blob: 5e63c5df3ad410acdc87df3e7d1e5894ef3271a2 [file] [log] [blame]
/*
* Copyright 2008 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
extern unsigned int picos_to_mclk(unsigned int picos);
/*
* Determine Rtt value.
*
* This should likely be either board or controller specific.
*
* Rtt(nominal) - DDR2:
* 0 = Rtt disabled
* 1 = 75 ohm
* 2 = 150 ohm
* 3 = 50 ohm
* Rtt(nominal) - DDR3:
* 0 = Rtt disabled
* 1 = 60 ohm
* 2 = 120 ohm
* 3 = 40 ohm
* 4 = 20 ohm
* 5 = 30 ohm
*
* FIXME: Apparently 8641 needs a value of 2
* FIXME: Old code seys if 667 MHz or higher, use 3 on 8572
*
* FIXME: There was some effort down this line earlier:
*
* unsigned int i;
* for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL/2; i++) {
* if (popts->dimmslot[i].num_valid_cs
* && (popts->cs_local_opts[2*i].odt_rd_cfg
* || popts->cs_local_opts[2*i].odt_wr_cfg)) {
* rtt = 2;
* break;
* }
* }
*/
static inline int fsl_ddr_get_rtt(void)
{
int rtt;
#if defined(CONFIG_FSL_DDR1)
rtt = 0;
#elif defined(CONFIG_FSL_DDR2)
rtt = 3;
#else
rtt = 0;
#endif
return rtt;
}
/*
* compute the CAS write latency according to DDR3 spec
* CWL = 5 if tCK >= 2.5ns
* 6 if 2.5ns > tCK >= 1.875ns
* 7 if 1.875ns > tCK >= 1.5ns
* 8 if 1.5ns > tCK >= 1.25ns
*/
static inline unsigned int compute_cas_write_latency(void)
{
unsigned int cwl;
const unsigned int mclk_ps = get_memory_clk_period_ps();
if (mclk_ps >= 2500)
cwl = 5;
else if (mclk_ps >= 1875)
cwl = 6;
else if (mclk_ps >= 1500)
cwl = 7;
else if (mclk_ps >= 1250)
cwl = 8;
else
cwl = 8;
return cwl;
}
/* Chip Select Configuration (CSn_CONFIG) */
static void set_csn_config(int i, fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const dimm_params_t *dimm_params)
{
unsigned int cs_n_en = 0; /* Chip Select enable */
unsigned int intlv_en = 0; /* Memory controller interleave enable */
unsigned int intlv_ctl = 0; /* Interleaving control */
unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
/* Compute CS_CONFIG only for existing ranks of each DIMM. */
if ((((i&1) == 0)
&& (dimm_params[i/2].n_ranks == 1))
|| (dimm_params[i/2].n_ranks == 2)) {
unsigned int n_banks_per_sdram_device;
cs_n_en = 1;
if (i == 0) {
/* These fields only available in CS0_CONFIG */
intlv_en = popts->memctl_interleaving;
intlv_ctl = popts->memctl_interleaving_mode;
}
ap_n_en = popts->cs_local_opts[i].auto_precharge;
odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
n_banks_per_sdram_device
= dimm_params[i/2].n_banks_per_sdram_device;
ba_bits_cs_n = __ilog2(n_banks_per_sdram_device) - 2;
row_bits_cs_n = dimm_params[i/2].n_row_addr - 12;
col_bits_cs_n = dimm_params[i/2].n_col_addr - 8;
}
ddr->cs[i].config = (0
| ((cs_n_en & 0x1) << 31)
| ((intlv_en & 0x3) << 29)
| ((intlv_ctl & 0xf) << 24)
| ((ap_n_en & 0x1) << 23)
/* XXX: some implementation only have 1 bit starting at left */
| ((odt_rd_cfg & 0x7) << 20)
/* XXX: Some implementation only have 1 bit starting at left */
| ((odt_wr_cfg & 0x7) << 16)
| ((ba_bits_cs_n & 0x3) << 14)
| ((row_bits_cs_n & 0x7) << 8)
| ((col_bits_cs_n & 0x7) << 0)
);
debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
}
/* Chip Select Configuration 2 (CSn_CONFIG_2) */
/* FIXME: 8572 */
static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
{
unsigned int pasr_cfg = 0; /* Partial array self refresh config */
ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
}
/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */
#if !defined(CONFIG_FSL_DDR1)
/*
* DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
*
* Avoid writing for DDR I. The new PQ38 DDR controller
* dreams up non-zero default values to be backwards compatible.
*/
static void set_timing_cfg_0(fsl_ddr_cfg_regs_t *ddr)
{
unsigned char trwt_mclk = 0; /* Read-to-write turnaround */
unsigned char twrt_mclk = 0; /* Write-to-read turnaround */
/* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
unsigned char trrt_mclk = 0; /* Read-to-read turnaround */
unsigned char twwt_mclk = 0; /* Write-to-write turnaround */
/* Active powerdown exit timing (tXARD and tXARDS). */
unsigned char act_pd_exit_mclk;
/* Precharge powerdown exit timing (tXP). */
unsigned char pre_pd_exit_mclk;
/* Precharge powerdown exit timing (tAXPD). */
unsigned char taxpd_mclk;
/* Mode register set cycle time (tMRD). */
unsigned char tmrd_mclk;
#if defined(CONFIG_FSL_DDR3)
/*
* (tXARD and tXARDS). Empirical?
* The DDR3 spec has not tXARD,
* we use the tXP instead of it.
* tXP=max(3nCK, 7.5ns) for DDR3.
