blob: 9ed7af0d6ef1dd8f20823cdb858627efb22b2bf5 [file] [log] [blame]
Chris Morgan486c4632023-03-24 13:53:06 -05001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
8#include <dm.h>
9#include <dm/device_compat.h>
10#include <dm/devres.h>
11#include <div64.h>
12#include <generic-phy.h>
13#include <linux/kernel.h>
14#include <linux/iopoll.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/math64.h>
18#include <phy-mipi-dphy.h>
19#include <reset.h>
20
21#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
22
23/*
24 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
25 * is the first address, the other from the bit4 to bit0 is the second address.
26 * when you configure the registers, you must set both of them. The Clock Lane
27 * and Data Lane use the same registers with the same second address, but the
28 * first address is different.
29 */
30#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
31#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
32#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
33 SECOND_ADDRESS(second))
34
35/* Analog Register Part: reg00 */
36#define BANDGAP_POWER_MASK BIT(7)
37#define BANDGAP_POWER_DOWN BIT(7)
38#define BANDGAP_POWER_ON 0
39#define LANE_EN_MASK GENMASK(6, 2)
40#define LANE_EN_CK BIT(6)
41#define LANE_EN_3 BIT(5)
42#define LANE_EN_2 BIT(4)
43#define LANE_EN_1 BIT(3)
44#define LANE_EN_0 BIT(2)
45#define POWER_WORK_MASK GENMASK(1, 0)
46#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
47#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
48/* Analog Register Part: reg01 */
49#define REG_SYNCRST_MASK BIT(2)
50#define REG_SYNCRST_RESET BIT(2)
51#define REG_SYNCRST_NORMAL 0
52#define REG_LDOPD_MASK BIT(1)
53#define REG_LDOPD_POWER_DOWN BIT(1)
54#define REG_LDOPD_POWER_ON 0
55#define REG_PLLPD_MASK BIT(0)
56#define REG_PLLPD_POWER_DOWN BIT(0)
57#define REG_PLLPD_POWER_ON 0
58/* Analog Register Part: reg03 */
59#define REG_FBDIV_HI_MASK BIT(5)
60#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
61#define REG_PREDIV_MASK GENMASK(4, 0)
62#define REG_PREDIV(x) UPDATE(x, 4, 0)
63/* Analog Register Part: reg04 */
64#define REG_FBDIV_LO_MASK GENMASK(7, 0)
65#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
66/* Analog Register Part: reg05 */
67#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
68#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
69#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
70#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
71/* Analog Register Part: reg06 */
72#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
73#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
74#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
75#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
76/* Analog Register Part: reg07 */
77#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
78#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
79#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
80#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
81/* Analog Register Part: reg08 */
82#define PLL_POST_DIV_ENABLE_MASK BIT(5)
83#define PLL_POST_DIV_ENABLE BIT(5)
84#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
85#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
86#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
87#define LOWFRE_EN_MASK BIT(5)
88#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
89#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
90/* Analog Register Part: reg0b */
91#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
92#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
93#define VOD_MIN_RANGE 0x1
94#define VOD_MID_RANGE 0x3
95#define VOD_BIG_RANGE 0x7
96#define VOD_MAX_RANGE 0xf
97/* Analog Register Part: reg1E */
98#define PLL_MODE_SEL_MASK GENMASK(6, 5)
99#define PLL_MODE_SEL_LVDS_MODE 0
100#define PLL_MODE_SEL_MIPI_MODE BIT(5)
101/* Digital Register Part: reg00 */
102#define REG_DIG_RSTN_MASK BIT(0)
103#define REG_DIG_RSTN_NORMAL BIT(0)
104#define REG_DIG_RSTN_RESET 0
105/* Digital Register Part: reg01 */
106#define INVERT_TXCLKESC_MASK BIT(1)
107#define INVERT_TXCLKESC_ENABLE BIT(1)
108#define INVERT_TXCLKESC_DISABLE 0
109#define INVERT_TXBYTECLKHS_MASK BIT(0)
110#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
111#define INVERT_TXBYTECLKHS_DISABLE 0
112/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
113#define T_LPX_CNT_MASK GENMASK(5, 0)
114#define T_LPX_CNT(x) UPDATE(x, 5, 0)
115/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
116#define T_HS_ZERO_CNT_HI_MASK BIT(7)
117#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
118#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
119#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
