| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH |
| */ |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <dm.h> |
| #include <hang.h> |
| #include <log.h> |
| #include <dt-bindings/memory/rk3368-dmc.h> |
| #include <dt-structs.h> |
| #include <ram.h> |
| #include <regmap.h> |
| #include <syscon.h> |
| #include <asm/io.h> |
| #include <asm/arch-rockchip/clock.h> |
| #include <asm/arch-rockchip/cru_rk3368.h> |
| #include <asm/arch-rockchip/grf_rk3368.h> |
| #include <asm/arch-rockchip/hardware.h> |
| #include <asm/arch-rockchip/ddr_rk3368.h> |
| #include <asm/arch-rockchip/sdram.h> |
| #include <asm/arch-rockchip/sdram_rk3288.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/printk.h> |
| |
| struct dram_info { |
| struct ram_info info; |
| struct clk ddr_clk; |
| struct rk3368_cru *cru; |
| struct rk3368_grf *grf; |
| struct rk3368_ddr_pctl *pctl; |
| struct rk3368_ddrphy *phy; |
| struct rk3368_pmu_grf *pmugrf; |
| struct rk3368_msch *msch; |
| }; |
| |
| struct rk3368_sdram_params { |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| struct dtd_rockchip_rk3368_dmc of_plat; |
| #endif |
| struct rk3288_sdram_pctl_timing pctl_timing; |
| u32 trefi_mem_ddr3; |
| struct rk3288_sdram_channel chan; |
| struct regmap *map; |
| u32 ddr_freq; |
| u32 memory_schedule; |
| u32 ddr_speed_bin; |
| u32 tfaw_mult; |
| }; |
| |
| /* PTCL bits */ |
| enum { |
| /* PCTL_DFISTCFG0 */ |
| DFI_INIT_START = BIT(0), |
| DFI_DATA_BYTE_DISABLE_EN = BIT(2), |
| |
| /* PCTL_DFISTCFG1 */ |
| DFI_DRAM_CLK_SR_EN = BIT(0), |
| DFI_DRAM_CLK_DPD_EN = BIT(1), |
| ODT_LEN_BL8_W_SHIFT = 16, |
| |
| /* PCTL_DFISTCFG2 */ |
| DFI_PARITY_INTR_EN = BIT(0), |
| DFI_PARITY_EN = BIT(1), |
| |
| /* PCTL_DFILPCFG0 */ |
| TLP_RESP_TIME_SHIFT = 16, |
| LP_SR_EN = BIT(8), |
| LP_PD_EN = BIT(0), |
| |
| /* PCTL_DFIODTCFG */ |
| RANK0_ODT_WRITE_SEL = BIT(3), |
| RANK1_ODT_WRITE_SEL = BIT(11), |
| |
| /* PCTL_SCFG */ |
| HW_LOW_POWER_EN = BIT(0), |
| |
| /* PCTL_MCMD */ |
| START_CMD = BIT(31), |
| MCMD_RANK0 = BIT(20), |
| MCMD_RANK1 = BIT(21), |
| DESELECT_CMD = 0, |
| PREA_CMD, |
| REF_CMD, |
| MRS_CMD, |
| ZQCS_CMD, |
| ZQCL_CMD, |
| RSTL_CMD, |
| MRR_CMD = 8, |
| DPDE_CMD, |
| |
| /* PCTL_POWCTL */ |
| POWER_UP_START = BIT(0), |
| |
| /* PCTL_POWSTAT */ |
| POWER_UP_DONE = BIT(0), |
| |
| /* PCTL_SCTL */ |
| INIT_STATE = 0, |
| CFG_STATE, |
| GO_STATE, |
| SLEEP_STATE, |
| WAKEUP_STATE, |
| |
| /* PCTL_STAT */ |
| LP_TRIG_SHIFT = 4, |
| LP_TRIG_MASK = 7, |
| PCTL_STAT_MSK = 7, |
| INIT_MEM = 0, |
| CONFIG, |
| CFG_REQ, |
| ACCESS, |
| ACCESS_REQ, |
| LOW_POWER, |
| LOW_POWER_ENTRY_REQ, |
| LOW_POWER_EXIT_REQ, |
| |
| /* PCTL_MCFG */ |
| DDR2_DDR3_BL_8 = BIT(0), |
| DDR3_EN = BIT(5), |
| TFAW_TRRD_MULT4 = (0 << 18), |
| TFAW_TRRD_MULT5 = (1 << 18), |
| TFAW_TRRD_MULT6 = (2 << 18), |
| }; |
| |
| #define DDR3_MR0_WR(n) \ |
| ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9)) |
| #define DDR3_MR0_CL(n) \ |
| ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2)) |
| #define DDR3_MR0_BL8 \ |
| (0 << 0) |
| #define DDR3_MR0_DLL_RESET \ |
| (1 << 8) |
| #define DDR3_MR1_RTT120OHM \ |
| ((0 << 9) | (1 << 6) | (0 << 2)) |
| #define DDR3_MR2_TWL(n) \ |
| (((n - 5) & 0x7) << 3) |
| |
| |
| #ifdef CONFIG_TPL_BUILD |
| |
| static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable) |
| { |
| if (enable) |
| rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); |
| else |
| rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); |
| } |
| |
| static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode) |
| { |
| if (ddr3_mode) |
| rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); |
| else |
| rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); |
| } |
| |
| static void ddrphy_config(struct rk3368_ddrphy *phy, |
