blob: 5be76e05339e8110ed863f4b0826d7dd8bb7ab7f [file] [log] [blame]
Chris Morgan486c4632023-03-24 13:53:06 -05001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
8#include <dm.h>
9#include <dm/device_compat.h>
10#include <dm/devres.h>
11#include <div64.h>
12#include <generic-phy.h>
13#include <linux/kernel.h>
14#include <linux/iopoll.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/math64.h>
Igor Prusovc3421ea2023-11-09 20:10:04 +030018#include <linux/time.h>
Chris Morgan486c4632023-03-24 13:53:06 -050019#include <phy-mipi-dphy.h>
20#include <reset.h>
21
22#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
23
24/*
25 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
26 * is the first address, the other from the bit4 to bit0 is the second address.
27 * when you configure the registers, you must set both of them. The Clock Lane
28 * and Data Lane use the same registers with the same second address, but the
29 * first address is different.
30 */
31#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
32#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
33#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
34 SECOND_ADDRESS(second))
35
36/* Analog Register Part: reg00 */
37#define BANDGAP_POWER_MASK BIT(7)
38#define BANDGAP_POWER_DOWN BIT(7)
39#define BANDGAP_POWER_ON 0
40#define LANE_EN_MASK GENMASK(6, 2)
41#define LANE_EN_CK BIT(6)
42#define LANE_EN_3 BIT(5)
43#define LANE_EN_2 BIT(4)
44#define LANE_EN_1 BIT(3)
45#define LANE_EN_0 BIT(2)
46#define POWER_WORK_MASK GENMASK(1, 0)
47#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
48#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
49/* Analog Register Part: reg01 */
50#define REG_SYNCRST_MASK BIT(2)
51#define REG_SYNCRST_RESET BIT(2)
52#define REG_SYNCRST_NORMAL 0
53#define REG_LDOPD_MASK BIT(1)
54#define REG_LDOPD_POWER_DOWN BIT(1)
55#define REG_LDOPD_POWER_ON 0
56#define REG_PLLPD_MASK BIT(0)
57#define REG_PLLPD_POWER_DOWN BIT(0)
58#define REG_PLLPD_POWER_ON 0
59/* Analog Register Part: reg03 */
60#define REG_FBDIV_HI_MASK BIT(5)
61#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
62#define REG_PREDIV_MASK GENMASK(4, 0)
63#define REG_PREDIV(x) UPDATE(x, 4, 0)
64/* Analog Register Part: reg04 */
65#define REG_FBDIV_LO_MASK GENMASK(7, 0)
66#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
67/* Analog Register Part: reg05 */
68#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
69#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
70#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
71#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
72/* Analog Register Part: reg06 */
73#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
74#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
75#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
76#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
77/* Analog Register Part: reg07 */
78#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
79#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
80#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
81#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
82/* Analog Register Part: reg08 */
83#define PLL_POST_DIV_ENABLE_MASK BIT(5)
84#define PLL_POST_DIV_ENABLE BIT(5)
85#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
86#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
87#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
88#define LOWFRE_EN_MASK BIT(5)
89#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
90#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
91/* Analog Register Part: reg0b */
92#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
93#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
94#define VOD_MIN_RANGE 0x1
95#define VOD_MID_RANGE 0x3
96#define VOD_BIG_RANGE 0x7
97#define VOD_MAX_RANGE 0xf
98/* Analog Register Part: reg1E */
99#define PLL_MODE_SEL_MASK GENMASK(6, 5)
100#define PLL_MODE_SEL_LVDS_MODE 0
101#define PLL_MODE_SEL_MIPI_MODE BIT(5)
102/* Digital Register Part: reg00 */
103#define REG_DIG_RSTN_MASK BIT(0)
104#define REG_DIG_RSTN_NORMAL BIT(0)
105#define REG_DIG_RSTN_RESET 0
106/* Digital Register Part: reg01 */
107#define INVERT_TXCLKESC_MASK BIT(1)
108#define INVERT_TXCLKESC_ENABLE BIT(1)
109#define INVERT_TXCLKESC_DISABLE 0
110#define INVERT_TXBYTECLKHS_MASK BIT(0)
111#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
112#define INVERT_TXBYTECLKHS_DISABLE 0
113/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
114#define T_LPX_CNT_MASK GENMASK(5, 0)
115#define T_LPX_CNT(x) UPDATE(x, 5, 0)
116/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
117#define T_HS_ZERO_CNT_HI_MASK BIT(7)
118#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
119#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
