Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause |
| 2 | /* |
| 3 | * Copyright (C) 2019, STMicroelectronics - All Rights Reserved |
| 4 | */ |
| 5 | #include <common.h> |
| 6 | #include <console.h> |
| 7 | #include <clk.h> |
| 8 | #include <ram.h> |
| 9 | #include <reset.h> |
| 10 | #include <asm/io.h> |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 11 | #include <linux/bitops.h> |
Patrick Delaunay | 0cd380b | 2020-03-06 11:14:06 +0100 | [diff] [blame] | 12 | #include <linux/iopoll.h> |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 13 | |
| 14 | #include "stm32mp1_ddr_regs.h" |
| 15 | #include "stm32mp1_ddr.h" |
| 16 | #include "stm32mp1_tests.h" |
| 17 | |
| 18 | #define MAX_DQS_PHASE_IDX _144deg |
| 19 | #define MAX_DQS_UNIT_IDX 7 |
| 20 | #define MAX_GSL_IDX 5 |
| 21 | #define MAX_GPS_IDX 3 |
| 22 | |
| 23 | /* Number of bytes used in this SW. ( min 1--> max 4). */ |
| 24 | #define NUM_BYTES 4 |
| 25 | |
| 26 | enum dqs_phase_enum { |
| 27 | _36deg = 0, |
| 28 | _54deg = 1, |
| 29 | _72deg = 2, |
| 30 | _90deg = 3, |
| 31 | _108deg = 4, |
| 32 | _126deg = 5, |
| 33 | _144deg = 6 |
| 34 | }; |
| 35 | |
| 36 | /* BIST Result struct */ |
| 37 | struct BIST_result { |
| 38 | /* Overall test result: |
| 39 | * 0 Fail (any bit failed) , |
| 40 | * 1 Success (All bits success) |
| 41 | */ |
| 42 | bool test_result; |
| 43 | /* 1: true, all fail / 0: False, not all bits fail */ |
| 44 | bool all_bits_fail; |
| 45 | bool bit_i_test_result[8]; /* 0 fail / 1 success */ |
| 46 | }; |
| 47 | |
| 48 | /* a struct that defines tuning parameters of a byte. */ |
| 49 | struct tuning_position { |
| 50 | u8 phase; /* DQS phase */ |
| 51 | u8 unit; /* DQS unit delay */ |
| 52 | u32 bits_delay; /* Bits deskew in this byte */ |
| 53 | }; |
| 54 | |
| 55 | /* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */ |
| 56 | const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12}; |
| 57 | |
| 58 | static u8 BIST_error_max = 1; |
| 59 | static u32 BIST_seed = 0x1234ABCD; |
| 60 | |
| 61 | static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl) |
| 62 | { |
| 63 | u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK; |
| 64 | u8 nb_bytes = NUM_BYTES; |
| 65 | |
| 66 | switch (data_bus) { |
| 67 | case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF: |
| 68 | nb_bytes /= 2; |
| 69 | break; |
| 70 | case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER: |
| 71 | nb_bytes /= 4; |
| 72 | break; |
| 73 | default: |
| 74 | break; |
| 75 | } |
| 76 | |
| 77 | return nb_bytes; |
| 78 | } |
| 79 | |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 80 | static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl) |
| 81 | { |
| 82 | /* Count bank address bits */ |
| 83 | u8 bits = 0; |
| 84 | u32 reg, val; |
| 85 | |
| 86 | reg = readl(&ctl->addrmap1); |
| 87 | /* addrmap1.addrmap_bank_b1 */ |
| 88 | val = (reg & GENMASK(5, 0)) >> 0; |
| 89 | if (val <= 31) |
| 90 | bits++; |
| 91 | /* addrmap1.addrmap_bank_b2 */ |
| 92 | val = (reg & GENMASK(13, 8)) >> 8; |
| 93 | if (val <= 31) |
| 94 | bits++; |
| 95 | /* addrmap1.addrmap_bank_b3 */ |
| 96 | val = (reg & GENMASK(21, 16)) >> 16; |
| 97 | if (val <= 31) |
| 98 | bits++; |
| 99 | |
| 100 | return bits; |
| 101 | } |
| 102 | |
| 103 | static u8 get_nb_col(struct stm32mp1_ddrctl *ctl) |
| 104 | { |
| 105 | u8 bits; |
| 106 | u32 reg, val; |
| 107 | |
| 108 | /* Count column address bits, start at 2 for b0 and b1 (fixed) */ |
| 109 | bits = 2; |
| 110 | |
| 111 | reg = readl(&ctl->addrmap2); |
| 112 | /* addrmap2.addrmap_col_b2 */ |
| 113 | val = (reg & GENMASK(3, 0)) >> 0; |
| 114 | if (val <= 7) |
| 115 | bits++; |
| 116 | /* addrmap2.addrmap_col_b3 */ |
| 117 | val = (reg & GENMASK(11, 8)) >> 8; |
| 118 | if (val <= 7) |
| 119 | bits++; |
| 120 | /* addrmap2.addrmap_col_b4 */ |
| 121 | val = (reg & GENMASK(19, 16)) >> 16; |
| 122 | if (val <= 7) |
| 123 | bits++; |
| 124 | /* addrmap2.addrmap_col_b5 */ |
| 125 | val = (reg & GENMASK(27, 24)) >> 24; |
| 126 | if (val <= 7) |
| 127 | bits++; |
| 128 | |
| 129 | reg = readl(&ctl->addrmap3); |
| 130 | /* addrmap3.addrmap_col_b6 */ |
| 131 | val = (reg & GENMASK(3, 0)) >> 0; |
| 132 | if (val <= 7) |
| 133 | bits++; |
| 134 | /* addrmap3.addrmap_col_b7 */ |
| 135 | val = (reg & GENMASK(11, 8)) >> 8; |
| 136 | if (val <= 7) |
| 137 | bits++; |
| 138 | /* addrmap3.addrmap_col_b8 */ |
| 139 | val = (reg & GENMASK(19, 16)) >> 16; |
| 140 | if (val <= 7) |
| 141 | bits++; |
| 142 | /* addrmap3.addrmap_col_b9 */ |
| 143 | val = (reg & GENMASK(27, 24)) >> 24; |
| 144 | if (val <= 7) |
| 145 | bits++; |
| 146 | |
| 147 | reg = readl(&ctl->addrmap4); |
| 148 | /* addrmap4.addrmap_col_b10 */ |
| 149 | val = (reg & GENMASK(3, 0)) >> 0; |
| 150 | if (val <= 7) |
| 151 | bits++; |
| 152 | /* addrmap4.addrmap_col_b11 */ |
| 153 | val = (reg & GENMASK(11, 8)) >> 8; |
| 154 | if (val <= 7) |
| 155 | bits++; |
| 156 | |
| 157 | return bits; |
| 158 | } |
| 159 | |
| 160 | static u8 get_nb_row(struct stm32mp1_ddrctl *ctl) |
| 161 | { |
| 162 | /* Count row address bits */ |
| 163 | u8 bits = 0; |
| 164 | u32 reg, val; |
| 165 | |
| 166 | reg = readl(&ctl->addrmap5); |
| 167 | /* addrmap5.addrmap_row_b0 */ |
| 168 | val = (reg & GENMASK(3, 0)) >> 0; |
| 169 | if (val <= 11) |
| 170 | bits++; |
| 171 | /* addrmap5.addrmap_row_b1 */ |
| 172 | val = (reg & GENMASK(11, 8)) >> 8; |
| 173 | if (val <= 11) |
| 174 | bits++; |
| 175 | /* addrmap5.addrmap_row_b2_10 */ |
| 176 | val = (reg & GENMASK(19, 16)) >> 16; |
| 177 | if (val <= 11) |
| 178 | bits += 9; |
| 179 | else |
| 180 | printf("warning: addrmap5.addrmap_row_b2_10 not supported\n"); |
| 181 | /* addrmap5.addrmap_row_b11 */ |
| 182 | val = (reg & GENMASK(27, 24)) >> 24; |
| 183 | if (val <= 11) |
| 184 | bits++; |
| 185 | |
| 186 | reg = readl(&ctl->addrmap6); |
| 187 | /* addrmap6.addrmap_row_b12 */ |
| 188 | val = (reg & GENMASK(3, 0)) >> 0; |
| 189 | if (val <= 7) |
| 190 | bits++; |
| 191 | /* addrmap6.addrmap_row_b13 */ |
| 192 | val = (reg & GENMASK(11, 8)) >> 8; |
| 193 | if (val <= 7) |
| 194 | bits++; |
| 195 | /* addrmap6.addrmap_row_b14 */ |
| 196 | val = (reg & GENMASK(19, 16)) >> 16; |
| 197 | if (val <= 7) |
| 198 | bits++; |
| 199 | /* addrmap6.addrmap_row_b15 */ |
| 200 | val = (reg & GENMASK(27, 24)) >> 24; |
| 201 | if (val <= 7) |
| 202 | bits++; |
| 203 | |
| 204 | return bits; |
| 205 | } |
| 206 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 207 | static void itm_soft_reset(struct stm32mp1_ddrphy *phy) |
| 208 | { |
| 209 | stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); |
| 210 | } |
| 211 | |
| 212 | /* Read DQ unit delay register and provides the retrieved value for DQS |
| 213 | * We are assuming that we have the same delay when clocking |
| 214 | * by DQS and when clocking by DQSN |
| 215 | */ |
| 216 | static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit) |
| 217 | { |
| 218 | u32 index; |
| 219 | u32 addr = DXNDQTR(phy, byte); |
| 220 | |
| 221 | /* We are assuming that we have the same delay when clocking by DQS |
| 222 | * and when clocking by DQSN : use only the low bits |
| 223 | */ |
| 224 | index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)) |
| 225 | & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK; |
| 226 | |
| 227 | pr_debug("%s: [%x]: %x => DQ unit index = %x\n", |
| 228 | __func__, addr, readl(addr), index); |
| 229 | |
| 230 | return index; |
| 231 | } |