120/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
121#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
122#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
123/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
124#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
125#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
126/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
127#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
128#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
129/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
130#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
131#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
132/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
133#define LPDT_TX_PPI_SYNC_MASK BIT(2)
134#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
135#define LPDT_TX_PPI_SYNC_DISABLE 0
136#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
137#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
138/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
139#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
140#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
141/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
142#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
143#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
144/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
145#define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
146#define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
147#define T_TA_GO_CNT_MASK GENMASK(5, 0)
148#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
149/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
150#define T_HS_EXIT_CNT_HI_MASK BIT(6)
151#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
152#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
153#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
154/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
155#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
156#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
157/* LVDS Register Part: reg00 */
158#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
159#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
160#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
161/* LVDS Register Part: reg01 */
162#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
163#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
164#define LVDS_DIGITAL_INTERNAL_DISABLE 0
165/* LVDS Register Part: reg03 */
166#define MODE_ENABLE_MASK GENMASK(2, 0)
167#define TTL_MODE_ENABLE BIT(2)
168#define LVDS_MODE_ENABLE BIT(1)
169#define MIPI_MODE_ENABLE BIT(0)
170/* LVDS Register Part: reg0b */
171#define LVDS_LANE_EN_MASK GENMASK(7, 3)
172#define LVDS_DATA_LANE0_EN BIT(7)
173#define LVDS_DATA_LANE1_EN BIT(6)
174#define LVDS_DATA_LANE2_EN BIT(5)
175#define LVDS_DATA_LANE3_EN BIT(4)
176#define LVDS_CLK_LANE_EN BIT(3)
177#define LVDS_PLL_POWER_MASK BIT(2)
178#define LVDS_PLL_POWER_OFF BIT(2)
179#define LVDS_PLL_POWER_ON 0
180#define LVDS_BANDGAP_POWER_MASK BIT(0)
181#define LVDS_BANDGAP_POWER_DOWN BIT(0)
182#define LVDS_BANDGAP_POWER_ON 0
183
184#define DSI_PHY_RSTZ 0xa0
185#define PHY_ENABLECLK BIT(2)
186#define DSI_PHY_STATUS 0xb0
187#define PHY_LOCK BIT(0)
188
189#define PSEC_PER_SEC 1000000000000LL
190
191#define msleep(a) udelay(a * 1000)
192
193enum phy_max_rate {
194 MAX_1GHZ,
195 MAX_2_5GHZ,
196};
197
198struct clk_hw {
199 struct clk_core *core;
200 struct clk *clk;
201 const struct clk_init_data *init;
202};
203
204struct inno_video_phy_plat_data {
205 const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
206 const unsigned int num_timings;
207 enum phy_max_rate max_rate;
208};
209
210struct inno_dsidphy {
211 struct udevice *dev;
212 struct clk *ref_clk;
213 struct clk *pclk_phy;
214 struct clk *pclk_host;
215 const struct inno_video_phy_plat_data *pdata;
216 void __iomem *phy_base;
217 void __iomem *host_base;
218 struct reset_ctl *rst;
219 struct phy_configure_opts_mipi_dphy dphy_cfg;
220
221 struct clk *pll_clk;
222 struct {
223 struct clk_hw hw;
224 u8 prediv;
225 u16 fbdiv;
226 unsigned long rate;
227 } pll;
228};
229
230enum {
231 REGISTER_PART_ANALOG,
232 REGISTER_PART_DIGITAL,
233 REGISTER_PART_CLOCK_LANE,
234 REGISTER_PART_DATA0_LANE,
235 REGISTER_PART_DATA1_LANE,
236 REGISTER_PART_DATA2_LANE,
237 REGISTER_PART_DATA3_LANE,
238 REGISTER_PART_LVDS,
239};
240
241struct inno_mipi_dphy_timing {
242 unsigned long rate;
243 u8 lpx;
244 u8 hs_prepare;
245 u8 clk_lane_hs_zero;
246 u8 data_lane_hs_zero;
247 u8 hs_trail;
248};
249
250static const
251struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
252 { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
