blob: 4d1fc9cd13707c8a1caa5d2a3be96d5969c23ce6 [file] [log] [blame]
Simon Glass11d7a5b2013-04-17 16:13:36 +00001/*
2 * Copyright (c) 2012 The Chromium OS Authors.
3 *
Bin Meng49f70992014-11-09 22:19:13 +08004 * TSC calibration codes are adapted from Linux kernel
5 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6 *
Wolfgang Denkd79de1d2013-07-08 09:37:19 +02007 * SPDX-License-Identifier: GPL-2.0+
Simon Glass11d7a5b2013-04-17 16:13:36 +00008 */
9
10#include <common.h>
Bin Meng976c2e82015-11-13 00:11:21 -080011#include <dm.h>
Simon Glass11d7a5b2013-04-17 16:13:36 +000012#include <malloc.h>
Bin Meng976c2e82015-11-13 00:11:21 -080013#include <timer.h>
Bin Mengd159ffb2017-07-25 20:12:01 -070014#include <asm/cpu.h>
Simon Glass11d7a5b2013-04-17 16:13:36 +000015#include <asm/io.h>
16#include <asm/i8254.h>
17#include <asm/ibmpc.h>
18#include <asm/msr.h>
19#include <asm/u-boot-x86.h>
20
Bin Meng49f70992014-11-09 22:19:13 +080021#define MAX_NUM_FREQS 8
22
Simon Glass11d7a5b2013-04-17 16:13:36 +000023DECLARE_GLOBAL_DATA_PTR;
24
Bin Meng49f70992014-11-09 22:19:13 +080025/*
26 * According to Intel 64 and IA-32 System Programming Guide,
27 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
28 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
29 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
30 * so we need manually differentiate SoC families. This is what the
31 * field msr_plat does.
32 */
33struct freq_desc {
34 u8 x86_family; /* CPU family */
35 u8 x86_model; /* model */
Simon Glass40a8c352014-11-12 22:42:04 -070036 /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
37 u8 msr_plat;
Bin Meng49f70992014-11-09 22:19:13 +080038 u32 freqs[MAX_NUM_FREQS];
39};
40
41static struct freq_desc freq_desc_tables[] = {
42 /* PNW */
Bin Mengaeb581a2017-07-25 20:12:03 -070043 { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200 } },
Bin Meng49f70992014-11-09 22:19:13 +080044 /* CLV+ */
Bin Mengaeb581a2017-07-25 20:12:03 -070045 { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200 } },
46 /* TNG - Intel Atom processor Z3400 series */
Bin Meng23ee9ab2017-07-25 20:12:04 -070047 { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0 } },
Bin Mengaeb581a2017-07-25 20:12:03 -070048 /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
Bin Meng23ee9ab2017-07-25 20:12:04 -070049 { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0 } },
Bin Mengaeb581a2017-07-25 20:12:03 -070050 /* ANN - Intel Atom processor Z3500 series */
Bin Meng23ee9ab2017-07-25 20:12:04 -070051 { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0 } },
Simon Glass40a8c352014-11-12 22:42:04 -070052 /* Ivybridge */
53 { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
Bin Meng49f70992014-11-09 22:19:13 +080054};
55
56static int match_cpu(u8 family, u8 model)
57{
58 int i;
59
60 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
61 if ((family == freq_desc_tables[i].x86_family) &&
62 (model == freq_desc_tables[i].x86_model))
63 return i;
64 }
65
66 return -1;
67}
68
69/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
70#define id_to_freq(cpu_index, freq_id) \
71 (freq_desc_tables[cpu_index].freqs[freq_id])
72
73/*
Bin Meng6ffad642017-07-25 20:12:05 -070074 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
75 * reliable and the frequency is known (provided by HW).
Bin Meng49f70992014-11-09 22:19:13 +080076 *
Bin Meng6ffad642017-07-25 20:12:05 -070077 * On these platforms PIT/HPET is generally not available so calibration won't
78 * work at all and there is no other clocksource to act as a watchdog for the
79 * TSC, so we have no other choice than to trust it.
