stm32mp1: ram: add tuning in DDR interactive mode
Add command tuning for DDR interactive mode, used during
board bring-up or with CubeMX DDR tools to execute software
tuning for the DDR configuration:
- software read DQS Gating (replace the built-in one)
- Bit de-skew
- Eye Training or DQS training
Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com>
diff --git a/drivers/ram/stm32mp1/stm32mp1_tuning.c b/drivers/ram/stm32mp1/stm32mp1_tuning.c
new file mode 100644
index 0000000..4e1c1fa
--- /dev/null
+++ b/drivers/ram/stm32mp1/stm32mp1_tuning.c
@@ -0,0 +1,1380 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
+ */
+#include <common.h>
+#include <console.h>
+#include <clk.h>
+#include <ram.h>
+#include <reset.h>
+#include <asm/io.h>
+
+#include "stm32mp1_ddr_regs.h"
+#include "stm32mp1_ddr.h"
+#include "stm32mp1_tests.h"
+
+#define MAX_DQS_PHASE_IDX _144deg
+#define MAX_DQS_UNIT_IDX 7
+#define MAX_GSL_IDX 5
+#define MAX_GPS_IDX 3
+
+/* Number of bytes used in this SW. ( min 1--> max 4). */
+#define NUM_BYTES 4
+
+enum dqs_phase_enum {
+ _36deg = 0,
+ _54deg = 1,
+ _72deg = 2,
+ _90deg = 3,
+ _108deg = 4,
+ _126deg = 5,
+ _144deg = 6
+};
+
+/* BIST Result struct */
+struct BIST_result {
+ /* Overall test result:
+ * 0 Fail (any bit failed) ,
+ * 1 Success (All bits success)
+ */
+ bool test_result;
+ /* 1: true, all fail / 0: False, not all bits fail */
+ bool all_bits_fail;
+ bool bit_i_test_result[8]; /* 0 fail / 1 success */
+};
+
+/* a struct that defines tuning parameters of a byte. */
+struct tuning_position {
+ u8 phase; /* DQS phase */
+ u8 unit; /* DQS unit delay */
+ u32 bits_delay; /* Bits deskew in this byte */
+};
+
+/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
+const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
+
+static u8 BIST_error_max = 1;
+static u32 BIST_seed = 0x1234ABCD;
+
+static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
+{
+ u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
+ u8 nb_bytes = NUM_BYTES;
+
+ switch (data_bus) {
+ case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
+ nb_bytes /= 2;
+ break;
+ case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
+ nb_bytes /= 4;
+ break;
+ default:
+ break;
+ }
+
+ return nb_bytes;
+}
+
+static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
+{
+ stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
+}
+
+/* Read DQ unit delay register and provides the retrieved value for DQS
+ * We are assuming that we have the same delay when clocking
+ * by DQS and when clocking by DQSN
+ */
+static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
+{
+ u32 index;
+ u32 addr = DXNDQTR(phy, byte);
+
+ /* We are assuming that we have the same delay when clocking by DQS
+ * and when clocking by DQSN : use only the low bits
+ */
+ index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
+ & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
+
+ pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
+ __func__, addr, readl(addr), index);
+
+ return index;
+}
+
+/* Sets the DQS phase delay for a byte lane.
+ *phase delay is specified by giving the index of the desired delay
+ * in the dx_dll_phase array.
+ */
+static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
+{
+ u8 sdphase_val = 0;
+
+ /* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
+ sdphase_val = dx_dll_phase[phase_idx];
+ clrsetbits_le32(DXNDLLCR(phy, byte),
+ DDRPHYC_DXNDLLCR_SDPHASE_MASK,
+ sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
+}
+
+/* Sets the DQS unit delay for a byte lane.
+ * unit delay is specified by giving the index of the desired delay
+ * for dgsdly and dqsndly (same value).
+ */
+static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
+ u8 byte, u8 unit_dly_idx)
+{
+ /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
+ clrsetbits_le32(DXNDQSTR(phy, byte),
+ DDRPHYC_DXNDQSTR_DQSDLY_MASK |
+ DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
+ (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
+ (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
+
+ /* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
+ * plus PIR.INIT=1) must be issued.
+ */
+ stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
+}
+
+/* Sets the DQ unit delay for a bit line in particular byte lane.
+ * unit delay is specified by giving the desired delay
+ */
+static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
+ u8 byte, u8 bit,
+ u8 dq_delay_index)
+{
+ u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
+
+ /* same value on delay for clock DQ an DQS_b */
+ clrsetbits_le32(DXNDQTR(phy, byte),
+ DDRPHYC_DXNDQTR_DQDLY_MASK
+ << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
+ dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
+}
+
+static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
+ u8 byte, u8 r0dgsl_idx)
+{
+ clrsetbits_le32(DXNDQSTR(phy, byte),
+ DDRPHYC_DXNDQSTR_R0DGSL_MASK,
+ r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
+}
+
+static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
+ u8 byte, u8 r0dgps_idx)
+{
+ clrsetbits_le32(DXNDQSTR(phy, byte),
+ DDRPHYC_DXNDQSTR_R0DGPS_MASK,
+ r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
+}
+
+/* Basic BIST configuration for data lane tests. */
+static void config_BIST(struct stm32mp1_ddrphy *phy)
+{
+ /* Selects the SDRAM bank address to be used during BIST. */
+ u32 bbank = 0;
+ /* Selects the SDRAM row address to be used during BIST. */
+ u32 brow = 0;
+ /* Selects the SDRAM column address to be used during BIST. */
+ u32 bcol = 0;
+ /* Selects the value by which the SDRAM address is incremented
+ * for each write/read access.
