blob: 52fa820f518606658dde8693042fe35b10f57632 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* ENETC ethernet controller driver
* Copyright 2017-2021 NXP
* Copyright 2023-2025 NXP
*/
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <fdt_support.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <pci.h>
#include <miiphy.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/build_bug.h>
#ifdef CONFIG_ARCH_IMX9
#include <asm/mach-imx/sys_proto.h>
#include <cpu_func.h>
#endif
#include "fsl_enetc.h"
#define ENETC_DRIVER_NAME "enetc_eth"
/*
* Calculate number of buffer descriptors per cacheline, and compile-time
* validate that:
* - the RX and TX descriptors are the same size
* - the descriptors fit exactly into cachelines without overlap
* - all descriptors fit exactly into cachelines
*/
#define ENETC_NUM_BD_IN_CL \
((ARCH_DMA_MINALIGN / sizeof(struct enetc_tx_bd)) + \
BUILD_BUG_ON_ZERO(sizeof(struct enetc_tx_bd) != \
sizeof(union enetc_rx_bd)) + \
BUILD_BUG_ON_ZERO(ARCH_DMA_MINALIGN % sizeof(struct enetc_tx_bd)) + \
BUILD_BUG_ON_ZERO(ARCH_DMA_MINALIGN % sizeof(union enetc_rx_bd)) + \
BUILD_BUG_ON_ZERO(ENETC_BD_CNT % \
(ARCH_DMA_MINALIGN / sizeof(struct enetc_tx_bd))))
static int enetc_remove(struct udevice *dev);
static int enetc_is_imx95(struct udevice *dev)
{
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
/* Test whether this is i.MX95 ENETCv4. This may be optimized out. */
return IS_ENABLED(CONFIG_ARCH_IMX9) &&
pplat->vendor == PCI_VENDOR_ID_PHILIPS;
}
static int enetc_is_ls1028a(struct udevice *dev)
{
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
/* Test whether this is LS1028A ENETC. This may be optimized out. */
return IS_ENABLED(CONFIG_ARCH_LS1028A) &&
pplat->vendor == PCI_VENDOR_ID_FREESCALE;
}
static int enetc_dev_id(struct udevice *dev)
{
if (enetc_is_imx95(dev))
return PCI_DEV(pci_get_devfn(dev)) >> 3;
if (enetc_is_ls1028a(dev))
return PCI_FUNC(pci_get_devfn(dev));
return 0;
}
static void enetc_inval_rxbd(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
union enetc_rx_bd *desc = &priv->enetc_rxbd[priv->rx_bdr.next_prod_idx];
unsigned long start = rounddown((unsigned long)desc, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)desc + sizeof(*desc),
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
invalidate_dcache_range(start, end);
}
static void enetc_flush_bd(struct udevice *dev, int pi, bool tx)
{
struct enetc_priv *priv = dev_get_priv(dev);
union enetc_rx_bd *rxdesc = &priv->enetc_rxbd[pi];
struct enetc_tx_bd *txdesc = &priv->enetc_txbd[pi];
unsigned long desc = tx ? (unsigned long)txdesc : (unsigned long)rxdesc;
unsigned long size = tx ? sizeof(*txdesc) : sizeof(*rxdesc);
unsigned long start = rounddown(desc, ARCH_DMA_MINALIGN);
unsigned long end = roundup(desc + size, ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
flush_dcache_range(start, end);
}
static void enetc_inval_buffer(struct udevice *dev, void *buf, size_t size)
{
unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)buf + size,
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
invalidate_dcache_range(start, end);
}
static void enetc_flush_buffer(struct udevice *dev, void *buf, size_t size)
{
unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)buf + size,
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