| u32 tcl, u32 tal, u32 tcwl) |
| { |
| int i; |
| |
| /* Set to DDR3 mode */ |
| clrsetbits_le32(&phy->reg[1], 0x3, 0x0); |
| |
| /* DDRPHY_REGB: CL, AL */ |
| clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal); |
| /* DDRPHY_REGC: CWL */ |
| clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl); |
| |
| /* Update drive-strength */ |
| writel(0xcc, &phy->reg[0x11]); |
| writel(0xaa, &phy->reg[0x16]); |
| /* |
| * Update NRCOMP/PRCOMP for all 4 channels (for details of all |
| * affected registers refer to the documentation of DDRPHY_REG20 |
| * and DDRPHY_REG21 in the RK3368 TRM. |
| */ |
| for (i = 0; i < 4; ++i) { |
| writel(0xcc, &phy->reg[0x20 + i * 0x10]); |
| writel(0x44, &phy->reg[0x21 + i * 0x10]); |
| } |
| |
| /* Enable write-leveling calibration bypass */ |
| setbits_le32(&phy->reg[2], BIT(3)); |
| } |
| |
| static void copy_to_reg(u32 *dest, const u32 *src, u32 n) |
| { |
| int i; |
| |
| for (i = 0; i < n / sizeof(u32); i++) |
| writel(*src++, dest++); |
| } |
| |
| static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd) |
| { |
| u32 mcmd = START_CMD | cmd | rank; |
| |
| debug("%s: writing %x to MCMD\n", __func__, mcmd); |
| writel(mcmd, &pctl->mcmd); |
| while (readl(&pctl->mcmd) & START_CMD) |
| /* spin */; |
| } |
| |
| static void send_mrs(struct rk3368_ddr_pctl *pctl, |
| u32 rank, u32 mr_num, u32 mr_data) |
| { |
| u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4); |
| |
| debug("%s: writing %x to MCMD\n", __func__, mcmd); |
| writel(mcmd, &pctl->mcmd); |
| while (readl(&pctl->mcmd) & START_CMD) |
| /* spin */; |
| } |
| |
| static int memory_init(struct rk3368_ddr_pctl *pctl, |
| struct rk3368_sdram_params *params) |
| { |
| u32 mr[4]; |
| const ulong timeout_ms = 500; |
| ulong tmp; |
| |
| /* |
| * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and |
| * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register |
| * of PCTL. |
| */ |
| writel(POWER_UP_START, &pctl->powctl); |
| |
| tmp = get_timer(0); |
| do { |
| if (get_timer(tmp) > timeout_ms) { |
| pr_err("%s: POWER_UP_START did not complete in %ld ms\n", |
| __func__, timeout_ms); |
| return -ETIME; |
| } |
| } while (!(readl(&pctl->powstat) & POWER_UP_DONE)); |
| |
| /* Configure MR0 through MR3 */ |
| mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) | |
| DDR3_MR0_CL(params->pctl_timing.tcl) | |
| DDR3_MR0_DLL_RESET; |
| mr[1] = DDR3_MR1_RTT120OHM; |
| mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl); |
| mr[3] = 0; |
| |
| /* |
| * Also see RK3368 Technical Reference Manual: |
| * "16.6.2 Initialization (DDR3 Initialization Sequence)" |
| */ |
| send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD); |
| udelay(1); |
| send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); |
| send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]); |
| send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]); |
| send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]); |
| send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]); |
| send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD); |
| |
| return 0; |
| } |
| |
| static void move_to_config_state(struct rk3368_ddr_pctl *pctl) |
| { |
| /* |
| * Also see RK3368 Technical Reference Manual: |
| * "16.6.1 State transition of PCTL (Moving to Config State)" |
| */ |
| u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; |
| |
| switch (state) { |
| case LOW_POWER: |
| writel(WAKEUP_STATE, &pctl->sctl); |
| while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) |
| /* spin */; |
| |
| /* fall-through */ |
| case ACCESS: |
| case INIT_MEM: |
| writel(CFG_STATE, &pctl->sctl); |
| while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) |
| /* spin */; |
