the state transition
2145 * and start auto-negotiation. SW driver can overwrite the
2146 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2147 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2148 } else {
2149 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2150 &phy_data);
2151 if (ret_val)
2152 return ret_val;
2153 }
2154
2155 if (!active) {
2156 if (hw->mac_type == e1000_82541_rev_2 ||
2157 hw->mac_type == e1000_82547_rev_2) {
2158 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2159 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2160 phy_data);
2161 if (ret_val)
2162 return ret_val;
2163 } else {
2164 if (hw->mac_type == e1000_ich8lan) {
2165 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2166 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2167 } else {
2168 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2169 ret_val = e1000_write_phy_reg(hw,
2170 IGP02E1000_PHY_POWER_MGMT, phy_data);
2171 if (ret_val)
2172 return ret_val;
2173 }
2174 }
2175
2176 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2177 * Dx states where the power conservation is most important. During
2178 * driver activity we should enable SmartSpeed, so performance is
2179 * maintained. */
2180 if (hw->smart_speed == e1000_smart_speed_on) {
2181 ret_val = e1000_read_phy_reg(hw,
2182 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2183 if (ret_val)
2184 return ret_val;
2185
2186 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2187 ret_val = e1000_write_phy_reg(hw,
2188 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2189 if (ret_val)
2190 return ret_val;
2191 } else if (hw->smart_speed == e1000_smart_speed_off) {
2192 ret_val = e1000_read_phy_reg(hw,
2193 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2194 if (ret_val)
2195 return ret_val;
2196
2197 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2198 ret_val = e1000_write_phy_reg(hw,
2199 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2200 if (ret_val)
2201 return ret_val;
2202 }
2203
2204 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2205 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2206 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2207
2208 if (hw->mac_type == e1000_82541_rev_2 ||
2209 hw->mac_type == e1000_82547_rev_2) {
2210 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2211 ret_val = e1000_write_phy_reg(hw,
2212 IGP01E1000_GMII_FIFO, phy_data);
2213 if (ret_val)
2214 return ret_val;
2215 } else {
2216 if (hw->mac_type == e1000_ich8lan) {
2217 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2218 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2219 } else {
2220 phy_data |= IGP02E1000_PM_D3_LPLU;
2221 ret_val = e1000_write_phy_reg(hw,
2222 IGP02E1000_PHY_POWER_MGMT, phy_data);
2223 if (ret_val)
2224 return ret_val;
2225 }
2226 }
2227
2228 /* When LPLU is enabled we should disable SmartSpeed */
2229 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2230 &phy_data);
2231 if (ret_val)
2232 return ret_val;
2233
2234 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2235 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2236 phy_data);
2237 if (ret_val)
2238 return ret_val;
2239 }
2240 return E1000_SUCCESS;
2241}
2242
2243/*****************************************************************************
2244 *
2245 * This function sets the lplu d0 state according to the active flag. When
2246 * activating lplu this function also disables smart speed and vise versa.
2247 * lplu will not be activated unless the device autonegotiation advertisment
2248 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2249 * hw: Struct containing variables accessed by shared code
2250 * active - true to enable lplu false to disable lplu.
2251 *
2252 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2253 * E1000_SUCCESS at any other case.
2254 *
2255 ****************************************************************************/
2256
2257static int32_t
York Sun4a598092013-04-01 11:29:11 -07002258e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002259{
2260 uint32_t phy_ctrl = 0;
2261 int32_t ret_val;
2262 uint16_t phy_data;
2263 DEBUGFUNC();
2264
2265 if (hw->mac_type <= e1000_82547_rev_2)
2266 return E1000_SUCCESS;
2267
2268 if (hw->mac_type == e1000_ich8lan) {
2269 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2270 } else {
2271 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2272 &phy_data);
2273 if (ret_val)
2274 return ret_val;
2275 }
2276
2277 if (!active) {
2278 if (hw->mac_type == e1000_ich8lan) {
2279 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2280 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2281 } else {
2282 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2283 ret_val = e1000_write_phy_reg(hw,
2284 IGP02E1000_PHY_POWER_MGMT, phy_data);
2285 if (ret_val)
2286 return ret_val;
2287 }
2288
2289 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2290 * Dx states where the power conservation is most important. During
2291 * driver activity we should enable SmartSpeed, so performance is
2292 * maintained. */
2293 if (hw->smart_speed == e1000_smart_speed_on) {
2294 ret_val = e1000_read_phy_reg(hw,
2295 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2296 if (ret_val)
2297 return ret_val;
2298
2299 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2300 ret_val = e1000_write_phy_reg(hw,
2301 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2302 if (ret_val)
2303 return ret_val;
2304 } else if (hw->smart_speed == e1000_smart_speed_off) {
2305 ret_val = e1000_read_phy_reg(hw,
2306 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2307 if (ret_val)
2308 return ret_val;
2309
2310 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2311 ret_val = e1000_write_phy_reg(hw,
2312 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2313 if (ret_val)
2314 return ret_val;
2315 }
2316
2317
2318 } else {
2319
2320 if (hw->mac_type == e1000_ich8lan) {
2321 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2322 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2323 } else {
2324 phy_data |= IGP02E1000_PM_D0_LPLU;
2325 ret_val = e1000_write_phy_reg(hw,
2326 IGP02E1000_PHY_POWER_MGMT, phy_data);
2327 if (ret_val)
2328 return ret_val;
2329 }
2330
2331 /* When LPLU is enabled we should disable SmartSpeed */
2332 ret_val = e1000_read_phy_reg(hw,
2333 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2334 if (ret_val)
2335 return ret_val;
2336
2337 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2338 ret_val = e1000_write_phy_reg(hw,
2339 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2340 if (ret_val)
2341 return ret_val;
2342
2343 }
2344 return E1000_SUCCESS;
2345}
2346
2347/********************************************************************
2348* Copper link setup for e1000_phy_igp series.
2349*
2350* hw - Struct containing variables accessed by shared code
2351*********************************************************************/
2352static int32_t
2353e1000_copper_link_igp_setup(struct e1000_hw *hw)
2354{
2355 uint32_t led_ctrl;
2356 int32_t ret_val;
2357 uint16_t phy_data;
2358
Timur Tabiedc45b52009-08-17 15:55:38 -05002359 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002360
2361 if (hw->phy_reset_disable)
2362 return E1000_SUCCESS;
2363
2364 ret_val = e1000_phy_reset(hw);
2365 if (ret_val) {
2366 DEBUGOUT("Error Resetting the PHY\n");
2367 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002368 }
Roy Zang28f7a052009-07-31 13:34:02 +08002369
2370 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2371 mdelay(15);
2372 if (hw->mac_type != e1000_ich8lan) {
2373 /* Configure activity LED after PHY reset */
2374 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2375 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2376 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2377 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2378 }
2379
2380 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2381 if (hw->phy_type == e1000_phy_igp) {
2382 /* disable lplu d3 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002383 ret_val = e1000_set_d3_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002384 if (ret_val) {
2385 DEBUGOUT("Error Disabling LPLU D3\n");
2386 return ret_val;
2387 }
2388 }
2389
2390 /* disable lplu d0 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002391 ret_val = e1000_set_d0_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002392 if (ret_val) {
2393 DEBUGOUT("Error Disabling LPLU D0\n");
2394 return ret_val;
2395 }
2396 /* Configure mdi-mdix settings */
2397 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2398 if (ret_val)
2399 return ret_val;
2400
2401 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2402 hw->dsp_config_state = e1000_dsp_config_disabled;
2403 /* Force MDI for earlier revs of the IGP PHY */
2404 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2405 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2406 hw->mdix = 1;
2407
2408 } else {
2409 hw->dsp_config_state = e1000_dsp_config_enabled;
2410 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2411
2412 switch (hw->mdix) {
2413 case 1:
2414 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2415 break;
2416 case 2:
2417 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2418 break;
2419 case 0:
2420 default:
2421 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2422 break;
2423 }
2424 }
2425 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2426 if (ret_val)
2427 return ret_val;
2428
2429 /* set auto-master slave resolution settings */
2430 if (hw->autoneg) {
2431 e1000_ms_type phy_ms_setting = hw->master_slave;
2432
2433 if (hw->ffe_config_state == e1000_ffe_config_active)
2434 hw->ffe_config_state = e1000_ffe_config_enabled;
2435
2436 if (hw->dsp_config_state == e1000_dsp_config_activated)
2437 hw->dsp_config_state = e1000_dsp_config_enabled;
2438
2439 /* when autonegotiation advertisment is only 1000Mbps then we
2440 * should disable SmartSpeed and enable Auto MasterSlave
2441 * resolution as hardware default. */
2442 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2443 /* Disable SmartSpeed */
2444 ret_val = e1000_read_phy_reg(hw,
2445 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2446 if (ret_val)
2447 return ret_val;
2448 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2449 ret_val = e1000_write_phy_reg(hw,
2450 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2451 if (ret_val)
2452 return ret_val;
2453 /* Set auto Master/Slave resolution process */
2454 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2455 &phy_data);
2456 if (ret_val)
2457 return ret_val;
2458 phy_data &= ~CR_1000T_MS_ENABLE;
2459 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2460 phy_data);
2461 if (ret_val)
2462 return ret_val;
2463 }
2464
2465 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2466 if (ret_val)
2467 return ret_val;
2468
2469 /* load defaults for future use */
2470 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2471 ((phy_data & CR_1000T_MS_VALUE) ?
2472 e1000_ms_force_master :
2473 e1000_ms_force_slave) :
2474 e1000_ms_auto;
2475
2476 switch (phy_ms_setting) {
2477 case e1000_ms_force_master:
2478 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2479 break;
2480 case e1000_ms_force_slave:
2481 phy_data |= CR_1000T_MS_ENABLE;
2482 phy_data &= ~(CR_1000T_MS_VALUE);
2483 break;
2484 case e1000_ms_auto:
2485 phy_data &= ~CR_1000T_MS_ENABLE;
2486 default:
2487 break;
2488 }
2489 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2490 if (ret_val)
2491 return ret_val;
2492 }
2493
2494 return E1000_SUCCESS;
2495}
2496
2497/*****************************************************************************
2498 * This function checks the mode of the firmware.
2499 *
York Sun4a598092013-04-01 11:29:11 -07002500 * returns - true when the mode is IAMT or false.
Roy Zang28f7a052009-07-31 13:34:02 +08002501 ****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -07002502bool
Roy Zang28f7a052009-07-31 13:34:02 +08002503e1000_check_mng_mode(struct e1000_hw *hw)
2504{
2505 uint32_t fwsm;
2506 DEBUGFUNC();
2507
2508 fwsm = E1000_READ_REG(hw, FWSM);
2509
2510 if (hw->mac_type == e1000_ich8lan) {
2511 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2512 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002513 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002514 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2515 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002516 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002517
York Sun4a598092013-04-01 11:29:11 -07002518 return false;
Roy Zang28f7a052009-07-31 13:34:02 +08002519}
2520
2521static int32_t
2522e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2523{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002524 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002525 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002526 DEBUGFUNC();
2527
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002528 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002529 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002530
Roy Zang28f7a052009-07-31 13:34:02 +08002531 if (e1000_swfw_sync_acquire(hw, swfw))
2532 return -E1000_ERR_SWFW_SYNC;
2533
2534 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2535 & E1000_KUMCTRLSTA_OFFSET) | data;
2536 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2537 udelay(2);
2538
2539 return E1000_SUCCESS;
2540}
2541
2542static int32_t
2543e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2544{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002545 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002546 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002547 DEBUGFUNC();
2548
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002549 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002550 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002551
Roy Zang28f7a052009-07-31 13:34:02 +08002552 if (e1000_swfw_sync_acquire(hw, swfw))
2553 return -E1000_ERR_SWFW_SYNC;
2554
2555 /* Write register address */
2556 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2557 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2558 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2559 udelay(2);
2560
2561 /* Read the data returned */
2562 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2563 *data = (uint16_t)reg_val;
2564
2565 return E1000_SUCCESS;
2566}
2567
2568/********************************************************************
2569* Copper link setup for e1000_phy_gg82563 series.