* we use the tXP=6
* spec has not the tAXPD, we use
* tAXPD=8, need design to confirm.
*/
act_pd_exit_mclk = 6;
pre_pd_exit_mclk = 6;
taxpd_mclk = 8;
tmrd_mclk = 4;
#else /* CONFIG_FSL_DDR2 */
/*
* (tXARD and tXARDS). Empirical?
* tXARD = 2 for DDR2
* tXP=2
* tAXPD=8
*/
act_pd_exit_mclk = 2;
pre_pd_exit_mclk = 2;
taxpd_mclk = 8;
tmrd_mclk = 2;
#endif
ddr->timing_cfg_0 = (0
| ((trwt_mclk & 0x3) << 30) /* RWT */
| ((twrt_mclk & 0x3) << 28) /* WRT */
| ((trrt_mclk & 0x3) << 26) /* RRT */
| ((twwt_mclk & 0x3) << 24) /* WWT */
| ((act_pd_exit_mclk & 0x7) << 20) /* ACT_PD_EXIT */
| ((pre_pd_exit_mclk & 0xF) << 16) /* PRE_PD_EXIT */
| ((taxpd_mclk & 0xf) << 8) /* ODT_PD_EXIT */
| ((tmrd_mclk & 0xf) << 0) /* MRS_CYC */
);
debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
}
#endif /* defined(CONFIG_FSL_DDR2) */
/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
static void set_timing_cfg_3(fsl_ddr_cfg_regs_t *ddr,
const common_timing_params_t *common_dimm,
unsigned int cas_latency)
{
/* Extended Activate to precharge interval (tRAS) */
unsigned int ext_acttopre = 0;
unsigned int ext_refrec; /* Extended refresh recovery time (tRFC) */
unsigned int ext_caslat = 0; /* Extended MCAS latency from READ cmd */
unsigned int cntl_adj = 0; /* Control Adjust */
/* If the tRAS > 19 MCLK, we use the ext mode */
if (picos_to_mclk(common_dimm->tRAS_ps) > 0x13)
ext_acttopre = 1;
ext_refrec = (picos_to_mclk(common_dimm->tRFC_ps) - 8) >> 4;
/* If the CAS latency more than 8, use the ext mode */
if (cas_latency > 8)
ext_caslat = 1;
ddr->timing_cfg_3 = (0
| ((ext_acttopre & 0x1) << 24)
| ((ext_refrec & 0xF) << 16)
| ((ext_caslat & 0x1) << 12)
| ((cntl_adj & 0x7) << 0)
);
debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
}
/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
static void set_timing_cfg_1(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency)
{
/* Precharge-to-activate interval (tRP) */
unsigned char pretoact_mclk;
/* Activate to precharge interval (tRAS) */
unsigned char acttopre_mclk;
/* Activate to read/write interval (tRCD) */
unsigned char acttorw_mclk;
/* CASLAT */
unsigned char caslat_ctrl;
/* Refresh recovery time (tRFC) ; trfc_low */
unsigned char refrec_ctrl;
/* Last data to precharge minimum interval (tWR) */
unsigned char wrrec_mclk;
/* Activate-to-activate interval (tRRD) */
unsigned char acttoact_mclk;
/* Last write data pair to read command issue interval (tWTR) */
unsigned char wrtord_mclk;
pretoact_mclk = picos_to_mclk(common_dimm->tRP_ps);
acttopre_mclk = picos_to_mclk(common_dimm->tRAS_ps);
acttorw_mclk = picos_to_mclk(common_dimm->tRCD_ps);
/*
* Translate CAS Latency to a DDR controller field value:
*
* CAS Lat DDR I DDR II Ctrl
* Clocks SPD Bit SPD Bit Value
* ------- ------- ------- -----
* 1.0 0 0001
* 1.5 1 0010
* 2.0 2 2 0011
* 2.5 3 0100
* 3.0 4 3 0101
* 3.5 5 0110
* 4.0 4 0111
* 4.5 1000
* 5.0 5 1001
*/
#if defined(CONFIG_FSL_DDR1)
caslat_ctrl = (cas_latency + 1) & 0x07;
#elif defined(CONFIG_FSL_DDR2)
caslat_ctrl = 2 * cas_latency - 1;
#else
/*
* if the CAS latency more than 8 cycle,
* we need set extend bit for it at
* TIMING_CFG_3[EXT_CASLAT]
*/
if (cas_latency > 8)
cas_latency -= 8;
caslat_ctrl = 2 * cas_latency - 1;
#endif
refrec_ctrl = picos_to_mclk(common_dimm->tRFC_ps) - 8;
wrrec_mclk = picos_to_mclk(common_dimm->tWR_ps);
if (popts->OTF_burst_chop_en)
wrrec_mclk += 2;
acttoact_mclk = picos_to_mclk(common_dimm->tRRD_ps);
/*
* JEDEC has min requirement for tRRD
*/
#if defined(CONFIG_FSL_DDR3)
if (acttoact_mclk < 4)
acttoact_mclk = 4;
#endif
wrtord_mclk = picos_to_mclk(common_dimm->tWTR_ps);
/*
* JEDEC has some min requirements for tWTR
*/
#if defined(CONFIG_FSL_DDR2)
if (wrtord_mclk < 2)
wrtord_mclk = 2;
#elif defined(CONFIG_FSL_DDR3)
if (wrtord_mclk < 4)
wrtord_mclk = 4;
#endif
if (popts->OTF_burst_chop_en)
