Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2012 The Chromium OS Authors. |
| 3 | * |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 4 | * TSC calibration codes are adapted from Linux kernel |
| 5 | * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c |
| 6 | * |
Wolfgang Denk | d79de1d | 2013-07-08 09:37:19 +0200 | [diff] [blame] | 7 | * SPDX-License-Identifier: GPL-2.0+ |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #include <common.h> |
Bin Meng | 976c2e8 | 2015-11-13 00:11:21 -0800 | [diff] [blame] | 11 | #include <dm.h> |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 12 | #include <malloc.h> |
Bin Meng | 976c2e8 | 2015-11-13 00:11:21 -0800 | [diff] [blame] | 13 | #include <timer.h> |
Bin Meng | d159ffb | 2017-07-25 20:12:01 -0700 | [diff] [blame] | 14 | #include <asm/cpu.h> |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 15 | #include <asm/io.h> |
| 16 | #include <asm/i8254.h> |
| 17 | #include <asm/ibmpc.h> |
| 18 | #include <asm/msr.h> |
| 19 | #include <asm/u-boot-x86.h> |
| 20 | |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 21 | #define MAX_NUM_FREQS 8 |
| 22 | |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 23 | DECLARE_GLOBAL_DATA_PTR; |
| 24 | |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 25 | /* |
| 26 | * According to Intel 64 and IA-32 System Programming Guide, |
| 27 | * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be |
| 28 | * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. |
| 29 | * Unfortunately some Intel Atom SoCs aren't quite compliant to this, |
| 30 | * so we need manually differentiate SoC families. This is what the |
| 31 | * field msr_plat does. |
| 32 | */ |
| 33 | struct freq_desc { |
| 34 | u8 x86_family; /* CPU family */ |
| 35 | u8 x86_model; /* model */ |
Simon Glass | 40a8c35 | 2014-11-12 22:42:04 -0700 | [diff] [blame] | 36 | /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ |
| 37 | u8 msr_plat; |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 38 | u32 freqs[MAX_NUM_FREQS]; |
| 39 | }; |
| 40 | |
| 41 | static struct freq_desc freq_desc_tables[] = { |
| 42 | /* PNW */ |
Bin Meng | aeb581a | 2017-07-25 20:12:03 -0700 | [diff] [blame] | 43 | { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200 } }, |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 44 | /* CLV+ */ |
Bin Meng | aeb581a | 2017-07-25 20:12:03 -0700 | [diff] [blame] | 45 | { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200 } }, |
| 46 | /* TNG - Intel Atom processor Z3400 series */ |
Bin Meng | 23ee9ab | 2017-07-25 20:12:04 -0700 | [diff] [blame] | 47 | { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0 } }, |
Bin Meng | aeb581a | 2017-07-25 20:12:03 -0700 | [diff] [blame] | 48 | /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */ |
Bin Meng | 23ee9ab | 2017-07-25 20:12:04 -0700 | [diff] [blame] | 49 | { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0 } }, |
Bin Meng | aeb581a | 2017-07-25 20:12:03 -0700 | [diff] [blame] | 50 | /* ANN - Intel Atom processor Z3500 series */ |
Bin Meng | 23ee9ab | 2017-07-25 20:12:04 -0700 | [diff] [blame] | 51 | { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0 } }, |
Simon Glass | 40a8c35 | 2014-11-12 22:42:04 -0700 | [diff] [blame] | 52 | /* Ivybridge */ |
| 53 | { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } }, |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 54 | }; |
| 55 | |
| 56 | static int match_cpu(u8 family, u8 model) |
| 57 | { |
| 58 | int i; |
| 59 | |
| 60 | for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { |
| 61 | if ((family == freq_desc_tables[i].x86_family) && |
| 62 | (model == freq_desc_tables[i].x86_model)) |
| 63 | return i; |
| 64 | } |
| 65 | |
| 66 | return -1; |
| 67 | } |
| 68 | |
| 69 | /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ |
| 70 | #define id_to_freq(cpu_index, freq_id) \ |
| 71 | (freq_desc_tables[cpu_index].freqs[freq_id]) |
| 72 | |
| 73 | /* |