| 232 | |
| 233 | /* Sets the DQS phase delay for a byte lane. |
| 234 | *phase delay is specified by giving the index of the desired delay |
| 235 | * in the dx_dll_phase array. |
| 236 | */ |
| 237 | static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx) |
| 238 | { |
| 239 | u8 sdphase_val = 0; |
| 240 | |
| 241 | /* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */ |
| 242 | sdphase_val = dx_dll_phase[phase_idx]; |
| 243 | clrsetbits_le32(DXNDLLCR(phy, byte), |
| 244 | DDRPHYC_DXNDLLCR_SDPHASE_MASK, |
| 245 | sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT); |
| 246 | } |
| 247 | |
| 248 | /* Sets the DQS unit delay for a byte lane. |
| 249 | * unit delay is specified by giving the index of the desired delay |
| 250 | * for dgsdly and dqsndly (same value). |
| 251 | */ |
| 252 | static void DQS_unit_delay(struct stm32mp1_ddrphy *phy, |
| 253 | u8 byte, u8 unit_dly_idx) |
| 254 | { |
| 255 | /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */ |
| 256 | clrsetbits_le32(DXNDQSTR(phy, byte), |
| 257 | DDRPHYC_DXNDQSTR_DQSDLY_MASK | |
| 258 | DDRPHYC_DXNDQSTR_DQSNDLY_MASK, |
| 259 | (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) | |
| 260 | (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT)); |
| 261 | |
| 262 | /* After changing this value, an ITM soft reset (PIR.ITMSRST=1, |
| 263 | * plus PIR.INIT=1) must be issued. |
| 264 | */ |
| 265 | stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); |
| 266 | } |
| 267 | |
| 268 | /* Sets the DQ unit delay for a bit line in particular byte lane. |
| 269 | * unit delay is specified by giving the desired delay |
| 270 | */ |
| 271 | static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy, |
| 272 | u8 byte, u8 bit, |
| 273 | u8 dq_delay_index) |
| 274 | { |
| 275 | u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2); |
| 276 | |
| 277 | /* same value on delay for clock DQ an DQS_b */ |
| 278 | clrsetbits_le32(DXNDQTR(phy, byte), |
| 279 | DDRPHYC_DXNDQTR_DQDLY_MASK |
| 280 | << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit), |
| 281 | dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)); |
| 282 | } |
| 283 | |
| 284 | static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy, |
| 285 | u8 byte, u8 r0dgsl_idx) |
| 286 | { |
| 287 | clrsetbits_le32(DXNDQSTR(phy, byte), |
| 288 | DDRPHYC_DXNDQSTR_R0DGSL_MASK, |
| 289 | r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT); |
| 290 | } |
| 291 | |
| 292 | static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy, |
| 293 | u8 byte, u8 r0dgps_idx) |
| 294 | { |
| 295 | clrsetbits_le32(DXNDQSTR(phy, byte), |
| 296 | DDRPHYC_DXNDQSTR_R0DGPS_MASK, |
| 297 | r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT); |
| 298 | } |
| 299 | |
| 300 | /* Basic BIST configuration for data lane tests. */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 301 | static void config_BIST(struct stm32mp1_ddrctl *ctl, |
| 302 | struct stm32mp1_ddrphy *phy) |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 303 | { |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 304 | u8 nb_bank = get_nb_bank(ctl); |
| 305 | u8 nb_row = get_nb_row(ctl); |
| 306 | u8 nb_col = get_nb_col(ctl); |
| 307 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 308 | /* Selects the SDRAM bank address to be used during BIST. */ |
| 309 | u32 bbank = 0; |
| 310 | /* Selects the SDRAM row address to be used during BIST. */ |
| 311 | u32 brow = 0; |
| 312 | /* Selects the SDRAM column address to be used during BIST. */ |
| 313 | u32 bcol = 0; |
| 314 | /* Selects the value by which the SDRAM address is incremented |
| 315 | * for each write/read access. |
| 316 | */ |
| 317 | u32 bainc = 0x00000008; |
| 318 | /* Specifies the maximum SDRAM rank to be used during BIST. |
| 319 | * The default value is set to maximum ranks minus 1. |
| 320 | * must be 0 with single rank |
| 321 | */ |
| 322 | u32 bmrank = 0; |
| 323 | /* Selects the SDRAM rank to be used during BIST. |
| 324 | * must be 0 with single rank |
| 325 | */ |
| 326 | u32 brank = 0; |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 327 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 328 | /* Specifies the maximum SDRAM bank address to be used during |
| 329 | * BIST before the address & increments to the next rank. |
| 330 | */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 331 | u32 bmbank = (1 << nb_bank) - 1; |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 332 | /* Specifies the maximum SDRAM row address to be used during |
| 333 | * BIST before the address & increments to the next bank. |
| 334 | */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 335 | u32 bmrow = (1 << nb_row) - 1; |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 336 | /* Specifies the maximum SDRAM column address to be used during |
| 337 | * BIST before the address & increments to the next row. |
| 338 | */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 339 | u32 bmcol = (1 << nb_col) - 1; |
| 340 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 341 | u32 bmode_conf = 0x00000001; /* DRam mode */ |
| 342 | u32 bdxen_conf = 0x00000001; /* BIST on Data byte */ |
| 343 | u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */ |
| 344 | |
| 345 | /*Setup BIST for DRAM mode, and LFSR-random data pattern.*/ |
| 346 | /*Write BISTRR.BMODE = 1?b1;*/ |
| 347 | /*Write BISTRR.BDXEN = 1?b1;*/ |
| 348 | /*Write BISTRR.BDPAT = 2?b10;*/ |
| 349 | |
| 350 | /* reset BIST */ |
| 351 | writel(0x3, &phy->bistrr); |
| 352 | |
| 353 | writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17), |
| 354 | &phy->bistrr); |
| 355 | |
| 356 | /*Setup BIST Word Count*/ |
| 357 | /*Write BISTWCR.BWCNT = 16?b0008;*/ |
| 358 | writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */ |
| 359 | |
| 360 | writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0); |
| 361 | writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 362 | writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2); |
| 363 | } |
| 364 | |
| 365 | /* Select the Byte lane to be tested by BIST. */ |
| 366 | static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8) |
| 367 | { |
| 368 | clrsetbits_le32(&phy->bistrr, |
| 369 | DDRPHYC_BISTRR_BDXSEL_MASK, |
| 370 | datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT); |
| 371 | |
| 372 | /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/ |
| 373 | /* Write BISTRR.BDXSEL = datx8; */ |
| 374 | } |
| 375 | |
| 376 | /* Perform BIST Write_Read test on a byte lane and return test result. */ |
| 377 | static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte, |
| 378 | struct BIST_result *bist) |
| 379 | { |
| 380 | bool result = true; /* BIST_SUCCESS */ |
| 381 | u32 cnt = 0; |
| 382 | u32 error = 0; |
Patrick Delaunay | 0cd380b | 2020-03-06 11:14:06 +0100 | [diff] [blame] | 383 | u32 val; |
| 384 | int ret; |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 385 | |
| 386 | bist->test_result = true; |
| 387 | |
| 388 | run: |
| 389 | itm_soft_reset(phy); |
| 390 | |
| 391 | /*Perform BIST Reset*/ |
| 392 | /* Write BISTRR.BINST = 3?b011; */ |
| 393 | clrsetbits_le32(&phy->bistrr, |
| 394 | 0x00000007, |
| 395 | 0x00000003); |
| 396 | |
| 397 | /*Re-seed LFSR*/ |
| 398 | /* Write BISTLSR.SEED = 32'h1234ABCD; */ |
| 399 | if (BIST_seed) |
| 400 | writel(BIST_seed, &phy->bistlsr); |
| 401 | else |
| 402 | writel(rand(), &phy->bistlsr); |
| 403 | |