| break; |
| |
| case CONFIG: |
| return; |
| |
| default: |
| break; |
| } |
| } |
| |
| static void move_to_access_state(struct rk3368_ddr_pctl *pctl) |
| { |
| /* |
| * Also see RK3368 Technical Reference Manual: |
| * "16.6.1 State transition of PCTL (Moving to Access State)" |
| */ |
| u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; |
| |
| switch (state) { |
| case LOW_POWER: |
| if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & |
| LP_TRIG_MASK) == 1) |
| return; |
| |
| writel(WAKEUP_STATE, &pctl->sctl); |
| while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) |
| /* spin */; |
| |
| /* fall-through */ |
| case INIT_MEM: |
| writel(CFG_STATE, &pctl->sctl); |
| while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) |
| /* spin */; |
| |
| /* fall-through */ |
| case CONFIG: |
| writel(GO_STATE, &pctl->sctl); |
| while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) |
| /* spin */; |
| break; |
| |
| case ACCESS: |
| return; |
| |
| default: |
| break; |
| } |
| } |
| |
| static void ddrctl_reset(struct rk3368_cru *cru) |
| { |
| const u32 ctl_reset = BIT(3) | BIT(2); |
| const u32 phy_reset = BIT(1) | BIT(0); |
| |
| /* |
| * The PHY reset should be released before the PCTL reset. |
| * |
| * Note that the following sequence (including the number of |
| * us to delay between releasing the PHY and PCTL reset) has |
| * been adapted per feedback received from Rockchips, so do |
| * not try to optimise. |
| */ |
| rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset); |
| udelay(1); |
| rk_clrreg(&cru->softrst_con[10], phy_reset); |
| udelay(5); |
| rk_clrreg(&cru->softrst_con[10], ctl_reset); |
| } |
| |
| static void ddrphy_reset(struct rk3368_ddrphy *ddrphy) |
| { |
| /* |
| * The analog part of the PHY should be release at least 1000 |
| * DRAM cycles before the digital part of the PHY (waiting for |
| * 5us will ensure this for a DRAM clock as low as 200MHz). |
| */ |
| clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2)); |
| udelay(1); |
| setbits_le32(&ddrphy->reg[0], BIT(2)); |
| udelay(5); |
| setbits_le32(&ddrphy->reg[0], BIT(3)); |
| } |
| |
| static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq) |
| { |
| u32 dqs_dll_delay; |
| |
| setbits_le32(&ddrphy->reg[0x13], BIT(4)); |
| clrbits_le32(&ddrphy->reg[0x14], BIT(3)); |
| |
| setbits_le32(&ddrphy->reg[0x26], BIT(4)); |
| clrbits_le32(&ddrphy->reg[0x27], BIT(3)); |
| |
| setbits_le32(&ddrphy->reg[0x36], BIT(4)); |
| clrbits_le32(&ddrphy->reg[0x37], BIT(3)); |
| |
| setbits_le32(&ddrphy->reg[0x46], BIT(4)); |
| clrbits_le32(&ddrphy->reg[0x47], BIT(3)); |
| |
| setbits_le32(&ddrphy->reg[0x56], BIT(4)); |
| clrbits_le32(&ddrphy->reg[0x57], BIT(3)); |
| |
| if (freq <= 400000000) |
| setbits_le32(&ddrphy->reg[0xa4], 0x1f); |
| else |
| clrbits_le32(&ddrphy->reg[0xa4], 0x1f); |
| |
| if (freq < 681000000) |
| dqs_dll_delay = 3; /* 67.5 degree delay */ |
| else |
| dqs_dll_delay = 2; /* 45 degree delay */ |
| |
| writel(dqs_dll_delay, &ddrphy->reg[0x28]); |
| writel(dqs_dll_delay, &ddrphy->reg[0x38]); |
| writel(dqs_dll_delay, &ddrphy->reg[0x48]); |
| writel(dqs_dll_delay, &ddrphy->reg[0x58]); |
| } |
| |
| static int dfi_cfg(struct rk3368_ddr_pctl *pctl) |
| { |
| const ulong timeout_ms = 200; |
| ulong tmp; |
| |
| writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0); |
| |
| writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, |
| &pctl->dfistcfg1); |
| writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); |
| writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, |
| &pctl->dfilpcfg0); |
| |
| writel(1, &pctl->dfitphyupdtype0); |
| |
| writel(0x1f, &pctl->dfitphyrdlat); |
| writel(0, &pctl->dfitphywrdata); |
| writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */ |
| |
| setbits_le32(&pctl->dfistcfg0, DFI_INIT_START); |
| |
| tmp = get_timer(0); |
| do { |
| if (get_timer(tmp) > timeout_ms) { |
| pr_err("%s: DFI init did not complete within %ld ms\n", |
| __func__, timeout_ms); |
| return -ETIME; |
| } |
| } while ((readl(&pctl->dfiststat0) & 1) == 0); |
| |
| return 0; |
| } |
| |
| static inline u32 ps_to_tCK(const u32 ps, const ulong freq) |
| { |
| const ulong MHz = 1000000; |
| return DIV_ROUND_UP(ps * freq, 1000000 * MHz); |
| } |
| |
| static inline u32 ns_to_tCK(const u32 ns, const ulong freq) |
| { |
| return ps_to_tCK(ns * 1000, freq); |
| } |
| |
| static inline u32 tCK_to_ps(const ulong tCK, const ulong freq) |
| { |
| const ulong MHz = 1000000; |
| return DIV_ROUND_UP(tCK * 1000000 * MHz, freq); |
| } |
| |
| static int pctl_calc_timings(struct rk3368_sdram_params *params, |
| ulong freq) |
| { |
| struct rk3288_sdram_pctl_timing *pctl_timing = ¶ms->pctl_timing; |
| const ulong MHz = 1000000; |
| u32 tccd; |
| u32 tfaw_as_ps; |
| |
| if (params->ddr_speed_bin != DDR3_1600K) { |
| pr_err("%s: unimplemented DDR3 speed bin %d\n", |
| __func__, params->ddr_speed_bin); |
| return -1; |
| } |
| |
| /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */ |
| pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz); |
| pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz); |
| |
| pctl_timing->tinit = 200; /* 200 usec */ |
| pctl_timing->trsth = 500; /* 500 usec */ |
| pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */ |
| params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq); |
| |
| if (freq <= (400 * MHz)) { |
| pctl_timing->tcl = 6; |
| pctl_timing->tcwl = 10; |
| } else if (freq <= (533 * MHz)) { |
| pctl_timing->tcl = 8; |
| pctl_timing->tcwl = 6; |
| } else if (freq <= (666 * MHz)) { |
| pctl_timing->tcl = 10; |
| pctl_timing->tcwl = 7; |
| } else { |
| pctl_timing->tcl = 11; |
| pctl_timing->tcwl = 8; |
| } |
| |
| pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */ |
| pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */ |
| pctl_timing->trp = max(4u, ps_to_tCK(13750, freq)); |
| /* |
| * JESD-79: |
| * READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL |
| */ |
| tccd = 4; |
| pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl; |
| pctl_timing->tal = 0; |
| pctl_timing->tras = ps_to_tCK(35000, freq); |
| pctl_timing->trc = ps_to_tCK(48750, freq); |
| pctl_timing->trcd = ps_to_tCK(13750, freq); |
| pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq)); |
| pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq)); |
| pctl_timing->twr = ps_to_tCK(15000, freq); |
| /* The DDR3 mode-register does only support even values for tWR > 8. */ |
| if (pctl_timing->twr > 8) |
| pctl_timing->twr = (pctl_timing->twr + 1) & ~1; |
| pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq)); |
| pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */ |
| pctl_timing->txp = max(3u, ps_to_tCK(6000, freq)); |
| pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq)); |
| pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq)); |
| pctl_timing->tzqcsi = 10000; /* as used by Rockchip */ |
| pctl_timing->tdqs = 1; /* fixed for DDR3 */ |
| pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq)); |
| pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq)); |
| pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq)); |
| pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq)); |
| pctl_timing->trstl = ns_to_tCK(100, freq); |
| pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */ |
| pctl_timing->tmrr = 0; |
| pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */ |
| pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */ |
| |
| |
| /* |