flush_dcache_range(start, end);
}
/* register accessors */
static u32 enetc_read_reg(void __iomem *addr)
{
return readl(addr);
}
static void enetc_write_reg(void __iomem *addr, u32 val)
{
writel(val, addr);
}
static void enetc_write(struct enetc_priv *priv, u32 off, u32 val)
{
enetc_write_reg(priv->regs_base + off, val);
}
/* base port register accessors */
static void enetc_write_pmr(struct udevice *dev, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PMR + data->reg_offset_pmr;
enetc_write_reg(priv->port_regs + off, val);
}
static void enetc_write_psipmar(struct udevice *dev, int n, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = (n ? ENETC_PSIPMAR1 : ENETC_PSIPMAR0) +
data->reg_offset_psipmar;
enetc_write_reg(priv->port_regs + off, val);
}
/* port station register accessors */
static void enetc_write_psicfgr(struct udevice *dev, int port, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PSICFGR(port, ENETC_PSICFGR_SHIFT_LS) +
data->reg_offset_psicfgr;
enetc_write_reg(priv->port_regs + off, val);
}
/* port register accessors */
static u32 enetc_read_pcapr_mdio(struct udevice *dev)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PCAPR0 + data->reg_offset_pcapr;
const u32 reg = enetc_read_reg(priv->port_regs + off);
if (enetc_is_imx95(dev))
return reg & ENETC_PCS_PROT;
else if (enetc_is_ls1028a(dev))
return reg & ENETC_PCAPRO_MDIO;
return 0;
}
static void enetc_write_port(struct enetc_priv *priv, u32 off, u32 val)
{
enetc_write_reg(priv->port_regs + off, val);
}
/* MAC port register accessors */
static u32 enetc_read_mac_port(struct udevice *dev, u32 off)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
return enetc_read_reg(priv->port_regs + data->reg_offset_mac + off);
}
static void enetc_write_mac_port(struct udevice *dev, u32 off, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
enetc_write_reg(priv->port_regs + data->reg_offset_mac + off, val);
}
/* BDR register accessor, see also ENETC_BDR() */
static void enetc_bdr_write(struct enetc_priv *priv, int type, int n,
u32 off, u32 val)
{
enetc_write(priv, ENETC_BDR(type, n, off), val);
}
/*
* sets the MAC address in IERB registers, this setting is persistent and
* carried over to Linux.
*/
#define IERB_BASE 0x1f0800000ULL
#define IERB_PFMAC(pf, vf, n) (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
+ (n) * 4)
static void enetc_set_ierb_primary_mac(struct udevice *dev, void *blob)
{
static int ierb_fn_to_pf[] = { 0, 1, 2, -1, -1, -1, 3 };
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u8 *enetaddr = pdata->enetaddr;
u16 lower = *(const u16 *)(enetaddr + 4);
u32 upper = *(const u32 *)enetaddr;
int devfn, offset;
char path[256];
if (enetc_is_imx95(dev)) {
/*
* Configure the ENETC primary MAC addresses - Set register
* PMAR0/1 for SI 0 and PSIaPMAR0/1 for SI 1, 2 .. a
* (optionally pre-configured in IERB).
*/
devfn = enetc_dev_id(dev);
if (devfn > 2)
return;
enetc_write(priv, IMX95_ENETC_SIPMAR0, upper);
enetc_write(priv, IMX95_ENETC_SIPMAR1, lower);
snprintf(path, 256, "/soc/pcie@%x/ethernet@%x,%x",
PCI_BUS(dm_pci_get_bdf(dev)), PCI_DEV(ppdata->devfn),
PCI_FUNC(ppdata->devfn));
} else if (enetc_is_ls1028a(dev)) {
/*
* LS1028A is the only part with IERB at this time and
* there are plans to change its structure, keep this
* LS1028A specific for now.