| 404 | /* some delay to reset BIST */ |
Patrick Delaunay | 6cdc120 | 2020-03-06 11:14:10 +0100 | [diff] [blame] | 405 | udelay(10); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 406 | |
| 407 | /*Perform BIST Run*/ |
| 408 | clrsetbits_le32(&phy->bistrr, |
| 409 | 0x00000007, |
| 410 | 0x00000001); |
| 411 | /* Write BISTRR.BINST = 3?b001; */ |
| 412 | |
Patrick Delaunay | 0cd380b | 2020-03-06 11:14:06 +0100 | [diff] [blame] | 413 | /* poll on BISTGSR.BDONE and wait max 1000 us */ |
| 414 | ret = readl_poll_timeout(&phy->bistgsr, val, |
| 415 | val & DDRPHYC_BISTGSR_BDDONE, 1000); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 416 | |
Patrick Delaunay | 0cd380b | 2020-03-06 11:14:06 +0100 | [diff] [blame] | 417 | if (ret < 0) { |
| 418 | printf("warning: BIST timeout\n"); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 419 | result = false; /* BIST_FAIL; */ |
Patrick Delaunay | 0cd380b | 2020-03-06 11:14:06 +0100 | [diff] [blame] | 420 | /*Perform BIST Stop */ |
| 421 | clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002); |
| 422 | } else { |
| 423 | /*Check if received correct number of words*/ |
| 424 | /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */ |
| 425 | if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) |
| 426 | == readl(&phy->bistwcr)) { |
| 427 | /*Determine if there is a data comparison error*/ |
| 428 | /* if (Read BISTGSR.BDXERR = 1?b0) */ |
| 429 | if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR) |
| 430 | result = false; /* BIST_FAIL; */ |
| 431 | else |
| 432 | result = true; /* BIST_SUCCESS; */ |
| 433 | } else { |
| 434 | result = false; /* BIST_FAIL; */ |
| 435 | } |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 436 | } |
| 437 | |
| 438 | /* loop while success */ |
| 439 | cnt++; |
| 440 | if (result && cnt != 1000) |
| 441 | goto run; |
| 442 | |
| 443 | if (!result) |
| 444 | error++; |
| 445 | |
| 446 | if (error < BIST_error_max) { |
| 447 | if (cnt != 1000) |
| 448 | goto run; |
| 449 | bist->test_result = true; |
| 450 | } else { |
| 451 | bist->test_result = false; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /* After running the deskew algo, this function applies the new DQ delays |
| 456 | * by reading them from the array "deskew_delay"and writing in PHY registers. |
| 457 | * The bits that are not deskewed parfectly (too much skew on them, |
| 458 | * or data eye very wide) are marked in the array deskew_non_converge. |
| 459 | */ |
| 460 | static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte, |
| 461 | u8 deskew_delay[NUM_BYTES][8], |
| 462 | u8 deskew_non_converge[NUM_BYTES][8]) |
| 463 | { |
| 464 | u8 bit_i; |
| 465 | u8 index; |
| 466 | |
| 467 | for (bit_i = 0; bit_i < 8; bit_i++) { |
| 468 | set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]); |
| 469 | index = DQ_unit_index(phy, byte, bit_i); |
| 470 | pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]", |
| 471 | byte, bit_i, deskew_delay[byte][bit_i], |
| 472 | index, index - 3); |
| 473 | printf("Byte %d, bit %d, DQ delay = %d", |
| 474 | byte, bit_i, deskew_delay[byte][bit_i]); |
| 475 | if (deskew_non_converge[byte][bit_i] == 1) |
| 476 | pr_debug(" - not converged : still more skew"); |
| 477 | printf("\n"); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /* DQ Bit de-skew algorithm. |
| 482 | * Deskews data lines as much as possible. |
| 483 | * 1. Add delay to DQS line until finding the failure |
| 484 | * (normally a hold time violation) |
| 485 | * 2. Reduce DQS line by small steps until finding the very first time |
| 486 | * we go back to "Pass" condition. |
| 487 | * 3. For each DQ line, Reduce DQ delay until finding the very first failure |
| 488 | * (normally a hold time fail) |
| 489 | * 4. When all bits are at their first failure delay, we can consider them |
| 490 | * aligned. |
| 491 | * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions |
| 492 | * at any step) |
| 493 | * TODO Provide a return Status. Improve doc |
| 494 | */ |
| 495 | static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl, |
| 496 | struct stm32mp1_ddrphy *phy, char *string) |
| 497 | { |
| 498 | /* New DQ delay value (index), set during Deskew algo */ |
| 499 | u8 deskew_delay[NUM_BYTES][8]; |
| 500 | /*If there is still skew on a bit, mark this bit. */ |
| 501 | u8 deskew_non_converge[NUM_BYTES][8]; |
| 502 | struct BIST_result result; |
| 503 | s8 dqs_unit_delay_index = 0; |
| 504 | u8 datx8 = 0; |
| 505 | u8 bit_i = 0; |
| 506 | s8 phase_idx = 0; |
| 507 | s8 bit_i_delay_index = 0; |
| 508 | u8 success = 0; |
| 509 | struct tuning_position last_right_ok; |
| 510 | u8 force_stop = 0; |
| 511 | u8 fail_found; |
| 512 | u8 error = 0; |
| 513 | u8 nb_bytes = get_nb_bytes(ctl); |
| 514 | /* u8 last_pass_dqs_unit = 0; */ |
| 515 | |
| 516 | memset(deskew_delay, 0, sizeof(deskew_delay)); |
| 517 | memset(deskew_non_converge, 0, sizeof(deskew_non_converge)); |
| 518 | |
| 519 | /*Disable DQS Drift Compensation*/ |
| 520 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| 521 | /*Disable all bytes*/ |
| 522 | /* Disable automatic power down of DLL and IOs when disabling |
| 523 | * a byte (To avoid having to add programming and delay |
| 524 | * for a DLL re-lock when later re-enabling a disabled Byte Lane) |
| 525 | */ |
| 526 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| 527 | |
| 528 | /* Disable all data bytes */ |
| 529 | clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| 530 | clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| 531 | clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| 532 | clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| 533 | |
| 534 | /* Config the BIST block */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 535 | config_BIST(ctl, phy); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 536 | pr_debug("BIST Config done.\n"); |
| 537 | |
| 538 | /* Train each byte */ |
| 539 | for (datx8 = 0; datx8 < nb_bytes; datx8++) { |
| 540 | if (ctrlc()) { |
| 541 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 542 | datx8 + 1, nb_bytes, error); |
| 543 | return TEST_FAILED; |
| 544 | } |
| 545 | pr_debug("\n======================\n"); |
| 546 | pr_debug("Start deskew byte %d .\n", datx8); |
| 547 | pr_debug("======================\n"); |
| 548 | /* Enable Byte (DXNGCR, bit DXEN) */ |
| 549 | setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); |
| 550 | |
| 551 | /* Select the byte lane for comparison of read data */ |
| 552 | BIST_datx8_sel(phy, datx8); |
| 553 | |
| 554 | /* Set all DQDLYn to maximum value. All bits within the byte |
| 555 | * will be delayed with DQSTR = 2 instead of max = 3 |
| 556 | * to avoid inter bits fail influence |
| 557 | */ |
| 558 | writel(0xAAAAAAAA, DXNDQTR(phy, datx8)); |
| 559 | |
| 560 | /* Set the DQS phase delay to 90 DEG (default). |
| 561 | * What is defined here is the index of the desired config |
| 562 | * in the PHASE array. |
| 563 | */ |
| 564 | phase_idx = _90deg; |
| 565 | |
| 566 | /* Set DQS unit delay to the max value. */ |
| 567 | dqs_unit_delay_index = MAX_DQS_UNIT_IDX; |
| 568 | DQS_unit_delay(phy, datx8, dqs_unit_delay_index); |
| 569 | DQS_phase_delay(phy, datx8, phase_idx); |
| 570 | |
| 571 | /* Issue a DLL soft reset */ |
| 572 | clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); |
| 573 | setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); |
| 574 | |
| 575 | /* Test this typical init condition */ |