wrtord_mclk += 2;
ddr->timing_cfg_1 = (0
| ((pretoact_mclk & 0x0F) << 28)
| ((acttopre_mclk & 0x0F) << 24)
| ((acttorw_mclk & 0xF) << 20)
| ((caslat_ctrl & 0xF) << 16)
| ((refrec_ctrl & 0xF) << 12)
| ((wrrec_mclk & 0x0F) << 8)
| ((acttoact_mclk & 0x07) << 4)
| ((wrtord_mclk & 0x07) << 0)
);
debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
}
/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
static void set_timing_cfg_2(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency,
unsigned int additive_latency)
{
/* Additive latency */
unsigned char add_lat_mclk;
/* CAS-to-preamble override */
unsigned short cpo;
/* Write latency */
unsigned char wr_lat;
/* Read to precharge (tRTP) */
unsigned char rd_to_pre;
/* Write command to write data strobe timing adjustment */
unsigned char wr_data_delay;
/* Minimum CKE pulse width (tCKE) */
unsigned char cke_pls;
/* Window for four activates (tFAW) */
unsigned short four_act;
/* FIXME add check that this must be less than acttorw_mclk */
add_lat_mclk = additive_latency;
cpo = popts->cpo_override;
#if defined(CONFIG_FSL_DDR1)
/*
* This is a lie. It should really be 1, but if it is
* set to 1, bits overlap into the old controller's
* otherwise unused ACSM field. If we leave it 0, then
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
*/
wr_lat = 0;
#elif defined(CONFIG_FSL_DDR2)
wr_lat = cas_latency - 1;
#else
wr_lat = compute_cas_write_latency();
#endif
rd_to_pre = picos_to_mclk(common_dimm->tRTP_ps);
/*
* JEDEC has some min requirements for tRTP
*/
#if defined(CONFIG_FSL_DDR2)
if (rd_to_pre < 2)
rd_to_pre = 2;
#elif defined(CONFIG_FSL_DDR3)
if (rd_to_pre < 4)
rd_to_pre = 4;
#endif
if (additive_latency)
rd_to_pre += additive_latency;
if (popts->OTF_burst_chop_en)
rd_to_pre += 2; /* according to UM */
wr_data_delay = popts->write_data_delay;
cke_pls = picos_to_mclk(popts->tCKE_clock_pulse_width_ps);
four_act = picos_to_mclk(popts->tFAW_window_four_activates_ps);
ddr->timing_cfg_2 = (0
| ((add_lat_mclk & 0xf) << 28)
| ((cpo & 0x1f) << 23)
| ((wr_lat & 0xf) << 19)
| ((rd_to_pre & RD_TO_PRE_MASK) << RD_TO_PRE_SHIFT)
| ((wr_data_delay & WR_DATA_DELAY_MASK) << WR_DATA_DELAY_SHIFT)
| ((cke_pls & 0x7) << 6)
| ((four_act & 0x3f) << 0)
);
debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
}
/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
static void set_ddr_sdram_cfg(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm)
{
unsigned int mem_en; /* DDR SDRAM interface logic enable */
unsigned int sren; /* Self refresh enable (during sleep) */
unsigned int ecc_en; /* ECC enable. */
unsigned int rd_en; /* Registered DIMM enable */
unsigned int sdram_type; /* Type of SDRAM */
unsigned int dyn_pwr; /* Dynamic power management mode */
unsigned int dbw; /* DRAM dta bus width */
unsigned int eight_be = 0; /* 8-beat burst enable, DDR2 is zero */
unsigned int ncap = 0; /* Non-concurrent auto-precharge */
unsigned int threeT_en; /* Enable 3T timing */
unsigned int twoT_en; /* Enable 2T timing */
unsigned int ba_intlv_ctl; /* Bank (CS) interleaving control */
unsigned int x32_en = 0; /* x32 enable */
unsigned int pchb8 = 0; /* precharge bit 8 enable */
unsigned int hse; /* Global half strength override */
unsigned int mem_halt = 0; /* memory controller halt */
unsigned int bi = 0; /* Bypass initialization */
mem_en = 1;
sren = popts->self_refresh_in_sleep;
if (common_dimm->all_DIMMs_ECC_capable) {
/* Allow setting of ECC only if all DIMMs are ECC. */
ecc_en = popts->ECC_mode;
} else {
ecc_en = 0;
}
rd_en = (common_dimm->all_DIMMs_registered
&& !common_dimm->all_DIMMs_unbuffered);
sdram_type = CONFIG_FSL_SDRAM_TYPE;
dyn_pwr = popts->dynamic_power;
dbw = popts->data_bus_width;
/* 8-beat burst enable DDR-III case
* we must clear it when use the on-the-fly mode,
* must set it when use the 32-bits bus mode.