253 { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
254 { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
255 { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
256 { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
257 { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
258 { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
259 { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
260 { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
261 { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
262 {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
263};
264
265static const
266struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
267 { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
268 { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
269 { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
270 { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
271 { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
272 { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
273 { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
274 { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
275 { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
276 { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
277 {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
278 {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
279 {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
280 {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
281 {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
282 {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
283 {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
284 {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
285 {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
286};
287
288static void phy_update_bits(struct inno_dsidphy *inno,
289 u8 first, u8 second, u8 mask, u8 val)
290{
291 u32 reg = PHY_REG(first, second) << 2;
292 unsigned int tmp, orig;
293
294 orig = readl(inno->phy_base + reg);
295 tmp = orig & ~mask;
296 tmp |= val & mask;
297 writel(tmp, inno->phy_base + reg);
298}
299
300static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
301 unsigned long rate)
302{
303 unsigned long prate;
304 unsigned long best_freq = 0;
305 unsigned long fref, fout;
306 u8 min_prediv, max_prediv;
307 u8 _prediv, best_prediv = 1;
308 u16 _fbdiv, best_fbdiv = 1;
309 u32 min_delta = UINT_MAX;
310
311 /*
312 * Upstream Linux tries to read the ref_clk, while the BSP
313 * U-Boot hard-codes this as 24MHz. Try the first, and if that
314 * fails do the second.
315 */
316 prate = clk_get_rate(inno->ref_clk);
317 if (IS_ERR_VALUE(prate))
318 prate = 24000000;
319
320 /*
321 * The PLL output frequency can be calculated using a simple formula:
322 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
323 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
324 */
325 fref = prate / 2;
326 if (rate > 1000000000UL)
327 fout = 1000000000UL;
328 else
329 fout = rate;
330
331 /* 5Mhz < Fref / prediv < 40MHz */
332 min_prediv = DIV_ROUND_UP(fref, 40000000);
333 max_prediv = fref / 5000000;
334
335 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
336 u64 tmp;
337 u32 delta;
338
339 tmp = (u64)fout * _prediv;
340 do_div(tmp, fref);
341 _fbdiv = tmp;
342
343 /*
344 * The possible settings of feedback divider are
345 * 12, 13, 14, 16, ~ 511
346 */
347 if (_fbdiv == 15)
348 continue;
349
350 if (_fbdiv < 12 || _fbdiv > 511)
351 continue;
352
353 tmp = (u64)_fbdiv * fref;
354 do_div(tmp, _prediv);
355
356 delta = abs(fout - tmp);
357 if (!delta) {
358 best_prediv = _prediv;
359 best_fbdiv = _fbdiv;
360 best_freq = tmp;
361 break;
362 } else if (delta < min_delta) {
363 best_prediv = _prediv;
364 best_fbdiv = _fbdiv;
365 best_freq = tmp;
366 min_delta = delta;
367 }
368 }
369
370 if (best_freq) {
371 inno->pll.prediv = best_prediv;
372 inno->pll.fbdiv = best_fbdiv;
373 inno->pll.rate = best_freq;
374 }
375
376 return best_freq;
377}
378
379static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
380{
381 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
382 const struct inno_mipi_dphy_timing *timings;
383 u32 t_txbyteclkhs, t_txclkesc;
384 u32 txbyteclkhs, txclkesc, esc_clk_div;
385 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
386 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
387 unsigned int i;
388
389 timings = inno->pdata->inno_mipi_dphy_timing_table;
390
391 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
392
393 /* Select MIPI mode */
394 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
395 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
396 /* Configure PLL */
397 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