| 576 | BIST_test(phy, datx8, &result); |
| 577 | success = result.test_result; |
| 578 | |
| 579 | /* If the test pass in this typical condition, |
| 580 | * start the algo with it. |
| 581 | * Else, look for Pass init condition |
| 582 | */ |
| 583 | if (!success) { |
| 584 | pr_debug("Fail at init condtion. Let's look for a good init condition.\n"); |
| 585 | success = 0; /* init */ |
| 586 | /* Make sure we start with a PASS condition before |
| 587 | * looking for a fail condition. |
| 588 | * Find the first PASS PHASE condition |
| 589 | */ |
| 590 | |
| 591 | /* escape if we find a PASS */ |
| 592 | pr_debug("increase Phase idx\n"); |
| 593 | while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) { |
| 594 | DQS_phase_delay(phy, datx8, phase_idx); |
| 595 | BIST_test(phy, datx8, &result); |
| 596 | success = result.test_result; |
| 597 | phase_idx++; |
| 598 | } |
| 599 | /* if ended with success |
| 600 | * ==>> Restore the fist success condition |
| 601 | */ |
| 602 | if (success) |
| 603 | phase_idx--; /* because it ended with ++ */ |
| 604 | } |
| 605 | if (ctrlc()) { |
| 606 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 607 | datx8 + 1, nb_bytes, error); |
| 608 | return TEST_FAILED; |
| 609 | } |
| 610 | /* We couldn't find a successful condition, its seems |
| 611 | * we have hold violation, lets try reduce DQS_unit Delay |
| 612 | */ |
| 613 | if (!success) { |
| 614 | /* We couldn't find a successful condition, its seems |
| 615 | * we have hold violation, lets try reduce DQS_unit |
| 616 | * Delay |
| 617 | */ |
| 618 | pr_debug("Still fail. Try decrease DQS Unit delay\n"); |
| 619 | |
| 620 | phase_idx = 0; |
| 621 | dqs_unit_delay_index = 0; |
| 622 | DQS_phase_delay(phy, datx8, phase_idx); |
| 623 | |
| 624 | /* escape if we find a PASS */ |
| 625 | while (!success && |
| 626 | (dqs_unit_delay_index <= |
| 627 | MAX_DQS_UNIT_IDX)) { |
| 628 | DQS_unit_delay(phy, datx8, |
| 629 | dqs_unit_delay_index); |
| 630 | BIST_test(phy, datx8, &result); |
| 631 | success = result.test_result; |
| 632 | dqs_unit_delay_index++; |
| 633 | } |
| 634 | if (success) { |
| 635 | /* Restore the first success condition*/ |
| 636 | dqs_unit_delay_index--; |
| 637 | /* last_pass_dqs_unit = dqs_unit_delay_index;*/ |
| 638 | DQS_unit_delay(phy, datx8, |
| 639 | dqs_unit_delay_index); |
| 640 | } else { |
| 641 | /* No need to continue, |
| 642 | * there is no pass region. |
| 643 | */ |
| 644 | force_stop = 1; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | /* There is an initial PASS condition |
| 649 | * Look for the first failing condition by PHASE stepping. |
| 650 | * This part of the algo can finish without converging. |
| 651 | */ |
| 652 | if (force_stop) { |
| 653 | printf("Result: Failed "); |
| 654 | printf("[Cannot Deskew lines, "); |
| 655 | printf("there is no PASS region]\n"); |
| 656 | error++; |
| 657 | continue; |
| 658 | } |
| 659 | if (ctrlc()) { |
| 660 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 661 | datx8 + 1, nb_bytes, error); |
| 662 | return TEST_FAILED; |
| 663 | } |
| 664 | |
| 665 | pr_debug("there is a pass region for phase idx %d\n", |
| 666 | phase_idx); |
| 667 | pr_debug("Step1: Find the first failing condition\n"); |
| 668 | /* Look for the first failing condition by PHASE stepping. |
| 669 | * This part of the algo can finish without converging. |
| 670 | */ |
| 671 | |
| 672 | /* escape if we find a fail (hold time violation) |
| 673 | * condition at any bit or if out of delay range. |
| 674 | */ |
| 675 | while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) { |
| 676 | DQS_phase_delay(phy, datx8, phase_idx); |
| 677 | BIST_test(phy, datx8, &result); |
| 678 | success = result.test_result; |
| 679 | phase_idx++; |
| 680 | } |
| 681 | if (ctrlc()) { |
| 682 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 683 | datx8 + 1, nb_bytes, error); |
| 684 | return TEST_FAILED; |
| 685 | } |
| 686 | |
| 687 | /* if the loop ended with a failing condition at any bit, |
| 688 | * lets look for the first previous success condition by unit |
| 689 | * stepping (minimal delay) |
| 690 | */ |
| 691 | if (!success) { |
| 692 | pr_debug("Fail region (PHASE) found phase idx %d\n", |
| 693 | phase_idx); |
| 694 | pr_debug("Let's look for first success by DQS Unit steps\n"); |
| 695 | /* This part, the algo always converge */ |
| 696 | phase_idx--; |
| 697 | |
| 698 | /* escape if we find a success condition |
| 699 | * or if out of delay range. |
| 700 | */ |
| 701 | while (!success && dqs_unit_delay_index >= 0) { |
| 702 | DQS_unit_delay(phy, datx8, |
| 703 | dqs_unit_delay_index); |
| 704 | BIST_test(phy, datx8, &result); |
| 705 | success = result.test_result; |
| 706 | dqs_unit_delay_index--; |
| 707 | } |
| 708 | /* if the loop ended with a success condition, |
| 709 | * the last delay Right OK (before hold violation) |
| 710 | * condition is then defined as following: |
| 711 | */ |
| 712 | if (success) { |
| 713 | /* Hold the dely parameters of the the last |
| 714 | * delay Right OK condition. |
| 715 | * -1 to get back to current condition |
| 716 | */ |
| 717 | last_right_ok.phase = phase_idx; |
| 718 | /*+1 to get back to current condition */ |
| 719 | last_right_ok.unit = dqs_unit_delay_index + 1; |
| 720 | last_right_ok.bits_delay = 0xFFFFFFFF; |
| 721 | pr_debug("Found %d\n", dqs_unit_delay_index); |
| 722 | } else { |
| 723 | /* the last OK condition is then with the |
| 724 | * previous phase_idx. |
| 725 | * -2 instead of -1 because at the last |
| 726 | * iteration of the while(), |
| 727 | * we incremented phase_idx |
| 728 | */ |
| 729 | last_right_ok.phase = phase_idx - 1; |
| 730 | /* Nominal+1. Because we want the previous |
| 731 | * delay after reducing the phase delay. |
| 732 | */ |
| 733 | last_right_ok.unit = 1; |
| 734 | last_right_ok.bits_delay = 0xFFFFFFFF; |
| 735 | pr_debug("Not Found : try previous phase %d\n", |
| 736 | phase_idx - 1); |
| 737 | |
| 738 | DQS_phase_delay(phy, datx8, phase_idx - 1); |
| 739 | dqs_unit_delay_index = 0; |
| 740 | success = true; |
| 741 | while (success && |
| 742 | (dqs_unit_delay_index < |
| 743 | MAX_DQS_UNIT_IDX)) { |
| 744 | DQS_unit_delay(phy, datx8, |
| 745 | dqs_unit_delay_index); |
| 746 | BIST_test(phy, datx8, &result); |
| 747 | success = result.test_result; |
| 748 | dqs_unit_delay_index++; |
| 749 | pr_debug("dqs_unit_delay_index = %d, result = %d\n", |
| 750 | dqs_unit_delay_index, success); |
| 751 | } |
| 752 | |
| 753 | if (!success) { |
| 754 | last_right_ok.unit = |
| 755 | dqs_unit_delay_index - 1; |
| 756 | } else { |
| 757 | last_right_ok.unit = 0; |
| 758 | pr_debug("ERROR: failed region not FOUND"); |
| 759 | } |
| 760 | } |
| 761 | } else { |
| 762 | /* we can't find a failing condition at all bits |
| 763 | * ==> Just hold the last test condition |
| 764 | * (the max DQS delay) |
| 765 | * which is the most likely, |
| 766 | * the closest to a hold violation |
| 767 | * If we can't find a Fail condition after |
| 768 | * the Pass region, stick at this position |
| 769 | * In order to have max chances to find a fail |
| 770 | * when reducing DQ delays. |
| 771 | */ |
| 772 | last_right_ok.phase = MAX_DQS_PHASE_IDX; |
| 773 | last_right_ok.unit = MAX_DQS_UNIT_IDX; |
| 774 | last_right_ok.bits_delay = 0xFFFFFFFF; |
| 775 | pr_debug("Can't find the a fail condition\n"); |
| 776 | } |
| 777 | |
| 778 | /* step 2: |