+ */
+ u32 bainc = 0x00000008;
+ /* Specifies the maximum SDRAM rank to be used during BIST.
+ * The default value is set to maximum ranks minus 1.
+ * must be 0 with single rank
+ */
+ u32 bmrank = 0;
+ /* Selects the SDRAM rank to be used during BIST.
+ * must be 0 with single rank
+ */
+ u32 brank = 0;
+ /* Specifies the maximum SDRAM bank address to be used during
+ * BIST before the address & increments to the next rank.
+ */
+ u32 bmbank = 1;
+ /* Specifies the maximum SDRAM row address to be used during
+ * BIST before the address & increments to the next bank.
+ */
+ u32 bmrow = 0x7FFF; /* To check */
+ /* Specifies the maximum SDRAM column address to be used during
+ * BIST before the address & increments to the next row.
+ */
+ u32 bmcol = 0x3FF; /* To check */
+ u32 bmode_conf = 0x00000001; /* DRam mode */
+ u32 bdxen_conf = 0x00000001; /* BIST on Data byte */
+ u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */
+
+ /*Setup BIST for DRAM mode, and LFSR-random data pattern.*/
+ /*Write BISTRR.BMODE = 1?b1;*/
+ /*Write BISTRR.BDXEN = 1?b1;*/
+ /*Write BISTRR.BDPAT = 2?b10;*/
+
+ /* reset BIST */
+ writel(0x3, &phy->bistrr);
+
+ writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
+ &phy->bistrr);
+
+ /*Setup BIST Word Count*/
+ /*Write BISTWCR.BWCNT = 16?b0008;*/
+ writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
+
+ writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
+ writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
+
+ /* To check this line : */
+ writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
+}
+
+/* Select the Byte lane to be tested by BIST. */
+static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
+{
+ clrsetbits_le32(&phy->bistrr,
+ DDRPHYC_BISTRR_BDXSEL_MASK,
+ datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
+
+ /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
+ /* Write BISTRR.BDXSEL = datx8; */
+}
+
+/* Perform BIST Write_Read test on a byte lane and return test result. */
+static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
+ struct BIST_result *bist)
+{
+ bool result = true; /* BIST_SUCCESS */
+ u32 cnt = 0;
+ u32 error = 0;
+
+ bist->test_result = true;
+
+run:
+ itm_soft_reset(phy);
+
+ /*Perform BIST Reset*/
+ /* Write BISTRR.BINST = 3?b011; */
+ clrsetbits_le32(&phy->bistrr,
+ 0x00000007,
+ 0x00000003);
+
+ /*Re-seed LFSR*/
+ /* Write BISTLSR.SEED = 32'h1234ABCD; */
+ if (BIST_seed)
+ writel(BIST_seed, &phy->bistlsr);
+ else
+ writel(rand(), &phy->bistlsr);
+
+ /* some delay to reset BIST */
+ mdelay(1);
+
+ /*Perform BIST Run*/
+ clrsetbits_le32(&phy->bistrr,
+ 0x00000007,
+ 0x00000001);
+ /* Write BISTRR.BINST = 3?b001; */
+
+ /* Wait for a number of CTL clocks before reading BIST register*/
+ /* Wait 300 ctl_clk cycles; ... IS it really needed?? */
+ /* Perform BIST Instruction Stop*/
+ /* Write BISTRR.BINST = 3?b010;*/
+
+ /* poll on BISTGSR.BDONE. If 0, wait. ++TODO Add timeout */
+ while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE))
+ ;
+
+ /*Check if received correct number of words*/
+ /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
+ if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) ==
+ readl(&phy->bistwcr)) {
+ /*Determine if there is a data comparison error*/
+ /* if (Read BISTGSR.BDXERR = 1?b0) */
+ if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
+ result = false; /* BIST_FAIL; */
+ else
+ result = true; /* BIST_SUCCESS; */
+ } else {
+ result = false; /* BIST_FAIL; */
+ }
+
+ /* loop while success */
+ cnt++;
+ if (result && cnt != 1000)
+ goto run;
+
+ if (!result)
+ error++;
+
+ if (error < BIST_error_max) {
+ if (cnt != 1000)
+ goto run;
+ bist->test_result = true;
+ } else {
+ bist->test_result = false;
+ }
+}
+
+/* After running the deskew algo, this function applies the new DQ delays
+ * by reading them from the array "deskew_delay"and writing in PHY registers.
+ * The bits that are not deskewed parfectly (too much skew on them,
+ * or data eye very wide) are marked in the array deskew_non_converge.
+ */
+static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
+ u8 deskew_delay[NUM_BYTES][8],
+ u8 deskew_non_converge[NUM_BYTES][8])
+{
+ u8 bit_i;
+ u8 index;
+
+ for (bit_i = 0; bit_i < 8; bit_i++) {
+ set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
+ index = DQ_unit_index(phy, byte, bit_i);
+ pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
+ byte, bit_i, deskew_delay[byte][bit_i],
+ index, index - 3);
+ printf("Byte %d, bit %d, DQ delay = %d",
+ byte, bit_i, deskew_delay[byte][bit_i]);
+ if (deskew_non_converge[byte][bit_i] == 1)
+ pr_debug(" - not converged : still more skew");
+ printf("\n");
+ }
+}
+
+/* DQ Bit de-skew algorithm.
