blob: 82f28749eb17de4c3e3b67cb664db99ecdb9f236 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2009-2012 Freescale Semiconductor, Inc.
*
* This file is derived from arch/powerpc/cpu/mpc85xx/cpu.c and
* arch/powerpc/cpu/mpc86xx/cpu.c. Basically this file contains
* cpu specific common code for 85xx/86xx processors.
*/
#include <config.h>
#include <command.h>
#include <cpu_func.h>
#include <init.h>
#include <net.h>
#include <tsec.h>
#include <fm_eth.h>
#include <netdev.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <vsc9953.h>
DECLARE_GLOBAL_DATA_PTR;
static struct cpu_type cpu_type_list[] = {
#if defined(CONFIG_MPC85xx)
CPU_TYPE_ENTRY(8533, 8533, 1),
CPU_TYPE_ENTRY(8535, 8535, 1),
CPU_TYPE_ENTRY(8536, 8536, 1),
CPU_TYPE_ENTRY(8540, 8540, 1),
CPU_TYPE_ENTRY(8541, 8541, 1),
CPU_TYPE_ENTRY(8543, 8543, 1),
CPU_TYPE_ENTRY(8544, 8544, 1),
CPU_TYPE_ENTRY(8545, 8545, 1),
CPU_TYPE_ENTRY(8547, 8547, 1),
CPU_TYPE_ENTRY(8548, 8548, 1),
CPU_TYPE_ENTRY(8555, 8555, 1),
CPU_TYPE_ENTRY(8560, 8560, 1),
CPU_TYPE_ENTRY(8567, 8567, 1),
CPU_TYPE_ENTRY(8568, 8568, 1),
CPU_TYPE_ENTRY(8569, 8569, 1),
CPU_TYPE_ENTRY(8572, 8572, 2),
CPU_TYPE_ENTRY(P1010, P1010, 1),
CPU_TYPE_ENTRY(P1011, P1011, 1),
CPU_TYPE_ENTRY(P1012, P1012, 1),
CPU_TYPE_ENTRY(P1013, P1013, 1),
CPU_TYPE_ENTRY(P1014, P1014, 1),
CPU_TYPE_ENTRY(P1017, P1017, 1),
CPU_TYPE_ENTRY(P1020, P1020, 2),
CPU_TYPE_ENTRY(P1021, P1021, 2),
CPU_TYPE_ENTRY(P1022, P1022, 2),
CPU_TYPE_ENTRY(P1023, P1023, 2),
CPU_TYPE_ENTRY(P1024, P1024, 2),
CPU_TYPE_ENTRY(P1025, P1025, 2),
CPU_TYPE_ENTRY(P2010, P2010, 1),
CPU_TYPE_ENTRY(P2020, P2020, 2),
CPU_TYPE_ENTRY(P2040, P2040, 4),
CPU_TYPE_ENTRY(P2041, P2041, 4),
CPU_TYPE_ENTRY(P3041, P3041, 4),
CPU_TYPE_ENTRY(P4040, P4040, 4),
CPU_TYPE_ENTRY(P4080, P4080, 8),
CPU_TYPE_ENTRY(P5010, P5010, 1),
CPU_TYPE_ENTRY(P5020, P5020, 2),
CPU_TYPE_ENTRY(P5021, P5021, 2),
CPU_TYPE_ENTRY(P5040, P5040, 4),
CPU_TYPE_ENTRY(T4240, T4240, 0),
CPU_TYPE_ENTRY(T4120, T4120, 0),
CPU_TYPE_ENTRY(T4160, T4160, 0),
CPU_TYPE_ENTRY(T4080, T4080, 4),
CPU_TYPE_ENTRY(B4860, B4860, 0),
CPU_TYPE_ENTRY(G4860, G4860, 0),
CPU_TYPE_ENTRY(B4440, B4440, 0),
CPU_TYPE_ENTRY(B4460, B4460, 0),
CPU_TYPE_ENTRY(G4440, G4440, 0),
CPU_TYPE_ENTRY(B4420, B4420, 0),
CPU_TYPE_ENTRY(B4220, B4220, 0),
CPU_TYPE_ENTRY(T1040, T1040, 0),
CPU_TYPE_ENTRY(T1041, T1041, 0),
CPU_TYPE_ENTRY(T1042, T1042, 0),
CPU_TYPE_ENTRY(T1020, T1020, 0),
CPU_TYPE_ENTRY(T1021, T1021, 0),
CPU_TYPE_ENTRY(T1022, T1022, 0),
CPU_TYPE_ENTRY(T1024, T1024, 0),
CPU_TYPE_ENTRY(T1023, T1023, 0),
CPU_TYPE_ENTRY(T1014, T1014, 0),
CPU_TYPE_ENTRY(T1013, T1013, 0),
CPU_TYPE_ENTRY(T2080, T2080, 0),
CPU_TYPE_ENTRY(T2081, T2081, 0),
CPU_TYPE_ENTRY(BSC9130, 9130, 1),
CPU_TYPE_ENTRY(BSC9131, 9131, 1),
CPU_TYPE_ENTRY(BSC9132, 9132, 2),
CPU_TYPE_ENTRY(BSC9232, 9232, 2),
CPU_TYPE_ENTRY(C291, C291, 1),
CPU_TYPE_ENTRY(C292, C292, 1),
CPU_TYPE_ENTRY(C293, C293, 1),
#elif defined(CONFIG_MPC86xx)
CPU_TYPE_ENTRY(8610, 8610, 1),
CPU_TYPE_ENTRY(8641, 8641, 2),
CPU_TYPE_ENTRY(8641D, 8641D, 2),
#endif
};
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
static inline u32 init_type(u32 cluster, int init_id)
{
ccsr_gur_t *gur = (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = in_be32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 compute_ppc_cpumask(void)
{
ccsr_gur_t *gur = (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = in_be32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = init_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_PPC)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return mask;
}
#ifdef CONFIG_HETROGENOUS_CLUSTERS
u32 compute_dsp_cpumask(void)
{
ccsr_gur_t *gur = (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
int i = CONFIG_DSP_CLUSTER_START, count = 0;
u32 cluster, type, dsp_mask = 0;
do {
int j;
cluster = in_be32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = init_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_SC)
dsp_mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return dsp_mask;
}
int fsl_qoriq_dsp_core_to_cluster(unsigned int core)
{
ccsr_gur_t *gur = (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
int count = 0, i = CONFIG_DSP_CLUSTER_START;
u32 cluster;
do {
int j;
cluster = in_be32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (init_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
#endif
int fsl_qoriq_core_to_cluster(unsigned int core)
{
ccsr_gur_t *gur = (void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = in_be32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (init_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
#else /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
/*
* Before chassis genenration 2, the cpumask should be hard-coded.