*/
devfn = PCI_FUNC(ppdata->devfn);
if (ierb_fn_to_pf[devfn] < 0)
return;
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
} else {
return;
}
offset = fdt_path_offset(blob, path);
if (offset >= 0)
fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
}
/* sets up primary MAC addresses in DT/IERB */
void fdt_fixup_enetc_mac(void *blob)
{
struct udevice *dev;
struct uclass *uc;
uclass_get(UCLASS_ETH, &uc);
uclass_foreach_dev(dev, uc) {
if (!dev->driver || !dev->driver->name ||
strcmp(dev->driver->name, ENETC_DRIVER_NAME))
continue;
enetc_set_ierb_primary_mac(dev, blob);
}
}
/*
* Bind the device:
* - set a more explicit name on the interface
*/
static int enetc_bind(struct udevice *dev)
{
char name[16];
static int eth_num_devices;
/*
* prefer using PCI function numbers to number interfaces, but these
* are only available if dts nodes are present. For PCI they are
* optional, handle that case too. Just in case some nodes are present
* and some are not, use different naming scheme - enetc-N based on
* PCI function # and enetc#N based on interface count
*/
if (ofnode_valid(dev_ofnode(dev)))
sprintf(name, "enetc-%u", enetc_dev_id(dev));
else
sprintf(name, "enetc#%u", eth_num_devices++);
device_set_name(dev, name);
return 0;
}
/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_read_priv(&priv, addr, devad, reg);
}
static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
}
/* only interfaces that can pin out through serdes have internal MDIO */
static bool enetc_has_imdio(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
return !!(priv->imdio.priv);
}
/* set up serdes for SGMII */
static int enetc_init_sgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
bool is2500 = false;
u16 reg;
if (!enetc_has_imdio(dev))
return 0;
if (priv->uclass_id == PHY_INTERFACE_MODE_2500BASEX)
is2500 = true;
/*
* Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
* Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
* on PLL configuration. Setting 1G for 2.5G here is counter intuitive
* but intentional.
*/
reg = ENETC_PCS_IF_MODE_SGMII;
reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_IF_MODE, reg);
/* Dev ability - SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
/* Adjust link timer for SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
reg = ENETC_PCS_CR_DEF_VAL;
reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
/* restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_CR, reg);
return 0;
}
/* set up MAC for RGMII */
static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev)
{
u32 old_val, val, dpx = 0;
old_val = val = enetc_read_mac_port(dev, ENETC_PM_IF_MODE);
/* disable unreliable RGMII in-band signaling and force the MAC into
* the speed negotiated by the PHY.
*/
val &= ~ENETC_PM_IF_MODE_AN_ENA;
if (phydev->speed == SPEED_1000) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_1000;
} else if (phydev->speed == SPEED_100) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_100;
} else if (phydev->speed == SPEED_10) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_10;
}
if (enetc_is_imx95(dev))
dpx = ENETC_PM_IFM_FULL_DPX_IMX;
else if (enetc_is_ls1028a(dev))
dpx = ENETC_PM_IFM_FULL_DPX_LS;
if (phydev->duplex == DUPLEX_FULL)
val |= dpx;
else
val &= ~dpx;
if (val == old_val)
return;
enetc_write_mac_port(dev, ENETC_PM_IF_MODE, val);
}
/* set up MAC configuration for the given interface type */
static void enetc_setup_mac_iface(struct udevice *dev,
struct phy_device *phydev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 if_mode;
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
enetc_init_rgmii(dev, phydev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
/* set ifmode to (US)XGMII */
if_mode = enetc_read_mac_port(dev, ENETC_PM_IF_MODE);
if (enetc_is_imx95(dev))
if_mode &= ~ENETC_PM_IF_IFMODE_MASK_IMX;
else if (enetc_is_ls1028a(dev))
if_mode &= ~ENETC_PM_IF_IFMODE_MASK_LS;
enetc_write_mac_port(dev, ENETC_PM_IF_MODE, if_mode);
break;
};
}
/* set up serdes for SXGMII */
static int enetc_init_sxgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (!enetc_has_imdio(dev))
return 0;
/* Dev ability - SXGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
/* Restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_CR,
ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
return 0;
}
/* Apply protocol specific configuration to MAC, serdes as needed */
static void enetc_start_pcs(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
/* register internal MDIO for debug purposes */
if (enetc_read_pcapr_mdio(dev)) {