+ * Deskews data lines as much as possible.
+ * 1. Add delay to DQS line until finding the failure
+ * (normally a hold time violation)
+ * 2. Reduce DQS line by small steps until finding the very first time
+ * we go back to "Pass" condition.
+ * 3. For each DQ line, Reduce DQ delay until finding the very first failure
+ * (normally a hold time fail)
+ * 4. When all bits are at their first failure delay, we can consider them
+ * aligned.
+ * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
+ * at any step)
+ * TODO Provide a return Status. Improve doc
+ */
+static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy, char *string)
+{
+ /* New DQ delay value (index), set during Deskew algo */
+ u8 deskew_delay[NUM_BYTES][8];
+ /*If there is still skew on a bit, mark this bit. */
+ u8 deskew_non_converge[NUM_BYTES][8];
+ struct BIST_result result;
+ s8 dqs_unit_delay_index = 0;
+ u8 datx8 = 0;
+ u8 bit_i = 0;
+ s8 phase_idx = 0;
+ s8 bit_i_delay_index = 0;
+ u8 success = 0;
+ struct tuning_position last_right_ok;
+ u8 force_stop = 0;
+ u8 fail_found;
+ u8 error = 0;
+ u8 nb_bytes = get_nb_bytes(ctl);
+ /* u8 last_pass_dqs_unit = 0; */
+
+ memset(deskew_delay, 0, sizeof(deskew_delay));
+ memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
+
+ /*Disable DQS Drift Compensation*/
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+ /*Disable all bytes*/
+ /* Disable automatic power down of DLL and IOs when disabling
+ * a byte (To avoid having to add programming and delay
+ * for a DLL re-lock when later re-enabling a disabled Byte Lane)
+ */
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+ /* Disable all data bytes */
+ clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+ /* Config the BIST block */
+ config_BIST(phy);
+ pr_debug("BIST Config done.\n");
+
+ /* Train each byte */
+ for (datx8 = 0; datx8 < nb_bytes; datx8++) {
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ datx8 + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ pr_debug("\n======================\n");
+ pr_debug("Start deskew byte %d .\n", datx8);
+ pr_debug("======================\n");
+ /* Enable Byte (DXNGCR, bit DXEN) */
+ setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
+
+ /* Select the byte lane for comparison of read data */
+ BIST_datx8_sel(phy, datx8);
+
+ /* Set all DQDLYn to maximum value. All bits within the byte
+ * will be delayed with DQSTR = 2 instead of max = 3
+ * to avoid inter bits fail influence
+ */
+ writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
+
+ /* Set the DQS phase delay to 90 DEG (default).
+ * What is defined here is the index of the desired config
+ * in the PHASE array.
+ */
+ phase_idx = _90deg;
+
+ /* Set DQS unit delay to the max value. */
+ dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
+ DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
+ DQS_phase_delay(phy, datx8, phase_idx);
+
+ /* Issue a DLL soft reset */
+ clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
+ setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
+
+ /* Test this typical init condition */
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+
+ /* If the test pass in this typical condition,
+ * start the algo with it.
+ * Else, look for Pass init condition
+ */
+ if (!success) {
+ pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
+ success = 0; /* init */
+ /* Make sure we start with a PASS condition before
+ * looking for a fail condition.
+ * Find the first PASS PHASE condition
+ */
+
+ /* escape if we find a PASS */
+ pr_debug("increase Phase idx\n");
+ while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
+ DQS_phase_delay(phy, datx8, phase_idx);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ phase_idx++;
+ }
+ /* if ended with success
+ * ==>> Restore the fist success condition
+ */
+ if (success)
+ phase_idx--; /* because it ended with ++ */
+ }
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ datx8 + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ /* We couldn't find a successful condition, its seems
+ * we have hold violation, lets try reduce DQS_unit Delay
+ */
+ if (!success) {
+ /* We couldn't find a successful condition, its seems
+ * we have hold violation, lets try reduce DQS_unit
+ * Delay
+ */
+ pr_debug("Still fail. Try decrease DQS Unit delay\n");
+
+ phase_idx = 0;
+ dqs_unit_delay_index = 0;
+ DQS_phase_delay(phy, datx8, phase_idx);
+
+ /* escape if we find a PASS */
+ while (!success &&
+ (dqs_unit_delay_index <=
+ MAX_DQS_UNIT_IDX)) {
+ DQS_unit_delay(phy, datx8,
+ dqs_unit_delay_index);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ dqs_unit_delay_index++;
+ }
+ if (success) {
+ /* Restore the first success condition*/
+ dqs_unit_delay_index--;
+ /* last_pass_dqs_unit = dqs_unit_delay_index;*/
+ DQS_unit_delay(phy, datx8,
+ dqs_unit_delay_index);
+ } else {
+ /* No need to continue,
+ * there is no pass region.
+ */
+ force_stop = 1;
+ }
+ }
+
+ /* There is an initial PASS condition
+ * Look for the first failing condition by PHASE stepping.
+ * This part of the algo can finish without converging.