120#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
121/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
122#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
123#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
124/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
125#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
126#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
127/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
128#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
129#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
130/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
131#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
132#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
133/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
134#define LPDT_TX_PPI_SYNC_MASK BIT(2)
135#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
136#define LPDT_TX_PPI_SYNC_DISABLE 0
137#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
138#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
139/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
140#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
141#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
142/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
143#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
144#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
145/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
146#define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
147#define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
148#define T_TA_GO_CNT_MASK GENMASK(5, 0)
149#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
150/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
151#define T_HS_EXIT_CNT_HI_MASK BIT(6)
152#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
153#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
154#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
155/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
156#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
157#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
158/* LVDS Register Part: reg00 */
159#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
160#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
161#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
162/* LVDS Register Part: reg01 */
163#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
164#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
165#define LVDS_DIGITAL_INTERNAL_DISABLE 0
166/* LVDS Register Part: reg03 */
167#define MODE_ENABLE_MASK GENMASK(2, 0)
168#define TTL_MODE_ENABLE BIT(2)
169#define LVDS_MODE_ENABLE BIT(1)
170#define MIPI_MODE_ENABLE BIT(0)
171/* LVDS Register Part: reg0b */
172#define LVDS_LANE_EN_MASK GENMASK(7, 3)
173#define LVDS_DATA_LANE0_EN BIT(7)
174#define LVDS_DATA_LANE1_EN BIT(6)
175#define LVDS_DATA_LANE2_EN BIT(5)
176#define LVDS_DATA_LANE3_EN BIT(4)
177#define LVDS_CLK_LANE_EN BIT(3)
178#define LVDS_PLL_POWER_MASK BIT(2)
179#define LVDS_PLL_POWER_OFF BIT(2)
180#define LVDS_PLL_POWER_ON 0
181#define LVDS_BANDGAP_POWER_MASK BIT(0)
182#define LVDS_BANDGAP_POWER_DOWN BIT(0)
183#define LVDS_BANDGAP_POWER_ON 0
184
185#define DSI_PHY_RSTZ 0xa0
186#define PHY_ENABLECLK BIT(2)
187#define DSI_PHY_STATUS 0xb0
188#define PHY_LOCK BIT(0)
189
Chris Morgan486c4632023-03-24 13:53:06 -0500190#define msleep(a) udelay(a * 1000)
191
192enum phy_max_rate {
193 MAX_1GHZ,
194 MAX_2_5GHZ,
195};
196
197struct clk_hw {
198 struct clk_core *core;
199 struct clk *clk;
200 const struct clk_init_data *init;
201};
202
203struct inno_video_phy_plat_data {
204 const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
205 const unsigned int num_timings;
206 enum phy_max_rate max_rate;
207};
208
209struct inno_dsidphy {
210 struct udevice *dev;
211 struct clk *ref_clk;
212 struct clk *pclk_phy;
213 struct clk *pclk_host;
214 const struct inno_video_phy_plat_data *pdata;
215 void __iomem *phy_base;
216 void __iomem *host_base;
217 struct reset_ctl *rst;
218 struct phy_configure_opts_mipi_dphy dphy_cfg;
219
220 struct clk *pll_clk;
221 struct {
222 struct clk_hw hw;
223 u8 prediv;
224 u16 fbdiv;
225 unsigned long rate;
226 } pll;
227};
228
229enum {
230 REGISTER_PART_ANALOG,
231 REGISTER_PART_DIGITAL,
232 REGISTER_PART_CLOCK_LANE,
233 REGISTER_PART_DATA0_LANE,
234 REGISTER_PART_DATA1_LANE,
235 REGISTER_PART_DATA2_LANE,
236 REGISTER_PART_DATA3_LANE,
237 REGISTER_PART_LVDS,
238};
239
240struct inno_mipi_dphy_timing {
241 unsigned long rate;
242 u8 lpx;
243 u8 hs_prepare;
244 u8 clk_lane_hs_zero;
245 u8 data_lane_hs_zero;
246 u8 hs_trail;
247};
248
249static const
250struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