*/
if (sdram_type == SDRAM_TYPE_DDR3) {
if (popts->burst_length == DDR_BL8)
eight_be = 1;
if (popts->burst_length == DDR_OTF)
eight_be = 0;
if (dbw == 0x1)
eight_be = 1;
}
threeT_en = popts->threeT_en;
twoT_en = popts->twoT_en;
ba_intlv_ctl = popts->ba_intlv_ctl;
hse = popts->half_strength_driver_enable;
ddr->ddr_sdram_cfg = (0
| ((mem_en & 0x1) << 31)
| ((sren & 0x1) << 30)
| ((ecc_en & 0x1) << 29)
| ((rd_en & 0x1) << 28)
| ((sdram_type & 0x7) << 24)
| ((dyn_pwr & 0x1) << 21)
| ((dbw & 0x3) << 19)
| ((eight_be & 0x1) << 18)
| ((ncap & 0x1) << 17)
| ((threeT_en & 0x1) << 16)
| ((twoT_en & 0x1) << 15)
| ((ba_intlv_ctl & 0x7F) << 8)
| ((x32_en & 0x1) << 5)
| ((pchb8 & 0x1) << 4)
| ((hse & 0x1) << 3)
| ((mem_halt & 0x1) << 1)
| ((bi & 0x1) << 0)
);
debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
}
/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
static void set_ddr_sdram_cfg_2(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts)
{
unsigned int frc_sr = 0; /* Force self refresh */
unsigned int sr_ie = 0; /* Self-refresh interrupt enable */
unsigned int dll_rst_dis; /* DLL reset disable */
unsigned int dqs_cfg; /* DQS configuration */
unsigned int odt_cfg; /* ODT configuration */
unsigned int num_pr; /* Number of posted refreshes */
unsigned int obc_cfg; /* On-The-Fly Burst Chop Cfg */
unsigned int ap_en; /* Address Parity Enable */
unsigned int d_init; /* DRAM data initialization */
unsigned int rcw_en = 0; /* Register Control Word Enable */
unsigned int md_en = 0; /* Mirrored DIMM Enable */
dll_rst_dis = 1; /* Make this configurable */
dqs_cfg = popts->DQS_config;
if (popts->cs_local_opts[0].odt_rd_cfg
|| popts->cs_local_opts[0].odt_wr_cfg) {
/* FIXME */
odt_cfg = 2;
} else {
odt_cfg = 0;
}
num_pr = 1; /* Make this configurable */
/*
* 8572 manual says
* {TIMING_CFG_1[PRETOACT]
* + [DDR_SDRAM_CFG_2[NUM_PR]
* * ({EXT_REFREC || REFREC} + 8 + 2)]}
* << DDR_SDRAM_INTERVAL[REFINT]
*/
#if defined(CONFIG_FSL_DDR3)
obc_cfg = popts->OTF_burst_chop_en;
#else
obc_cfg = 0;
#endif
ap_en = 0; /* Make this configurable? */
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/* Use the DDR controller to auto initialize memory. */
d_init = 1;
ddr->ddr_data_init = CONFIG_MEM_INIT_VALUE;
debug("DDR: ddr_data_init = 0x%08x\n", ddr->ddr_data_init);
#else
/* Memory will be initialized via DMA, or not at all. */
d_init = 0;
#endif
#if defined(CONFIG_FSL_DDR3)
md_en = popts->mirrored_dimm;
#endif
ddr->ddr_sdram_cfg_2 = (0
| ((frc_sr & 0x1) << 31)
| ((sr_ie & 0x1) << 30)
| ((dll_rst_dis & 0x1) << 29)
| ((dqs_cfg & 0x3) << 26)
| ((odt_cfg & 0x3) << 21)
| ((num_pr & 0xf) << 12)
| ((obc_cfg & 0x1) << 6)
| ((ap_en & 0x1) << 5)
| ((d_init & 0x1) << 4)
| ((rcw_en & 0x1) << 2)
| ((md_en & 0x1) << 0)
);
debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
}
/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
static void set_ddr_sdram_mode_2(fsl_ddr_cfg_regs_t *ddr)
{
unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
#if defined(CONFIG_FSL_DDR3)
unsigned int rtt_wr = 2; /* 120 ohm Rtt_WR */
unsigned int srt = 0; /* self-refresh temerature, normal range */
unsigned int asr = 0; /* auto self-refresh disable */
unsigned int cwl = compute_cas_write_latency() - 5;
unsigned int pasr = 0; /* partial array self refresh disable */
esdmode2 = (0
| ((rtt_wr & 0x3) << 9)
| ((srt & 0x1) << 7)
| ((asr & 0x1) << 6)
| ((cwl & 0x7) << 3)
| ((pasr & 0x7) << 0));
#endif
ddr->ddr_sdram_mode_2 = (0
| ((esdmode2 & 0xFFFF) << 16)
| ((esdmode3 & 0xFFFF) << 0)
);
debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
}
/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
static void set_ddr_sdram_interval(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm)
{
unsigned int refint; /* Refresh interval */
unsigned int bstopre; /* Precharge interval */
refint = picos_to_mclk(common_dimm->refresh_rate_ps);
bstopre = popts->bstopre;
/* refint field used 0x3FFF in earlier controllers */
ddr->ddr_sdram_interval = (0
| ((refint & 0xFFFF) << 16)
| ((bstopre & 0x3FFF) << 0)
);
debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
}
#if defined(CONFIG_FSL_DDR3)
/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency,
unsigned int additive_latency)
{
unsigned short esdmode; /* Extended SDRAM mode */
unsigned short sdmode; /* SDRAM mode */
/* Mode Register - MR1 */
unsigned int qoff = 0; /* Output buffer enable 0=yes, 1=no */
unsigned int tdqs_en = 0; /* TDQS Enable: 0=no, 1=yes */
unsigned int rtt;
unsigned int wrlvl_en = 0; /* Write level enable: 0=no, 1=yes */
unsigned int al = 0; /* Posted CAS# additive latency (AL) */
unsigned int dic = 1; /* Output driver impedance, 34ohm */
unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
1=Disable (Test/Debug) */
/* Mode Register - MR0 */
unsigned int dll_on; /* DLL control for precharge PD, 0=off, 1=on */
unsigned int wr; /* Write Recovery */
unsigned int dll_rst; /* DLL Reset */
unsigned int mode; /* Normal=0 or Test=1 */
unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
unsigned int bt;
unsigned int bl; /* BL: Burst Length */
unsigned int wr_mclk;
const unsigned int mclk_ps = get_memory_clk_period_ps();
rtt = fsl_ddr_get_rtt();
if (popts->rtt_override)
rtt = popts->rtt_override_value;
if (additive_latency == (cas_latency - 1))
al = 1;
if (additive_latency == (cas_latency - 2))
al = 2;
/*
* The esdmode value will also be used for writing
* MR1 during write leveling for DDR3, although the
* bits specifically related to the write leveling
* scheme will be handled automatically by the DDR
* controller. so we set the wrlvl_en = 0 here.