+ */
+ if (force_stop) {
+ printf("Result: Failed ");
+ printf("[Cannot Deskew lines, ");
+ printf("there is no PASS region]\n");
+ error++;
+ continue;
+ }
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ datx8 + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+
+ pr_debug("there is a pass region for phase idx %d\n",
+ phase_idx);
+ pr_debug("Step1: Find the first failing condition\n");
+ /* Look for the first failing condition by PHASE stepping.
+ * This part of the algo can finish without converging.
+ */
+
+ /* escape if we find a fail (hold time violation)
+ * condition at any bit or if out of delay range.
+ */
+ while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
+ DQS_phase_delay(phy, datx8, phase_idx);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ phase_idx++;
+ }
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ datx8 + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+
+ /* if the loop ended with a failing condition at any bit,
+ * lets look for the first previous success condition by unit
+ * stepping (minimal delay)
+ */
+ if (!success) {
+ pr_debug("Fail region (PHASE) found phase idx %d\n",
+ phase_idx);
+ pr_debug("Let's look for first success by DQS Unit steps\n");
+ /* This part, the algo always converge */
+ phase_idx--;
+
+ /* escape if we find a success condition
+ * or if out of delay range.
+ */
+ while (!success && dqs_unit_delay_index >= 0) {
+ DQS_unit_delay(phy, datx8,
+ dqs_unit_delay_index);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ dqs_unit_delay_index--;
+ }
+ /* if the loop ended with a success condition,
+ * the last delay Right OK (before hold violation)
+ * condition is then defined as following:
+ */
+ if (success) {
+ /* Hold the dely parameters of the the last
+ * delay Right OK condition.
+ * -1 to get back to current condition
+ */
+ last_right_ok.phase = phase_idx;
+ /*+1 to get back to current condition */
+ last_right_ok.unit = dqs_unit_delay_index + 1;
+ last_right_ok.bits_delay = 0xFFFFFFFF;
+ pr_debug("Found %d\n", dqs_unit_delay_index);
+ } else {
+ /* the last OK condition is then with the
+ * previous phase_idx.
+ * -2 instead of -1 because at the last
+ * iteration of the while(),
+ * we incremented phase_idx
+ */
+ last_right_ok.phase = phase_idx - 1;
+ /* Nominal+1. Because we want the previous
+ * delay after reducing the phase delay.
+ */
+ last_right_ok.unit = 1;
+ last_right_ok.bits_delay = 0xFFFFFFFF;
+ pr_debug("Not Found : try previous phase %d\n",
+ phase_idx - 1);
+
+ DQS_phase_delay(phy, datx8, phase_idx - 1);
+ dqs_unit_delay_index = 0;
+ success = true;
+ while (success &&
+ (dqs_unit_delay_index <
+ MAX_DQS_UNIT_IDX)) {
+ DQS_unit_delay(phy, datx8,
+ dqs_unit_delay_index);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ dqs_unit_delay_index++;
+ pr_debug("dqs_unit_delay_index = %d, result = %d\n",
+ dqs_unit_delay_index, success);
+ }
+
+ if (!success) {
+ last_right_ok.unit =
+ dqs_unit_delay_index - 1;
+ } else {
+ last_right_ok.unit = 0;
+ pr_debug("ERROR: failed region not FOUND");
+ }
+ }
+ } else {
+ /* we can't find a failing condition at all bits
+ * ==> Just hold the last test condition
+ * (the max DQS delay)
+ * which is the most likely,
+ * the closest to a hold violation
+ * If we can't find a Fail condition after
+ * the Pass region, stick at this position
+ * In order to have max chances to find a fail
+ * when reducing DQ delays.
+ */
+ last_right_ok.phase = MAX_DQS_PHASE_IDX;
+ last_right_ok.unit = MAX_DQS_UNIT_IDX;
+ last_right_ok.bits_delay = 0xFFFFFFFF;
+ pr_debug("Can't find the a fail condition\n");
+ }
+
+ /* step 2:
+ * if we arrive at this stage, it means that we found the last
+ * Right OK condition (by tweeking the DQS delay). Or we simply
+ * pushed DQS delay to the max
+ * This means that by reducing the delay on some DQ bits,
+ * we should find a failing condition.
+ */
+ printf("Byte %d, DQS unit = %d, phase = %d\n",
+ datx8, last_right_ok.unit, last_right_ok.phase);
+ pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
+ last_right_ok.unit, last_right_ok.phase,
+ last_right_ok.bits_delay);
+
+ /* Restore the last_right_ok condtion. */
+ DQS_unit_delay(phy, datx8, last_right_ok.unit);
+ DQS_phase_delay(phy, datx8, last_right_ok.phase);
+ writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
+
+ /* train each bit
+ * reduce delay on each bit, and perform a write/read test
+ * and stop at the very first time it fails.
+ * the goal is the find the first failing condition
+ * for each bit.
+ * When we achieve this condition< for all the bits,
+ * we are sure they are aligned (+/- step resolution)
+ */
+ fail_found = 0;
+ for (bit_i = 0; bit_i < 8; bit_i++) {
+ if (ctrlc()) {
+ sprintf(string,
+ "interrupted at byte %d/%d, error=%d",
+ datx8 + 1, nb_bytes, error);
+ return error;
+ }
+ pr_debug("deskewing bit %d:\n", bit_i);
+ success = 1; /* init */
+ /* Set all DQDLYn to maximum value.