Bin Meng | 6ffad64 | 2017-07-25 20:12:05 -0700 | [diff] [blame] | 74 | * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is |
| 75 | * reliable and the frequency is known (provided by HW). |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 76 | * |
Bin Meng | 6ffad64 | 2017-07-25 20:12:05 -0700 | [diff] [blame] | 77 | * On these platforms PIT/HPET is generally not available so calibration won't |
| 78 | * work at all and there is no other clocksource to act as a watchdog for the |
| 79 | * TSC, so we have no other choice than to trust it. |
| 80 | * |
| 81 | * Returns the TSC frequency in MHz or 0 if HW does not provide it. |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 82 | */ |
Bin Meng | 6ffad64 | 2017-07-25 20:12:05 -0700 | [diff] [blame] | 83 | static unsigned long __maybe_unused cpu_mhz_from_msr(void) |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 84 | { |
| 85 | u32 lo, hi, ratio, freq_id, freq; |
| 86 | unsigned long res; |
| 87 | int cpu_index; |
| 88 | |
Bin Meng | d159ffb | 2017-07-25 20:12:01 -0700 | [diff] [blame] | 89 | if (gd->arch.x86_vendor != X86_VENDOR_INTEL) |
| 90 | return 0; |
| 91 | |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 92 | cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); |
| 93 | if (cpu_index < 0) |
| 94 | return 0; |
| 95 | |
| 96 | if (freq_desc_tables[cpu_index].msr_plat) { |
| 97 | rdmsr(MSR_PLATFORM_INFO, lo, hi); |
Bin Meng | f4ed4d7 | 2017-07-25 20:12:00 -0700 | [diff] [blame] | 98 | ratio = (lo >> 8) & 0xff; |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 99 | } else { |
| 100 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); |
| 101 | ratio = (hi >> 8) & 0x1f; |
| 102 | } |
| 103 | debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); |
| 104 | |
Simon Glass | 40a8c35 | 2014-11-12 22:42:04 -0700 | [diff] [blame] | 105 | if (freq_desc_tables[cpu_index].msr_plat == 2) { |
| 106 | /* TODO: Figure out how best to deal with this */ |
Bin Meng | 23ee9ab | 2017-07-25 20:12:04 -0700 | [diff] [blame] | 107 | freq = 100000; |
Simon Glass | 40a8c35 | 2014-11-12 22:42:04 -0700 | [diff] [blame] | 108 | debug("Using frequency: %u KHz\n", freq); |
| 109 | } else { |
| 110 | /* Get FSB FREQ ID */ |
| 111 | rdmsr(MSR_FSB_FREQ, lo, hi); |
| 112 | freq_id = lo & 0x7; |
| 113 | freq = id_to_freq(cpu_index, freq_id); |
| 114 | debug("Resolved frequency ID: %u, frequency: %u KHz\n", |
| 115 | freq_id, freq); |
| 116 | } |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 117 | |
| 118 | /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ |
| 119 | res = freq * ratio / 1000; |
| 120 | debug("TSC runs at %lu MHz\n", res); |
| 121 | |
| 122 | return res; |
Bin Meng | 49f7099 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 123 | } |
| 124 | |
Bin Meng | bba9705 | 2014-11-09 22:19:25 +0800 | [diff] [blame] | 125 | /* |
| 126 | * This reads the current MSB of the PIT counter, and |
| 127 | * checks if we are running on sufficiently fast and |
| 128 | * non-virtualized hardware. |
| 129 | * |
| 130 | * Our expectations are: |
| 131 | * |
| 132 | * - the PIT is running at roughly 1.19MHz |
| 133 | * |
| 134 | * - each IO is going to take about 1us on real hardware, |
| 135 | * but we allow it to be much faster (by a factor of 10) or |
| 136 | * _slightly_ slower (ie we allow up to a 2us read+counter |
| 137 | * update - anything else implies a unacceptably slow CPU |
| 138 | * or PIT for the fast calibration to work. |
| 139 | * |
| 140 | * - with 256 PIT ticks to read the value, we have 214us to |
| 141 | * see the same MSB (and overhead like doing a single TSC |
| 142 | * read per MSB value etc). |
| 143 | * |
| 144 | * - We're doing 2 reads per loop (LSB, MSB), and we expect |
| 145 | * them each to take about a microsecond on real hardware. |
| 146 | * So we expect a count value of around 100. But we'll be |
| 147 | * generous, and accept anything over 50. |
| 148 | * |
| 149 | * - if the PIT is stuck, and we see *many* more reads, we |