*/
esdmode = (0
| ((qoff & 0x1) << 12)
| ((tdqs_en & 0x1) << 11)
| ((rtt & 0x4) << 9) /* rtt field is split */
| ((wrlvl_en & 0x1) << 7)
| ((rtt & 0x2) << 6) /* rtt field is split */
| ((dic & 0x2) << 5) /* DIC field is split */
| ((al & 0x3) << 3)
| ((rtt & 0x1) << 2) /* rtt field is split */
| ((dic & 0x1) << 1) /* DIC field is split */
| ((dll_en & 0x1) << 0)
);
/*
* DLL control for precharge PD
* 0=slow exit DLL off (tXPDLL)
* 1=fast exit DLL on (tXP)
*/
dll_on = 1;
wr_mclk = (common_dimm->tWR_ps + mclk_ps - 1) / mclk_ps;
if (wr_mclk >= 12)
wr = 6;
else if (wr_mclk >= 9)
wr = 5;
else
wr = wr_mclk - 4;
dll_rst = 0; /* dll no reset */
mode = 0; /* normal mode */
/* look up table to get the cas latency bits */
if (cas_latency >= 5 && cas_latency <= 11) {
unsigned char cas_latency_table[7] = {
0x2, /* 5 clocks */
0x4, /* 6 clocks */
0x6, /* 7 clocks */
0x8, /* 8 clocks */
0xa, /* 9 clocks */
0xc, /* 10 clocks */
0xe /* 11 clocks */
};
caslat = cas_latency_table[cas_latency - 5];
}
bt = 0; /* Nibble sequential */
switch (popts->burst_length) {
case DDR_BL8:
bl = 0;
break;
case DDR_OTF:
bl = 1;
break;
case DDR_BC4:
bl = 2;
break;
default:
printf("Error: invalid burst length of %u specified. "
" Defaulting to on-the-fly BC4 or BL8 beats.\n",
popts->burst_length);
bl = 1;
break;
}
sdmode = (0
| ((dll_on & 0x1) << 12)
| ((wr & 0x7) << 9)
| ((dll_rst & 0x1) << 8)
| ((mode & 0x1) << 7)
| (((caslat >> 1) & 0x7) << 4)
| ((bt & 0x1) << 3)
| ((bl & 0x3) << 0)
);
ddr->ddr_sdram_mode = (0
| ((esdmode & 0xFFFF) << 16)
| ((sdmode & 0xFFFF) << 0)
);
debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
}
#else /* !CONFIG_FSL_DDR3 */
/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency,
unsigned int additive_latency)
{
unsigned short esdmode; /* Extended SDRAM mode */
unsigned short sdmode; /* SDRAM mode */
/*
* FIXME: This ought to be pre-calculated in a
* technology-specific routine,
* e.g. compute_DDR2_mode_register(), and then the
* sdmode and esdmode passed in as part of common_dimm.
*/
/* Extended Mode Register */
unsigned int mrs = 0; /* Mode Register Set */
unsigned int outputs = 0; /* 0=Enabled, 1=Disabled */
unsigned int rdqs_en = 0; /* RDQS Enable: 0=no, 1=yes */
unsigned int dqs_en = 0; /* DQS# Enable: 0=enable, 1=disable */
unsigned int ocd = 0; /* 0x0=OCD not supported,
0x7=OCD default state */
unsigned int rtt;
unsigned int al; /* Posted CAS# additive latency (AL) */
unsigned int ods = 0; /* Output Drive Strength:
0 = Full strength (18ohm)
1 = Reduced strength (4ohm) */
unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
1=Disable (Test/Debug) */
/* Mode Register (MR) */
unsigned int mr; /* Mode Register Definition */
unsigned int pd; /* Power-Down Mode */
unsigned int wr; /* Write Recovery */
unsigned int dll_res; /* DLL Reset */
unsigned int mode; /* Normal=0 or Test=1 */
unsigned int caslat = 0;/* CAS# latency */
/* BT: Burst Type (0=Sequential, 1=Interleaved) */
unsigned int bt;
unsigned int bl; /* BL: Burst Length */
#if defined(CONFIG_FSL_DDR2)
const unsigned int mclk_ps = get_memory_clk_period_ps();
#endif
rtt = fsl_ddr_get_rtt();
al = additive_latency;
esdmode = (0
| ((mrs & 0x3) << 14)
| ((outputs & 0x1) << 12)
| ((rdqs_en & 0x1) << 11)
| ((dqs_en & 0x1) << 10)
| ((ocd & 0x7) << 7)
| ((rtt & 0x2) << 5) /* rtt field is split */
| ((al & 0x7) << 3)
| ((rtt & 0x1) << 2) /* rtt field is split */
| ((ods & 0x1) << 1)
| ((dll_en & 0x1) << 0)
);
mr = 0; /* FIXME: CHECKME */
/*
* 0 = Fast Exit (Normal)
* 1 = Slow Exit (Low Power)
*/
pd = 0;
#if defined(CONFIG_FSL_DDR1)
wr = 0; /* Historical */
#elif defined(CONFIG_FSL_DDR2)
wr = (common_dimm->tWR_ps + mclk_ps - 1) / mclk_ps - 1;
#endif
dll_res = 0;
mode = 0;
#if defined(CONFIG_FSL_DDR1)
if (1 <= cas_latency && cas_latency <= 4) {
unsigned char mode_caslat_table[4] = {
0x5, /* 1.5 clocks */
0x2, /* 2.0 clocks */
0x6, /* 2.5 clocks */
0x3 /* 3.0 clocks */
};
caslat = mode_caslat_table[cas_latency - 1];
} else {
printf("Warning: unknown cas_latency %d\n", cas_latency);
}
#elif defined(CONFIG_FSL_DDR2)
caslat = cas_latency;
#endif
bt = 0;
switch (popts->burst_length) {
case DDR_BL4:
bl = 2;
break;
case DDR_BL8:
bl = 3;
break;
default:
printf("Error: invalid burst length of %u specified. "
" Defaulting to 4 beats.\n",
popts->burst_length);
bl = 2;
break;
}
sdmode = (0
| ((mr & 0x3) << 14)
| ((pd & 0x1) << 12)
| ((wr & 0x7) << 9)
| ((dll_res & 0x1) << 8)