| * The controller can represent tFAW as 4x, 5x or 6x tRRD only. |
| * We want to use the smallest multiplier that satisfies the tFAW |
| * requirements of the given speed-bin. If necessary, we stretch out |
| * tRRD to allow us to operate on a 6x multiplier for tFAW. |
| */ |
| tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */ |
| if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) { |
| /* If tFAW is > 6 x tRRD, we need to stretch tRRD */ |
| pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq); |
| params->tfaw_mult = TFAW_TRRD_MULT6; |
| } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) { |
| params->tfaw_mult = TFAW_TRRD_MULT6; |
| } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) { |
| params->tfaw_mult = TFAW_TRRD_MULT5; |
| } else { |
| params->tfaw_mult = TFAW_TRRD_MULT4; |
| } |
| |
| return 0; |
| } |
| |
| static void pctl_cfg(struct rk3368_ddr_pctl *pctl, |
| struct rk3368_sdram_params *params, |
| struct rk3368_grf *grf) |
| { |
| /* Configure PCTL timing registers */ |
| params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */ |
| copy_to_reg(&pctl->togcnt1u, ¶ms->pctl_timing.togcnt1u, |
| sizeof(params->pctl_timing)); |
| writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3); |
| |
| /* Set up ODT write selector and ODT write length */ |
| writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); |
| writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); |
| |
| /* Set up the CL/CWL-dependent timings of DFI */ |
| writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen); |
| writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat); |
| |
| /* DDR3 */ |
| writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg); |
| writel(0x001c0004, &grf->ddrc0_con0); |
| |
| setbits_le32(&pctl->scfg, HW_LOW_POWER_EN); |
| } |
| |
| static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl, |
| struct rk3368_ddrphy *ddrphy) |
| { |
| const u32 trefi = readl(&pctl->trefi); |
| const ulong timeout_ms = 500; |
| ulong tmp; |
| |
| /* disable auto-refresh */ |
| writel(0 | BIT(31), &pctl->trefi); |
| |
| clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); |
| clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21); |
| |
| tmp = get_timer(0); |
| do { |
| if (get_timer(tmp) > timeout_ms) { |
| pr_err("%s: did not complete within %ld ms\n", |
| __func__, timeout_ms); |
| return -ETIME; |
| } |
| } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf); |
| |
| send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); |
| clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); |
| /* resume auto-refresh */ |
| writel(trefi | BIT(31), &pctl->trefi); |
| |
| return 0; |
| } |
| |
| static int sdram_col_row_detect(struct udevice *dev) |
| { |
| struct dram_info *priv = dev_get_priv(dev); |
| struct rk3368_sdram_params *params = dev_get_plat(dev); |
| struct rk3368_ddr_pctl *pctl = priv->pctl; |
| struct rk3368_msch *msch = priv->msch; |
| const u32 test_pattern = 0x5aa5f00f; |
| int row, col; |
| uintptr_t addr; |
| |
| move_to_config_state(pctl); |
| writel(6, &msch->ddrconf); |
| move_to_access_state(pctl); |
| |
| /* Detect col */ |
| for (col = 11; col >= 9; col--) { |
| writel(0, CFG_SYS_SDRAM_BASE); |
| addr = CFG_SYS_SDRAM_BASE + |
| (1 << (col + params->chan.bw - 1)); |
| writel(test_pattern, addr); |
| if ((readl(addr) == test_pattern) && |
| (readl(CFG_SYS_SDRAM_BASE) == 0)) |
| break; |
| } |
| |
| if (col == 8) { |
| pr_err("%s: col detect error\n", __func__); |
| return -EINVAL; |
| } |
| |
| move_to_config_state(pctl); |
| writel(15, &msch->ddrconf); |
| move_to_access_state(pctl); |
| |
| /* Detect row*/ |
| for (row = 16; row >= 12; row--) { |
| writel(0, CFG_SYS_SDRAM_BASE); |
| addr = CFG_SYS_SDRAM_BASE + (1 << (row + 15 - 1)); |