2570*
2571* hw - Struct containing variables accessed by shared code
2572*********************************************************************/
2573static int32_t
2574e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2575{
2576 int32_t ret_val;
2577 uint16_t phy_data;
2578 uint32_t reg_data;
2579
2580 DEBUGFUNC();
2581
2582 if (!hw->phy_reset_disable) {
2583 /* Enable CRS on TX for half-duplex operation. */
2584 ret_val = e1000_read_phy_reg(hw,
2585 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2586 if (ret_val)
2587 return ret_val;
2588
2589 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2590 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2591 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2592
2593 ret_val = e1000_write_phy_reg(hw,
2594 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2595 if (ret_val)
2596 return ret_val;
2597
2598 /* Options:
2599 * MDI/MDI-X = 0 (default)
2600 * 0 - Auto for all speeds
2601 * 1 - MDI mode
2602 * 2 - MDI-X mode
2603 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2604 */
2605 ret_val = e1000_read_phy_reg(hw,
2606 GG82563_PHY_SPEC_CTRL, &phy_data);
2607 if (ret_val)
2608 return ret_val;
2609
2610 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2611
2612 switch (hw->mdix) {
2613 case 1:
2614 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2615 break;
2616 case 2:
2617 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2618 break;
2619 case 0:
2620 default:
2621 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2622 break;
2623 }
2624
2625 /* Options:
2626 * disable_polarity_correction = 0 (default)
2627 * Automatic Correction for Reversed Cable Polarity
2628 * 0 - Disabled
2629 * 1 - Enabled
2630 */
2631 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2632 ret_val = e1000_write_phy_reg(hw,
2633 GG82563_PHY_SPEC_CTRL, phy_data);
2634
2635 if (ret_val)
2636 return ret_val;
2637
2638 /* SW Reset the PHY so all changes take effect */
2639 ret_val = e1000_phy_reset(hw);
2640 if (ret_val) {
2641 DEBUGOUT("Error Resetting the PHY\n");
2642 return ret_val;
2643 }
2644 } /* phy_reset_disable */
2645
2646 if (hw->mac_type == e1000_80003es2lan) {
2647 /* Bypass RX and TX FIFO's */
2648 ret_val = e1000_write_kmrn_reg(hw,
2649 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2650 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2651 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2652 if (ret_val)
2653 return ret_val;
2654
2655 ret_val = e1000_read_phy_reg(hw,
2656 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2657 if (ret_val)
2658 return ret_val;
2659
2660 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2661 ret_val = e1000_write_phy_reg(hw,
2662 GG82563_PHY_SPEC_CTRL_2, phy_data);
2663
2664 if (ret_val)
2665 return ret_val;
2666
2667 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2668 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2669 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2670
2671 ret_val = e1000_read_phy_reg(hw,
2672 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2673 if (ret_val)
2674 return ret_val;
2675
2676 /* Do not init these registers when the HW is in IAMT mode, since the
2677 * firmware will have already initialized them. We only initialize
2678 * them if the HW is not in IAMT mode.
2679 */
York Sun4a598092013-04-01 11:29:11 -07002680 if (e1000_check_mng_mode(hw) == false) {
Roy Zang28f7a052009-07-31 13:34:02 +08002681 /* Enable Electrical Idle on the PHY */
2682 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2683 ret_val = e1000_write_phy_reg(hw,
2684 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2685 if (ret_val)
2686 return ret_val;
2687
2688 ret_val = e1000_read_phy_reg(hw,
2689 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2690 if (ret_val)
2691 return ret_val;
2692
2693 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2694 ret_val = e1000_write_phy_reg(hw,
2695 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2696
2697 if (ret_val)
2698 return ret_val;
2699 }
2700
2701 /* Workaround: Disable padding in Kumeran interface in the MAC
2702 * and in the PHY to avoid CRC errors.
2703 */
2704 ret_val = e1000_read_phy_reg(hw,
2705 GG82563_PHY_INBAND_CTRL, &phy_data);
2706 if (ret_val)
2707 return ret_val;
2708 phy_data |= GG82563_ICR_DIS_PADDING;
2709 ret_val = e1000_write_phy_reg(hw,
2710 GG82563_PHY_INBAND_CTRL, phy_data);
2711 if (ret_val)
2712 return ret_val;
2713 }
2714 return E1000_SUCCESS;
2715}
2716
2717/********************************************************************
2718* Copper link setup for e1000_phy_m88 series.
2719*
2720* hw - Struct containing variables accessed by shared code
2721*********************************************************************/
2722static int32_t
2723e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2724{
2725 int32_t ret_val;
2726 uint16_t phy_data;
2727
2728 DEBUGFUNC();
2729
2730 if (hw->phy_reset_disable)
2731 return E1000_SUCCESS;
2732
2733 /* Enable CRS on TX. This must be set for half-duplex operation. */
2734 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2735 if (ret_val)
2736 return ret_val;
2737
wdenk4e112c12003-06-03 23:54:09 +00002738 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2739
wdenk4e112c12003-06-03 23:54:09 +00002740 /* Options:
2741 * MDI/MDI-X = 0 (default)
2742 * 0 - Auto for all speeds
2743 * 1 - MDI mode
2744 * 2 - MDI-X mode
2745 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2746 */
2747 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002748
wdenk4e112c12003-06-03 23:54:09 +00002749 switch (hw->mdix) {
2750 case 1:
2751 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2752 break;
2753 case 2:
2754 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2755 break;
2756 case 3:
2757 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2758 break;
2759 case 0:
2760 default:
2761 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2762 break;
2763 }
wdenk4e112c12003-06-03 23:54:09 +00002764
wdenk4e112c12003-06-03 23:54:09 +00002765 /* Options:
2766 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002767 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002768 * 0 - Disabled
2769 * 1 - Enabled
2770 */
2771 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002772 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2773 if (ret_val)
2774 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002775
Roy Zang28f7a052009-07-31 13:34:02 +08002776 if (hw->phy_revision < M88E1011_I_REV_4) {
2777 /* Force TX_CLK in the Extended PHY Specific Control Register
2778 * to 25MHz clock.
2779 */
2780 ret_val = e1000_read_phy_reg(hw,
2781 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2782 if (ret_val)
2783 return ret_val;
2784
2785 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2786
2787 if ((hw->phy_revision == E1000_REVISION_2) &&
2788 (hw->phy_id == M88E1111_I_PHY_ID)) {
2789 /* Vidalia Phy, set the downshift counter to 5x */
2790 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2791 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2792 ret_val = e1000_write_phy_reg(hw,
2793 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2794 if (ret_val)
2795 return ret_val;
2796 } else {
2797 /* Configure Master and Slave downshift values */
2798 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2799 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2800 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2801 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2802 ret_val = e1000_write_phy_reg(hw,
2803 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2804 if (ret_val)
2805 return ret_val;
2806 }
wdenk4e112c12003-06-03 23:54:09 +00002807 }
2808
2809 /* SW Reset the PHY so all changes take effect */
2810 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002811 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002812 DEBUGOUT("Error Resetting the PHY\n");
2813 return ret_val;
2814 }
2815
Roy Zang28f7a052009-07-31 13:34:02 +08002816 return E1000_SUCCESS;
2817}
wdenk4e112c12003-06-03 23:54:09 +00002818
Roy Zang28f7a052009-07-31 13:34:02 +08002819/********************************************************************
2820* Setup auto-negotiation and flow control advertisements,
2821* and then perform auto-negotiation.
2822*
2823* hw - Struct containing variables accessed by shared code
2824*********************************************************************/
2825static int32_t
2826e1000_copper_link_autoneg(struct e1000_hw *hw)
2827{
2828 int32_t ret_val;
2829 uint16_t phy_data;
2830
2831 DEBUGFUNC();
2832
wdenk4e112c12003-06-03 23:54:09 +00002833 /* Perform some bounds checking on the hw->autoneg_advertised
2834 * parameter. If this variable is zero, then set it to the default.
2835 */
2836 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2837
2838 /* If autoneg_advertised is zero, we assume it was not defaulted
2839 * by the calling code so we set to advertise full capability.
2840 */
2841 if (hw->autoneg_advertised == 0)
2842 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2843
Roy Zang28f7a052009-07-31 13:34:02 +08002844 /* IFE phy only supports 10/100 */
2845 if (hw->phy_type == e1000_phy_ife)
2846 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2847
wdenk4e112c12003-06-03 23:54:09 +00002848 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2849 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002850 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002851 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2852 return ret_val;
2853 }
2854 DEBUGOUT("Restarting Auto-Neg\n");
2855
2856 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2857 * the Auto Neg Restart bit in the PHY control register.
2858 */
Roy Zang28f7a052009-07-31 13:34:02 +08002859 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2860 if (ret_val)
2861 return ret_val;
2862
wdenk4e112c12003-06-03 23:54:09 +00002863 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002864 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2865 if (ret_val)
2866 return ret_val;
2867
wdenk4e112c12003-06-03 23:54:09 +00002868 /* Does the user want to wait for Auto-Neg to complete here, or
2869 * check at a later time (for example, callback routine).
2870 */
Roy Zang28f7a052009-07-31 13:34:02 +08002871 /* If we do not wait for autonegtation to complete I
2872 * do not see a valid link status.
2873 * wait_autoneg_complete = 1 .
2874 */
wdenk4e112c12003-06-03 23:54:09 +00002875 if (hw->wait_autoneg_complete) {
2876 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002877 if (ret_val) {
2878 DEBUGOUT("Error while waiting for autoneg"
2879 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002880 return ret_val;
2881 }
2882 }
Roy Zang28f7a052009-07-31 13:34:02 +08002883
York Sun4a598092013-04-01 11:29:11 -07002884 hw->get_link_status = true;
Roy Zang28f7a052009-07-31 13:34:02 +08002885
2886 return E1000_SUCCESS;
2887}
2888
2889/******************************************************************************
2890* Config the MAC and the PHY after link is up.
2891* 1) Set up the MAC to the current PHY speed/duplex
2892* if we are on 82543. If we
2893* are on newer silicon, we only need to configure
2894* collision distance in the Transmit Control Register.
2895* 2) Set up flow control on the MAC to that established with
2896* the link partner.
2897* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2898*
2899* hw - Struct containing variables accessed by shared code
2900******************************************************************************/
2901static int32_t
2902e1000_copper_link_postconfig(struct e1000_hw *hw)
2903{
2904 int32_t ret_val;
2905 DEBUGFUNC();
2906
2907 if (hw->mac_type >= e1000_82544) {
2908 e1000_config_collision_dist(hw);
2909 } else {
2910 ret_val = e1000_config_mac_to_phy(hw);
2911 if (ret_val) {
2912 DEBUGOUT("Error configuring MAC to PHY settings\n");
2913 return ret_val;
2914 }
2915 }
2916 ret_val = e1000_config_fc_after_link_up(hw);
2917 if (ret_val) {
2918 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002919 return ret_val;
2920 }
Roy Zang28f7a052009-07-31 13:34:02 +08002921 return E1000_SUCCESS;
2922}
2923
2924/******************************************************************************
2925* Detects which PHY is present and setup the speed and duplex
2926*
2927* hw - Struct containing variables accessed by shared code
2928******************************************************************************/
2929static int
2930e1000_setup_copper_link(struct eth_device *nic)
2931{
2932 struct e1000_hw *hw = nic->priv;
2933 int32_t ret_val;
2934 uint16_t i;
2935 uint16_t phy_data;
2936 uint16_t reg_data;
2937
2938 DEBUGFUNC();
2939
2940 switch (hw->mac_type) {
2941 case e1000_80003es2lan:
2942 case e1000_ich8lan:
2943 /* Set the mac to wait the maximum time between each
2944 * iteration and increase the max iterations when
2945 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2946 ret_val = e1000_write_kmrn_reg(hw,
2947 GG82563_REG(0x34, 4), 0xFFFF);
2948 if (ret_val)
2949 return ret_val;
2950 ret_val = e1000_read_kmrn_reg(hw,
2951 GG82563_REG(0x34, 9), &reg_data);
2952 if (ret_val)
2953 return ret_val;
2954 reg_data |= 0x3F;
2955 ret_val = e1000_write_kmrn_reg(hw,
2956 GG82563_REG(0x34, 9), reg_data);
2957 if (ret_val)
2958 return ret_val;
2959 default:
2960 break;
2961 }
2962
2963 /* Check if it is a valid PHY and set PHY mode if necessary. */
2964 ret_val = e1000_copper_link_preconfig(hw);
2965 if (ret_val)
2966 return ret_val;
2967 switch (hw->mac_type) {
2968 case e1000_80003es2lan:
2969 /* Kumeran registers are written-only */
2970 reg_data =
2971 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2972 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2973 ret_val = e1000_write_kmrn_reg(hw,
2974 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2975 if (ret_val)
2976 return ret_val;
2977 break;
2978 default:
2979 break;
2980 }
2981
2982 if (hw->phy_type == e1000_phy_igp ||
2983 hw->phy_type == e1000_phy_igp_3 ||
2984 hw->phy_type == e1000_phy_igp_2) {
2985 ret_val = e1000_copper_link_igp_setup(hw);
2986 if (ret_val)
2987 return ret_val;
2988 } else if (hw->phy_type == e1000_phy_m88) {
2989 ret_val = e1000_copper_link_mgp_setup(hw);
2990 if (ret_val)
2991 return ret_val;
2992 } else if (hw->phy_type == e1000_phy_gg82563) {
2993 ret_val = e1000_copper_link_ggp_setup(hw);
2994 if (ret_val)
2995 return ret_val;
2996 }
2997
2998 /* always auto */
2999 /* Setup autoneg and flow control advertisement
3000 * and perform autonegotiation */
3001 ret_val = e1000_copper_link_autoneg(hw);
3002 if (ret_val)
3003 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003004
3005 /* Check link status. Wait up to 100 microseconds for link to become
3006 * valid.