| 779 | * if we arrive at this stage, it means that we found the last |
| 780 | * Right OK condition (by tweeking the DQS delay). Or we simply |
| 781 | * pushed DQS delay to the max |
| 782 | * This means that by reducing the delay on some DQ bits, |
| 783 | * we should find a failing condition. |
| 784 | */ |
| 785 | printf("Byte %d, DQS unit = %d, phase = %d\n", |
| 786 | datx8, last_right_ok.unit, last_right_ok.phase); |
| 787 | pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n", |
| 788 | last_right_ok.unit, last_right_ok.phase, |
| 789 | last_right_ok.bits_delay); |
| 790 | |
| 791 | /* Restore the last_right_ok condtion. */ |
| 792 | DQS_unit_delay(phy, datx8, last_right_ok.unit); |
| 793 | DQS_phase_delay(phy, datx8, last_right_ok.phase); |
| 794 | writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8)); |
| 795 | |
| 796 | /* train each bit |
| 797 | * reduce delay on each bit, and perform a write/read test |
| 798 | * and stop at the very first time it fails. |
| 799 | * the goal is the find the first failing condition |
| 800 | * for each bit. |
| 801 | * When we achieve this condition< for all the bits, |
| 802 | * we are sure they are aligned (+/- step resolution) |
| 803 | */ |
| 804 | fail_found = 0; |
| 805 | for (bit_i = 0; bit_i < 8; bit_i++) { |
| 806 | if (ctrlc()) { |
| 807 | sprintf(string, |
| 808 | "interrupted at byte %d/%d, error=%d", |
| 809 | datx8 + 1, nb_bytes, error); |
| 810 | return error; |
| 811 | } |
| 812 | pr_debug("deskewing bit %d:\n", bit_i); |
| 813 | success = 1; /* init */ |
| 814 | /* Set all DQDLYn to maximum value. |
| 815 | * Only bit_i will be down-delayed |
| 816 | * ==> if we have a fail, it will be definitely |
| 817 | * from bit_i |
| 818 | */ |
| 819 | writel(0xFFFFFFFF, DXNDQTR(phy, datx8)); |
| 820 | /* Arriving at this stage, |
| 821 | * we have a success condition with delay = 3; |
| 822 | */ |
| 823 | bit_i_delay_index = 3; |
| 824 | |
| 825 | /* escape if bit delay is out of range or |
| 826 | * if a fatil occurs |
| 827 | */ |
| 828 | while ((bit_i_delay_index >= 0) && success) { |
| 829 | set_DQ_unit_delay(phy, datx8, |
| 830 | bit_i, |
| 831 | bit_i_delay_index); |
| 832 | BIST_test(phy, datx8, &result); |
| 833 | success = result.test_result; |
| 834 | bit_i_delay_index--; |
| 835 | } |
| 836 | |
| 837 | /* if escape with a fail condition |
| 838 | * ==> save this position for bit_i |
| 839 | */ |
| 840 | if (!success) { |
| 841 | /* save the delay position. |
| 842 | * Add 1 because the while loop ended with a --, |
| 843 | * and that we need to hold the last success |
| 844 | * delay |
| 845 | */ |
| 846 | deskew_delay[datx8][bit_i] = |
| 847 | bit_i_delay_index + 2; |
| 848 | if (deskew_delay[datx8][bit_i] > 3) |
| 849 | deskew_delay[datx8][bit_i] = 3; |
| 850 | |
| 851 | /* A flag that states we found at least a fail |
| 852 | * at one bit. |
| 853 | */ |
| 854 | fail_found = 1; |
| 855 | pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n", |
| 856 | bit_i, bit_i_delay_index + 1, |
| 857 | datx8, bit_i, |
| 858 | deskew_delay[datx8][bit_i]); |
| 859 | } else { |
| 860 | /* if we can find a success condition by |
| 861 | * back-delaying this bit, just set the delay |
| 862 | * to 0 (the best deskew |
| 863 | * possible) and mark the bit. |
| 864 | */ |
| 865 | deskew_delay[datx8][bit_i] = 0; |
| 866 | /* set a flag that will be used later |
| 867 | * in the report. |
| 868 | */ |
| 869 | deskew_non_converge[datx8][bit_i] = 1; |
| 870 | pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n", |
| 871 | bit_i, datx8, bit_i, |
| 872 | deskew_delay[datx8][bit_i]); |
| 873 | } |
| 874 | } |
| 875 | pr_debug("**********byte %d tuning complete************\n", |
| 876 | datx8); |
| 877 | /* If we can't find any failure by back delaying DQ lines, |
| 878 | * hold the default values |
| 879 | */ |
| 880 | if (!fail_found) { |
| 881 | for (bit_i = 0; bit_i < 8; bit_i++) |
| 882 | deskew_delay[datx8][bit_i] = 0; |
| 883 | pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n"); |
| 884 | } |
| 885 | |
| 886 | apply_deskew_results(phy, datx8, deskew_delay, |
| 887 | deskew_non_converge); |
| 888 | /* Restore nominal value for DQS delay */ |
| 889 | DQS_phase_delay(phy, datx8, 3); |
| 890 | DQS_unit_delay(phy, datx8, 3); |
| 891 | /* disable byte after byte bits deskew */ |
| 892 | clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); |
| 893 | } /* end of byte deskew */ |
| 894 | |
| 895 | /* re-enable all data bytes */ |
| 896 | setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| 897 | setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| 898 | setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| 899 | setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| 900 | |
| 901 | if (error) { |
| 902 | sprintf(string, "error = %d", error); |
| 903 | return TEST_FAILED; |
| 904 | } |
| 905 | |
| 906 | return TEST_PASSED; |
| 907 | } /* end function */ |
| 908 | |
| 909 | /* Trim DQS timings and set it in the centre of data eye. |
| 910 | * Look for a PPPPF region, then look for a FPPP region and finally select |
| 911 | * the mid of the FPPPPPF region |
| 912 | */ |
| 913 | static enum test_result eye_training(struct stm32mp1_ddrctl *ctl, |
| 914 | struct stm32mp1_ddrphy *phy, char *string) |
| 915 | { |
| 916 | /*Stores the DQS trim values (PHASE index, unit index) */ |
| 917 | u8 eye_training_val[NUM_BYTES][2]; |
| 918 | u8 byte = 0; |
| 919 | struct BIST_result result; |
| 920 | s8 dqs_unit_delay_index = 0; |
| 921 | s8 phase_idx = 0; |
| 922 | s8 dqs_unit_delay_index_pass = 0; |
| 923 | s8 phase_idx_pass = 0; |
| 924 | u8 success = 0; |
| 925 | u8 left_phase_bound_found, right_phase_bound_found; |
| 926 | u8 left_unit_bound_found, right_unit_bound_found; |
| 927 | u8 left_bound_found, right_bound_found; |
| 928 | struct tuning_position left_bound, right_bound; |
| 929 | u8 error = 0; |
| 930 | u8 nb_bytes = get_nb_bytes(ctl); |
| 931 | |
| 932 | /*Disable DQS Drift Compensation*/ |
| 933 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| 934 | /*Disable all bytes*/ |
| 935 | /* Disable automatic power down of DLL and IOs when disabling a byte |
| 936 | * (To avoid having to add programming and delay |
| 937 | * for a DLL re-lock when later re-enabling a disabled Byte Lane) |
| 938 | */ |
| 939 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| 940 | |
| 941 | /*Disable all data bytes */ |
| 942 | clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| 943 | clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| 944 | clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| 945 | clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| 946 | |
| 947 | /* Config the BIST block */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 948 | config_BIST(ctl, phy); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 949 | |
| 950 | for (byte = 0; byte < nb_bytes; byte++) { |
| 951 | if (ctrlc()) { |
| 952 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 953 | byte + 1, nb_bytes, error); |
| 954 | return TEST_FAILED; |
| 955 | } |
| 956 | right_bound.phase = 0; |
| 957 | right_bound.unit = 0; |
| 958 | |
| 959 | left_bound.phase = 0; |
| 960 | left_bound.unit = 0; |
| 961 | |
| 962 | left_phase_bound_found = 0; |
| 963 | right_phase_bound_found = 0; |
| 964 | |
| 965 | left_unit_bound_found = 0; |
| 966 | right_unit_bound_found = 0; |
| 967 | |
| 968 | left_bound_found = 0; |
| 969 | right_bound_found = 0; |