80 *
81 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
Bin Meng49f70992014-11-09 22:19:13 +080082 */
Bin Meng6ffad642017-07-25 20:12:05 -070083static unsigned long __maybe_unused cpu_mhz_from_msr(void)
Bin Meng49f70992014-11-09 22:19:13 +080084{
85 u32 lo, hi, ratio, freq_id, freq;
86 unsigned long res;
87 int cpu_index;
88
Bin Mengd159ffb2017-07-25 20:12:01 -070089 if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
90 return 0;
91
Bin Meng49f70992014-11-09 22:19:13 +080092 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
93 if (cpu_index < 0)
94 return 0;
95
96 if (freq_desc_tables[cpu_index].msr_plat) {
97 rdmsr(MSR_PLATFORM_INFO, lo, hi);
Bin Mengf4ed4d72017-07-25 20:12:00 -070098 ratio = (lo >> 8) & 0xff;
Bin Meng49f70992014-11-09 22:19:13 +080099 } else {
100 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
101 ratio = (hi >> 8) & 0x1f;
102 }
103 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
104
Simon Glass40a8c352014-11-12 22:42:04 -0700105 if (freq_desc_tables[cpu_index].msr_plat == 2) {
106 /* TODO: Figure out how best to deal with this */
Bin Meng23ee9ab2017-07-25 20:12:04 -0700107 freq = 100000;
Simon Glass40a8c352014-11-12 22:42:04 -0700108 debug("Using frequency: %u KHz\n", freq);
109 } else {
110 /* Get FSB FREQ ID */
111 rdmsr(MSR_FSB_FREQ, lo, hi);
112 freq_id = lo & 0x7;
113 freq = id_to_freq(cpu_index, freq_id);
114 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
115 freq_id, freq);
116 }
Bin Meng49f70992014-11-09 22:19:13 +0800117
118 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
119 res = freq * ratio / 1000;
120 debug("TSC runs at %lu MHz\n", res);
121
122 return res;
Bin Meng49f70992014-11-09 22:19:13 +0800123}
124
Bin Mengbba97052014-11-09 22:19:25 +0800125/*
126 * This reads the current MSB of the PIT counter, and
127 * checks if we are running on sufficiently fast and
128 * non-virtualized hardware.
129 *
130 * Our expectations are:
131 *
132 * - the PIT is running at roughly 1.19MHz
133 *
134 * - each IO is going to take about 1us on real hardware,
135 * but we allow it to be much faster (by a factor of 10) or
136 * _slightly_ slower (ie we allow up to a 2us read+counter
137 * update - anything else implies a unacceptably slow CPU
138 * or PIT for the fast calibration to work.
139 *
140 * - with 256 PIT ticks to read the value, we have 214us to
141 * see the same MSB (and overhead like doing a single TSC
142 * read per MSB value etc).
143 *
144 * - We're doing 2 reads per loop (LSB, MSB), and we expect
145 * them each to take about a microsecond on real hardware.
146 * So we expect a count value of around 100. But we'll be
147 * generous, and accept anything over 50.
148 *
149 * - if the PIT is stuck, and we see *many* more reads, we
150 * return early (and the next caller of pit_expect_msb()
151 * then consider it a failure when they don't see the
152 * next expected value).
153 *
154 * These expectations mean that we know that we have seen the
155 * transition from one expected value to another with a fairly
156 * high accuracy, and we didn't miss any events. We can thus
157 * use the TSC value at the transitions to calculate a pretty
158 * good value for the TSC frequencty.
159 */
160static inline int pit_verify_msb(unsigned char val)
161{
162 /* Ignore LSB */
163 inb(0x42);
164 return inb(0x42) == val;
165}
166
167static inline int pit_expect_msb(unsigned char val, u64 *tscp,
168 unsigned long *deltap)
169{
170 int count;
171 u64 tsc = 0, prev_tsc = 0;
172
173 for (count = 0; count < 50000; count++) {
174 if (!pit_verify_msb(val))
175 break;
176 prev_tsc = tsc;
177 tsc = rdtsc();
178 }
179 *deltap = rdtsc() - prev_tsc;
180 *tscp = tsc;
181
182 /*
183 * We require _some_ success, but the quality control
184 * will be based on the error terms on the TSC values.
185 */
186 return count > 5;
187}
188
189/*
190 * How many MSB values do we want to see? We aim for
191 * a maximum error rate of 500ppm (in practice the
192 * real error is much smaller), but refuse to spend
193 * more than 50ms on it.
194 */
195#define MAX_QUICK_PIT_MS 50
196#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
197
Bin Mengb2eb48b2015-01-06 22:14:14 +0800198static unsigned long __maybe_unused quick_pit_calibrate(void)
Bin Mengbba97052014-11-09 22:19:25 +0800199{
200 int i;
201 u64 tsc, delta;
202 unsigned long d1, d2;
203
204 /* Set the Gate high, disable speaker */
205 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
206
207 /*
208 * Counter 2, mode 0 (one-shot), binary count
209 *
210 * NOTE! Mode 2 decrements by two (and then the
211 * output is flipped each time, giving the same
212 * final output frequency as a decrement-by-one),
213 * so mode 0 is much better when looking at the
214 * individual counts.
215 */
216 outb(0xb0, 0x43);
217
218 /* Start at 0xffff */
219 outb(0xff, 0x42);
220 outb(0xff, 0x42);
221
222 /*
223 * The PIT starts counting at the next edge, so we
224 * need to delay for a microsecond. The easiest way
225 * to do that is to just read back the 16-bit counter
226 * once from the PIT.