| ((mode & 0x1) << 7)
| ((caslat & 0x7) << 4)
| ((bt & 0x1) << 3)
| ((bl & 0x7) << 0)
);
ddr->ddr_sdram_mode = (0
| ((esdmode & 0xFFFF) << 16)
| ((sdmode & 0xFFFF) << 0)
);
debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
}
#endif
/* DDR SDRAM Data Initialization (DDR_DATA_INIT) */
static void set_ddr_data_init(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int init_value; /* Initialization value */
init_value = 0xDEADBEEF;
ddr->ddr_data_init = init_value;
}
/*
* DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
* The old controller on the 8540/60 doesn't have this register.
* Hope it's OK to set it (to 0) anyway.
*/
static void set_ddr_sdram_clk_cntl(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts)
{
unsigned int clk_adjust; /* Clock adjust */
clk_adjust = popts->clk_adjust;
ddr->ddr_sdram_clk_cntl = (clk_adjust & 0xF) << 23;
}
/* DDR Initialization Address (DDR_INIT_ADDR) */
static void set_ddr_init_addr(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int init_addr = 0; /* Initialization address */
ddr->ddr_init_addr = init_addr;
}
/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
static void set_ddr_init_ext_addr(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int uia = 0; /* Use initialization address */
unsigned int init_ext_addr = 0; /* Initialization address */
ddr->ddr_init_ext_addr = (0
| ((uia & 0x1) << 31)
| (init_ext_addr & 0xF)
);
}
/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
static void set_timing_cfg_4(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */
#if defined(CONFIG_FSL_DDR3)
/* We need set BL/2 + 4 for BC4 or OTF */
rrt = 4; /* BL/2 + 4 clocks */
wwt = 4; /* BL/2 + 4 clocks */
dll_lock = 1; /* tDLLK = 512 clocks from spec */
#endif
ddr->timing_cfg_4 = (0
| ((rwt & 0xf) << 28)
| ((wrt & 0xf) << 24)
| ((rrt & 0xf) << 20)
| ((wwt & 0xf) << 16)
| (dll_lock & 0x3)
);
debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
}
/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
static void set_timing_cfg_5(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rodt_on = 0; /* Read to ODT on */
unsigned int rodt_off = 0; /* Read to ODT off */
unsigned int wodt_on = 0; /* Write to ODT on */
unsigned int wodt_off = 0; /* Write to ODT off */
#if defined(CONFIG_FSL_DDR3)
rodt_on = 3; /* 2 clocks */
rodt_off = 4; /* 4 clocks */
wodt_on = 2; /* 1 clocks */
wodt_off = 4; /* 4 clocks */
#endif
ddr->timing_cfg_5 = (0
| ((rodt_on & 0x1f) << 24)
| ((rodt_off & 0x7) << 20)
| ((wodt_on & 0x1f) << 12)
| ((wodt_off & 0x7) << 8)
);
debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
}
/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
static void set_ddr_zq_cntl(fsl_ddr_cfg_regs_t *ddr, unsigned int zq_en)
{
unsigned int zqinit = 0;/* POR ZQ Calibration Time (tZQinit) */
/* Normal Operation Full Calibration Time (tZQoper) */
unsigned int zqoper = 0;
/* Normal Operation Short Calibration Time (tZQCS) */
unsigned int zqcs = 0;
if (zq_en) {
zqinit = 9; /* 512 clocks */
zqoper = 8; /* 256 clocks */
zqcs = 6; /* 64 clocks */
}
ddr->ddr_zq_cntl = (0
| ((zq_en & 0x1) << 31)
| ((zqinit & 0xF) << 24)
| ((zqoper & 0xF) << 16)
| ((zqcs & 0xF) << 8)
);
}
/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
static void set_ddr_wrlvl_cntl(fsl_ddr_cfg_regs_t *ddr,
unsigned int wrlvl_en)
{
/*
* First DQS pulse rising edge after margining mode
* is programmed (tWL_MRD)
*/
unsigned int wrlvl_mrd = 0;
/* ODT delay after margining mode is programmed (tWL_ODTEN) */
unsigned int wrlvl_odten = 0;
/* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
unsigned int wrlvl_dqsen = 0;
/* WRLVL_SMPL: Write leveling sample time */
unsigned int wrlvl_smpl = 0;
/* WRLVL_WLR: Write leveling repeition time */
unsigned int wrlvl_wlr = 0;
/* WRLVL_START: Write leveling start time */
unsigned int wrlvl_start = 0;
/* suggest enable write leveling for DDR3 due to fly-by topology */
if (wrlvl_en) {
/* tWL_MRD min = 40 nCK, we set it 64 */
wrlvl_mrd = 0x6;
/* tWL_ODTEN 128 */
wrlvl_odten = 0x7;
/* tWL_DQSEN min = 25 nCK, we set it 32 */
wrlvl_dqsen = 0x5;
/*
* Write leveling sample time at least need 14 clocks
* due to tWLO = 9, we set it 15 clocks
*/
wrlvl_smpl = 0xf;
/*
* Write leveling repetition time
* at least tWLO + 6 clocks clocks
* we set it 32
*/
wrlvl_wlr = 0x5;
/*
* Write leveling start time
* The value use for the DQS_ADJUST for the first sample
* when write leveling is enabled.