| writel(test_pattern, addr); |
| if ((readl(addr) == test_pattern) && |
| (readl(CFG_SYS_SDRAM_BASE) == 0)) |
| break; |
| } |
| |
| if (row == 11) { |
| pr_err("%s: row detect error\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Record results */ |
| debug("%s: col %d, row %d\n", __func__, col, row); |
| params->chan.col = col; |
| params->chan.cs0_row = row; |
| params->chan.cs1_row = row; |
| params->chan.row_3_4 = 0; |
| |
| return 0; |
| } |
| |
| static int msch_niu_config(struct rk3368_msch *msch, |
| struct rk3368_sdram_params *params) |
| { |
| int i; |
| const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1); |
| const u8 rows = params->chan.cs0_row; |
| |
| /* |
| * The DDR address-translation table always assumes a 32bit |
| * bus and the comparison below takes care of adjusting for |
| * a 16bit bus (i.e. one column-address is consumed). |
| */ |
| const struct { |
| u8 rows; |
| u8 columns; |
| u8 type; |
| } ddrconf_table[] = { |
| /* |
| * C-B-R-D patterns are first. For these we require an |
| * exact match for the columns and rows (as there's |
| * one entry per possible configuration). |
| */ |
| [0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD }, |
| [1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD }, |
| [2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD }, |
| [3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD }, |
| [4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD }, |
| [5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD }, |
| [6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD }, |
| [7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD }, |
| [8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD }, |
| [9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD }, |
| [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD }, |
| /* |
| * 11 through 13 are C-R-B-D patterns. These are |
| * matched for an exact number of columns and to |
| * ensure that the hardware uses at least as many rows |
| * as the pattern requires (i.e. we make sure that |
| * there's no gaps up until we hit the device/chip-select; |
| * however, these patterns can accept up to 16 rows, |
| * as the row-address continues right after the CS |
| * switching) |
| */ |
| [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD }, |
| [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD }, |
| [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD }, |
| /* |
| * 14 and 15 are catch-all variants using a C-B-D-R |
| * scheme (i.e. alternating the chip-select every time |
| * C-B overflows) and stuffing the remaining C-bits |
| * into the top. Matching needs to make sure that the |
| * number of columns is either an exact match (i.e. we |
| * can use less the the maximum number of rows) -or- |
| * that the columns exceed what is given in this table |
| * and the rows are an exact match (in which case the |
| * remaining C-bits will be stuffed onto the top after |
| * the device/chip-select switches). |
| */ |
| [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR }, |
| [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR }, |
| }; |
| |
| /* |
| * For C-B-R-D, we need an exact match (i.e. both for the number of |
| * columns and rows), while for C-B-D-R, only the the number of |
| * columns needs to match. |
| */ |
| for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) { |
| bool match = false; |
| |
| /* If this entry if for a different matcher, then skip it */ |
| if (ddrconf_table[i].type != params->memory_schedule) |
| continue; |
| |
| /* |
| * Match according to the rules (exact/inexact/at-least) |
| * documented in the ddrconf_table above. |
| */ |
| switch (params->memory_schedule) { |