398 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
399 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
400 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
401 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
402 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
403 if (inno->pdata->max_rate == MAX_2_5GHZ) {
404 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
405 PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
406 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
407 CLOCK_LANE_VOD_RANGE_SET_MASK,
408 CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
409 }
410 /* Enable PLL and LDO */
411 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
412 REG_LDOPD_MASK | REG_PLLPD_MASK,
413 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
414 /* Reset analog */
415 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
416 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
417 udelay(1);
418 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
419 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
420 /* Reset digital */
421 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
422 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
423 udelay(1);
424 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
425 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
426
427 txbyteclkhs = inno->pll.rate / 8;
428 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
429
430 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
431 txclkesc = txbyteclkhs / esc_clk_div;
432 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
433
434 /*
435 * The value of counter for HS Ths-exit
436 * Ths-exit = Tpin_txbyteclkhs * value
437 */
438 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
439 /*
440 * The value of counter for HS Tclk-post
441 * Tclk-post = Tpin_txbyteclkhs * value
442 */
443 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
444 /*
445 * The value of counter for HS Tclk-pre
446 * Tclk-pre = Tpin_txbyteclkhs * value
447 */
448 clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
449
450 /*
451 * The value of counter for HS Tta-go
452 * Tta-go for turnaround
453 * Tta-go = Ttxclkesc * value
454 */
455 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
456 /*
457 * The value of counter for HS Tta-sure
458 * Tta-sure for turnaround
459 * Tta-sure = Ttxclkesc * value
460 */
461 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
462 /*
463 * The value of counter for HS Tta-wait
464 * Tta-wait for turnaround
465 * Tta-wait = Ttxclkesc * value
466 */
467 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
468
469 for (i = 0; i < inno->pdata->num_timings; i++)
470 if (inno->pll.rate <= timings[i].rate)
471 break;
472
473 if (i == inno->pdata->num_timings)
474 --i;
475
476 /*
477 * The value of counter for HS Tlpx Time
478 * Tlpx = Tpin_txbyteclkhs * (2 + value)
479 */
480 if (inno->pdata->max_rate == MAX_1GHZ) {
481 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
482 if (lpx >= 2)
483 lpx -= 2;
484 } else {
485 lpx = timings[i].lpx;
486 }
487
488 hs_prepare = timings[i].hs_prepare;
489 hs_trail = timings[i].hs_trail;
490 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
491 data_lane_hs_zero = timings[i].data_lane_hs_zero;
492 wakeup = 0x3ff;
493
494 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
495 if (i == REGISTER_PART_CLOCK_LANE)
496 hs_zero = clk_lane_hs_zero;
497 else
498 hs_zero = data_lane_hs_zero;
499
500 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
501 T_LPX_CNT(lpx));
502 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
503 T_HS_PREPARE_CNT(hs_prepare));
504 if (inno->pdata->max_rate == MAX_2_5GHZ)
505 phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
506 T_HS_ZERO_CNT_HI(hs_zero >> 6));
507 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
508 T_HS_ZERO_CNT_LO(hs_zero));
509 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
510 T_HS_TRAIL_CNT(hs_trail));
511 if (inno->pdata->max_rate == MAX_2_5GHZ)
512 phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
513 T_HS_EXIT_CNT_HI(hs_exit >> 5));
514 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
515 T_HS_EXIT_CNT_LO(hs_exit));
516 if (inno->pdata->max_rate == MAX_2_5GHZ)
517 phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
518 T_CLK_POST_CNT_HI(clk_post >> 4));
519 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
520 T_CLK_POST_CNT_LO(clk_post));
521 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
522 T_CLK_PRE_CNT(clk_pre));
523 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
524 T_WAKEUP_CNT_HI(wakeup >> 8));
525 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
526 T_WAKEUP_CNT_LO(wakeup));
527 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