3007 */
3008 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003009 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3010 if (ret_val)
3011 return ret_val;
3012 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3013 if (ret_val)
3014 return ret_val;
3015
wdenk4e112c12003-06-03 23:54:09 +00003016 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003017 /* Config the MAC and PHY after link is up */
3018 ret_val = e1000_copper_link_postconfig(hw);
3019 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003020 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003021
wdenk4e112c12003-06-03 23:54:09 +00003022 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003023 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003024 }
3025 udelay(10);
3026 }
3027
3028 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003029 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003030}
3031
3032/******************************************************************************
3033* Configures PHY autoneg and flow control advertisement settings
3034*
3035* hw - Struct containing variables accessed by shared code
3036******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003037int32_t
wdenk4e112c12003-06-03 23:54:09 +00003038e1000_phy_setup_autoneg(struct e1000_hw *hw)
3039{
Roy Zang28f7a052009-07-31 13:34:02 +08003040 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003041 uint16_t mii_autoneg_adv_reg;
3042 uint16_t mii_1000t_ctrl_reg;
3043
3044 DEBUGFUNC();
3045
3046 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003047 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3048 if (ret_val)
3049 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003050
Roy Zang28f7a052009-07-31 13:34:02 +08003051 if (hw->phy_type != e1000_phy_ife) {
3052 /* Read the MII 1000Base-T Control Register (Address 9). */
3053 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3054 &mii_1000t_ctrl_reg);
3055 if (ret_val)
3056 return ret_val;
3057 } else
3058 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003059
3060 /* Need to parse both autoneg_advertised and fc and set up
3061 * the appropriate PHY registers. First we will parse for
3062 * autoneg_advertised software override. Since we can advertise
3063 * a plethora of combinations, we need to check each bit
3064 * individually.
3065 */
3066
3067 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3068 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003069 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003070 */
3071 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3072 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3073
3074 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3075
3076 /* Do we want to advertise 10 Mb Half Duplex? */
3077 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3078 DEBUGOUT("Advertise 10mb Half duplex\n");
3079 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3080 }
3081
3082 /* Do we want to advertise 10 Mb Full Duplex? */
3083 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3084 DEBUGOUT("Advertise 10mb Full duplex\n");
3085 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3086 }
3087
3088 /* Do we want to advertise 100 Mb Half Duplex? */
3089 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3090 DEBUGOUT("Advertise 100mb Half duplex\n");
3091 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3092 }
3093
3094 /* Do we want to advertise 100 Mb Full Duplex? */
3095 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3096 DEBUGOUT("Advertise 100mb Full duplex\n");
3097 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3098 }
3099
3100 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3101 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3102 DEBUGOUT
3103 ("Advertise 1000mb Half duplex requested, request denied!\n");
3104 }
3105
3106 /* Do we want to advertise 1000 Mb Full Duplex? */
3107 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3108 DEBUGOUT("Advertise 1000mb Full duplex\n");
3109 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3110 }
3111
3112 /* Check for a software override of the flow control settings, and
3113 * setup the PHY advertisement registers accordingly. If
3114 * auto-negotiation is enabled, then software will have to set the
3115 * "PAUSE" bits to the correct value in the Auto-Negotiation
3116 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3117 *
3118 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003119 * 0: Flow control is completely disabled
3120 * 1: Rx flow control is enabled (we can receive pause frames
3121 * but not send pause frames).
3122 * 2: Tx flow control is enabled (we can send pause frames
3123 * but we do not support receiving pause frames).
3124 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003125 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003126 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003127 */
3128 switch (hw->fc) {
3129 case e1000_fc_none: /* 0 */
3130 /* Flow control (RX & TX) is completely disabled by a
3131 * software over-ride.
3132 */
3133 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3134 break;
3135 case e1000_fc_rx_pause: /* 1 */
3136 /* RX Flow control is enabled, and TX Flow control is
3137 * disabled, by a software over-ride.
3138 */
3139 /* Since there really isn't a way to advertise that we are
3140 * capable of RX Pause ONLY, we will advertise that we
3141 * support both symmetric and asymmetric RX PAUSE. Later
3142 * (in e1000_config_fc_after_link_up) we will disable the
3143 *hw's ability to send PAUSE frames.
3144 */
3145 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3146 break;
3147 case e1000_fc_tx_pause: /* 2 */
3148 /* TX Flow control is enabled, and RX Flow control is
3149 * disabled, by a software over-ride.
3150 */
3151 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3152 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3153 break;
3154 case e1000_fc_full: /* 3 */
3155 /* Flow control (both RX and TX) is enabled by a software
3156 * over-ride.
3157 */
3158 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159 break;
3160 default:
3161 DEBUGOUT("Flow control param set incorrectly\n");
3162 return -E1000_ERR_CONFIG;
3163 }
3164
Roy Zang28f7a052009-07-31 13:34:02 +08003165 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3166 if (ret_val)
3167 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003168
3169 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3170
Roy Zang28f7a052009-07-31 13:34:02 +08003171 if (hw->phy_type != e1000_phy_ife) {
3172 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3173 mii_1000t_ctrl_reg);
3174 if (ret_val)
3175 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003176 }
Roy Zang28f7a052009-07-31 13:34:02 +08003177
3178 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003179}
3180
3181/******************************************************************************
3182* Sets the collision distance in the Transmit Control register
3183*
3184* hw - Struct containing variables accessed by shared code
3185*
3186* Link should have been established previously. Reads the speed and duplex
3187* information from the Device Status register.
3188******************************************************************************/
3189static void
3190e1000_config_collision_dist(struct e1000_hw *hw)
3191{
Roy Zang28f7a052009-07-31 13:34:02 +08003192 uint32_t tctl, coll_dist;
3193
3194 DEBUGFUNC();
3195
3196 if (hw->mac_type < e1000_82543)
3197 coll_dist = E1000_COLLISION_DISTANCE_82542;
3198 else
3199 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003200
3201 tctl = E1000_READ_REG(hw, TCTL);
3202
3203 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003204 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003205
3206 E1000_WRITE_REG(hw, TCTL, tctl);
3207 E1000_WRITE_FLUSH(hw);
3208}
3209
3210/******************************************************************************
3211* Sets MAC speed and duplex settings to reflect the those in the PHY
3212*
3213* hw - Struct containing variables accessed by shared code
3214* mii_reg - data to write to the MII control register
3215*
3216* The contents of the PHY register containing the needed information need to
3217* be passed in.
3218******************************************************************************/
3219static int
3220e1000_config_mac_to_phy(struct e1000_hw *hw)
3221{
3222 uint32_t ctrl;
3223 uint16_t phy_data;
3224
3225 DEBUGFUNC();
3226
3227 /* Read the Device Control Register and set the bits to Force Speed
3228 * and Duplex.
3229 */
3230 ctrl = E1000_READ_REG(hw, CTRL);
3231 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3232 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3233
3234 /* Set up duplex in the Device Control and Transmit Control
3235 * registers depending on negotiated values.
3236 */
3237 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3238 DEBUGOUT("PHY Read Error\n");
3239 return -E1000_ERR_PHY;
3240 }
3241 if (phy_data & M88E1000_PSSR_DPLX)
3242 ctrl |= E1000_CTRL_FD;
3243 else
3244 ctrl &= ~E1000_CTRL_FD;
3245
3246 e1000_config_collision_dist(hw);
3247
3248 /* Set up speed in the Device Control register depending on
3249 * negotiated values.
3250 */
3251 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3252 ctrl |= E1000_CTRL_SPD_1000;
3253 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3254 ctrl |= E1000_CTRL_SPD_100;
3255 /* Write the configured values back to the Device Control Reg. */
3256 E1000_WRITE_REG(hw, CTRL, ctrl);
3257 return 0;
3258}
3259
3260/******************************************************************************
3261 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003262 *
wdenk4e112c12003-06-03 23:54:09 +00003263 * hw - Struct containing variables accessed by shared code
3264 *
3265 * Sets the TFCE and RFCE bits in the device control register to reflect
3266 * the adapter settings. TFCE and RFCE need to be explicitly set by
3267 * software when a Copper PHY is used because autonegotiation is managed
3268 * by the PHY rather than the MAC. Software must also configure these
3269 * bits when link is forced on a fiber connection.
3270 *****************************************************************************/
3271static int
3272e1000_force_mac_fc(struct e1000_hw *hw)
3273{
3274 uint32_t ctrl;
3275
3276 DEBUGFUNC();
3277
3278 /* Get the current configuration of the Device Control Register */
3279 ctrl = E1000_READ_REG(hw, CTRL);
3280
3281 /* Because we didn't get link via the internal auto-negotiation
3282 * mechanism (we either forced link or we got link via PHY
3283 * auto-neg), we have to manually enable/disable transmit an
3284 * receive flow control.
3285 *
3286 * The "Case" statement below enables/disable flow control
3287 * according to the "hw->fc" parameter.
3288 *
3289 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003290 * 0: Flow control is completely disabled
3291 * 1: Rx flow control is enabled (we can receive pause
3292 * frames but not send pause frames).
3293 * 2: Tx flow control is enabled (we can send pause frames
3294 * frames but we do not receive pause frames).
3295 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003296 * other: No other values should be possible at this point.
3297 */
3298
3299 switch (hw->fc) {
3300 case e1000_fc_none:
3301 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3302 break;
3303 case e1000_fc_rx_pause:
3304 ctrl &= (~E1000_CTRL_TFCE);
3305 ctrl |= E1000_CTRL_RFCE;
3306 break;
3307 case e1000_fc_tx_pause:
3308 ctrl &= (~E1000_CTRL_RFCE);
3309 ctrl |= E1000_CTRL_TFCE;
3310 break;
3311 case e1000_fc_full:
3312 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3313 break;
3314 default:
3315 DEBUGOUT("Flow control param set incorrectly\n");
3316 return -E1000_ERR_CONFIG;
3317 }
3318
3319 /* Disable TX Flow Control for 82542 (rev 2.0) */
3320 if (hw->mac_type == e1000_82542_rev2_0)
3321 ctrl &= (~E1000_CTRL_TFCE);
3322
3323 E1000_WRITE_REG(hw, CTRL, ctrl);
3324 return 0;
3325}
3326
3327/******************************************************************************
3328 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003329 *
wdenk4e112c12003-06-03 23:54:09 +00003330 * hw - Struct containing variables accessed by shared code
3331 *
3332 * Should be called immediately after a valid link has been established.
3333 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3334 * and autonegotiation is enabled, the MAC flow control settings will be set
3335 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3336 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3337 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003338static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003339e1000_config_fc_after_link_up(struct e1000_hw *hw)
3340{
3341 int32_t ret_val;
3342 uint16_t mii_status_reg;
3343 uint16_t mii_nway_adv_reg;
3344 uint16_t mii_nway_lp_ability_reg;
3345 uint16_t speed;
3346 uint16_t duplex;
3347
3348 DEBUGFUNC();
3349
3350 /* Check for the case where we have fiber media and auto-neg failed
3351 * so we had to force link. In this case, we need to force the
3352 * configuration of the MAC to match the "fc" parameter.
3353 */
Roy Zang28f7a052009-07-31 13:34:02 +08003354 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3355 || ((hw->media_type == e1000_media_type_internal_serdes)
3356 && (hw->autoneg_failed))
3357 || ((hw->media_type == e1000_media_type_copper)
3358 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003359 ret_val = e1000_force_mac_fc(hw);
3360 if (ret_val < 0) {
3361 DEBUGOUT("Error forcing flow control settings\n");
3362 return ret_val;
3363 }
3364 }
3365
3366 /* Check for the case where we have copper media and auto-neg is
3367 * enabled. In this case, we need to check and see if Auto-Neg
3368 * has completed, and if so, how the PHY and link partner has
3369 * flow control configured.
3370 */
3371 if (hw->media_type == e1000_media_type_copper) {
3372 /* Read the MII Status Register and check to see if AutoNeg
3373 * has completed. We read this twice because this reg has
3374 * some "sticky" (latched) bits.