| case DMC_MSCH_CBRD: |
| match = (ddrconf_table[i].columns == cols) && |
| (ddrconf_table[i].rows == rows); |
| break; |
| |
| case DMC_MSCH_CRBD: |
| match = (ddrconf_table[i].columns == cols) && |
| (ddrconf_table[i].rows <= rows); |
| break; |
| |
| case DMC_MSCH_CBDR: |
| match = (ddrconf_table[i].columns == cols) || |
| ((ddrconf_table[i].columns <= cols) && |
| (ddrconf_table[i].rows == rows)); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (match) { |
| debug("%s: setting ddrconf 0x%x\n", __func__, i); |
| writel(i, &msch->ddrconf); |
| return 0; |
| } |
| } |
| |
| pr_err("%s: ddrconf (NIU config) not found\n", __func__); |
| return -EINVAL; |
| } |
| |
| static void dram_all_config(struct udevice *dev) |
| { |
| struct dram_info *priv = dev_get_priv(dev); |
| struct rk3368_pmu_grf *pmugrf = priv->pmugrf; |
| struct rk3368_sdram_params *params = dev_get_plat(dev); |
| const struct rk3288_sdram_channel *info = ¶ms->chan; |
| u32 sys_reg = 0; |
| const int chan = 0; |
| |
| sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT; |
| sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT; |
| |
| sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); |
| sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan); |
| sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); |
| sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); |
| sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan); |
| sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); |
| sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); |
| sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan); |
| sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan); |
| |
| writel(sys_reg, &pmugrf->os_reg[2]); |
| } |
| |
| static int setup_sdram(struct udevice *dev) |
| { |
| struct dram_info *priv = dev_get_priv(dev); |
| struct rk3368_sdram_params *params = dev_get_plat(dev); |
| |
| struct rk3368_ddr_pctl *pctl = priv->pctl; |
| struct rk3368_ddrphy *ddrphy = priv->phy; |
| struct rk3368_cru *cru = priv->cru; |
| struct rk3368_grf *grf = priv->grf; |
| struct rk3368_msch *msch = priv->msch; |
| |
| int ret; |
| |
| /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */ |
| ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq); |
| if (ret < 0) { |
| debug("%s: could not set DDR clock: %d\n", __func__, ret); |
| return ret; |
| } |
| |
| /* Update the read-latency for the RK3368 */ |
| writel(0x32, &msch->readlatency); |
| |
| /* Initialise the DDR PCTL and DDR PHY */ |
| ddrctl_reset(cru); |
| ddrphy_reset(ddrphy); |
| ddrphy_config_delays(ddrphy, params->ddr_freq); |
| dfi_cfg(pctl); |
| /* Configure relative system information of grf_ddrc0_con0 register */ |
| ddr_set_ddr3_mode(grf, true); |
| ddr_set_noc_spr_err_stall(grf, true); |
| /* Calculate timings */ |
| pctl_calc_timings(params, params->ddr_freq); |
| /* Initialise the device timings in protocol controller */ |
| pctl_cfg(pctl, params, grf); |
| /* Configure AL, CL ... information of PHY registers */ |
| ddrphy_config(ddrphy, |
| params->pctl_timing.tcl, |
| params->pctl_timing.tal, |
| params->pctl_timing.tcwl); |
| |
| /* Initialize DRAM and configure with mode-register values */ |
| ret = memory_init(pctl, params); |
| if (ret) |
| goto error; |
| |
| move_to_config_state(pctl); |
| /* Perform data-training */ |
| ddrphy_data_training(pctl, ddrphy); |
| move_to_access_state(pctl); |
| |
| /* TODO(prt): could detect rank in training... */ |
| #ifdef CONFIG_TARGET_EVB_PX5 |
| params->chan.rank = 1; |
| #else |
| params->chan.rank = 2; |
| #endif |
| /* TODO(prt): bus width is not auto-detected (yet)... */ |
| params->chan.bw = 2; /* 32bit wide bus */ |
| params->chan.dbw = params->chan.dbw; /* 32bit wide bus */ |
| |