+ * Only bit_i will be down-delayed
+ * ==> if we have a fail, it will be definitely
+ * from bit_i
+ */
+ writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
+ /* Arriving at this stage,
+ * we have a success condition with delay = 3;
+ */
+ bit_i_delay_index = 3;
+
+ /* escape if bit delay is out of range or
+ * if a fatil occurs
+ */
+ while ((bit_i_delay_index >= 0) && success) {
+ set_DQ_unit_delay(phy, datx8,
+ bit_i,
+ bit_i_delay_index);
+ BIST_test(phy, datx8, &result);
+ success = result.test_result;
+ bit_i_delay_index--;
+ }
+
+ /* if escape with a fail condition
+ * ==> save this position for bit_i
+ */
+ if (!success) {
+ /* save the delay position.
+ * Add 1 because the while loop ended with a --,
+ * and that we need to hold the last success
+ * delay
+ */
+ deskew_delay[datx8][bit_i] =
+ bit_i_delay_index + 2;
+ if (deskew_delay[datx8][bit_i] > 3)
+ deskew_delay[datx8][bit_i] = 3;
+
+ /* A flag that states we found at least a fail
+ * at one bit.
+ */
+ fail_found = 1;
+ pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
+ bit_i, bit_i_delay_index + 1,
+ datx8, bit_i,
+ deskew_delay[datx8][bit_i]);
+ } else {
+ /* if we can find a success condition by
+ * back-delaying this bit, just set the delay
+ * to 0 (the best deskew
+ * possible) and mark the bit.
+ */
+ deskew_delay[datx8][bit_i] = 0;
+ /* set a flag that will be used later
+ * in the report.
+ */
+ deskew_non_converge[datx8][bit_i] = 1;
+ pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
+ bit_i, datx8, bit_i,
+ deskew_delay[datx8][bit_i]);
+ }
+ }
+ pr_debug("**********byte %d tuning complete************\n",
+ datx8);
+ /* If we can't find any failure by back delaying DQ lines,
+ * hold the default values
+ */
+ if (!fail_found) {
+ for (bit_i = 0; bit_i < 8; bit_i++)
+ deskew_delay[datx8][bit_i] = 0;
+ pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
+ }
+
+ apply_deskew_results(phy, datx8, deskew_delay,
+ deskew_non_converge);
+ /* Restore nominal value for DQS delay */
+ DQS_phase_delay(phy, datx8, 3);
+ DQS_unit_delay(phy, datx8, 3);
+ /* disable byte after byte bits deskew */
+ clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
+ } /* end of byte deskew */
+
+ /* re-enable all data bytes */
+ setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+ setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+ setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+ setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+ if (error) {
+ sprintf(string, "error = %d", error);
+ return TEST_FAILED;
+ }
+
+ return TEST_PASSED;
+} /* end function */
+
+/* Trim DQS timings and set it in the centre of data eye.
+ * Look for a PPPPF region, then look for a FPPP region and finally select
+ * the mid of the FPPPPPF region
+ */
+static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy, char *string)
+{
+ /*Stores the DQS trim values (PHASE index, unit index) */
+ u8 eye_training_val[NUM_BYTES][2];
+ u8 byte = 0;
+ struct BIST_result result;
+ s8 dqs_unit_delay_index = 0;
+ s8 phase_idx = 0;
+ s8 dqs_unit_delay_index_pass = 0;
+ s8 phase_idx_pass = 0;
+ u8 success = 0;
+ u8 left_phase_bound_found, right_phase_bound_found;
+ u8 left_unit_bound_found, right_unit_bound_found;
+ u8 left_bound_found, right_bound_found;
+ struct tuning_position left_bound, right_bound;
+ u8 error = 0;
+ u8 nb_bytes = get_nb_bytes(ctl);
+
+ /*Disable DQS Drift Compensation*/
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+ /*Disable all bytes*/
+ /* Disable automatic power down of DLL and IOs when disabling a byte
+ * (To avoid having to add programming and delay
+ * for a DLL re-lock when later re-enabling a disabled Byte Lane)
+ */
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+ /*Disable all data bytes */
+ clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+ /* Config the BIST block */
+ config_BIST(phy);
+
+ for (byte = 0; byte < nb_bytes; byte++) {
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ byte + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ right_bound.phase = 0;
+ right_bound.unit = 0;
+
+ left_bound.phase = 0;
+ left_bound.unit = 0;
+
+ left_phase_bound_found = 0;
+ right_phase_bound_found = 0;
+
+ left_unit_bound_found = 0;
+ right_unit_bound_found = 0;
+
+ left_bound_found = 0;
+ right_bound_found = 0;
+
+ /* Enable Byte (DXNGCR, bit DXEN) */
+ setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
+
+ /* Select the byte lane for comparison of read data */
+ BIST_datx8_sel(phy, byte);
+
+ /* Set DQS phase delay to the nominal value. */
+ phase_idx = _90deg;
+ phase_idx_pass = phase_idx;
+
+ /* Set DQS unit delay to the nominal value. */
+ dqs_unit_delay_index = 3;
+ dqs_unit_delay_index_pass = dqs_unit_delay_index;
+ success = 0;
+
+ pr_debug("STEP0: Find Init delay\n");
+ /* STEP0: Find Init delay: a delay that put the system
+ * in a "Pass" condition then (TODO) update