3375 */
3376 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3377 DEBUGOUT("PHY Read Error \n");
3378 return -E1000_ERR_PHY;
3379 }
3380 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3381 DEBUGOUT("PHY Read Error \n");
3382 return -E1000_ERR_PHY;
3383 }
3384
3385 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3386 /* The AutoNeg process has completed, so we now need to
3387 * read both the Auto Negotiation Advertisement Register
3388 * (Address 4) and the Auto_Negotiation Base Page Ability
3389 * Register (Address 5) to determine how flow control was
3390 * negotiated.
3391 */
3392 if (e1000_read_phy_reg
3393 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3394 DEBUGOUT("PHY Read Error\n");
3395 return -E1000_ERR_PHY;
3396 }
3397 if (e1000_read_phy_reg
3398 (hw, PHY_LP_ABILITY,
3399 &mii_nway_lp_ability_reg) < 0) {
3400 DEBUGOUT("PHY Read Error\n");
3401 return -E1000_ERR_PHY;
3402 }
3403
3404 /* Two bits in the Auto Negotiation Advertisement Register
3405 * (Address 4) and two bits in the Auto Negotiation Base
3406 * Page Ability Register (Address 5) determine flow control
3407 * for both the PHY and the link partner. The following
3408 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3409 * 1999, describes these PAUSE resolution bits and how flow
3410 * control is determined based upon these settings.
3411 * NOTE: DC = Don't Care
3412 *
3413 * LOCAL DEVICE | LINK PARTNER
3414 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3415 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003416 * 0 | 0 | DC | DC | e1000_fc_none
3417 * 0 | 1 | 0 | DC | e1000_fc_none
3418 * 0 | 1 | 1 | 0 | e1000_fc_none
3419 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3420 * 1 | 0 | 0 | DC | e1000_fc_none
3421 * 1 | DC | 1 | DC | e1000_fc_full
3422 * 1 | 1 | 0 | 0 | e1000_fc_none
3423 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003424 *
3425 */
3426 /* Are both PAUSE bits set to 1? If so, this implies
3427 * Symmetric Flow Control is enabled at both ends. The
3428 * ASM_DIR bits are irrelevant per the spec.
3429 *
3430 * For Symmetric Flow Control:
3431 *
3432 * LOCAL DEVICE | LINK PARTNER
3433 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3434 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003435 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003436 *
3437 */
3438 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3439 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3440 /* Now we need to check if the user selected RX ONLY
3441 * of pause frames. In this case, we had to advertise
3442 * FULL flow control because we could not advertise RX
3443 * ONLY. Hence, we must now check to see if we need to
3444 * turn OFF the TRANSMISSION of PAUSE frames.
3445 */
3446 if (hw->original_fc == e1000_fc_full) {
3447 hw->fc = e1000_fc_full;
3448 DEBUGOUT("Flow Control = FULL.\r\n");
3449 } else {
3450 hw->fc = e1000_fc_rx_pause;
3451 DEBUGOUT
3452 ("Flow Control = RX PAUSE frames only.\r\n");
3453 }
3454 }
3455 /* For receiving PAUSE frames ONLY.
3456 *
3457 * LOCAL DEVICE | LINK PARTNER
3458 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3459 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003460 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003461 *
3462 */
3463 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3464 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3465 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3466 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3467 {
3468 hw->fc = e1000_fc_tx_pause;
3469 DEBUGOUT
3470 ("Flow Control = TX PAUSE frames only.\r\n");
3471 }
3472 /* For transmitting PAUSE frames ONLY.
3473 *
3474 * LOCAL DEVICE | LINK PARTNER
3475 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3476 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003477 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003478 *
3479 */
3480 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3481 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3482 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3483 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3484 {
3485 hw->fc = e1000_fc_rx_pause;
3486 DEBUGOUT
3487 ("Flow Control = RX PAUSE frames only.\r\n");
3488 }
3489 /* Per the IEEE spec, at this point flow control should be
3490 * disabled. However, we want to consider that we could
3491 * be connected to a legacy switch that doesn't advertise
3492 * desired flow control, but can be forced on the link
3493 * partner. So if we advertised no flow control, that is
3494 * what we will resolve to. If we advertised some kind of
3495 * receive capability (Rx Pause Only or Full Flow Control)
3496 * and the link partner advertised none, we will configure
3497 * ourselves to enable Rx Flow Control only. We can do
3498 * this safely for two reasons: If the link partner really
3499 * didn't want flow control enabled, and we enable Rx, no
3500 * harm done since we won't be receiving any PAUSE frames
3501 * anyway. If the intent on the link partner was to have
3502 * flow control enabled, then by us enabling RX only, we
3503 * can at least receive pause frames and process them.
3504 * This is a good idea because in most cases, since we are
3505 * predominantly a server NIC, more times than not we will
3506 * be asked to delay transmission of packets than asking
3507 * our link partner to pause transmission of frames.
3508 */
3509 else if (hw->original_fc == e1000_fc_none ||
3510 hw->original_fc == e1000_fc_tx_pause) {
3511 hw->fc = e1000_fc_none;
3512 DEBUGOUT("Flow Control = NONE.\r\n");
3513 } else {
3514 hw->fc = e1000_fc_rx_pause;
3515 DEBUGOUT
3516 ("Flow Control = RX PAUSE frames only.\r\n");
3517 }
3518
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003519 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003520 * negotiated to HALF DUPLEX, flow control should not be
3521 * enabled per IEEE 802.3 spec.
3522 */
3523 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3524
3525 if (duplex == HALF_DUPLEX)
3526 hw->fc = e1000_fc_none;
3527
3528 /* Now we call a subroutine to actually force the MAC
3529 * controller to use the correct flow control settings.
3530 */
3531 ret_val = e1000_force_mac_fc(hw);
3532 if (ret_val < 0) {
3533 DEBUGOUT
3534 ("Error forcing flow control settings\n");
3535 return ret_val;
3536 }
3537 } else {
3538 DEBUGOUT
3539 ("Copper PHY and Auto Neg has not completed.\r\n");
3540 }
3541 }
Roy Zang28f7a052009-07-31 13:34:02 +08003542 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003543}
3544
3545/******************************************************************************
3546 * Checks to see if the link status of the hardware has changed.
3547 *
3548 * hw - Struct containing variables accessed by shared code
3549 *
3550 * Called by any function that needs to check the link status of the adapter.
3551 *****************************************************************************/
3552static int
3553e1000_check_for_link(struct eth_device *nic)
3554{
3555 struct e1000_hw *hw = nic->priv;
3556 uint32_t rxcw;
3557 uint32_t ctrl;
3558 uint32_t status;
3559 uint32_t rctl;
3560 uint32_t signal;
3561 int32_t ret_val;
3562 uint16_t phy_data;
3563 uint16_t lp_capability;
3564
3565 DEBUGFUNC();
3566
wdenk57b2d802003-06-27 21:31:46 +00003567 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3568 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003569 * cleared when there is a signal
3570 */
3571 ctrl = E1000_READ_REG(hw, CTRL);
3572 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3573 signal = E1000_CTRL_SWDPIN1;
3574 else
3575 signal = 0;
3576
3577 status = E1000_READ_REG(hw, STATUS);
3578 rxcw = E1000_READ_REG(hw, RXCW);
3579 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3580
3581 /* If we have a copper PHY then we only want to go out to the PHY
3582 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003583 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003584 * receive a Link Status Change interrupt or we have Rx Sequence
3585 * Errors.
3586 */
3587 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3588 /* First we want to see if the MII Status Register reports
3589 * link. If so, then we want to get the current speed/duplex
3590 * of the PHY.
3591 * Read the register twice since the link bit is sticky.
3592 */
3593 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3594 DEBUGOUT("PHY Read Error\n");
3595 return -E1000_ERR_PHY;
3596 }
3597 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3598 DEBUGOUT("PHY Read Error\n");
3599 return -E1000_ERR_PHY;
3600 }
3601
3602 if (phy_data & MII_SR_LINK_STATUS) {
York Sun4a598092013-04-01 11:29:11 -07003603 hw->get_link_status = false;
wdenk4e112c12003-06-03 23:54:09 +00003604 } else {
3605 /* No link detected */
3606 return -E1000_ERR_NOLINK;
3607 }
3608
3609 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3610 * have Si on board that is 82544 or newer, Auto
3611 * Speed Detection takes care of MAC speed/duplex
3612 * configuration. So we only need to configure Collision
3613 * Distance in the MAC. Otherwise, we need to force
3614 * speed/duplex on the MAC to the current PHY speed/duplex
3615 * settings.
3616 */
3617 if (hw->mac_type >= e1000_82544)
3618 e1000_config_collision_dist(hw);
3619 else {
3620 ret_val = e1000_config_mac_to_phy(hw);
3621 if (ret_val < 0) {
3622 DEBUGOUT
3623 ("Error configuring MAC to PHY settings\n");
3624 return ret_val;
3625 }
3626 }
3627
wdenk57b2d802003-06-27 21:31:46 +00003628 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003629 * need to restore the desired flow control settings because we may
3630 * have had to re-autoneg with a different link partner.
3631 */
3632 ret_val = e1000_config_fc_after_link_up(hw);
3633 if (ret_val < 0) {
3634 DEBUGOUT("Error configuring flow control\n");
3635 return ret_val;
3636 }
3637
3638 /* At this point we know that we are on copper and we have
3639 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003640 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003641 * determine if TBI Compatibility needs to be turned on or off. If
3642 * the link partner advertises any speed in addition to Gigabit, then
3643 * we assume that they are GMII-based, and TBI compatibility is not
3644 * needed. If no other speeds are advertised, we assume the link
3645 * partner is TBI-based, and we turn on TBI Compatibility.
3646 */
3647 if (hw->tbi_compatibility_en) {
3648 if (e1000_read_phy_reg
3649 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3650 DEBUGOUT("PHY Read Error\n");
3651 return -E1000_ERR_PHY;
3652 }
3653 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3654 NWAY_LPAR_10T_FD_CAPS |
3655 NWAY_LPAR_100TX_HD_CAPS |
3656 NWAY_LPAR_100TX_FD_CAPS |
3657 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003658 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003659 * gigabit, we do not need to enable TBI compatibility.
3660 */
3661 if (hw->tbi_compatibility_on) {
3662 /* If we previously were in the mode, turn it off. */
3663 rctl = E1000_READ_REG(hw, RCTL);
3664 rctl &= ~E1000_RCTL_SBP;
3665 E1000_WRITE_REG(hw, RCTL, rctl);
York Sun4a598092013-04-01 11:29:11 -07003666 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00003667 }
3668 } else {
3669 /* If TBI compatibility is was previously off, turn it on. For
3670 * compatibility with a TBI link partner, we will store bad
3671 * packets. Some frames have an additional byte on the end and
3672 * will look like CRC errors to to the hardware.
3673 */
3674 if (!hw->tbi_compatibility_on) {
York Sun4a598092013-04-01 11:29:11 -07003675 hw->tbi_compatibility_on = true;
wdenk4e112c12003-06-03 23:54:09 +00003676 rctl = E1000_READ_REG(hw, RCTL);
3677 rctl |= E1000_RCTL_SBP;
3678 E1000_WRITE_REG(hw, RCTL, rctl);
3679 }
3680 }
3681 }
3682 }
3683 /* If we don't have link (auto-negotiation failed or link partner cannot
3684 * auto-negotiate), the cable is plugged in (we have signal), and our
3685 * link partner is not trying to auto-negotiate with us (we are receiving
3686 * idles or data), we need to force link up. We also need to give
3687 * auto-negotiation time to complete, in case the cable was just plugged
3688 * in. The autoneg_failed flag does this.
3689 */
3690 else if ((hw->media_type == e1000_media_type_fiber) &&
3691 (!(status & E1000_STATUS_LU)) &&
3692 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3693 (!(rxcw & E1000_RXCW_C))) {
3694 if (hw->autoneg_failed == 0) {
3695 hw->autoneg_failed = 1;
3696 return 0;
3697 }
3698 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3699
3700 /* Disable auto-negotiation in the TXCW register */
3701 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3702
3703 /* Force link-up and also force full-duplex. */
3704 ctrl = E1000_READ_REG(hw, CTRL);
3705 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3706 E1000_WRITE_REG(hw, CTRL, ctrl);
3707
3708 /* Configure Flow Control after forcing link up. */
3709 ret_val = e1000_config_fc_after_link_up(hw);
3710 if (ret_val < 0) {
3711 DEBUGOUT("Error configuring flow control\n");
3712 return ret_val;
3713 }
3714 }
3715 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3716 * auto-negotiation in the TXCW register and disable forced link in the
3717 * Device Control register in an attempt to auto-negotiate with our link
3718 * partner.