* we set it 1 clock delay
*/
wrlvl_start = 0x8;
}
ddr->ddr_wrlvl_cntl = (0
| ((wrlvl_en & 0x1) << 31)
| ((wrlvl_mrd & 0x7) << 24)
| ((wrlvl_odten & 0x7) << 20)
| ((wrlvl_dqsen & 0x7) << 16)
| ((wrlvl_smpl & 0xf) << 12)
| ((wrlvl_wlr & 0x7) << 8)
| ((wrlvl_start & 0x1F) << 0)
);
}
/* DDR Self Refresh Counter (DDR_SR_CNTR) */
static void set_ddr_sr_cntr(fsl_ddr_cfg_regs_t *ddr, unsigned int sr_it)
{
/* Self Refresh Idle Threshold */
ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
}
/* DDR SDRAM Register Control Word 1 (DDR_SDRAM_RCW_1) */
static void set_ddr_sdram_rcw_1(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rcw0 = 0; /* RCW0: Register Control Word 0 */
unsigned int rcw1 = 0; /* RCW1: Register Control Word 1 */
unsigned int rcw2 = 0; /* RCW2: Register Control Word 2 */
unsigned int rcw3 = 0; /* RCW3: Register Control Word 3 */
unsigned int rcw4 = 0; /* RCW4: Register Control Word 4 */
unsigned int rcw5 = 0; /* RCW5: Register Control Word 5 */
unsigned int rcw6 = 0; /* RCW6: Register Control Word 6 */
unsigned int rcw7 = 0; /* RCW7: Register Control Word 7 */
ddr->ddr_sdram_rcw_1 = (0
| ((rcw0 & 0xF) << 28)
| ((rcw1 & 0xF) << 24)
| ((rcw2 & 0xF) << 20)
| ((rcw3 & 0xF) << 16)
| ((rcw4 & 0xF) << 12)
| ((rcw5 & 0xF) << 8)
| ((rcw6 & 0xF) << 4)
| ((rcw7 & 0xF) << 0)
);
}
/* DDR SDRAM Register Control Word 2 (DDR_SDRAM_RCW_2) */
static void set_ddr_sdram_rcw_2(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rcw8 = 0; /* RCW0: Register Control Word 8 */
unsigned int rcw9 = 0; /* RCW1: Register Control Word 9 */
unsigned int rcw10 = 0; /* RCW2: Register Control Word 10 */
unsigned int rcw11 = 0; /* RCW3: Register Control Word 11 */
unsigned int rcw12 = 0; /* RCW4: Register Control Word 12 */
unsigned int rcw13 = 0; /* RCW5: Register Control Word 13 */
unsigned int rcw14 = 0; /* RCW6: Register Control Word 14 */
unsigned int rcw15 = 0; /* RCW7: Register Control Word 15 */
ddr->ddr_sdram_rcw_2 = (0
| ((rcw8 & 0xF) << 28)
| ((rcw9 & 0xF) << 24)
| ((rcw10 & 0xF) << 20)
| ((rcw11 & 0xF) << 16)
| ((rcw12 & 0xF) << 12)
| ((rcw13 & 0xF) << 8)
| ((rcw14 & 0xF) << 4)
| ((rcw15 & 0xF) << 0)
);
}
unsigned int
check_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
{
unsigned int res = 0;
/*
* Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
* not set at the same time.
*/
if (ddr->ddr_sdram_cfg & 0x10000000
&& ddr->ddr_sdram_cfg & 0x00008000) {
printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
" should not be set at the same time.\n");
res++;
}
return res;
}
unsigned int
compute_fsl_memctl_config_regs(const memctl_options_t *popts,
fsl_ddr_cfg_regs_t *ddr,
const common_timing_params_t *common_dimm,
const dimm_params_t *dimm_params,
unsigned int dbw_cap_adj)
{
unsigned int i;
unsigned int cas_latency;
unsigned int additive_latency;
unsigned int sr_it;
unsigned int zq_en;
unsigned int wrlvl_en;
memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));
if (common_dimm == NULL) {
printf("Error: subset DIMM params struct null pointer\n");
return 1;
}
/*
* Process overrides first.
*
* FIXME: somehow add dereated caslat to this
*/
cas_latency = (popts->cas_latency_override)
? popts->cas_latency_override_value
: common_dimm->lowest_common_SPD_caslat;
additive_latency = (popts->additive_latency_override)
? popts->additive_latency_override_value
: common_dimm->additive_latency;
sr_it = (popts->auto_self_refresh_en)
? popts->sr_it
: 0;
/* ZQ calibration */
zq_en = (popts->zq_en) ? 1 : 0;
/* write leveling */
wrlvl_en = (popts->wrlvl_en) ? 1 : 0;
/* Chip Select Memory Bounds (CSn_BNDS) */
for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
unsigned long long ea = 0, sa = 0;
if (popts->ba_intlv_ctl && (i > 0) &&
((popts->ba_intlv_ctl & 0x60) != FSL_DDR_CS2_CS3 )) {
/* Don't set up boundaries for other CS
* other than CS0, if bank interleaving
* is enabled and not CS2+CS3 interleaved.