+ * dqs_unit_delay_index_pass & phase_idx_pass
+ */
+ DQS_unit_delay(phy, byte, dqs_unit_delay_index);
+ DQS_phase_delay(phy, byte, phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ /* If we have a fail in the nominal condition */
+ if (!success) {
+ /* Look at the left */
+ while (phase_idx >= 0 && !success) {
+ phase_idx--;
+ DQS_phase_delay(phy, byte, phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ }
+ }
+ if (!success) {
+ /* if we can't find pass condition,
+ * then look at the right
+ */
+ phase_idx = _90deg;
+ while (phase_idx <= MAX_DQS_PHASE_IDX &&
+ !success) {
+ phase_idx++;
+ DQS_phase_delay(phy, byte,
+ phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ }
+ }
+ /* save the pass condition */
+ if (success) {
+ phase_idx_pass = phase_idx;
+ } else {
+ printf("Result: Failed ");
+ printf("[Cannot DQS timings, ");
+ printf("there is no PASS region]\n");
+ error++;
+ continue;
+ }
+
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ byte + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
+ /* STEP1: Find LEFT PHASE DQS Bound */
+ while ((phase_idx >= 0) &&
+ (phase_idx <= MAX_DQS_PHASE_IDX) &&
+ !left_phase_bound_found) {
+ DQS_unit_delay(phy, byte,
+ dqs_unit_delay_index);
+ DQS_phase_delay(phy, byte,
+ phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+
+ /*TODO: Manage the case were at the beginning
+ * there is already a fail
+ */
+ if (!success) {
+ /* the last pass condition */
+ left_bound.phase = ++phase_idx;
+ left_phase_bound_found = 1;
+ } else if (success) {
+ phase_idx--;
+ }
+ }
+ if (!left_phase_bound_found) {
+ left_bound.phase = 0;
+ phase_idx = 0;
+ }
+ /* If not found, lets take 0 */
+
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ byte + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ pr_debug("STEP2: Find UNIT left bound\n");
+ /* STEP2: Find UNIT left bound */
+ while ((dqs_unit_delay_index >= 0) &&
+ !left_unit_bound_found) {
+ DQS_unit_delay(phy, byte,
+ dqs_unit_delay_index);
+ DQS_phase_delay(phy, byte, phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ if (!success) {
+ left_bound.unit =
+ ++dqs_unit_delay_index;
+ left_unit_bound_found = 1;
+ left_bound_found = 1;
+ } else if (success) {
+ dqs_unit_delay_index--;
+ }
+ }
+
+ /* If not found, lets take 0 */
+ if (!left_unit_bound_found)
+ left_bound.unit = 0;
+
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ byte + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ pr_debug("STEP3: Find PHase right bound\n");
+ /* STEP3: Find PHase right bound, start with "pass"
+ * condition
+ */
+
+ /* Set DQS phase delay to the pass value. */
+ phase_idx = phase_idx_pass;
+
+ /* Set DQS unit delay to the pass value. */
+ dqs_unit_delay_index = dqs_unit_delay_index_pass;
+
+ while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
+ !right_phase_bound_found) {
+ DQS_unit_delay(phy, byte,
+ dqs_unit_delay_index);
+ DQS_phase_delay(phy, byte, phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ if (!success) {
+ /* the last pass condition */
+ right_bound.phase = --phase_idx;
+ right_phase_bound_found = 1;
+ } else if (success) {
+ phase_idx++;
+ }
+ }
+
+ /* If not found, lets take the max value */
+ if (!right_phase_bound_found) {
+ right_bound.phase = MAX_DQS_PHASE_IDX;
+ phase_idx = MAX_DQS_PHASE_IDX;
+ }
+
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d, error=%d",
+ byte + 1, nb_bytes, error);
+ return TEST_FAILED;
+ }
+ pr_debug("STEP4: Find UNIT right bound\n");
+ /* STEP4: Find UNIT right bound */
+ while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
+ !right_unit_bound_found) {
+ DQS_unit_delay(phy, byte,
+ dqs_unit_delay_index);
+ DQS_phase_delay(phy, byte, phase_idx);
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ if (!success) {
+ right_bound.unit =
+ --dqs_unit_delay_index;
+ right_unit_bound_found = 1;
+ right_bound_found = 1;
+ } else if (success) {
+ dqs_unit_delay_index++;
+ }
+ }
+ /* If not found, lets take the max value */
+ if (!right_unit_bound_found)
+ right_bound.unit = MAX_DQS_UNIT_IDX;
+
+ /* If we found a regular FAil Pass FAil pattern
+ * FFPPPPPPFF
+ * OR PPPPPFF Or FFPPPPP
+ */
+
+ if (left_bound_found || right_bound_found) {
+ eye_training_val[byte][0] = (right_bound.phase +
+ left_bound.phase) / 2;
+ eye_training_val[byte][1] = (right_bound.unit +
+ left_bound.unit) / 2;
+
+ /* If we already lost 1/2PHASE Tuning,
+ * let's try to recover by ++ on unit
+ */
+ if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
+ eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
+ eye_training_val[byte][1]++;
+ pr_debug("** found phase : %d - %d & unit %d - %d\n",
+ right_bound.phase, left_bound.phase,
+ right_bound.unit, left_bound.unit);
+ pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n",
+ eye_training_val[byte][0],
+ eye_training_val[byte][1]);
+ } else {
+ /* PPPPPPPPPP, we're already good.