3719 */
3720 else if ((hw->media_type == e1000_media_type_fiber) &&
3721 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3722 DEBUGOUT
3723 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3724 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3725 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3726 }
3727 return 0;
3728}
3729
3730/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003731* Configure the MAC-to-PHY interface for 10/100Mbps
3732*
3733* hw - Struct containing variables accessed by shared code
3734******************************************************************************/
3735static int32_t
3736e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3737{
3738 int32_t ret_val = E1000_SUCCESS;
3739 uint32_t tipg;
3740 uint16_t reg_data;
3741
3742 DEBUGFUNC();
3743
3744 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3745 ret_val = e1000_write_kmrn_reg(hw,
3746 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3747 if (ret_val)
3748 return ret_val;
3749
3750 /* Configure Transmit Inter-Packet Gap */
3751 tipg = E1000_READ_REG(hw, TIPG);
3752 tipg &= ~E1000_TIPG_IPGT_MASK;
3753 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3754 E1000_WRITE_REG(hw, TIPG, tipg);
3755
3756 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3757
3758 if (ret_val)
3759 return ret_val;
3760
3761 if (duplex == HALF_DUPLEX)
3762 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3763 else
3764 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3765
3766 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3767
3768 return ret_val;
3769}
3770
3771static int32_t
3772e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3773{
3774 int32_t ret_val = E1000_SUCCESS;
3775 uint16_t reg_data;
3776 uint32_t tipg;
3777
3778 DEBUGFUNC();
3779
3780 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3781 ret_val = e1000_write_kmrn_reg(hw,
3782 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3783 if (ret_val)
3784 return ret_val;
3785
3786 /* Configure Transmit Inter-Packet Gap */
3787 tipg = E1000_READ_REG(hw, TIPG);
3788 tipg &= ~E1000_TIPG_IPGT_MASK;
3789 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3790 E1000_WRITE_REG(hw, TIPG, tipg);
3791
3792 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3793
3794 if (ret_val)
3795 return ret_val;
3796
3797 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3798 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3799
3800 return ret_val;
3801}
3802
3803/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003804 * Detects the current speed and duplex settings of the hardware.
3805 *
3806 * hw - Struct containing variables accessed by shared code
3807 * speed - Speed of the connection
3808 * duplex - Duplex setting of the connection
3809 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003810static int
3811e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3812 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003813{
3814 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003815 int32_t ret_val;
3816 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003817
3818 DEBUGFUNC();
3819
3820 if (hw->mac_type >= e1000_82543) {
3821 status = E1000_READ_REG(hw, STATUS);
3822 if (status & E1000_STATUS_SPEED_1000) {
3823 *speed = SPEED_1000;
3824 DEBUGOUT("1000 Mbs, ");
3825 } else if (status & E1000_STATUS_SPEED_100) {
3826 *speed = SPEED_100;
3827 DEBUGOUT("100 Mbs, ");
3828 } else {
3829 *speed = SPEED_10;
3830 DEBUGOUT("10 Mbs, ");
3831 }
3832
3833 if (status & E1000_STATUS_FD) {
3834 *duplex = FULL_DUPLEX;
3835 DEBUGOUT("Full Duplex\r\n");
3836 } else {
3837 *duplex = HALF_DUPLEX;
3838 DEBUGOUT(" Half Duplex\r\n");
3839 }
3840 } else {
3841 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3842 *speed = SPEED_1000;
3843 *duplex = FULL_DUPLEX;
3844 }
Roy Zang28f7a052009-07-31 13:34:02 +08003845
3846 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3847 * even if it is operating at half duplex. Here we set the duplex
3848 * settings to match the duplex in the link partner's capabilities.
3849 */
3850 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3851 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3852 if (ret_val)
3853 return ret_val;
3854
3855 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3856 *duplex = HALF_DUPLEX;
3857 else {
3858 ret_val = e1000_read_phy_reg(hw,
3859 PHY_LP_ABILITY, &phy_data);
3860 if (ret_val)
3861 return ret_val;
3862 if ((*speed == SPEED_100 &&
3863 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3864 || (*speed == SPEED_10
3865 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3866 *duplex = HALF_DUPLEX;
3867 }
3868 }
3869
3870 if ((hw->mac_type == e1000_80003es2lan) &&
3871 (hw->media_type == e1000_media_type_copper)) {
3872 if (*speed == SPEED_1000)
3873 ret_val = e1000_configure_kmrn_for_1000(hw);
3874 else
3875 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3876 if (ret_val)
3877 return ret_val;
3878 }
3879 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003880}
3881
3882/******************************************************************************
3883* Blocks until autoneg completes or times out (~4.5 seconds)
3884*
3885* hw - Struct containing variables accessed by shared code
3886******************************************************************************/
3887static int
3888e1000_wait_autoneg(struct e1000_hw *hw)
3889{
3890 uint16_t i;
3891 uint16_t phy_data;
3892
3893 DEBUGFUNC();
3894 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3895
3896 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3897 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3898 /* Read the MII Status Register and wait for Auto-Neg
3899 * Complete bit to be set.
3900 */
3901 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902 DEBUGOUT("PHY Read Error\n");
3903 return -E1000_ERR_PHY;
3904 }
3905 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3906 DEBUGOUT("PHY Read Error\n");
3907 return -E1000_ERR_PHY;
3908 }
3909 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3910 DEBUGOUT("Auto-Neg complete.\n");
3911 return 0;
3912 }
3913 mdelay(100);
3914 }
3915 DEBUGOUT("Auto-Neg timedout.\n");
3916 return -E1000_ERR_TIMEOUT;
3917}
3918
3919/******************************************************************************
3920* Raises the Management Data Clock
3921*
3922* hw - Struct containing variables accessed by shared code
3923* ctrl - Device control register's current value
3924******************************************************************************/
3925static void
3926e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3927{
3928 /* Raise the clock input to the Management Data Clock (by setting the MDC
3929 * bit), and then delay 2 microseconds.
3930 */
3931 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3932 E1000_WRITE_FLUSH(hw);
3933 udelay(2);
3934}
3935
3936/******************************************************************************
3937* Lowers the Management Data Clock
3938*
3939* hw - Struct containing variables accessed by shared code
3940* ctrl - Device control register's current value
3941******************************************************************************/
3942static void
3943e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3944{
3945 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3946 * bit), and then delay 2 microseconds.
3947 */
3948 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3949 E1000_WRITE_FLUSH(hw);
3950 udelay(2);
3951}
3952
3953/******************************************************************************
3954* Shifts data bits out to the PHY
3955*
3956* hw - Struct containing variables accessed by shared code
3957* data - Data to send out to the PHY
3958* count - Number of bits to shift out
3959*
3960* Bits are shifted out in MSB to LSB order.
3961******************************************************************************/
3962static void
3963e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3964{
3965 uint32_t ctrl;
3966 uint32_t mask;
3967
3968 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003969 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003970 * time. In order to do this, "data" must be broken down into bits.
3971 */
3972 mask = 0x01;
3973 mask <<= (count - 1);
3974
3975 ctrl = E1000_READ_REG(hw, CTRL);
3976
3977 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3978 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3979
3980 while (mask) {
3981 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3982 * then raising and lowering the Management Data Clock. A "0" is
3983 * shifted out to the PHY by setting the MDIO bit to "0" and then
3984 * raising and lowering the clock.
3985 */
3986 if (data & mask)
3987 ctrl |= E1000_CTRL_MDIO;
3988 else
3989 ctrl &= ~E1000_CTRL_MDIO;
3990
3991 E1000_WRITE_REG(hw, CTRL, ctrl);
3992 E1000_WRITE_FLUSH(hw);
3993
3994 udelay(2);
3995
3996 e1000_raise_mdi_clk(hw, &ctrl);
3997 e1000_lower_mdi_clk(hw, &ctrl);
3998
3999 mask = mask >> 1;
4000 }
4001}
4002
4003/******************************************************************************
4004* Shifts data bits in from the PHY
4005*
4006* hw - Struct containing variables accessed by shared code
4007*
wdenk57b2d802003-06-27 21:31:46 +00004008* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004009******************************************************************************/
4010static uint16_t
4011e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4012{
4013 uint32_t ctrl;
4014 uint16_t data = 0;
4015 uint8_t i;
4016
4017 /* In order to read a register from the PHY, we need to shift in a total
4018 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4019 * to avoid contention on the MDIO pin when a read operation is performed.
4020 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4021 * by raising the input to the Management Data Clock (setting the MDC bit),
4022 * and then reading the value of the MDIO bit.
4023 */
4024 ctrl = E1000_READ_REG(hw, CTRL);
4025
4026 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4027 ctrl &= ~E1000_CTRL_MDIO_DIR;
4028 ctrl &= ~E1000_CTRL_MDIO;
4029
4030 E1000_WRITE_REG(hw, CTRL, ctrl);
4031 E1000_WRITE_FLUSH(hw);
4032
4033 /* Raise and Lower the clock before reading in the data. This accounts for
4034 * the turnaround bits. The first clock occurred when we clocked out the
4035 * last bit of the Register Address.
4036 */
4037 e1000_raise_mdi_clk(hw, &ctrl);
4038 e1000_lower_mdi_clk(hw, &ctrl);
4039
4040 for (data = 0, i = 0; i < 16; i++) {
4041 data = data << 1;
4042 e1000_raise_mdi_clk(hw, &ctrl);
4043 ctrl = E1000_READ_REG(hw, CTRL);
4044 /* Check to see if we shifted in a "1". */
4045 if (ctrl & E1000_CTRL_MDIO)
4046 data |= 1;
4047 e1000_lower_mdi_clk(hw, &ctrl);
4048 }
4049
4050 e1000_raise_mdi_clk(hw, &ctrl);
4051 e1000_lower_mdi_clk(hw, &ctrl);
4052
4053 return data;
4054}
4055
4056/*****************************************************************************
4057* Reads the value from a PHY register
4058*
4059* hw - Struct containing variables accessed by shared code
4060* reg_addr - address of the PHY register to read
4061******************************************************************************/
4062static int
4063e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4064{
4065 uint32_t i;
4066 uint32_t mdic = 0;
4067 const uint32_t phy_addr = 1;
4068
4069 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4070 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4071 return -E1000_ERR_PARAM;
4072 }
4073
4074 if (hw->mac_type > e1000_82543) {
4075 /* Set up Op-code, Phy Address, and register address in the MDI
4076 * Control register. The MAC will take care of interfacing with the
4077 * PHY to retrieve the desired data.
4078 */
4079 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4080 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4081 (E1000_MDIC_OP_READ));
4082
4083 E1000_WRITE_REG(hw, MDIC, mdic);
4084
4085 /* Poll the ready bit to see if the MDI read completed */
4086 for (i = 0; i < 64; i++) {
4087 udelay(10);
4088 mdic = E1000_READ_REG(hw, MDIC);
4089 if (mdic & E1000_MDIC_READY)
4090 break;
4091 }
4092 if (!(mdic & E1000_MDIC_READY)) {
4093 DEBUGOUT("MDI Read did not complete\n");
4094 return -E1000_ERR_PHY;
4095 }
4096 if (mdic & E1000_MDIC_ERROR) {
4097 DEBUGOUT("MDI Error\n");
4098 return -E1000_ERR_PHY;
4099 }
4100 *phy_data = (uint16_t) mdic;
4101 } else {
4102 /* We must first send a preamble through the MDIO pin to signal the
4103 * beginning of an MII instruction. This is done by sending 32
4104 * consecutive "1" bits.
4105 */
4106 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4107
4108 /* Now combine the next few fields that are required for a read
4109 * operation. We use this method instead of calling the
4110 * e1000_shift_out_mdi_bits routine five different times. The format of
4111 * a MII read instruction consists of a shift out of 14 bits and is
4112 * defined as follows:
4113 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4114 * followed by a shift in of 18 bits. This first two bits shifted in
4115 * are TurnAround bits used to avoid contention on the MDIO pin when a
4116 * READ operation is performed. These two bits are thrown away
4117 * followed by a shift in of 16 bits which contains the desired data.
4118 */
4119 mdic = ((reg_addr) | (phy_addr << 5) |
4120 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4121
4122 e1000_shift_out_mdi_bits(hw, mdic, 14);
4123
4124 /* Now that we've shifted out the read command to the MII, we need to
4125 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4126 * register address.
4127 */
4128 *phy_data = e1000_shift_in_mdi_bits(hw);
4129 }
4130 return 0;
4131}
4132
4133/******************************************************************************
4134* Writes a value to a PHY register
4135*
4136* hw - Struct containing variables accessed by shared code
4137* reg_addr - address of the PHY register to write
4138* data - data to write to the PHY
4139******************************************************************************/
4140static int
4141e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4142{
4143 uint32_t i;
4144 uint32_t mdic = 0;
4145 const uint32_t phy_addr = 1;
4146
4147 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4148 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4149 return -E1000_ERR_PARAM;
4150 }
4151
4152 if (hw->mac_type > e1000_82543) {
4153 /* Set up Op-code, Phy Address, register address, and data intended
4154 * for the PHY register in the MDI Control register. The MAC will take
4155 * care of interfacing with the PHY to send the desired data.