priv->imdio.read = enetc_mdio_read;
priv->imdio.write = enetc_mdio_write;
priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
strlcpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
if (!miiphy_get_dev_by_name(priv->imdio.name))
mdio_register(&priv->imdio);
}
if (!ofnode_valid(dev_ofnode(dev))) {
enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
return;
}
priv->uclass_id = dev_read_phy_mode(dev);
if (priv->uclass_id == PHY_INTERFACE_MODE_NA) {
enetc_dbg(dev,
"phy-mode property not found, defaulting to SGMII\n");
priv->uclass_id = PHY_INTERFACE_MODE_SGMII;
}
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_2500BASEX:
enetc_init_sgmii(dev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
enetc_init_sxgmii(dev);
break;
};
}
/* Configure the actual/external ethernet PHY, if one is found */
static int enetc_config_phy(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int supported;
priv->phy = dm_eth_phy_connect(dev);
if (!priv->phy)
return -ENODEV;
supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
priv->phy->supported &= supported;
priv->phy->advertising &= supported;
return phy_config(priv->phy);
}
/*
* Probe ENETC driver:
* - initialize port and station interface BARs
*/
static int enetc_probe(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int res;
if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_enabled(dev_ofnode(dev))) {
enetc_dbg(dev, "interface disabled\n");
return -ENODEV;
}
priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
if (!priv->enetc_txbd || !priv->enetc_rxbd) {
/* free should be able to handle NULL, just free all pointers */
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return -ENOMEM;
}
/* initialize register */
priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0);
if (!priv->regs_base) {
enetc_dbg(dev, "failed to map BAR0\n");
return -EINVAL;
}
priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
enetc_start_pcs(dev);
res = enetc_config_phy(dev);
if(res)
enetc_remove(dev);
return res;
}
/*
* Remove the driver from an interface:
* - free up allocated memory
*/
static int enetc_remove(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (miiphy_get_dev_by_name(priv->imdio.name))
mdio_unregister(&priv->imdio);
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return 0;
}
static int enetc_imx95_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct enetc_priv *priv = dev_get_priv(dev);
u8 *addr = plat->enetaddr;
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_port(priv, IMX95_ENETC_PMAR0, upper);
enetc_write_port(priv, IMX95_ENETC_PMAR1, lower);
return 0;
}
/*
* LS1028A is the only part with IERB at this time and there are plans to
* change its structure, keep this LS1028A specific for now.
*/
#define LS1028A_IERB_BASE 0x1f0800000ULL
#define LS1028A_IERB_PSIPMAR0(pf, vf) (LS1028A_IERB_BASE + 0x8000 \
+ (pf) * 0x100 + (vf) * 8)
#define LS1028A_IERB_PSIPMAR1(pf, vf) (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
{
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
struct eth_pdata *plat = dev_get_plat(dev);
int devfn = PCI_FUNC(ppdata->devfn);
u8 *addr = plat->enetaddr;
u32 lower, upper;
int pf;
if (devfn >= ARRAY_SIZE(devfn_to_pf))
return 0;
pf = devfn_to_pf[devfn];
if (pf < 0)
return 0;
lower = *(const u16 *)(addr + 4);
upper = *(const u32 *)addr;
out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
return 0;
}
static int enetc_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
u8 *addr = plat->enetaddr;
if (enetc_is_imx95(dev))
return enetc_imx95_write_hwaddr(dev);
if (enetc_is_ls1028a(dev))
return enetc_ls1028a_write_hwaddr(dev);
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_psipmar(dev, 0, upper);
enetc_write_psipmar(dev, 1, lower);
return 0;
}
/* Configure port parameters (# of rings, frame size, enable port) */
static void enetc_enable_si_port(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 val = ENETC_PM_CC_TXP_IMX | ENETC_PM_CC_TX | ENETC_PM_CC_RX;
/* set Rx/Tx BDR count */
enetc_write_psicfgr(dev, 0, ENETC_PSICFGR_SET_BDR(ENETC_RX_BDR_CNT,
ENETC_TX_BDR_CNT));
/* set Rx max frame size */
enetc_write_mac_port(dev, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
/* enable MAC port */
if (enetc_is_ls1028a(dev))
val |= ENETC_PM_CC_TXP_LS | ENETC_PM_CC_PROMIS;
enetc_write_mac_port(dev, ENETC_PM_CC, val);
/* enable port */
if (enetc_is_imx95(dev))
enetc_write_port(priv, ENETC_POR, 0x0);
enetc_write_pmr(dev, ENETC_PMR_SI0_EN);
/* set SI cache policy */
enetc_write(priv, ENETC_SICAR0, ENETC_SICAR_WR_CFG |
(enetc_is_imx95(dev) ?