227 */
228 pit_verify_msb(0);
229
230 if (pit_expect_msb(0xff, &tsc, &d1)) {
231 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
232 if (!pit_expect_msb(0xff-i, &delta, &d2))
233 break;
234
235 /*
236 * Iterate until the error is less than 500 ppm
237 */
238 delta -= tsc;
239 if (d1+d2 >= delta >> 11)
240 continue;
241
242 /*
243 * Check the PIT one more time to verify that
244 * all TSC reads were stable wrt the PIT.
245 *
246 * This also guarantees serialization of the
247 * last cycle read ('d2') in pit_expect_msb.
248 */
249 if (!pit_verify_msb(0xfe - i))
250 break;
251 goto success;
252 }
253 }
254 debug("Fast TSC calibration failed\n");
255 return 0;
256
257success:
258 /*
259 * Ok, if we get here, then we've seen the
260 * MSB of the PIT decrement 'i' times, and the
261 * error has shrunk to less than 500 ppm.
262 *
263 * As a result, we can depend on there not being
264 * any odd delays anywhere, and the TSC reads are
265 * reliable (within the error).
266 *
267 * kHz = ticks / time-in-seconds / 1000;
268 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
269 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
270 */
271 delta *= PIT_TICK_RATE;
272 delta /= (i*256*1000);
273 debug("Fast TSC calibration using PIT\n");
274 return delta / 1000;
275}
276
Simon Glass11d7a5b2013-04-17 16:13:36 +0000277/* Get the speed of the TSC timer in MHz */
Bin Meng500361e2015-11-13 00:11:20 -0800278unsigned notrace long get_tbclk_mhz(void)
Simon Glass11d7a5b2013-04-17 16:13:36 +0000279{
Bin Meng976c2e82015-11-13 00:11:21 -0800280 return get_tbclk() / 1000000;
Simon Glass11d7a5b2013-04-17 16:13:36 +0000281}
282
Simon Glass11d7a5b2013-04-17 16:13:36 +0000283static ulong get_ms_timer(void)
284{
285 return (get_ticks() * 1000) / get_tbclk();
286}
287
288ulong get_timer(ulong base)
289{
290 return get_ms_timer() - base;
291}
292
Bin Meng500361e2015-11-13 00:11:20 -0800293ulong notrace timer_get_us(void)
Simon Glass11d7a5b2013-04-17 16:13:36 +0000294{
295 return get_ticks() / get_tbclk_mhz();
296}
297
298ulong timer_get_boot_us(void)
299{
300 return timer_get_us();
301}
302
303void __udelay(unsigned long usec)
304{
305 u64 now = get_ticks();
306 u64 stop;
307
308 stop = now + usec * get_tbclk_mhz();
309
310 while ((int64_t)(stop - get_ticks()) > 0)
Miao Yanb9f32772015-07-27 19:16:07 +0800311#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
312 /*
313 * Add a 'pause' instruction on qemu target,
314 * to give other VCPUs a chance to run.
315 */
316 asm volatile("pause");
317#else
Simon Glass11d7a5b2013-04-17 16:13:36 +0000318 ;
Miao Yanb9f32772015-07-27 19:16:07 +0800319#endif
Simon Glass11d7a5b2013-04-17 16:13:36 +0000320}
321
Bin Meng976c2e82015-11-13 00:11:21 -0800322static int tsc_timer_get_count(struct udevice *dev, u64 *count)
323{
324 u64 now_tick = rdtsc();
325
326 *count = now_tick - gd->arch.tsc_base;
327
328 return 0;
329}
330
331static int tsc_timer_probe(struct udevice *dev)
332{
333 struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
334
335 gd->arch.tsc_base = rdtsc();
336
337 /*
338 * If there is no clock frequency specified in the device tree,
339 * calibrate it by ourselves.
340 */
341 if (!uc_priv->clock_rate) {
342 unsigned long fast_calibrate;
343
Bin Meng6ffad642017-07-25 20:12:05 -0700344 fast_calibrate = cpu_mhz_from_msr();
Bin Meng976c2e82015-11-13 00:11:21 -0800345 if (!fast_calibrate) {
346 fast_calibrate = quick_pit_calibrate();
347 if (!fast_calibrate)
348 panic("TSC frequency is ZERO");
349 }
350
351 uc_priv->clock_rate = fast_calibrate * 1000000;
352 }
353
354 return 0;
355}
356
357static const struct timer_ops tsc_timer_ops = {
358 .get_count = tsc_timer_get_count,
359};
360
361static const struct udevice_id tsc_timer_ids[] = {
362 { .compatible = "x86,tsc-timer", },
363 { }
364};
365
366U_BOOT_DRIVER(tsc_timer) = {
367 .name = "tsc_timer",
368 .id = UCLASS_TIMER,
369 .of_match = tsc_timer_ids,
370 .probe = tsc_timer_probe,
371 .ops = &tsc_timer_ops,
372 .flags = DM_FLAG_PRE_RELOC,
373};