+ * Set nominal values.
+ */
+ eye_training_val[byte][0] = 3;
+ eye_training_val[byte][1] = 3;
+ }
+ DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
+ DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
+
+ printf("Byte %d, DQS unit = %d, phase = %d\n",
+ byte,
+ eye_training_val[byte][1],
+ eye_training_val[byte][0]);
+ }
+
+ if (error) {
+ sprintf(string, "error = %d", error);
+ return TEST_FAILED;
+ }
+
+ return TEST_PASSED;
+}
+
+static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
+{
+ u8 i = 0;
+
+ printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ",
+ byte);
+
+ for (i = 0; i < 8; i++)
+ printf("%d ", DQ_unit_index(phy, byte, i));
+ printf("\n");
+
+ printf("dxndllcr: [%08x] val:%08x\n",
+ DXNDLLCR(phy, byte),
+ readl(DXNDLLCR(phy, byte)));
+ printf("dxnqdstr: [%08x] val:%08x\n",
+ DXNDQSTR(phy, byte),
+ readl(DXNDQSTR(phy, byte)));
+ printf("dxndqtr: [%08x] val:%08x\n",
+ DXNDQTR(phy, byte),
+ readl(DXNDQTR(phy, byte)));
+}
+
+/* analyse the dgs gating log table, and determine the midpoint.*/
+static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
+ u8 dqs_gating[NUM_BYTES]
+ [MAX_GSL_IDX + 1]
+ [MAX_GPS_IDX + 1])
+{
+ /* stores the dqs gate values (gsl index, gps index) */
+ u8 dqs_gate_values[NUM_BYTES][2];
+ u8 gsl_idx, gps_idx = 0;
+ u8 left_bound_idx[2] = {0, 0};
+ u8 right_bound_idx[2] = {0, 0};
+ u8 left_bound_found = 0;
+ u8 right_bound_found = 0;
+ u8 intermittent = 0;
+ u8 value;
+
+ for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
+ for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
+ value = dqs_gating[byte][gsl_idx][gps_idx];
+ if (value == 1 && left_bound_found == 0) {
+ left_bound_idx[0] = gsl_idx;
+ left_bound_idx[1] = gps_idx;
+ left_bound_found = 1;
+ } else if (value == 0 &&
+ left_bound_found == 1 &&
+ !right_bound_found) {
+ if (gps_idx == 0) {
+ right_bound_idx[0] = gsl_idx - 1;
+ right_bound_idx[1] = MAX_GPS_IDX;
+ } else {
+ right_bound_idx[0] = gsl_idx;
+ right_bound_idx[1] = gps_idx - 1;
+ }
+ right_bound_found = 1;
+ } else if (value == 1 &&
+ right_bound_found == 1) {
+ intermittent = 1;
+ }
+ }
+ }
+
+ /* if only ppppppp is found, there is no mid region. */
+ if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
+ right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
+ intermittent = 1;
+
+ /*if we found a regular fail pass fail pattern ffppppppff
+ * or pppppff or ffppppp
+ */
+ if (!intermittent) {
+ /*if we found a regular fail pass fail pattern ffppppppff
+ * or pppppff or ffppppp
+ */
+ if (left_bound_found || right_bound_found) {
+ pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n",
+ left_bound_found,
+ right_bound_idx[0], left_bound_idx[0],
+ right_bound_found,
+ right_bound_idx[1], left_bound_idx[1]);
+ dqs_gate_values[byte][0] =
+ (right_bound_idx[0] + left_bound_idx[0]) / 2;
+ dqs_gate_values[byte][1] =
+ (right_bound_idx[1] + left_bound_idx[1]) / 2;
+ /* if we already lost 1/2gsl tuning,
+ * let's try to recover by ++ on gps
+ */
+ if (((right_bound_idx[0] +
+ left_bound_idx[0]) % 2 == 1) &&
+ dqs_gate_values[byte][1] != MAX_GPS_IDX)
+ dqs_gate_values[byte][1]++;
+ /* if we already lost 1/2gsl tuning and gps is on max*/
+ else if (((right_bound_idx[0] +
+ left_bound_idx[0]) % 2 == 1) &&
+ dqs_gate_values[byte][1] == MAX_GPS_IDX) {
+ dqs_gate_values[byte][1] = 0;
+ dqs_gate_values[byte][0]++;
+ }
+ /* if we have gsl left and write limit too close
+ * (difference=1)
+ */
+ if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
+ dqs_gate_values[byte][1] = (left_bound_idx[1] +
+ right_bound_idx[1] +
+ 4) / 2;
+ if (dqs_gate_values[byte][1] >= 4) {
+ dqs_gate_values[byte][0] =
+ right_bound_idx[0];
+ dqs_gate_values[byte][1] -= 4;
+ } else {
+ dqs_gate_values[byte][0] =
+ left_bound_idx[0];
+ }
+ }
+ pr_debug("*******calculating mid region: system latency: %d phase: %d********\n",
+ dqs_gate_values[byte][0],
+ dqs_gate_values[byte][1]);
+ pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n");
+ set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
+ set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
+ }
+ } else {
+ /* if intermitant, restore defaut values */
+ pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
+ set_r0dgsl_delay(phy, byte, 0);
+ set_r0dgps_delay(phy, byte, 2);
+ }
+
+ /* return 0 if intermittent or if both left_bound
+ * and right_bound are not found
+ */
+ return !(intermittent || (left_bound_found && right_bound_found));
+}
+
+static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string)
+{
+ /* stores the log of pass/fail */