*/
break;
}
if (dimm_params[i/2].n_ranks == 0) {
debug("Skipping setup of CS%u "
"because n_ranks on DIMM %u is 0\n", i, i/2);
continue;
}
if (popts->memctl_interleaving && popts->ba_intlv_ctl) {
/*
* This works superbank 2CS
* There are 2 memory controllers configured
* identically, memory is interleaved between them,
* and each controller uses rank interleaving within
* itself. Therefore the starting and ending address
* on each controller is twice the amount present on
* each controller.
*/
unsigned long long rank_density
= dimm_params[0].capacity;
ea = (2 * (rank_density >> dbw_cap_adj)) - 1;
}
else if (!popts->memctl_interleaving && popts->ba_intlv_ctl) {
/*
* If memory interleaving between controllers is NOT
* enabled, the starting address for each memory
* controller is distinct. However, because rank
* interleaving is enabled, the starting and ending
* addresses of the total memory on that memory
* controller needs to be programmed into its
* respective CS0_BNDS.
*/
unsigned long long rank_density
= dimm_params[i/2].rank_density;
switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
case FSL_DDR_CS0_CS1_CS2_CS3:
/* CS0+CS1+CS2+CS3 interleaving, only CS0_CNDS
* needs to be set.
*/
sa = common_dimm->base_address;
ea = sa + (4 * (rank_density >> dbw_cap_adj))-1;
break;
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
/* CS0+CS1 and CS2+CS3 interleaving, CS0_CNDS
* and CS2_CNDS need to be set.
*/
if (!(i&1)) {
sa = dimm_params[i/2].base_address;
ea = sa + (i * (rank_density >>
dbw_cap_adj)) - 1;
}
break;
case FSL_DDR_CS0_CS1:
/* CS0+CS1 interleaving, CS0_CNDS needs
* to be set
*/
sa = common_dimm->base_address;
ea = sa + (2 * (rank_density >> dbw_cap_adj))-1;
break;
case FSL_DDR_CS2_CS3:
/* CS2+CS3 interleaving*/
if (i == 2) {
sa = dimm_params[i/2].base_address;
ea = sa + (2 * (rank_density >>
dbw_cap_adj)) - 1;
}
break;
default: /* No bank(chip-select) interleaving */
break;
}
}
else if (popts->memctl_interleaving && !popts->ba_intlv_ctl) {
/*
* Only the rank on CS0 of each memory controller may
* be used if memory controller interleaving is used
* without rank interleaving within each memory
* controller. However, the ending address programmed
* into each CS0 must be the sum of the amount of
* memory in the two CS0 ranks.
*/
if (i == 0) {
unsigned long long rank_density
= dimm_params[0].rank_density;
ea = (2 * (rank_density >> dbw_cap_adj)) - 1;
}
}
else if (!popts->memctl_interleaving && !popts->ba_intlv_ctl) {
/*
* No rank interleaving and no memory controller
* interleaving.
*/
unsigned long long rank_density
= dimm_params[i/2].rank_density;
sa = dimm_params[i/2].base_address;
ea = sa + (rank_density >> dbw_cap_adj) - 1;
if (i&1) {
if ((dimm_params[i/2].n_ranks == 1)) {
/* Odd chip select, single-rank dimm */
sa = 0;
ea = 0;
} else {
/* Odd chip select, dual-rank DIMM */
sa += rank_density >> dbw_cap_adj;
ea += rank_density >> dbw_cap_adj;
}
}
}
sa >>= 24;
ea >>= 24;
ddr->cs[i].bnds = (0
| ((sa & 0xFFF) << 16) /* starting address MSB */
| ((ea & 0xFFF) << 0) /* ending address MSB */
);
debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
set_csn_config(i, ddr, popts, dimm_params);
set_csn_config_2(i, ddr);
}
#if !defined(CONFIG_FSL_DDR1)
set_timing_cfg_0(ddr);
#endif
set_timing_cfg_3(ddr, common_dimm, cas_latency);
set_timing_cfg_1(ddr, popts, common_dimm, cas_latency);
set_timing_cfg_2(ddr, popts, common_dimm,
cas_latency, additive_latency);
set_ddr_sdram_cfg(ddr, popts, common_dimm);
set_ddr_sdram_cfg_2(ddr, popts);
set_ddr_sdram_mode(ddr, popts, common_dimm,
cas_latency, additive_latency);
set_ddr_sdram_mode_2(ddr);
set_ddr_sdram_interval(ddr, popts, common_dimm);
set_ddr_data_init(ddr);
set_ddr_sdram_clk_cntl(ddr, popts);
set_ddr_init_addr(ddr);
set_ddr_init_ext_addr(ddr);
set_timing_cfg_4(ddr);
set_timing_cfg_5(ddr);
set_ddr_zq_cntl(ddr, zq_en);
set_ddr_wrlvl_cntl(ddr, wrlvl_en);
set_ddr_sr_cntr(ddr, sr_it);
set_ddr_sdram_rcw_1(ddr);
set_ddr_sdram_rcw_2(ddr);
return check_fsl_memctl_config_regs(ddr);
}