528 T_TA_GO_CNT(ta_go));
529 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
530 T_TA_SURE_CNT(ta_sure));
531 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
532 T_TA_WAIT_CNT(ta_wait));
533 }
534
535 /* Enable all lanes on analog part */
536 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
537 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
538 LANE_EN_1 | LANE_EN_0);
539}
540
541static int inno_dsidphy_power_on(struct phy *phy)
542{
543 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
544
545 clk_prepare_enable(inno->pclk_phy);
546 clk_prepare_enable(inno->ref_clk);
547
548 /* Bandgap power on */
549 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
550 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
551 /* Enable power work */
552 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
553 POWER_WORK_MASK, POWER_WORK_ENABLE);
554
555 inno_dsidphy_mipi_mode_enable(inno);
556
557 return 0;
558}
559
560static int inno_dsidphy_power_off(struct phy *phy)
561{
562 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
563
564 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
565 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
566 REG_LDOPD_MASK | REG_PLLPD_MASK,
567 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
568 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
569 POWER_WORK_MASK, POWER_WORK_DISABLE);
570 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
571 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
572
573 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
574 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
575 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
576 LVDS_DIGITAL_INTERNAL_DISABLE);
577 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
578 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
579 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
580
581 clk_disable_unprepare(inno->ref_clk);
582 clk_disable_unprepare(inno->pclk_phy);
583
584 return 0;
585}
586
587static int inno_dsidphy_configure(struct phy *phy, void *params)
588{
589 struct inno_dsidphy *inno = dev_get_priv(phy->dev);
590 struct phy_configure_opts_mipi_dphy *config = params;
591 int ret;
592
593 ret = phy_mipi_dphy_config_validate(config);
594 if (ret)
595 return ret;
596
597 memcpy(&inno->dphy_cfg, config, sizeof(inno->dphy_cfg));
598
599 return 0;
600}
601
602static const struct phy_ops inno_dsidphy_ops = {
603 .configure = inno_dsidphy_configure,
604 .power_on = inno_dsidphy_power_on,
605 .power_off = inno_dsidphy_power_off,
606};
607
608static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
609 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
610 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
611 .max_rate = MAX_1GHZ,
612};
613
614static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
615 .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
616 .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
617 .max_rate = MAX_2_5GHZ,
618};
619
620static int inno_dsidphy_probe(struct udevice *dev)
621{
622 struct inno_dsidphy *inno = dev_get_priv(dev);
623 int ret;
624
625 inno->dev = dev;
626 inno->pdata = (const struct inno_video_phy_plat_data *)dev_get_driver_data(dev);
627
628 inno->phy_base = dev_read_addr_ptr(dev);
629 if (IS_ERR(inno->phy_base))
630 return PTR_ERR(inno->phy_base);
631
632 inno->ref_clk = devm_clk_get(dev, "ref");
633 if (IS_ERR(inno->ref_clk)) {
634 ret = PTR_ERR(inno->ref_clk);
635 dev_err(dev, "failed to get ref clock: %d\n", ret);
636 return ret;
637 }
638
639 inno->pclk_phy = devm_clk_get(dev, "pclk");
640 if (IS_ERR(inno->pclk_phy)) {
641 ret = PTR_ERR(inno->pclk_phy);
642 dev_err(dev, "failed to get phy pclk: %d\n", ret);
643 return ret;
644 }
645
646 inno->rst = devm_reset_control_get(dev, "apb");
647 if (IS_ERR(inno->rst)) {
648 ret = PTR_ERR(inno->rst);
649 dev_err(dev, "failed to get system reset control: %d\n", ret);
650 return ret;
651 }
652
653 return 0;
654}
655
656static const struct udevice_id inno_dsidphy_of_match[] = {
657 {
658 .compatible = "rockchip,px30-dsi-dphy",
659 .data = (long)&max_1ghz_video_phy_plat_data,
660 }, {
661 .compatible = "rockchip,rk3128-dsi-dphy",
662 .data = (long)&max_1ghz_video_phy_plat_data,
663 }, {
664 .compatible = "rockchip,rk3368-dsi-dphy",
665 .data = (long)&max_1ghz_video_phy_plat_data,
666 }, {
667 .compatible = "rockchip,rk3568-dsi-dphy",
668 .data = (long)&max_2_5ghz_video_phy_plat_data,
669 },
670 {}
671};
672
673U_BOOT_DRIVER(rockchip_inno_dsidphy) = {
674 .name = "rockchip-inno-dsidphy",
675 .id = UCLASS_PHY,
676 .of_match = inno_dsidphy_of_match,
677 .probe = inno_dsidphy_probe,
678 .ops = &inno_dsidphy_ops,
679 .priv_auto = sizeof(struct inno_dsidphy),
680};