251 { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
252 { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
253 { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
254 { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
255 { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
256 { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
257 { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
258 { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
259 { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
260 { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
261 {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
262};
263
264static const
265struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
266 { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
267 { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
268 { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
269 { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
270 { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
271 { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
272 { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
273 { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
274 { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
275 { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
276 {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
277 {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
278 {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
279 {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
280 {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
281 {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
282 {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
283 {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
284 {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
285};
286
287static void phy_update_bits(struct inno_dsidphy *inno,
288 u8 first, u8 second, u8 mask, u8 val)
289{
290 u32 reg = PHY_REG(first, second) << 2;
291 unsigned int tmp, orig;
292
293 orig = readl(inno->phy_base + reg);
294 tmp = orig & ~mask;
295 tmp |= val & mask;
296 writel(tmp, inno->phy_base + reg);
297}
298
299static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
300 unsigned long rate)
301{
302 unsigned long prate;
303 unsigned long best_freq = 0;
304 unsigned long fref, fout;
305 u8 min_prediv, max_prediv;
306 u8 _prediv, best_prediv = 1;
307 u16 _fbdiv, best_fbdiv = 1;
308 u32 min_delta = UINT_MAX;
309
310 /*
311 * Upstream Linux tries to read the ref_clk, while the BSP
312 * U-Boot hard-codes this as 24MHz. Try the first, and if that
313 * fails do the second.
314 */
315 prate = clk_get_rate(inno->ref_clk);
316 if (IS_ERR_VALUE(prate))
317 prate = 24000000;
318
319 /*
320 * The PLL output frequency can be calculated using a simple formula:
321 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
322 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
323 */
324 fref = prate / 2;
325 if (rate > 1000000000UL)
326 fout = 1000000000UL;
327 else
328 fout = rate;
329
330 /* 5Mhz < Fref / prediv < 40MHz */
331 min_prediv = DIV_ROUND_UP(fref, 40000000);
332 max_prediv = fref / 5000000;
333
334 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
335 u64 tmp;
336 u32 delta;
337
338 tmp = (u64)fout * _prediv;
339 do_div(tmp, fref);
340 _fbdiv = tmp;
341
342 /*
343 * The possible settings of feedback divider are
344 * 12, 13, 14, 16, ~ 511
345 */
346 if (_fbdiv == 15)
347 continue;
348
349 if (_fbdiv < 12 || _fbdiv > 511)
350 continue;
351
352 tmp = (u64)_fbdiv * fref;
353 do_div(tmp, _prediv);
354
355 delta = abs(fout - tmp);
356 if (!delta) {
357 best_prediv = _prediv;
358 best_fbdiv = _fbdiv;
359 best_freq = tmp;
360 break;
361 } else if (delta < min_delta) {
362 best_prediv = _prediv;
363 best_fbdiv = _fbdiv;
364 best_freq = tmp;
365 min_delta = delta;
366 }
367 }
368
369 if (best_freq) {
370 inno->pll.prediv = best_prediv;
371 inno->pll.fbdiv = best_fbdiv;
372 inno->pll.rate = best_freq;
373 }
374
375 return best_freq;
376}
377
378static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
379{
380 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
381 const struct inno_mipi_dphy_timing *timings;
382 u32 t_txbyteclkhs, t_txclkesc;
383 u32 txbyteclkhs, txclkesc, esc_clk_div;
384 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
385 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
386 unsigned int i;
387
388 timings = inno->pdata->inno_mipi_dphy_timing_table;
389
390 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
391
392 /* Select MIPI mode */
393 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
394 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
395 /* Configure PLL */