4156 */
4157 mdic = (((uint32_t) phy_data) |
4158 (reg_addr << E1000_MDIC_REG_SHIFT) |
4159 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4160 (E1000_MDIC_OP_WRITE));
4161
4162 E1000_WRITE_REG(hw, MDIC, mdic);
4163
4164 /* Poll the ready bit to see if the MDI read completed */
4165 for (i = 0; i < 64; i++) {
4166 udelay(10);
4167 mdic = E1000_READ_REG(hw, MDIC);
4168 if (mdic & E1000_MDIC_READY)
4169 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004170 }
4171 if (!(mdic & E1000_MDIC_READY)) {
4172 DEBUGOUT("MDI Write did not complete\n");
4173 return -E1000_ERR_PHY;
4174 }
4175 } else {
4176 /* We'll need to use the SW defined pins to shift the write command
4177 * out to the PHY. We first send a preamble to the PHY to signal the
4178 * beginning of the MII instruction. This is done by sending 32
4179 * consecutive "1" bits.
4180 */
4181 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4182
4183 /* Now combine the remaining required fields that will indicate a
4184 * write operation. We use this method instead of calling the
4185 * e1000_shift_out_mdi_bits routine for each field in the command. The
4186 * format of a MII write instruction is as follows:
4187 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4188 */
4189 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4190 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4191 mdic <<= 16;
4192 mdic |= (uint32_t) phy_data;
4193
4194 e1000_shift_out_mdi_bits(hw, mdic, 32);
4195 }
4196 return 0;
4197}
4198
4199/******************************************************************************
4200 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4201 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4202 * the caller to figure out how to deal with it.
4203 *
4204 * hw - Struct containing variables accessed by shared code
4205 *
4206 * returns: - E1000_BLK_PHY_RESET
4207 * E1000_SUCCESS
4208 *
4209 *****************************************************************************/
4210int32_t
4211e1000_check_phy_reset_block(struct e1000_hw *hw)
4212{
4213 uint32_t manc = 0;
4214 uint32_t fwsm = 0;
4215
4216 if (hw->mac_type == e1000_ich8lan) {
4217 fwsm = E1000_READ_REG(hw, FWSM);
4218 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4219 : E1000_BLK_PHY_RESET;
4220 }
4221
4222 if (hw->mac_type > e1000_82547_rev_2)
4223 manc = E1000_READ_REG(hw, MANC);
4224 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4225 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4226}
4227
4228/***************************************************************************
4229 * Checks if the PHY configuration is done
4230 *
4231 * hw: Struct containing variables accessed by shared code
4232 *
4233 * returns: - E1000_ERR_RESET if fail to reset MAC
4234 * E1000_SUCCESS at any other case.
4235 *
4236 ***************************************************************************/
4237static int32_t
4238e1000_get_phy_cfg_done(struct e1000_hw *hw)
4239{
4240 int32_t timeout = PHY_CFG_TIMEOUT;
4241 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4242
4243 DEBUGFUNC();
4244
4245 switch (hw->mac_type) {
4246 default:
4247 mdelay(10);
4248 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004249
Roy Zang28f7a052009-07-31 13:34:02 +08004250 case e1000_80003es2lan:
4251 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004252 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004253 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004254 /* Fall Through */
4255
Roy Zang28f7a052009-07-31 13:34:02 +08004256 case e1000_82571:
4257 case e1000_82572:
4258 while (timeout) {
4259 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4260 break;
4261 else
4262 mdelay(1);
4263 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004264 }
Roy Zang28f7a052009-07-31 13:34:02 +08004265 if (!timeout) {
4266 DEBUGOUT("MNG configuration cycle has not "
4267 "completed.\n");
4268 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004269 }
Roy Zang28f7a052009-07-31 13:34:02 +08004270 break;
wdenk4e112c12003-06-03 23:54:09 +00004271 }
Roy Zang28f7a052009-07-31 13:34:02 +08004272
4273 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004274}
4275
4276/******************************************************************************
4277* Returns the PHY to the power-on reset state
4278*
4279* hw - Struct containing variables accessed by shared code
4280******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004281int32_t
wdenk4e112c12003-06-03 23:54:09 +00004282e1000_phy_hw_reset(struct e1000_hw *hw)
4283{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004284 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004285 uint32_t ctrl, ctrl_ext;
4286 uint32_t led_ctrl;
4287 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004288
4289 DEBUGFUNC();
4290
Roy Zang28f7a052009-07-31 13:34:02 +08004291 /* In the case of the phy reset being blocked, it's not an error, we
4292 * simply return success without performing the reset. */
4293 ret_val = e1000_check_phy_reset_block(hw);
4294 if (ret_val)
4295 return E1000_SUCCESS;
4296
wdenk4e112c12003-06-03 23:54:09 +00004297 DEBUGOUT("Resetting Phy...\n");
4298
4299 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004300 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004301 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004302
Roy Zang28f7a052009-07-31 13:34:02 +08004303 if (e1000_swfw_sync_acquire(hw, swfw)) {
4304 DEBUGOUT("Unable to acquire swfw sync\n");
4305 return -E1000_ERR_SWFW_SYNC;
4306 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004307
wdenk4e112c12003-06-03 23:54:09 +00004308 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4309 * bit. Then, take it out of reset.
4310 */
4311 ctrl = E1000_READ_REG(hw, CTRL);
4312 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4313 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004314
4315 if (hw->mac_type < e1000_82571)
4316 udelay(10);
4317 else
4318 udelay(100);
4319
wdenk4e112c12003-06-03 23:54:09 +00004320 E1000_WRITE_REG(hw, CTRL, ctrl);
4321 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004322
4323 if (hw->mac_type >= e1000_82571)
4324 mdelay(10);
4325
wdenk4e112c12003-06-03 23:54:09 +00004326 } else {
4327 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4328 * bit to put the PHY into reset. Then, take it out of reset.
4329 */
4330 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4331 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4332 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4333 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4334 E1000_WRITE_FLUSH(hw);
4335 mdelay(10);
4336 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4337 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4338 E1000_WRITE_FLUSH(hw);
4339 }
4340 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004341
4342 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4343 /* Configure activity LED after PHY reset */
4344 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4345 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4346 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4347 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4348 }
4349
4350 /* Wait for FW to finish PHY configuration. */
4351 ret_val = e1000_get_phy_cfg_done(hw);
4352 if (ret_val != E1000_SUCCESS)
4353 return ret_val;
4354
4355 return ret_val;
4356}
4357
4358/******************************************************************************
4359 * IGP phy init script - initializes the GbE PHY
4360 *
4361 * hw - Struct containing variables accessed by shared code
4362 *****************************************************************************/
4363static void
4364e1000_phy_init_script(struct e1000_hw *hw)
4365{
4366 uint32_t ret_val;
4367 uint16_t phy_saved_data;
4368 DEBUGFUNC();
4369
4370 if (hw->phy_init_script) {
4371 mdelay(20);
4372
4373 /* Save off the current value of register 0x2F5B to be
4374 * restored at the end of this routine. */
4375 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4376
4377 /* Disabled the PHY transmitter */
4378 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4379
4380 mdelay(20);
4381
4382 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4383
4384 mdelay(5);
4385
4386 switch (hw->mac_type) {
4387 case e1000_82541:
4388 case e1000_82547:
4389 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4390
4391 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4392
4393 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4394
4395 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4396
4397 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4398
4399 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4400
4401 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4402
4403 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4404
4405 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4406 break;
4407
4408 case e1000_82541_rev_2:
4409 case e1000_82547_rev_2:
4410 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4411 break;
4412 default:
4413 break;
4414 }
4415
4416 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4417
4418 mdelay(20);
4419
4420 /* Now enable the transmitter */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00004421 if (!ret_val)
4422 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zang28f7a052009-07-31 13:34:02 +08004423
4424 if (hw->mac_type == e1000_82547) {
4425 uint16_t fused, fine, coarse;
4426
4427 /* Move to analog registers page */
4428 e1000_read_phy_reg(hw,
4429 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4430
4431 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4432 e1000_read_phy_reg(hw,
4433 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4434
4435 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4436 coarse = fused
4437 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4438
4439 if (coarse >
4440 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4441 coarse -=
4442 IGP01E1000_ANALOG_FUSE_COARSE_10;
4443 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4444 } else if (coarse
4445 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4446 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4447
4448 fused = (fused
4449 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4450 (fine
4451 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4452 (coarse
4453 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4454
4455 e1000_write_phy_reg(hw,
4456 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4457 e1000_write_phy_reg(hw,
4458 IGP01E1000_ANALOG_FUSE_BYPASS,
4459 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4460 }
4461 }
4462 }
wdenk4e112c12003-06-03 23:54:09 +00004463}
4464
4465/******************************************************************************
4466* Resets the PHY
4467*
4468* hw - Struct containing variables accessed by shared code
4469*
Roy Zang28f7a052009-07-31 13:34:02 +08004470* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004471******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004472int32_t
wdenk4e112c12003-06-03 23:54:09 +00004473e1000_phy_reset(struct e1000_hw *hw)
4474{
Roy Zang28f7a052009-07-31 13:34:02 +08004475 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004476 uint16_t phy_data;
4477
4478 DEBUGFUNC();
4479
Roy Zang28f7a052009-07-31 13:34:02 +08004480 /* In the case of the phy reset being blocked, it's not an error, we
4481 * simply return success without performing the reset. */
4482 ret_val = e1000_check_phy_reset_block(hw);
4483 if (ret_val)
4484 return E1000_SUCCESS;
4485
4486 switch (hw->phy_type) {
4487 case e1000_phy_igp:
4488 case e1000_phy_igp_2:
4489 case e1000_phy_igp_3:
4490 case e1000_phy_ife:
4491 ret_val = e1000_phy_hw_reset(hw);
4492 if (ret_val)
4493 return ret_val;
4494 break;
4495 default:
4496 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4497 if (ret_val)
4498 return ret_val;
4499
4500 phy_data |= MII_CR_RESET;
4501 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4502 if (ret_val)
4503 return ret_val;
4504
4505 udelay(1);
4506 break;
wdenk4e112c12003-06-03 23:54:09 +00004507 }
Roy Zang28f7a052009-07-31 13:34:02 +08004508
4509 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4510 e1000_phy_init_script(hw);
4511
4512 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004513}
4514
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004515static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004516{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004517 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004518
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004519 if (hw->mac_type == e1000_undefined)
4520 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004521
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004522 switch (hw->phy_id) {
4523 case M88E1000_E_PHY_ID:
4524 case M88E1000_I_PHY_ID:
4525 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004526 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004527 hw->phy_type = e1000_phy_m88;
4528 break;
4529 case IGP01E1000_I_PHY_ID:
4530 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004531 hw->mac_type == e1000_82541_rev_2 ||
4532 hw->mac_type == e1000_82547 ||
4533 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004534 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004535 break;
4536 }
4537 case IGP03E1000_E_PHY_ID:
4538 hw->phy_type = e1000_phy_igp_3;
4539 break;
4540 case IFE_E_PHY_ID:
4541 case IFE_PLUS_E_PHY_ID:
4542 case IFE_C_E_PHY_ID:
4543 hw->phy_type = e1000_phy_ife;
4544 break;
4545 case GG82563_E_PHY_ID:
4546 if (hw->mac_type == e1000_80003es2lan) {
4547 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004548 break;
4549 }
Roy Zang181119b2011-01-21 11:29:38 +08004550 case BME1000_E_PHY_ID:
4551 hw->phy_type = e1000_phy_bm;
4552 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004553 /* Fall Through */
4554 default:
4555 /* Should never have loaded on this device */
4556 hw->phy_type = e1000_phy_undefined;
4557 return -E1000_ERR_PHY_TYPE;
4558 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004559
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004560 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004561}
4562
wdenk4e112c12003-06-03 23:54:09 +00004563/******************************************************************************
4564* Probes the expected PHY address for known PHY IDs
4565*
4566* hw - Struct containing variables accessed by shared code
4567******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004568static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004569e1000_detect_gig_phy(struct e1000_hw *hw)
4570{
Roy Zang28f7a052009-07-31 13:34:02 +08004571 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004572 uint16_t phy_id_high, phy_id_low;
York Sun4a598092013-04-01 11:29:11 -07004573 bool match = false;
wdenk4e112c12003-06-03 23:54:09 +00004574
4575 DEBUGFUNC();
4576
Roy Zang28f7a052009-07-31 13:34:02 +08004577 /* The 82571 firmware may still be configuring the PHY. In this
4578 * case, we cannot access the PHY until the configuration is done. So
4579 * we explicitly set the PHY values. */
4580 if (hw->mac_type == e1000_82571 ||
4581 hw->mac_type == e1000_82572) {
4582 hw->phy_id = IGP01E1000_I_PHY_ID;
4583 hw->phy_type = e1000_phy_igp_2;
4584 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004585 }
Roy Zang28f7a052009-07-31 13:34:02 +08004586
4587 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4588 * work- around that forces PHY page 0 to be set or the reads fail.