| 970 | |
| 971 | /* Enable Byte (DXNGCR, bit DXEN) */ |
| 972 | setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); |
| 973 | |
| 974 | /* Select the byte lane for comparison of read data */ |
| 975 | BIST_datx8_sel(phy, byte); |
| 976 | |
| 977 | /* Set DQS phase delay to the nominal value. */ |
| 978 | phase_idx = _90deg; |
| 979 | phase_idx_pass = phase_idx; |
| 980 | |
| 981 | /* Set DQS unit delay to the nominal value. */ |
| 982 | dqs_unit_delay_index = 3; |
| 983 | dqs_unit_delay_index_pass = dqs_unit_delay_index; |
| 984 | success = 0; |
| 985 | |
| 986 | pr_debug("STEP0: Find Init delay\n"); |
| 987 | /* STEP0: Find Init delay: a delay that put the system |
| 988 | * in a "Pass" condition then (TODO) update |
| 989 | * dqs_unit_delay_index_pass & phase_idx_pass |
| 990 | */ |
| 991 | DQS_unit_delay(phy, byte, dqs_unit_delay_index); |
| 992 | DQS_phase_delay(phy, byte, phase_idx); |
| 993 | BIST_test(phy, byte, &result); |
| 994 | success = result.test_result; |
| 995 | /* If we have a fail in the nominal condition */ |
| 996 | if (!success) { |
| 997 | /* Look at the left */ |
| 998 | while (phase_idx >= 0 && !success) { |
| 999 | phase_idx--; |
| 1000 | DQS_phase_delay(phy, byte, phase_idx); |
| 1001 | BIST_test(phy, byte, &result); |
| 1002 | success = result.test_result; |
| 1003 | } |
| 1004 | } |
| 1005 | if (!success) { |
| 1006 | /* if we can't find pass condition, |
| 1007 | * then look at the right |
| 1008 | */ |
| 1009 | phase_idx = _90deg; |
| 1010 | while (phase_idx <= MAX_DQS_PHASE_IDX && |
| 1011 | !success) { |
| 1012 | phase_idx++; |
| 1013 | DQS_phase_delay(phy, byte, |
| 1014 | phase_idx); |
| 1015 | BIST_test(phy, byte, &result); |
| 1016 | success = result.test_result; |
| 1017 | } |
| 1018 | } |
| 1019 | /* save the pass condition */ |
| 1020 | if (success) { |
| 1021 | phase_idx_pass = phase_idx; |
| 1022 | } else { |
| 1023 | printf("Result: Failed "); |
| 1024 | printf("[Cannot DQS timings, "); |
| 1025 | printf("there is no PASS region]\n"); |
| 1026 | error++; |
| 1027 | continue; |
| 1028 | } |
| 1029 | |
| 1030 | if (ctrlc()) { |
| 1031 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 1032 | byte + 1, nb_bytes, error); |
| 1033 | return TEST_FAILED; |
| 1034 | } |
| 1035 | pr_debug("STEP1: Find LEFT PHASE DQS Bound\n"); |
| 1036 | /* STEP1: Find LEFT PHASE DQS Bound */ |
| 1037 | while ((phase_idx >= 0) && |
| 1038 | (phase_idx <= MAX_DQS_PHASE_IDX) && |
| 1039 | !left_phase_bound_found) { |
| 1040 | DQS_unit_delay(phy, byte, |
| 1041 | dqs_unit_delay_index); |
| 1042 | DQS_phase_delay(phy, byte, |
| 1043 | phase_idx); |
| 1044 | BIST_test(phy, byte, &result); |
| 1045 | success = result.test_result; |
| 1046 | |
| 1047 | /*TODO: Manage the case were at the beginning |
| 1048 | * there is already a fail |
| 1049 | */ |
| 1050 | if (!success) { |
| 1051 | /* the last pass condition */ |
| 1052 | left_bound.phase = ++phase_idx; |
| 1053 | left_phase_bound_found = 1; |
| 1054 | } else if (success) { |
| 1055 | phase_idx--; |
| 1056 | } |
| 1057 | } |
| 1058 | if (!left_phase_bound_found) { |
| 1059 | left_bound.phase = 0; |
| 1060 | phase_idx = 0; |
| 1061 | } |
| 1062 | /* If not found, lets take 0 */ |
| 1063 | |
| 1064 | if (ctrlc()) { |
| 1065 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 1066 | byte + 1, nb_bytes, error); |
| 1067 | return TEST_FAILED; |
| 1068 | } |
| 1069 | pr_debug("STEP2: Find UNIT left bound\n"); |
| 1070 | /* STEP2: Find UNIT left bound */ |
| 1071 | while ((dqs_unit_delay_index >= 0) && |
| 1072 | !left_unit_bound_found) { |
| 1073 | DQS_unit_delay(phy, byte, |
| 1074 | dqs_unit_delay_index); |
| 1075 | DQS_phase_delay(phy, byte, phase_idx); |
| 1076 | BIST_test(phy, byte, &result); |
| 1077 | success = result.test_result; |
| 1078 | if (!success) { |
| 1079 | left_bound.unit = |
| 1080 | ++dqs_unit_delay_index; |
| 1081 | left_unit_bound_found = 1; |
| 1082 | left_bound_found = 1; |
| 1083 | } else if (success) { |
| 1084 | dqs_unit_delay_index--; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | /* If not found, lets take 0 */ |
| 1089 | if (!left_unit_bound_found) |
| 1090 | left_bound.unit = 0; |
| 1091 | |
| 1092 | if (ctrlc()) { |
| 1093 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 1094 | byte + 1, nb_bytes, error); |
| 1095 | return TEST_FAILED; |
| 1096 | } |
| 1097 | pr_debug("STEP3: Find PHase right bound\n"); |
| 1098 | /* STEP3: Find PHase right bound, start with "pass" |
| 1099 | * condition |
| 1100 | */ |
| 1101 | |
| 1102 | /* Set DQS phase delay to the pass value. */ |
| 1103 | phase_idx = phase_idx_pass; |
| 1104 | |
| 1105 | /* Set DQS unit delay to the pass value. */ |
| 1106 | dqs_unit_delay_index = dqs_unit_delay_index_pass; |
| 1107 | |
| 1108 | while ((phase_idx <= MAX_DQS_PHASE_IDX) && |
| 1109 | !right_phase_bound_found) { |
| 1110 | DQS_unit_delay(phy, byte, |
| 1111 | dqs_unit_delay_index); |
| 1112 | DQS_phase_delay(phy, byte, phase_idx); |
| 1113 | BIST_test(phy, byte, &result); |
| 1114 | success = result.test_result; |
| 1115 | if (!success) { |
| 1116 | /* the last pass condition */ |
| 1117 | right_bound.phase = --phase_idx; |
| 1118 | right_phase_bound_found = 1; |
| 1119 | } else if (success) { |
| 1120 | phase_idx++; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | /* If not found, lets take the max value */ |
| 1125 | if (!right_phase_bound_found) { |
| 1126 | right_bound.phase = MAX_DQS_PHASE_IDX; |
| 1127 | phase_idx = MAX_DQS_PHASE_IDX; |
| 1128 | } |
| 1129 | |
| 1130 | if (ctrlc()) { |
| 1131 | sprintf(string, "interrupted at byte %d/%d, error=%d", |
| 1132 | byte + 1, nb_bytes, error); |
| 1133 | return TEST_FAILED; |
| 1134 | } |
| 1135 | pr_debug("STEP4: Find UNIT right bound\n"); |
| 1136 | /* STEP4: Find UNIT right bound */ |
| 1137 | while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) && |
| 1138 | !right_unit_bound_found) { |
| 1139 | DQS_unit_delay(phy, byte, |
| 1140 | dqs_unit_delay_index); |
| 1141 | DQS_phase_delay(phy, byte, phase_idx); |
| 1142 | BIST_test(phy, byte, &result); |
| 1143 | success = result.test_result; |
| 1144 | if (!success) { |
| 1145 | right_bound.unit = |
| 1146 | --dqs_unit_delay_index; |
| 1147 | right_unit_bound_found = 1; |
| 1148 | right_bound_found = 1; |
| 1149 | } else if (success) { |
| 1150 | dqs_unit_delay_index++; |
| 1151 | } |
| 1152 | } |
| 1153 | /* If not found, lets take the max value */ |
| 1154 | if (!right_unit_bound_found) |
| 1155 | right_bound.unit = MAX_DQS_UNIT_IDX; |
| 1156 | |
| 1157 | /* If we found a regular FAil Pass FAil pattern |
| 1158 | * FFPPPPPPFF |
| 1159 | * OR PPPPPFF Or FFPPPPP |
| 1160 | */ |
| 1161 | |
| 1162 | if (left_bound_found || right_bound_found) { |
| 1163 | eye_training_val[byte][0] = (right_bound.phase + |
| 1164 | left_bound.phase) / 2; |
| 1165 | eye_training_val[byte][1] = (right_bound.unit + |
| 1166 | left_bound.unit) / 2; |
| 1167 | |
| 1168 | /* If we already lost 1/2PHASE Tuning, |
| 1169 | * let's try to recover by ++ on unit |
| 1170 | */ |
| 1171 | if (((right_bound.phase + left_bound.phase) % 2 == 1) && |
| 1172 | eye_training_val[byte][1] != MAX_DQS_UNIT_IDX) |
| 1173 | eye_training_val[byte][1]++; |
| 1174 | pr_debug("** found phase : %d - %d & unit %d - %d\n", |
| 1175 | right_bound.phase, left_bound.phase, |
| 1176 | right_bound.unit, left_bound.unit); |
| 1177 | pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n", |