| /* DDR3 is always 8 bank */ |
| params->chan.bk = 3; |
| /* Detect col and row number */ |
| ret = sdram_col_row_detect(dev); |
| if (ret) |
| goto error; |
| |
| /* Configure NIU DDR configuration */ |
| ret = msch_niu_config(msch, params); |
| if (ret) |
| goto error; |
| |
| /* set up OS_REG to communicate w/ next stage and OS */ |
| dram_all_config(dev); |
| |
| return 0; |
| |
| error: |
| printf("DRAM init failed!\n"); |
| hang(); |
| } |
| #endif |
| |
| static int rk3368_dmc_of_to_plat(struct udevice *dev) |
| { |
| int ret = 0; |
| |
| if (CONFIG_IS_ENABLED(OF_REAL)) { |
| struct rk3368_sdram_params *plat = dev_get_plat(dev); |
| |
| ret = regmap_init_mem(dev_ofnode(dev), &plat->map); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| static int conv_of_plat(struct udevice *dev) |
| { |
| struct rk3368_sdram_params *plat = dev_get_plat(dev); |
| struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat; |
| |
| plat->ddr_freq = of_plat->rockchip_ddr_frequency; |
| plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin; |
| plat->memory_schedule = of_plat->rockchip_memory_schedule; |
| |
| return 0; |
| } |
| #endif |
| |
| static int rk3368_dmc_probe(struct udevice *dev) |
| { |
| #ifdef CONFIG_TPL_BUILD |
| struct rk3368_sdram_params *plat = dev_get_plat(dev); |
| struct rk3368_ddr_pctl *pctl; |
| struct rk3368_ddrphy *ddrphy; |
| struct rk3368_cru *cru; |
| struct rk3368_grf *grf; |
| struct rk3368_msch *msch; |
| int ret; |
| struct udevice *dev_clk; |
| #endif |
| struct dram_info *priv = dev_get_priv(dev); |
| |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| ret = conv_of_plat(dev); |
| if (ret) |
| return ret; |
| #endif |
| |
| priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); |
| debug("%s: pmugrf=%p\n", __func__, priv->pmugrf); |
| |
| #ifdef CONFIG_TPL_BUILD |
| pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0]; |
| ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2]; |
| msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH); |
| grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); |
| |
| priv->pctl = pctl; |
| priv->phy = ddrphy; |
| priv->msch = msch; |
| priv->grf = grf; |
| |
| ret = rockchip_get_clk(&dev_clk); |
| if (ret) |
| return ret; |
| priv->ddr_clk.id = CLK_DDR; |
| ret = clk_request(dev_clk, &priv->ddr_clk); |
| if (ret) |
| return ret; |
| |
| cru = rockchip_get_cru(); |
| priv->cru = cru; |
| if (IS_ERR(priv->cru)) |
| return PTR_ERR(priv->cru); |
| |
| ret = setup_sdram(dev); |
| if (ret) |
| return ret; |
| #endif |
| |
| priv->info.base = 0; |
| priv->info.size = |
| rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]); |
| |
| /* |
| * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff |
| * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is |
| * inaccessible for some IP controller. |
| */ |
| priv->info.size = min(priv->info.size, (size_t)0xfe000000); |
| |
| return 0; |
| } |
| |
| static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info) |
| { |
| struct dram_info *priv = dev_get_priv(dev); |
| |
| *info = priv->info; |
| return 0; |
| } |
| |
| static struct ram_ops rk3368_dmc_ops = { |
| .get_info = rk3368_dmc_get_info, |
| }; |
| |
| |
| static const struct udevice_id rk3368_dmc_ids[] = { |
| { .compatible = "rockchip,rk3368-dmc" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(rockchip_rk3368_dmc) = { |
| .name = "rockchip_rk3368_dmc", |
| .id = UCLASS_RAM, |
| .of_match = rk3368_dmc_ids, |
| .ops = &rk3368_dmc_ops, |
| .probe = rk3368_dmc_probe, |
| .priv_auto = sizeof(struct dram_info), |
| .of_to_plat = rk3368_dmc_of_to_plat, |
| .probe = rk3368_dmc_probe, |
| .priv_auto = sizeof(struct dram_info), |
| .plat_auto = sizeof(struct rk3368_sdram_params), |
| }; |