ENETC_SICAR_RD_CFG_IMX :
ENETC_SICAR_RD_CFG_LS));
/* enable SI */
enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
}
/* returns DMA address for a given buffer index */
static inline u64 enetc_rxb_address(struct udevice *dev, int i)
{
return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
}
/*
* Setup a single Tx BD Ring (ID = 0):
* - set Tx buffer descriptor address
* - set the BD count
* - initialize the producer and consumer index
*/
static void enetc_setup_tx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *tx_bdr = &priv->tx_bdr;
u64 tx_bd_add = (u64)priv->enetc_txbd;
/* used later to advance to the next Tx BD */
tx_bdr->bd_count = ENETC_BD_CNT;
tx_bdr->next_prod_idx = 0;
tx_bdr->next_cons_idx = 0;
tx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
tx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
/* set Tx BD address */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
lower_32_bits(tx_bd_add));
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
upper_32_bits(tx_bd_add));
/* set Tx 8 BD count */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
tx_bdr->bd_count);
/* reset both producer/consumer indexes */
enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
/* enable TX ring */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
}
/*
* Setup a single Rx BD Ring (ID = 0):
* - set Rx buffer descriptors address (one descriptor per buffer)
* - set buffer size as max frame size
* - enable Rx ring
* - reset consumer and producer indexes
* - set buffer for each descriptor
*/
static void enetc_setup_rx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rx_bdr = &priv->rx_bdr;
u64 rx_bd_add = (u64)priv->enetc_rxbd;
int i;
/* used later to advance to the next BD produced by ENETC HW */
rx_bdr->bd_count = ENETC_BD_CNT;
rx_bdr->next_prod_idx = 0;
rx_bdr->next_cons_idx = 0;
rx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
rx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
/* set Rx BD address */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
lower_32_bits(rx_bd_add));
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
upper_32_bits(rx_bd_add));
/* set Rx BD count (multiple of 8) */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
rx_bdr->bd_count);
/* set Rx buffer size */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
/* fill Rx BD */
memset(priv->enetc_rxbd, 0,
rx_bdr->bd_count * sizeof(union enetc_rx_bd));
for (i = 0; i < rx_bdr->bd_count; i++) {
priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
/* each RX buffer must be aligned to 64B */
WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
enetc_flush_bd(dev, i, false);
}
/* reset producer (ENETC owned) and consumer (SW owned) index */
enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
/* enable Rx ring */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
}
/*
* Start ENETC interface:
* - perform FLR
* - enable access to port and SI registers
* - set mac address
* - setup TX/RX buffer descriptors
* - enable Tx/Rx rings
*/
static int enetc_start(struct udevice *dev)
{
int ret;
struct enetc_priv *priv = dev_get_priv(dev);
/* reset and enable the PCI device */
dm_pci_flr(dev);
dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
enetc_enable_si_port(dev);
/* setup Tx/Rx buffer descriptors */
enetc_setup_tx_bdr(dev);
enetc_setup_rx_bdr(dev);
ret = phy_startup(priv->phy);
if (ret)
return ret;
enetc_setup_mac_iface(dev, priv->phy);
return 0;
}
/*
* Stop the network interface:
* - just quiesce it, we can wipe all configuration as _start starts from
* scratch each time
*/
static void enetc_stop(struct udevice *dev)
{
/* FLR is sufficient to quiesce the device */
dm_pci_flr(dev);
/* leave the BARs accessible after we stop, this is needed to use
* internal MDIO in command line.