396 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
397 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
398 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
399 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
400 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
401 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
402 if (inno->pdata->max_rate == MAX_2_5GHZ) {
403 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
404 PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
405 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
406 CLOCK_LANE_VOD_RANGE_SET_MASK,
407 CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
408 }
409 /* Enable PLL and LDO */
410 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
411 REG_LDOPD_MASK | REG_PLLPD_MASK,
412 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
413 /* Reset analog */
414 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
415 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
416 udelay(1);
417 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
418 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
419 /* Reset digital */
420 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
421 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
422 udelay(1);
423 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
424 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
425
426 txbyteclkhs = inno->pll.rate / 8;
427 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
428
429 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
430 txclkesc = txbyteclkhs / esc_clk_div;
431 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
432
433 /*
434 * The value of counter for HS Ths-exit
435 * Ths-exit = Tpin_txbyteclkhs * value
436 */
437 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
438 /*
439 * The value of counter for HS Tclk-post
440 * Tclk-post = Tpin_txbyteclkhs * value
441 */
442 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
443 /*
444 * The value of counter for HS Tclk-pre
445 * Tclk-pre = Tpin_txbyteclkhs * value
446 */
447 clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
448
449 /*
450 * The value of counter for HS Tta-go
451 * Tta-go for turnaround
452 * Tta-go = Ttxclkesc * value
453 */
454 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
455 /*
456 * The value of counter for HS Tta-sure
457 * Tta-sure for turnaround
458 * Tta-sure = Ttxclkesc * value
459 */
460 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
461 /*
462 * The value of counter for HS Tta-wait
463 * Tta-wait for turnaround
464 * Tta-wait = Ttxclkesc * value
465 */
466 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
467
468 for (i = 0; i < inno->pdata->num_timings; i++)
469 if (inno->pll.rate <= timings[i].rate)
470 break;
471
472 if (i == inno->pdata->num_timings)
473 --i;
474
475 /*
476 * The value of counter for HS Tlpx Time
477 * Tlpx = Tpin_txbyteclkhs * (2 + value)
478 */
479 if (inno->pdata->max_rate == MAX_1GHZ) {
480 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
481 if (lpx >= 2)
482 lpx -= 2;
483 } else {
484 lpx = timings[i].lpx;
485 }
486
487 hs_prepare = timings[i].hs_prepare;
488 hs_trail = timings[i].hs_trail;
489 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
490 data_lane_hs_zero = timings[i].data_lane_hs_zero;
491 wakeup = 0x3ff;
492
493 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
494 if (i == REGISTER_PART_CLOCK_LANE)
495 hs_zero = clk_lane_hs_zero;
496 else
497 hs_zero = data_lane_hs_zero;
498
499 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
500 T_LPX_CNT(lpx));
501 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
502 T_HS_PREPARE_CNT(hs_prepare));
503 if (inno->pdata->max_rate == MAX_2_5GHZ)
504 phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
505 T_HS_ZERO_CNT_HI(hs_zero >> 6));
506 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
507 T_HS_ZERO_CNT_LO(hs_zero));
508 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
509 T_HS_TRAIL_CNT(hs_trail));
510 if (inno->pdata->max_rate == MAX_2_5GHZ)
511 phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
512 T_HS_EXIT_CNT_HI(hs_exit >> 5));
513 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
514 T_HS_EXIT_CNT_LO(hs_exit));
515 if (inno->pdata->max_rate == MAX_2_5GHZ)
516 phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
517 T_CLK_POST_CNT_HI(clk_post >> 4));
518 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
519 T_CLK_POST_CNT_LO(clk_post));
520 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
521 T_CLK_PRE_CNT(clk_pre));
522 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
523 T_WAKEUP_CNT_HI(wakeup >> 8));
524 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
525 T_WAKEUP_CNT_LO(wakeup));
526 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