4589 * The rest of the code in this routine uses e1000_read_phy_reg to
4590 * read the PHY ID. So for ESB-2 we need to have this set so our
4591 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4592 * the routines below will figure this out as well. */
4593 if (hw->mac_type == e1000_80003es2lan)
4594 hw->phy_type = e1000_phy_gg82563;
4595
4596 /* Read the PHY ID Registers to identify which PHY is onboard. */
4597 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4598 if (ret_val)
4599 return ret_val;
4600
wdenk4e112c12003-06-03 23:54:09 +00004601 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004602 udelay(20);
4603 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4604 if (ret_val)
4605 return ret_val;
4606
wdenk4e112c12003-06-03 23:54:09 +00004607 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004608 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004609
4610 switch (hw->mac_type) {
4611 case e1000_82543:
4612 if (hw->phy_id == M88E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004613 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004614 break;
4615 case e1000_82544:
4616 if (hw->phy_id == M88E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004617 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004618 break;
4619 case e1000_82540:
4620 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004621 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004622 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004623 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004624 if (hw->phy_id == M88E1011_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004625 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004626 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004627 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004628 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004629 case e1000_82547:
4630 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004631 if(hw->phy_id == IGP01E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004632 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004633
wdenk4e112c12003-06-03 23:54:09 +00004634 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004635 case e1000_82573:
4636 if (hw->phy_id == M88E1111_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004637 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004638 break;
Roy Zang181119b2011-01-21 11:29:38 +08004639 case e1000_82574:
4640 if (hw->phy_id == BME1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004641 match = true;
Roy Zang181119b2011-01-21 11:29:38 +08004642 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004643 case e1000_80003es2lan:
4644 if (hw->phy_id == GG82563_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004645 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004646 break;
4647 case e1000_ich8lan:
4648 if (hw->phy_id == IGP03E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004649 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004650 if (hw->phy_id == IFE_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004651 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004652 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004653 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004654 if (hw->phy_id == IFE_C_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004655 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004656 break;
wdenk4e112c12003-06-03 23:54:09 +00004657 default:
4658 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4659 return -E1000_ERR_CONFIG;
4660 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004661
4662 phy_init_status = e1000_set_phy_type(hw);
4663
4664 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004665 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4666 return 0;
4667 }
4668 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4669 return -E1000_ERR_PHY;
4670}
4671
Roy Zang28f7a052009-07-31 13:34:02 +08004672/*****************************************************************************
4673 * Set media type and TBI compatibility.
4674 *
4675 * hw - Struct containing variables accessed by shared code
4676 * **************************************************************************/
4677void
4678e1000_set_media_type(struct e1000_hw *hw)
4679{
4680 uint32_t status;
4681
4682 DEBUGFUNC();
4683
4684 if (hw->mac_type != e1000_82543) {
4685 /* tbi_compatibility is only valid on 82543 */
York Sun4a598092013-04-01 11:29:11 -07004686 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08004687 }
4688
4689 switch (hw->device_id) {
4690 case E1000_DEV_ID_82545GM_SERDES:
4691 case E1000_DEV_ID_82546GB_SERDES:
4692 case E1000_DEV_ID_82571EB_SERDES:
4693 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4694 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4695 case E1000_DEV_ID_82572EI_SERDES:
4696 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4697 hw->media_type = e1000_media_type_internal_serdes;
4698 break;
4699 default:
4700 switch (hw->mac_type) {
4701 case e1000_82542_rev2_0:
4702 case e1000_82542_rev2_1:
4703 hw->media_type = e1000_media_type_fiber;
4704 break;
4705 case e1000_ich8lan:
4706 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08004707 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08004708 /* The STATUS_TBIMODE bit is reserved or reused
4709 * for the this device.
4710 */
4711 hw->media_type = e1000_media_type_copper;
4712 break;
4713 default:
4714 status = E1000_READ_REG(hw, STATUS);
4715 if (status & E1000_STATUS_TBIMODE) {
4716 hw->media_type = e1000_media_type_fiber;
4717 /* tbi_compatibility not valid on fiber */
York Sun4a598092013-04-01 11:29:11 -07004718 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08004719 } else {
4720 hw->media_type = e1000_media_type_copper;
4721 }
4722 break;
4723 }
4724 }
4725}
4726
wdenk4e112c12003-06-03 23:54:09 +00004727/**
4728 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4729 *
4730 * e1000_sw_init initializes the Adapter private data structure.
4731 * Fields are initialized based on PCI device information and
4732 * OS network device settings (MTU size).
4733 **/
4734
4735static int
Kyle Moffett7b698d52011-10-18 11:05:26 +00004736e1000_sw_init(struct eth_device *nic)
wdenk4e112c12003-06-03 23:54:09 +00004737{
4738 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4739 int result;
4740
4741 /* PCI config space info */
4742 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4743 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4744 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4745 &hw->subsystem_vendor_id);
4746 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4747
4748 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4749 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4750
4751 /* identify the MAC */
4752 result = e1000_set_mac_type(hw);
4753 if (result) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00004754 E1000_ERR(hw->nic, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00004755 return result;
4756 }
4757
Roy Zang28f7a052009-07-31 13:34:02 +08004758 switch (hw->mac_type) {
4759 default:
4760 break;
4761 case e1000_82541:
4762 case e1000_82547:
4763 case e1000_82541_rev_2:
4764 case e1000_82547_rev_2:
4765 hw->phy_init_script = 1;
4766 break;
4767 }
4768
wdenk4e112c12003-06-03 23:54:09 +00004769 /* flow control settings */
4770 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4771 hw->fc_low_water = E1000_FC_LOW_THRESH;
4772 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4773 hw->fc_send_xon = 1;
4774
4775 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004776 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004777
4778 if (hw->mac_type >= e1000_82543) {
4779 uint32_t status = E1000_READ_REG(hw, STATUS);
4780
4781 if (status & E1000_STATUS_TBIMODE) {
4782 DEBUGOUT("fiber interface\n");
4783 hw->media_type = e1000_media_type_fiber;
4784 } else {
4785 DEBUGOUT("copper interface\n");
4786 hw->media_type = e1000_media_type_copper;
4787 }
4788 } else {
4789 hw->media_type = e1000_media_type_fiber;
4790 }
4791
York Sun4a598092013-04-01 11:29:11 -07004792 hw->tbi_compatibility_en = true;
4793 hw->wait_autoneg_complete = true;
wdenk4e112c12003-06-03 23:54:09 +00004794 if (hw->mac_type < e1000_82543)
4795 hw->report_tx_early = 0;
4796 else
4797 hw->report_tx_early = 1;
4798
wdenk4e112c12003-06-03 23:54:09 +00004799 return E1000_SUCCESS;
4800}
4801
4802void
4803fill_rx(struct e1000_hw *hw)
4804{
4805 struct e1000_rx_desc *rd;
4806
4807 rx_last = rx_tail;
4808 rd = rx_base + rx_tail;
4809 rx_tail = (rx_tail + 1) % 8;
4810 memset(rd, 0, 16);
4811 rd->buffer_addr = cpu_to_le64((u32) & packet);
4812 E1000_WRITE_REG(hw, RDT, rx_tail);
4813}
4814
4815/**
4816 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4817 * @adapter: board private structure
4818 *
4819 * Configure the Tx unit of the MAC after a reset.
4820 **/
4821
4822static void
4823e1000_configure_tx(struct e1000_hw *hw)
4824{
4825 unsigned long ptr;
4826 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004827 unsigned long tipg, tarc;
4828 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004829
4830 ptr = (u32) tx_pool;
4831 if (ptr & 0xf)
4832 ptr = (ptr + 0x10) & (~0xf);
4833
4834 tx_base = (typeof(tx_base)) ptr;
4835
4836 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4837 E1000_WRITE_REG(hw, TDBAH, 0);
4838
4839 E1000_WRITE_REG(hw, TDLEN, 128);
4840
4841 /* Setup the HW Tx Head and Tail descriptor pointers */
4842 E1000_WRITE_REG(hw, TDH, 0);
4843 E1000_WRITE_REG(hw, TDT, 0);
4844 tx_tail = 0;
4845
4846 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004847 if (hw->mac_type <= e1000_82547_rev_2 &&
4848 (hw->media_type == e1000_media_type_fiber ||
4849 hw->media_type == e1000_media_type_internal_serdes))
4850 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4851 else
4852 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4853
4854 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004855 switch (hw->mac_type) {
4856 case e1000_82542_rev2_0:
4857 case e1000_82542_rev2_1:
4858 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004859 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4860 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4861 break;
4862 case e1000_80003es2lan:
4863 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4864 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004865 break;
4866 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004867 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4868 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4869 break;
wdenk4e112c12003-06-03 23:54:09 +00004870 }
Roy Zang28f7a052009-07-31 13:34:02 +08004871 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4872 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004873 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004874 /* Program the Transmit Control Register */
4875 tctl = E1000_READ_REG(hw, TCTL);
4876 tctl &= ~E1000_TCTL_CT;
4877 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4878 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004879
4880 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4881 tarc = E1000_READ_REG(hw, TARC0);
4882 /* set the speed mode bit, we'll clear it if we're not at
4883 * gigabit link later */
4884 /* git bit can be set to 1*/
4885 } else if (hw->mac_type == e1000_80003es2lan) {
4886 tarc = E1000_READ_REG(hw, TARC0);
4887 tarc |= 1;
4888 E1000_WRITE_REG(hw, TARC0, tarc);
4889 tarc = E1000_READ_REG(hw, TARC1);
4890 tarc |= 1;
4891 E1000_WRITE_REG(hw, TARC1, tarc);
4892 }
4893
wdenk4e112c12003-06-03 23:54:09 +00004894
4895 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004896 /* Setup Transmit Descriptor Settings for eop descriptor */
4897 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004898
Roy Zang28f7a052009-07-31 13:34:02 +08004899 /* Need to set up RS bit */
4900 if (hw->mac_type < e1000_82543)
4901 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004902 else
Roy Zang28f7a052009-07-31 13:34:02 +08004903 hw->txd_cmd |= E1000_TXD_CMD_RS;
4904 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004905}
4906
4907/**
4908 * e1000_setup_rctl - configure the receive control register
4909 * @adapter: Board private structure
4910 **/
4911static void
4912e1000_setup_rctl(struct e1000_hw *hw)
4913{
4914 uint32_t rctl;
4915
4916 rctl = E1000_READ_REG(hw, RCTL);
4917
4918 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4919
Roy Zang28f7a052009-07-31 13:34:02 +08004920 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4921 | E1000_RCTL_RDMTS_HALF; /* |
4922 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004923
4924 if (hw->tbi_compatibility_on == 1)
4925 rctl |= E1000_RCTL_SBP;
4926 else
4927 rctl &= ~E1000_RCTL_SBP;
4928
4929 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004930 rctl |= E1000_RCTL_SZ_2048;
4931 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004932 E1000_WRITE_REG(hw, RCTL, rctl);
4933}
4934
4935/**
4936 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4937 * @adapter: board private structure
4938 *
4939 * Configure the Rx unit of the MAC after a reset.