| 1178 | eye_training_val[byte][0], |
| 1179 | eye_training_val[byte][1]); |
| 1180 | } else { |
| 1181 | /* PPPPPPPPPP, we're already good. |
| 1182 | * Set nominal values. |
| 1183 | */ |
| 1184 | eye_training_val[byte][0] = 3; |
| 1185 | eye_training_val[byte][1] = 3; |
| 1186 | } |
| 1187 | DQS_phase_delay(phy, byte, eye_training_val[byte][0]); |
| 1188 | DQS_unit_delay(phy, byte, eye_training_val[byte][1]); |
| 1189 | |
| 1190 | printf("Byte %d, DQS unit = %d, phase = %d\n", |
| 1191 | byte, |
| 1192 | eye_training_val[byte][1], |
| 1193 | eye_training_val[byte][0]); |
| 1194 | } |
| 1195 | |
| 1196 | if (error) { |
| 1197 | sprintf(string, "error = %d", error); |
| 1198 | return TEST_FAILED; |
| 1199 | } |
| 1200 | |
| 1201 | return TEST_PASSED; |
| 1202 | } |
| 1203 | |
| 1204 | static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte) |
| 1205 | { |
| 1206 | u8 i = 0; |
| 1207 | |
| 1208 | printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ", |
| 1209 | byte); |
| 1210 | |
| 1211 | for (i = 0; i < 8; i++) |
| 1212 | printf("%d ", DQ_unit_index(phy, byte, i)); |
| 1213 | printf("\n"); |
| 1214 | |
| 1215 | printf("dxndllcr: [%08x] val:%08x\n", |
| 1216 | DXNDLLCR(phy, byte), |
| 1217 | readl(DXNDLLCR(phy, byte))); |
| 1218 | printf("dxnqdstr: [%08x] val:%08x\n", |
| 1219 | DXNDQSTR(phy, byte), |
| 1220 | readl(DXNDQSTR(phy, byte))); |
| 1221 | printf("dxndqtr: [%08x] val:%08x\n", |
| 1222 | DXNDQTR(phy, byte), |
| 1223 | readl(DXNDQTR(phy, byte))); |
| 1224 | } |
| 1225 | |
| 1226 | /* analyse the dgs gating log table, and determine the midpoint.*/ |
| 1227 | static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte, |
| 1228 | u8 dqs_gating[NUM_BYTES] |
| 1229 | [MAX_GSL_IDX + 1] |
| 1230 | [MAX_GPS_IDX + 1]) |
| 1231 | { |
| 1232 | /* stores the dqs gate values (gsl index, gps index) */ |
| 1233 | u8 dqs_gate_values[NUM_BYTES][2]; |
| 1234 | u8 gsl_idx, gps_idx = 0; |
| 1235 | u8 left_bound_idx[2] = {0, 0}; |
| 1236 | u8 right_bound_idx[2] = {0, 0}; |
| 1237 | u8 left_bound_found = 0; |
| 1238 | u8 right_bound_found = 0; |
| 1239 | u8 intermittent = 0; |
| 1240 | u8 value; |
| 1241 | |
| 1242 | for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { |
| 1243 | for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { |
| 1244 | value = dqs_gating[byte][gsl_idx][gps_idx]; |
| 1245 | if (value == 1 && left_bound_found == 0) { |
| 1246 | left_bound_idx[0] = gsl_idx; |
| 1247 | left_bound_idx[1] = gps_idx; |
| 1248 | left_bound_found = 1; |
| 1249 | } else if (value == 0 && |
| 1250 | left_bound_found == 1 && |
| 1251 | !right_bound_found) { |
| 1252 | if (gps_idx == 0) { |
| 1253 | right_bound_idx[0] = gsl_idx - 1; |
| 1254 | right_bound_idx[1] = MAX_GPS_IDX; |
| 1255 | } else { |
| 1256 | right_bound_idx[0] = gsl_idx; |
| 1257 | right_bound_idx[1] = gps_idx - 1; |
| 1258 | } |
| 1259 | right_bound_found = 1; |
| 1260 | } else if (value == 1 && |
| 1261 | right_bound_found == 1) { |
| 1262 | intermittent = 1; |
| 1263 | } |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | /* if only ppppppp is found, there is no mid region. */ |
| 1268 | if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 && |
| 1269 | right_bound_idx[0] == 0 && right_bound_idx[1] == 0) |
| 1270 | intermittent = 1; |
| 1271 | |
| 1272 | /*if we found a regular fail pass fail pattern ffppppppff |
| 1273 | * or pppppff or ffppppp |
| 1274 | */ |
| 1275 | if (!intermittent) { |
| 1276 | /*if we found a regular fail pass fail pattern ffppppppff |
| 1277 | * or pppppff or ffppppp |
| 1278 | */ |
| 1279 | if (left_bound_found || right_bound_found) { |
| 1280 | pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n", |
| 1281 | left_bound_found, |
| 1282 | right_bound_idx[0], left_bound_idx[0], |
| 1283 | right_bound_found, |
| 1284 | right_bound_idx[1], left_bound_idx[1]); |
| 1285 | dqs_gate_values[byte][0] = |
| 1286 | (right_bound_idx[0] + left_bound_idx[0]) / 2; |
| 1287 | dqs_gate_values[byte][1] = |
| 1288 | (right_bound_idx[1] + left_bound_idx[1]) / 2; |
| 1289 | /* if we already lost 1/2gsl tuning, |
| 1290 | * let's try to recover by ++ on gps |
| 1291 | */ |
| 1292 | if (((right_bound_idx[0] + |
| 1293 | left_bound_idx[0]) % 2 == 1) && |
| 1294 | dqs_gate_values[byte][1] != MAX_GPS_IDX) |
| 1295 | dqs_gate_values[byte][1]++; |
| 1296 | /* if we already lost 1/2gsl tuning and gps is on max*/ |
| 1297 | else if (((right_bound_idx[0] + |
| 1298 | left_bound_idx[0]) % 2 == 1) && |
| 1299 | dqs_gate_values[byte][1] == MAX_GPS_IDX) { |
| 1300 | dqs_gate_values[byte][1] = 0; |
| 1301 | dqs_gate_values[byte][0]++; |
| 1302 | } |
| 1303 | /* if we have gsl left and write limit too close |
| 1304 | * (difference=1) |
| 1305 | */ |
| 1306 | if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) { |
| 1307 | dqs_gate_values[byte][1] = (left_bound_idx[1] + |
| 1308 | right_bound_idx[1] + |
| 1309 | 4) / 2; |
| 1310 | if (dqs_gate_values[byte][1] >= 4) { |
| 1311 | dqs_gate_values[byte][0] = |
| 1312 | right_bound_idx[0]; |
| 1313 | dqs_gate_values[byte][1] -= 4; |
| 1314 | } else { |
| 1315 | dqs_gate_values[byte][0] = |
| 1316 | left_bound_idx[0]; |
| 1317 | } |
| 1318 | } |
| 1319 | pr_debug("*******calculating mid region: system latency: %d phase: %d********\n", |
| 1320 | dqs_gate_values[byte][0], |
| 1321 | dqs_gate_values[byte][1]); |
| 1322 | pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n"); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1323 | } |
| 1324 | } else { |
| 1325 | /* if intermitant, restore defaut values */ |
| 1326 | pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n"); |
Patrick Delaunay | 030df3b | 2020-03-06 11:14:04 +0100 | [diff] [blame] | 1327 | dqs_gate_values[byte][0] = 0; |
| 1328 | dqs_gate_values[byte][1] = 2; |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1329 | } |
Patrick Delaunay | 030df3b | 2020-03-06 11:14:04 +0100 | [diff] [blame] | 1330 | set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]); |
| 1331 | set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]); |
| 1332 | printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n", |
| 1333 | byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1334 | |
| 1335 | /* return 0 if intermittent or if both left_bound |
| 1336 | * and right_bound are not found |
| 1337 | */ |
| 1338 | return !(intermittent || (left_bound_found && right_bound_found)); |
| 1339 | } |
| 1340 | |
| 1341 | static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl, |
| 1342 | struct stm32mp1_ddrphy *phy, |
| 1343 | char *string) |
| 1344 | { |
| 1345 | /* stores the log of pass/fail */ |
| 1346 | u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1]; |
| 1347 | u8 byte, gsl_idx, gps_idx = 0; |
| 1348 | struct BIST_result result; |
| 1349 | u8 success = 0; |
| 1350 | u8 nb_bytes = get_nb_bytes(ctl); |
| 1351 | |
| 1352 | memset(dqs_gating, 0x0, sizeof(dqs_gating)); |
| 1353 | |
| 1354 | /*disable dqs drift compensation*/ |
| 1355 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| 1356 | /*disable all bytes*/ |
| 1357 | /* disable automatic power down of dll and ios when disabling a byte |
| 1358 | * (to avoid having to add programming and delay |
| 1359 | * for a dll re-lock when later re-enabling a disabled byte lane) |
| 1360 | */ |
| 1361 | clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| 1362 | |
| 1363 | /* disable all data bytes */ |