| 150 | * return early (and the next caller of pit_expect_msb() |
| 151 | * then consider it a failure when they don't see the |
| 152 | * next expected value). |
| 153 | * |
| 154 | * These expectations mean that we know that we have seen the |
| 155 | * transition from one expected value to another with a fairly |
| 156 | * high accuracy, and we didn't miss any events. We can thus |
| 157 | * use the TSC value at the transitions to calculate a pretty |
| 158 | * good value for the TSC frequencty. |
| 159 | */ |
| 160 | static inline int pit_verify_msb(unsigned char val) |
| 161 | { |
| 162 | /* Ignore LSB */ |
| 163 | inb(0x42); |
| 164 | return inb(0x42) == val; |
| 165 | } |
| 166 | |
| 167 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, |
| 168 | unsigned long *deltap) |
| 169 | { |
| 170 | int count; |
| 171 | u64 tsc = 0, prev_tsc = 0; |
| 172 | |
| 173 | for (count = 0; count < 50000; count++) { |
| 174 | if (!pit_verify_msb(val)) |
| 175 | break; |
| 176 | prev_tsc = tsc; |
| 177 | tsc = rdtsc(); |
| 178 | } |
| 179 | *deltap = rdtsc() - prev_tsc; |
| 180 | *tscp = tsc; |
| 181 | |
| 182 | /* |
| 183 | * We require _some_ success, but the quality control |
| 184 | * will be based on the error terms on the TSC values. |
| 185 | */ |
| 186 | return count > 5; |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * How many MSB values do we want to see? We aim for |
| 191 | * a maximum error rate of 500ppm (in practice the |
| 192 | * real error is much smaller), but refuse to spend |
| 193 | * more than 50ms on it. |
| 194 | */ |
| 195 | #define MAX_QUICK_PIT_MS 50 |
| 196 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
| 197 | |
Bin Meng | b2eb48b | 2015-01-06 22:14:14 +0800 | [diff] [blame] | 198 | static unsigned long __maybe_unused quick_pit_calibrate(void) |
Bin Meng | bba9705 | 2014-11-09 22:19:25 +0800 | [diff] [blame] | 199 | { |
| 200 | int i; |
| 201 | u64 tsc, delta; |
| 202 | unsigned long d1, d2; |
| 203 | |
| 204 | /* Set the Gate high, disable speaker */ |
| 205 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 206 | |
| 207 | /* |
| 208 | * Counter 2, mode 0 (one-shot), binary count |
| 209 | * |
| 210 | * NOTE! Mode 2 decrements by two (and then the |
| 211 | * output is flipped each time, giving the same |
| 212 | * final output frequency as a decrement-by-one), |
| 213 | * so mode 0 is much better when looking at the |
| 214 | * individual counts. |
| 215 | */ |
| 216 | outb(0xb0, 0x43); |
| 217 | |
| 218 | /* Start at 0xffff */ |
| 219 | outb(0xff, 0x42); |
| 220 | outb(0xff, 0x42); |
| 221 | |
| 222 | /* |
| 223 | * The PIT starts counting at the next edge, so we |
| 224 | * need to delay for a microsecond. The easiest way |
| 225 | * to do that is to just read back the 16-bit counter |
| 226 | * once from the PIT. |
| 227 | */ |
| 228 | pit_verify_msb(0); |
| 229 | |
| 230 | if (pit_expect_msb(0xff, &tsc, &d1)) { |
| 231 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { |
| 232 | if (!pit_expect_msb(0xff-i, &delta, &d2)) |
| 233 | break; |
| 234 | |
| 235 | /* |
| 236 | * Iterate until the error is less than 500 ppm |
| 237 | */ |
| 238 | delta -= tsc; |
| 239 | if (d1+d2 >= delta >> 11) |
| 240 | continue; |
| 241 | |
| 242 | /* |
| 243 | * Check the PIT one more time to verify that |
| 244 | * all TSC reads were stable wrt the PIT. |
| 245 | * |
| 246 | * This also guarantees serialization of the |
| 247 | * last cycle read ('d2') in pit_expect_msb. |
| 248 | */ |
| 249 | if (!pit_verify_msb(0xfe - i)) |
| 250 | break; |
| 251 | goto success; |
| 252 | } |
| 253 | } |
| 254 | debug("Fast TSC calibration failed\n"); |
| 255 | return 0; |
| 256 | |
| 257 | success: |
| 258 | /* |
| 259 | * Ok, if we get here, then we've seen the |
| 260 | * MSB of the PIT decrement 'i' times, and the |
| 261 | * error has shrunk to less than 500 ppm. |
| 262 | * |
| 263 | * As a result, we can depend on there not being |
| 264 | * any odd delays anywhere, and the TSC reads are |
| 265 | * reliable (within the error). |