4940 **/
4941static void
4942e1000_configure_rx(struct e1000_hw *hw)
4943{
4944 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004945 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004946 rx_tail = 0;
4947 /* make sure receives are disabled while setting up the descriptors */
4948 rctl = E1000_READ_REG(hw, RCTL);
4949 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004950 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004951 /* Set the interrupt throttling rate. Value is calculated
4952 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004953#define MAX_INTS_PER_SEC 8000
4954#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004955 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4956 }
4957
Roy Zang28f7a052009-07-31 13:34:02 +08004958 if (hw->mac_type >= e1000_82571) {
4959 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4960 /* Reset delay timers after every interrupt */
4961 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4962 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4963 E1000_WRITE_FLUSH(hw);
4964 }
wdenk4e112c12003-06-03 23:54:09 +00004965 /* Setup the Base and Length of the Rx Descriptor Ring */
4966 ptr = (u32) rx_pool;
4967 if (ptr & 0xf)
4968 ptr = (ptr + 0x10) & (~0xf);
4969 rx_base = (typeof(rx_base)) ptr;
4970 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4971 E1000_WRITE_REG(hw, RDBAH, 0);
4972
4973 E1000_WRITE_REG(hw, RDLEN, 128);
4974
4975 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4976 E1000_WRITE_REG(hw, RDH, 0);
4977 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00004978 /* Enable Receives */
4979
4980 E1000_WRITE_REG(hw, RCTL, rctl);
4981 fill_rx(hw);
4982}
4983
4984/**************************************************************************
4985POLL - Wait for a frame
4986***************************************************************************/
4987static int
4988e1000_poll(struct eth_device *nic)
4989{
4990 struct e1000_hw *hw = nic->priv;
4991 struct e1000_rx_desc *rd;
4992 /* return true if there's an ethernet packet ready to read */
4993 rd = rx_base + rx_last;
4994 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4995 return 0;
4996 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02004997 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00004998 fill_rx(hw);
4999 return 1;
5000}
5001
5002/**************************************************************************
5003TRANSMIT - Transmit a frame
5004***************************************************************************/
Joe Hershberger4c7aa552012-05-22 07:56:14 +00005005static int e1000_transmit(struct eth_device *nic, void *packet, int length)
wdenk4e112c12003-06-03 23:54:09 +00005006{
Joe Hershberger4c7aa552012-05-22 07:56:14 +00005007 void *nv_packet = (void *)packet;
wdenk4e112c12003-06-03 23:54:09 +00005008 struct e1000_hw *hw = nic->priv;
5009 struct e1000_tx_desc *txp;
5010 int i = 0;
5011
5012 txp = tx_base + tx_tail;
5013 tx_tail = (tx_tail + 1) % 8;
5014
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005015 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005016 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005017 txp->upper.data = 0;
5018 E1000_WRITE_REG(hw, TDT, tx_tail);
5019
Roy Zang28f7a052009-07-31 13:34:02 +08005020 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005021 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5022 if (i++ > TOUT_LOOP) {
5023 DEBUGOUT("e1000: tx timeout\n");
5024 return 0;
5025 }
5026 udelay(10); /* give the nic a chance to write to the register */
5027 }
5028 return 1;
5029}
5030
5031/*reset function*/
5032static inline int
5033e1000_reset(struct eth_device *nic)
5034{
5035 struct e1000_hw *hw = nic->priv;
5036
5037 e1000_reset_hw(hw);
5038 if (hw->mac_type >= e1000_82544) {
5039 E1000_WRITE_REG(hw, WUC, 0);
5040 }
5041 return e1000_init_hw(nic);
5042}
5043
5044/**************************************************************************
5045DISABLE - Turn off ethernet interface
5046***************************************************************************/
5047static void
5048e1000_disable(struct eth_device *nic)
5049{
5050 struct e1000_hw *hw = nic->priv;
5051
5052 /* Turn off the ethernet interface */
5053 E1000_WRITE_REG(hw, RCTL, 0);
5054 E1000_WRITE_REG(hw, TCTL, 0);
5055
5056 /* Clear the transmit ring */
5057 E1000_WRITE_REG(hw, TDH, 0);
5058 E1000_WRITE_REG(hw, TDT, 0);
5059
5060 /* Clear the receive ring */
5061 E1000_WRITE_REG(hw, RDH, 0);
5062 E1000_WRITE_REG(hw, RDT, 0);
5063
5064 /* put the card in its initial state */
5065#if 0
5066 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5067#endif
5068 mdelay(10);
5069
5070}
5071
5072/**************************************************************************
5073INIT - set up ethernet interface(s)
5074***************************************************************************/
5075static int
5076e1000_init(struct eth_device *nic, bd_t * bis)
5077{
5078 struct e1000_hw *hw = nic->priv;
5079 int ret_val = 0;
5080
5081 ret_val = e1000_reset(nic);
5082 if (ret_val < 0) {
5083 if ((ret_val == -E1000_ERR_NOLINK) ||
5084 (ret_val == -E1000_ERR_TIMEOUT)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005085 E1000_ERR(hw->nic, "Valid Link not detected\n");
wdenk4e112c12003-06-03 23:54:09 +00005086 } else {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005087 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005088 }
5089 return 0;
5090 }
5091 e1000_configure_tx(hw);
5092 e1000_setup_rctl(hw);
5093 e1000_configure_rx(hw);
5094 return 1;
5095}
5096
Roy Zang28f7a052009-07-31 13:34:02 +08005097/******************************************************************************
5098 * Gets the current PCI bus type of hardware
5099 *
5100 * hw - Struct containing variables accessed by shared code
5101 *****************************************************************************/
5102void e1000_get_bus_type(struct e1000_hw *hw)
5103{
5104 uint32_t status;
5105
5106 switch (hw->mac_type) {
5107 case e1000_82542_rev2_0:
5108 case e1000_82542_rev2_1:
5109 hw->bus_type = e1000_bus_type_pci;
5110 break;
5111 case e1000_82571:
5112 case e1000_82572:
5113 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005114 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005115 case e1000_80003es2lan:
5116 hw->bus_type = e1000_bus_type_pci_express;
5117 break;
5118 case e1000_ich8lan:
5119 hw->bus_type = e1000_bus_type_pci_express;
5120 break;
5121 default:
5122 status = E1000_READ_REG(hw, STATUS);
5123 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5124 e1000_bus_type_pcix : e1000_bus_type_pci;
5125 break;
5126 }
5127}
5128
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005129/* A list of all registered e1000 devices */
5130static LIST_HEAD(e1000_hw_list);
5131
wdenk4e112c12003-06-03 23:54:09 +00005132/**************************************************************************
5133PROBE - Look for an adapter, this routine's visible to the outside
5134You should omit the last argument struct pci_device * for a non-PCI NIC
5135***************************************************************************/
5136int
5137e1000_initialize(bd_t * bis)
5138{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005139 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005140 pci_dev_t devno;
wdenk4e112c12003-06-03 23:54:09 +00005141
Timur Tabiedc45b52009-08-17 15:55:38 -05005142 DEBUGFUNC();
5143
Kyle Moffett7b698d52011-10-18 11:05:26 +00005144 /* Find and probe all the matching PCI devices */
5145 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5146 u32 val;
Kumar Gala76933572010-11-12 04:13:06 -06005147
Kyle Moffett7b698d52011-10-18 11:05:26 +00005148 /*
5149 * These will never get freed due to errors, this allows us to
5150 * perform SPI EEPROM programming from U-boot, for example.
5151 */
5152 struct eth_device *nic = malloc(sizeof(*nic));
5153 struct e1000_hw *hw = malloc(sizeof(*hw));
5154 if (!nic || !hw) {
5155 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005156 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005157 free(hw);
5158 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005159 }
5160
Kyle Moffett7b698d52011-10-18 11:05:26 +00005161 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005162 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005163 memset(hw, 0, sizeof(*hw));
5164
Kyle Moffett7b698d52011-10-18 11:05:26 +00005165 /* Assign the passed-in values */
5166 hw->cardnum = i;
wdenk4e112c12003-06-03 23:54:09 +00005167 hw->pdev = devno;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005168 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005169 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005170
Kyle Moffett7b698d52011-10-18 11:05:26 +00005171 /* Generate a card name */
5172 sprintf(nic->name, "e1000#%u", hw->cardnum);
5173
5174 /* Print a debug message with the IO base address */
5175 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5176 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5177
5178 /* Try to enable I/O accesses and bus-mastering */
5179 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5180 pci_write_config_dword(devno, PCI_COMMAND, val);
5181
5182 /* Make sure it worked */
5183 pci_read_config_dword(devno, PCI_COMMAND, &val);
5184 if (!(val & PCI_COMMAND_MEMORY)) {
5185 E1000_ERR(nic, "Can't enable I/O memory\n");
5186 continue;
5187 }
5188 if (!(val & PCI_COMMAND_MASTER)) {
5189 E1000_ERR(nic, "Can't enable bus-mastering\n");
5190 continue;
5191 }
wdenk4e112c12003-06-03 23:54:09 +00005192
5193 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005194 hw->fc = e1000_fc_default;
5195 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005196 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005197 hw->autoneg = 1;
York Sun4a598092013-04-01 11:29:11 -07005198 hw->get_link_status = true;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005199 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5200 PCI_REGION_MEM);
wdenk4e112c12003-06-03 23:54:09 +00005201 hw->mac_type = e1000_undefined;
5202
5203 /* MAC and Phy settings */
Kyle Moffett7b698d52011-10-18 11:05:26 +00005204 if (e1000_sw_init(nic) < 0) {
5205 E1000_ERR(nic, "Software init failed\n");
5206 continue;
wdenk4e112c12003-06-03 23:54:09 +00005207 }
Roy Zang28f7a052009-07-31 13:34:02 +08005208 if (e1000_check_phy_reset_block(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005209 E1000_ERR(nic, "PHY Reset is blocked!\n");
5210
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005211 /* Basic init was OK, reset the hardware and allow SPI access */
Roy Zang28f7a052009-07-31 13:34:02 +08005212 e1000_reset_hw(hw);
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005213 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005214
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02005215#ifndef CONFIG_E1000_NO_NVM
Kyle Moffett7b698d52011-10-18 11:05:26 +00005216 /* Validate the EEPROM and get chipset information */
Stefan Roesed47f07e2012-09-19 15:18:52 +02005217#if !defined(CONFIG_MVBC_1G)
Roy Zang28f7a052009-07-31 13:34:02 +08005218 if (e1000_init_eeprom_params(hw)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005219 E1000_ERR(nic, "EEPROM is invalid!\n");
5220 continue;
Roy Zang28f7a052009-07-31 13:34:02 +08005221 }
Kyle Moffett70946bc2011-10-18 11:05:27 +00005222 if (e1000_validate_eeprom_checksum(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005223 continue;
Wolfgang Denk56811f62005-10-09 01:04:33 +02005224#endif
wdenk4e112c12003-06-03 23:54:09 +00005225 e1000_read_mac_addr(nic);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02005226#endif
Roy Zang28f7a052009-07-31 13:34:02 +08005227 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005228
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02005229#ifndef CONFIG_E1000_NO_NVM
Kyle Moffett7b698d52011-10-18 11:05:26 +00005230 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
wdenk4e112c12003-06-03 23:54:09 +00005231 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5232 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02005233#else
5234 memset(nic->enetaddr, 0, 6);
5235 printf("e1000: no NVM\n");
5236#endif
wdenk4e112c12003-06-03 23:54:09 +00005237
Kyle Moffett7b698d52011-10-18 11:05:26 +00005238 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005239 nic->init = e1000_init;
5240 nic->recv = e1000_poll;
5241 nic->send = e1000_transmit;
5242 nic->halt = e1000_disable;
wdenk4e112c12003-06-03 23:54:09 +00005243 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005244 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005245
5246 return i;
wdenk4e112c12003-06-03 23:54:09 +00005247}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005248
5249struct e1000_hw *e1000_find_card(unsigned int cardnum)
5250{
5251 struct e1000_hw *hw;
5252
5253 list_for_each_entry(hw, &e1000_hw_list, list_node)
5254 if (hw->cardnum == cardnum)
5255 return hw;
5256
5257 return NULL;
5258}
5259
5260#ifdef CONFIG_CMD_E1000
5261static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5262 int argc, char * const argv[])
5263{
5264 struct e1000_hw *hw;
5265
5266 if (argc < 3) {
5267 cmd_usage(cmdtp);
5268 return 1;
5269 }
5270
5271 /* Make sure we can find the requested e1000 card */
5272 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5273 if (!hw) {
5274 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5275 return 1;
5276 }
5277
5278 if (!strcmp(argv[2], "print-mac-address")) {
5279 unsigned char *mac = hw->nic->enetaddr;
5280 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5281 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5282 return 0;
5283 }
5284
5285#ifdef CONFIG_E1000_SPI
5286 /* Handle the "SPI" subcommand */
5287 if (!strcmp(argv[2], "spi"))
5288 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5289#endif
5290
5291 cmd_usage(cmdtp);
5292 return 1;
5293}
5294
5295U_BOOT_CMD(
5296 e1000, 7, 0, do_e1000,
5297 "Intel e1000 controller management",
5298 /* */"<card#> print-mac-address\n"
5299#ifdef CONFIG_E1000_SPI
5300 "e1000 <card#> spi show [<offset> [<length>]]\n"
5301 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5302 "e1000 <card#> spi program <addr> <offset> <length>\n"
5303 "e1000 <card#> spi checksum [update]\n"
5304#endif
5305 " - Manage the Intel E1000 PCI device"
5306);
5307#endif /* not CONFIG_CMD_E1000 */