* In case of cpu type unknown or cpumask unset, use 1 as fail save.
*/
#define compute_ppc_cpumask() 1
#define fsl_qoriq_core_to_cluster(x) x
#endif /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
static struct cpu_type cpu_type_unknown = CPU_TYPE_ENTRY(Unknown, Unknown, 0);
struct cpu_type *identify_cpu(u32 ver)
{
int i;
for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) {
if (cpu_type_list[i].soc_ver == ver)
return &cpu_type_list[i];
}
return &cpu_type_unknown;
}
#define MPC8xxx_PICFRR_NCPU_MASK 0x00001f00
#define MPC8xxx_PICFRR_NCPU_SHIFT 8
/*
* Return a 32-bit mask indicating which cores are present on this SOC.
*/
__weak u32 cpu_mask(void)
{
ccsr_pic_t __iomem *pic = (void *)CFG_SYS_MPC8xxx_PIC_ADDR;
struct cpu_type *cpu = gd->arch.cpu;
/* better to query feature reporting register than just assume 1 */
if (cpu == &cpu_type_unknown)
return ((in_be32(&pic->frr) & MPC8xxx_PICFRR_NCPU_MASK) >>
MPC8xxx_PICFRR_NCPU_SHIFT) + 1;
if (cpu->num_cores == 0)
return compute_ppc_cpumask();
return cpu->mask;
}
#ifdef CONFIG_HETROGENOUS_CLUSTERS
__weak u32 cpu_dsp_mask(void)
{
ccsr_pic_t __iomem *pic = (void *)CFG_SYS_MPC8xxx_PIC_ADDR;
struct cpu_type *cpu = gd->arch.cpu;
/* better to query feature reporting register than just assume 1 */
if (cpu == &cpu_type_unknown)
return ((in_be32(&pic->frr) & MPC8xxx_PICFRR_NCPU_MASK) >>
MPC8xxx_PICFRR_NCPU_SHIFT) + 1;
if (cpu->dsp_num_cores == 0)
return compute_dsp_cpumask();
return cpu->dsp_mask;
}
/*
* Return the number of SC/DSP cores on this SOC.
*/
__weak int cpu_num_dspcores(void)
{
struct cpu_type *cpu = gd->arch.cpu;
/*
* Report # of cores in terms of the cpu_mask if we haven't
* figured out how many there are yet
*/
if (cpu->dsp_num_cores == 0)
return hweight32(cpu_dsp_mask());
return cpu->dsp_num_cores;
}
#endif
/*
* Return the number of PPC cores on this SOC.
*/
__weak int cpu_numcores(void)
{
struct cpu_type *cpu = gd->arch.cpu;
/*
* Report # of cores in terms of the cpu_mask if we haven't
* figured out how many there are yet
*/
if (cpu->num_cores == 0)
return hweight32(cpu_mask());
return cpu->num_cores;
}
/*
* Check if the given core ID is valid
*
* Returns zero if it isn't, 1 if it is.
*/
int is_core_valid(unsigned int core)
{
return !!((1 << core) & cpu_mask());
}
int arch_cpu_init(void)
{
uint svr;
uint ver;
svr = get_svr();
ver = SVR_SOC_VER(svr);
gd->arch.cpu = identify_cpu(ver);
return 0;
}
/* Once in memory, compute mask & # cores once and save them off */
int fixup_cpu(void)
{
struct cpu_type *cpu = gd->arch.cpu;
if (cpu->num_cores == 0) {
cpu->mask = cpu_mask();
cpu->num_cores = cpu_numcores();
}
#ifdef CONFIG_HETROGENOUS_CLUSTERS
if (cpu->dsp_num_cores == 0) {
cpu->dsp_mask = cpu_dsp_mask();
cpu->dsp_num_cores = cpu_num_dspcores();
}
#endif
return 0;
}