+ u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
+ u8 byte, gsl_idx, gps_idx = 0;
+ struct BIST_result result;
+ u8 success = 0;
+ u8 nb_bytes = get_nb_bytes(ctl);
+
+ memset(dqs_gating, 0x0, sizeof(dqs_gating));
+
+ /*disable dqs drift compensation*/
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+ /*disable all bytes*/
+ /* disable automatic power down of dll and ios when disabling a byte
+ * (to avoid having to add programming and delay
+ * for a dll re-lock when later re-enabling a disabled byte lane)
+ */
+ clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+ /* disable all data bytes */
+ clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+ clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+ /* config the bist block */
+ config_BIST(phy);
+
+ for (byte = 0; byte < nb_bytes; byte++) {
+ if (ctrlc()) {
+ sprintf(string, "interrupted at byte %d/%d",
+ byte + 1, nb_bytes);
+ return TEST_FAILED;
+ }
+ /* enable byte x (dxngcr, bit dxen) */
+ setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
+
+ /* select the byte lane for comparison of read data */
+ BIST_datx8_sel(phy, byte);
+ for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
+ for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
+ if (ctrlc()) {
+ sprintf(string,
+ "interrupted at byte %d/%d",
+ byte + 1, nb_bytes);
+ return TEST_FAILED;
+ }
+ /* write cfg to dxndqstr */
+ set_r0dgsl_delay(phy, byte, gsl_idx);
+ set_r0dgps_delay(phy, byte, gps_idx);
+
+ BIST_test(phy, byte, &result);
+ success = result.test_result;
+ if (success)
+ dqs_gating[byte][gsl_idx][gps_idx] = 1;
+ itm_soft_reset(phy);
+ }
+ }
+ set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
+ /* dummy reads */
+ readl(0xc0000000);
+ readl(0xc0000000);
+ }
+
+ /* re-enable drift compensation */
+ /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
+ return TEST_PASSED;
+}
+
+/****************************************************************
+ * TEST
+ ****************************************************************
+ */
+static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string, int argc,
+ char *argv[])
+{
+ u32 rfshctl3 = readl(&ctl->rfshctl3);
+ u32 pwrctl = readl(&ctl->pwrctl);
+ enum test_result res;
+
+ stm32mp1_refresh_disable(ctl);
+ res = read_dqs_gating(ctl, phy, string);
+ stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+ return res;
+}
+
+static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string, int argc, char *argv[])
+{
+ u32 rfshctl3 = readl(&ctl->rfshctl3);
+ u32 pwrctl = readl(&ctl->pwrctl);
+ enum test_result res;
+
+ stm32mp1_refresh_disable(ctl);
+ res = bit_deskew(ctl, phy, string);
+ stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+ return res;
+}
+
+static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string, int argc, char *argv[])
+{
+ u32 rfshctl3 = readl(&ctl->rfshctl3);
+ u32 pwrctl = readl(&ctl->pwrctl);
+ enum test_result res;
+
+ stm32mp1_refresh_disable(ctl);
+ res = eye_training(ctl, phy, string);
+ stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+ return res;
+}
+
+static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string, int argc, char *argv[])
+{
+ int byte;
+ u8 nb_bytes = get_nb_bytes(ctl);
+
+ for (byte = 0; byte < nb_bytes; byte++)
+ display_reg_results(phy, byte);
+
+ return TEST_PASSED;
+}
+
+static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
+ struct stm32mp1_ddrphy *phy,
+ char *string, int argc, char *argv[])
+{
+ unsigned long value;
+
+ if (argc > 0) {
+ if (strict_strtoul(argv[0], 0, &value) < 0) {
+ sprintf(string, "invalid nbErr %s", argv[0]);
+ return TEST_FAILED;
+ }
+ BIST_error_max = value;
+ }
+ if (argc > 1) {
+ if (strict_strtoul(argv[1], 0, &value) < 0) {
+ sprintf(string, "invalid Seed %s", argv[1]);
+ return TEST_FAILED;
+ }
+ BIST_seed = value;
+ }
+ printf("Bist.nbErr = %d\n", BIST_error_max);
+ if (BIST_seed)
+ printf("Bist.Seed = 0x%x\n", BIST_seed);
+ else
+ printf("Bist.Seed = random\n");
+
+ return TEST_PASSED;
+}
+
+/****************************************************************
+ * TEST Description
+ ****************************************************************
+ */
+
+const struct test_desc tuning[] = {
+ {do_read_dqs_gating, "Read DQS gating",
+ "software read DQS Gating", "", 0 },
+ {do_bit_deskew, "Bit de-skew", "", "", 0 },
+ {do_eye_training, "Eye Training", "or DQS training", "", 0 },
+ {do_display, "Display registers", "", "", 0 },
+ {do_bist_config, "Bist config", "[nbErr] [seed]",
+ "configure Bist test", 2},
+};
+
+const int tuning_nb = ARRAY_SIZE(tuning);