| 266 | * |
| 267 | * kHz = ticks / time-in-seconds / 1000; |
| 268 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 |
| 269 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) |
| 270 | */ |
| 271 | delta *= PIT_TICK_RATE; |
| 272 | delta /= (i*256*1000); |
| 273 | debug("Fast TSC calibration using PIT\n"); |
| 274 | return delta / 1000; |
| 275 | } |
| 276 | |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 277 | /* Get the speed of the TSC timer in MHz */ |
Bin Meng | 500361e | 2015-11-13 00:11:20 -0800 | [diff] [blame] | 278 | unsigned notrace long get_tbclk_mhz(void) |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 279 | { |
Bin Meng | 976c2e8 | 2015-11-13 00:11:21 -0800 | [diff] [blame] | 280 | return get_tbclk() / 1000000; |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 281 | } |
| 282 | |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 283 | static ulong get_ms_timer(void) |
| 284 | { |
| 285 | return (get_ticks() * 1000) / get_tbclk(); |
| 286 | } |
| 287 | |
| 288 | ulong get_timer(ulong base) |
| 289 | { |
| 290 | return get_ms_timer() - base; |
| 291 | } |
| 292 | |
Bin Meng | 500361e | 2015-11-13 00:11:20 -0800 | [diff] [blame] | 293 | ulong notrace timer_get_us(void) |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 294 | { |
| 295 | return get_ticks() / get_tbclk_mhz(); |
| 296 | } |
| 297 | |
| 298 | ulong timer_get_boot_us(void) |
| 299 | { |
| 300 | return timer_get_us(); |
| 301 | } |
| 302 | |
| 303 | void __udelay(unsigned long usec) |
| 304 | { |
| 305 | u64 now = get_ticks(); |
| 306 | u64 stop; |
| 307 | |
| 308 | stop = now + usec * get_tbclk_mhz(); |
| 309 | |
| 310 | while ((int64_t)(stop - get_ticks()) > 0) |
Miao Yan | b9f3277 | 2015-07-27 19:16:07 +0800 | [diff] [blame] | 311 | #if defined(CONFIG_QEMU) && defined(CONFIG_SMP) |
| 312 | /* |
| 313 | * Add a 'pause' instruction on qemu target, |
| 314 | * to give other VCPUs a chance to run. |
| 315 | */ |
| 316 | asm volatile("pause"); |
| 317 | #else |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 318 | ; |
Miao Yan | b9f3277 | 2015-07-27 19:16:07 +0800 | [diff] [blame] | 319 | #endif |
Simon Glass | 11d7a5b | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 320 | } |
| 321 | |
Bin Meng | 976c2e8 | 2015-11-13 00:11:21 -0800 | [diff] [blame] | 322 | static int tsc_timer_get_count(struct udevice *dev, u64 *count) |
| 323 | { |
| 324 | u64 now_tick = rdtsc(); |
| 325 | |
| 326 | *count = now_tick - gd->arch.tsc_base; |
| 327 | |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | static int tsc_timer_probe(struct udevice *dev) |
| 332 | { |
| 333 | struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev); |
| 334 | |
| 335 | gd->arch.tsc_base = rdtsc(); |
| 336 | |
| 337 | /* |
| 338 | * If there is no clock frequency specified in the device tree, |
| 339 | * calibrate it by ourselves. |
| 340 | */ |
| 341 | if (!uc_priv->clock_rate) { |
| 342 | unsigned long fast_calibrate; |
| 343 | |
Bin Meng | 6ffad64 | 2017-07-25 20:12:05 -0700 | [diff] [blame] | 344 | fast_calibrate = cpu_mhz_from_msr(); |
Bin Meng | 976c2e8 | 2015-11-13 00:11:21 -0800 | [diff] [blame] | 345 | if (!fast_calibrate) { |
| 346 | fast_calibrate = quick_pit_calibrate(); |
| 347 | if (!fast_calibrate) |
| 348 | panic("TSC frequency is ZERO"); |
| 349 | } |
| 350 | |
| 351 | uc_priv->clock_rate = fast_calibrate * 1000000; |
| 352 | } |
| 353 | |
| 354 | return 0; |
| 355 | } |
| 356 | |
| 357 | static const struct timer_ops tsc_timer_ops = { |
| 358 | .get_count = tsc_timer_get_count, |
| 359 | }; |
| 360 | |
| 361 | static const struct udevice_id tsc_timer_ids[] = { |
| 362 | { .compatible = "x86,tsc-timer", }, |
| 363 | { } |
| 364 | }; |
| 365 | |
| 366 | U_BOOT_DRIVER(tsc_timer) = { |
| 367 | .name = "tsc_timer", |
| 368 | .id = UCLASS_TIMER, |
| 369 | .of_match = tsc_timer_ids, |
| 370 | .probe = tsc_timer_probe, |
| 371 | .ops = &tsc_timer_ops, |
| 372 | .flags = DM_FLAG_PRE_RELOC, |
| 373 | }; |