| 1364 | clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| 1365 | clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| 1366 | clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| 1367 | clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| 1368 | |
| 1369 | /* config the bist block */ |
Patrick Delaunay | 131ec95 | 2020-03-06 11:14:08 +0100 | [diff] [blame] | 1370 | config_BIST(ctl, phy); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1371 | |
| 1372 | for (byte = 0; byte < nb_bytes; byte++) { |
| 1373 | if (ctrlc()) { |
| 1374 | sprintf(string, "interrupted at byte %d/%d", |
| 1375 | byte + 1, nb_bytes); |
| 1376 | return TEST_FAILED; |
| 1377 | } |
| 1378 | /* enable byte x (dxngcr, bit dxen) */ |
| 1379 | setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); |
| 1380 | |
| 1381 | /* select the byte lane for comparison of read data */ |
| 1382 | BIST_datx8_sel(phy, byte); |
| 1383 | for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { |
| 1384 | for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { |
| 1385 | if (ctrlc()) { |
| 1386 | sprintf(string, |
| 1387 | "interrupted at byte %d/%d", |
| 1388 | byte + 1, nb_bytes); |
| 1389 | return TEST_FAILED; |
| 1390 | } |
| 1391 | /* write cfg to dxndqstr */ |
| 1392 | set_r0dgsl_delay(phy, byte, gsl_idx); |
| 1393 | set_r0dgps_delay(phy, byte, gps_idx); |
| 1394 | |
| 1395 | BIST_test(phy, byte, &result); |
| 1396 | success = result.test_result; |
| 1397 | if (success) |
| 1398 | dqs_gating[byte][gsl_idx][gps_idx] = 1; |
| 1399 | itm_soft_reset(phy); |
| 1400 | } |
| 1401 | } |
| 1402 | set_midpoint_read_dqs_gating(phy, byte, dqs_gating); |
| 1403 | /* dummy reads */ |
| 1404 | readl(0xc0000000); |
| 1405 | readl(0xc0000000); |
| 1406 | } |
| 1407 | |
| 1408 | /* re-enable drift compensation */ |
| 1409 | /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */ |
| 1410 | return TEST_PASSED; |
| 1411 | } |
| 1412 | |
| 1413 | /**************************************************************** |
| 1414 | * TEST |
| 1415 | **************************************************************** |
| 1416 | */ |
| 1417 | static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl, |
| 1418 | struct stm32mp1_ddrphy *phy, |
| 1419 | char *string, int argc, |
| 1420 | char *argv[]) |
| 1421 | { |
| 1422 | u32 rfshctl3 = readl(&ctl->rfshctl3); |
| 1423 | u32 pwrctl = readl(&ctl->pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1424 | u32 derateen = readl(&ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1425 | enum test_result res; |
| 1426 | |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1427 | writel(0x0, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1428 | stm32mp1_refresh_disable(ctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1429 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1430 | res = read_dqs_gating(ctl, phy, string); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1431 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1432 | stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1433 | writel(derateen, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1434 | |
| 1435 | return res; |
| 1436 | } |
| 1437 | |
| 1438 | static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl, |
| 1439 | struct stm32mp1_ddrphy *phy, |
| 1440 | char *string, int argc, char *argv[]) |
| 1441 | { |
| 1442 | u32 rfshctl3 = readl(&ctl->rfshctl3); |
| 1443 | u32 pwrctl = readl(&ctl->pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1444 | u32 derateen = readl(&ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1445 | enum test_result res; |
| 1446 | |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1447 | writel(0x0, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1448 | stm32mp1_refresh_disable(ctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1449 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1450 | res = bit_deskew(ctl, phy, string); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1451 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1452 | stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1453 | writel(derateen, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1454 | |
| 1455 | return res; |
| 1456 | } |
| 1457 | |
| 1458 | static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl, |
| 1459 | struct stm32mp1_ddrphy *phy, |
| 1460 | char *string, int argc, char *argv[]) |
| 1461 | { |
| 1462 | u32 rfshctl3 = readl(&ctl->rfshctl3); |
| 1463 | u32 pwrctl = readl(&ctl->pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1464 | u32 derateen = readl(&ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1465 | enum test_result res; |
| 1466 | |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1467 | writel(0x0, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1468 | stm32mp1_refresh_disable(ctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1469 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1470 | res = eye_training(ctl, phy, string); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1471 | |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1472 | stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
Patrick Delaunay | 656d2a9 | 2020-03-06 11:14:07 +0100 | [diff] [blame] | 1473 | writel(derateen, &ctl->derateen); |
Patrick Delaunay | 2f91e61 | 2019-04-10 14:09:29 +0200 | [diff] [blame] | 1474 | |
| 1475 | return res; |
| 1476 | } |
| 1477 | |
| 1478 | static enum test_result do_display(struct stm32mp1_ddrctl *ctl, |
| 1479 | struct stm32mp1_ddrphy *phy, |
| 1480 | char *string, int argc, char *argv[]) |
| 1481 | { |
| 1482 | int byte; |
| 1483 | u8 nb_bytes = get_nb_bytes(ctl); |
| 1484 | |
| 1485 | for (byte = 0; byte < nb_bytes; byte++) |
| 1486 | display_reg_results(phy, byte); |
| 1487 | |
| 1488 | return TEST_PASSED; |
| 1489 | } |
| 1490 | |
| 1491 | static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl, |
| 1492 | struct stm32mp1_ddrphy *phy, |
| 1493 | char *string, int argc, char *argv[]) |
| 1494 | { |
| 1495 | unsigned long value; |
| 1496 | |
| 1497 | if (argc > 0) { |
| 1498 | if (strict_strtoul(argv[0], 0, &value) < 0) { |
| 1499 | sprintf(string, "invalid nbErr %s", argv[0]); |
| 1500 | return TEST_FAILED; |
| 1501 | } |
| 1502 | BIST_error_max = value; |
| 1503 | } |
| 1504 | if (argc > 1) { |
| 1505 | if (strict_strtoul(argv[1], 0, &value) < 0) { |
| 1506 | sprintf(string, "invalid Seed %s", argv[1]); |
| 1507 | return TEST_FAILED; |
| 1508 | } |
| 1509 | BIST_seed = value; |
| 1510 | } |
| 1511 | printf("Bist.nbErr = %d\n", BIST_error_max); |
| 1512 | if (BIST_seed) |
| 1513 | printf("Bist.Seed = 0x%x\n", BIST_seed); |
| 1514 | else |
| 1515 | printf("Bist.Seed = random\n"); |
| 1516 | |
| 1517 | return TEST_PASSED; |
| 1518 | } |
| 1519 | |
| 1520 | /**************************************************************** |
| 1521 | * TEST Description |
| 1522 | **************************************************************** |
| 1523 | */ |
| 1524 | |
| 1525 | const struct test_desc tuning[] = { |
| 1526 | {do_read_dqs_gating, "Read DQS gating", |
| 1527 | "software read DQS Gating", "", 0 }, |
| 1528 | {do_bit_deskew, "Bit de-skew", "", "", 0 }, |
| 1529 | {do_eye_training, "Eye Training", "or DQS training", "", 0 }, |
| 1530 | {do_display, "Display registers", "", "", 0 }, |
| 1531 | {do_bist_config, "Bist config", "[nbErr] [seed]", |
| 1532 | "configure Bist test", 2}, |
| 1533 | }; |
| 1534 | |
| 1535 | const int tuning_nb = ARRAY_SIZE(tuning); |