527 T_TA_GO_CNT(ta_go));
528 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
529 T_TA_SURE_CNT(ta_sure));
530 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
531 T_TA_WAIT_CNT(ta_wait));
532 }
533
534 /* Enable all lanes on analog part */
535 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
536 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
537 LANE_EN_1 | LANE_EN_0);
538}
539
540static int inno_dsidphy_power_on(struct phy *phy)
541{
542 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
543
544 clk_prepare_enable(inno->pclk_phy);
545 clk_prepare_enable(inno->ref_clk);
546
547 /* Bandgap power on */
548 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
549 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
550 /* Enable power work */
551 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
552 POWER_WORK_MASK, POWER_WORK_ENABLE);
553
554 inno_dsidphy_mipi_mode_enable(inno);
555
556 return 0;
557}
558
559static int inno_dsidphy_power_off(struct phy *phy)
560{
561 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
562
563 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
564 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
565 REG_LDOPD_MASK | REG_PLLPD_MASK,
566 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
567 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
568 POWER_WORK_MASK, POWER_WORK_DISABLE);
569 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
570 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
571
572 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
573 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
574 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
575 LVDS_DIGITAL_INTERNAL_DISABLE);
576 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
577 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
578 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
579
580 clk_disable_unprepare(inno->ref_clk);
581 clk_disable_unprepare(inno->pclk_phy);
582
583 return 0;
584}
585
586static int inno_dsidphy_configure(struct phy *phy, void *params)
587{
588 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
589 struct phy_configure_opts_mipi_dphy *config = params;
590 int ret;
591
592 ret = phy_mipi_dphy_config_validate(config);
593 if (ret)
594 return ret;
595
596 memcpy(&inno->dphy_cfg, config, sizeof(inno->dphy_cfg));
597
598 return 0;
599}
600
601static const struct phy_ops inno_dsidphy_ops = {
602 .configure = inno_dsidphy_configure,
603 .power_on = inno_dsidphy_power_on,
604 .power_off = inno_dsidphy_power_off,
605};
606
607static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
608 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
609 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
610 .max_rate = MAX_1GHZ,
611};
612
613static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
614 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
615 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
616 .max_rate = MAX_2_5GHZ,
617};
618
619static int inno_dsidphy_probe(struct udevice *dev)
620{
621 struct inno_dsidphy *inno = dev_get_priv(dev);
622 int ret;
623
624 inno->dev = dev;
625 inno->pdata = (const struct inno_video_phy_plat_data *)dev_get_driver_data(dev);
626
627 inno->phy_base = dev_read_addr_ptr(dev);
628 if (IS_ERR(inno->phy_base))
629 return PTR_ERR(inno->phy_base);
630
631 inno->ref_clk = devm_clk_get(dev, "ref");
632 if (IS_ERR(inno->ref_clk)) {
633 ret = PTR_ERR(inno->ref_clk);
634 dev_err(dev, "failed to get ref clock: %d\n", ret);
635 return ret;
636 }
637
638 inno->pclk_phy = devm_clk_get(dev, "pclk");
639 if (IS_ERR(inno->pclk_phy)) {
640 ret = PTR_ERR(inno->pclk_phy);
641 dev_err(dev, "failed to get phy pclk: %d\n", ret);
642 return ret;
643 }
644
645 inno->rst = devm_reset_control_get(dev, "apb");
646 if (IS_ERR(inno->rst)) {
647 ret = PTR_ERR(inno->rst);
648 dev_err(dev, "failed to get system reset control: %d\n", ret);
649 return ret;
650 }
651
652 return 0;
653}
654
655static const struct udevice_id inno_dsidphy_of_match[] = {
656 {
657 .compatible = "rockchip,px30-dsi-dphy",
658 .data = (long)&max_1ghz_video_phy_plat_data,
659 }, {
660 .compatible = "rockchip,rk3128-dsi-dphy",
661 .data = (long)&max_1ghz_video_phy_plat_data,
662 }, {
663 .compatible = "rockchip,rk3368-dsi-dphy",
664 .data = (long)&max_1ghz_video_phy_plat_data,
665 }, {
666 .compatible = "rockchip,rk3568-dsi-dphy",
667 .data = (long)&max_2_5ghz_video_phy_plat_data,
668 },
669 {}
670};
671
672U_BOOT_DRIVER(rockchip_inno_dsidphy) = {
673 .name = "rockchip-inno-dsidphy",
674 .id = UCLASS_PHY,
675 .of_match = inno_dsidphy_of_match,
676 .probe = inno_dsidphy_probe,
677 .ops = &inno_dsidphy_ops,
678 .priv_auto = sizeof(struct inno_dsidphy),
679};