*/
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
}
/*
* ENETC transmit packet:
* - check if Tx BD ring is full
* - set buffer/packet address (dma address)
* - set final fragment flag
* - try while producer index equals consumer index or timeout
*/
static int enetc_send(struct udevice *dev, void *packet, int length)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *txr = &priv->tx_bdr;
void *nv_packet = (void *)packet;
int tries = ENETC_POLL_TRIES;
u32 pi, ci;
pi = txr->next_prod_idx;
ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
/* Tx ring is full when */
if (((pi + 1) % txr->bd_count) == ci) {
enetc_dbg(dev, "Tx BDR full\n");
return -ETIMEDOUT;
}
enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
enetc_flush_buffer(dev, packet, length);
/* prepare Tx BD */
memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
priv->enetc_txbd[pi].addr =
cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
dmb();
enetc_flush_bd(dev, pi, true);
/* send frame: increment producer index */
pi = (pi + 1) % txr->bd_count;
txr->next_prod_idx = pi;
enetc_write_reg(txr->prod_idx, pi);
while ((--tries >= 0) &&
(pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
udelay(10);
return tries > 0 ? 0 : -ETIMEDOUT;
}
/*
* Receive frame:
* - wait for the next BD to get ready bit set
* - clean up the descriptor
* - move on and indicate to HW that the cleaned BD is available for Rx
*/
static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int pi = rxr->next_prod_idx;
int tries = ENETC_POLL_TRIES;
u32 status;
int len;
u8 rdy;
do {
dmb();
enetc_inval_rxbd(dev);
status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
/* check if current BD is ready to be consumed */
rdy = ENETC_RXBD_STATUS_R(status);
} while (--tries >= 0 && !rdy);
if (!rdy)
return -EAGAIN;
dmb();
len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
*packetp = (uchar *)enetc_rxb_address(dev, pi);
enetc_inval_buffer(dev, *packetp, len);
enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
ENETC_RXBD_STATUS_ERRORS(status),
upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
return len;
}
static int enetc_free_pkt(struct udevice *dev, uchar *packet, int length)
{
const int bd_num_in_cl = enetc_is_imx95(dev) ? ENETC_NUM_BD_IN_CL : 1;
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int pi = rxr->next_prod_idx;
int ci = rxr->next_cons_idx;
uchar *packet_expected;
int i;
packet_expected = (uchar *)enetc_rxb_address(dev, pi);
if (packet != packet_expected) {
printf("%s: Unexpected packet (expected %p)\n", __func__,
packet_expected);
return -EINVAL;
}
rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
ci = (ci + 1) % rxr->bd_count;
rxr->next_cons_idx = ci;
dmb();
if ((pi + 1) % bd_num_in_cl == 0) {
/* BD clean up and advance to next in ring */
for (i = 0; i < bd_num_in_cl; i++) {
memset(&priv->enetc_rxbd[pi - i], 0, sizeof(union enetc_rx_bd));
priv->enetc_rxbd[pi - i].w.addr = enetc_rxb_address(dev, pi - i);
}
/* Will flush all bds in one cacheline */
enetc_flush_bd(dev, pi - bd_num_in_cl + 1, false);
/* free up the slot in the ring for HW */
enetc_write_reg(rxr->cons_idx, ci);
}
return 0;
}
#if IS_ENABLED(CONFIG_ARCH_IMX9)
static int enetc_read_rom_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
unsigned int dev_id = enetc_dev_id(dev);
unsigned char *mac = pdata->enetaddr;
if (dev_id > 2)
return -EINVAL;
imx_get_mac_from_fuse(dev_id, mac);
return !is_valid_ethaddr(mac);
}
static const struct eth_ops enetc_ops_imx = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
.free_pkt = enetc_free_pkt,
.write_hwaddr = enetc_write_hwaddr,
.read_rom_hwaddr = enetc_read_rom_hwaddr,
};
static int enetc_probe_imx(struct udevice *dev)
{
struct clk *clk;
int ret;
clk = devm_clk_get_optional(dev, "ref");
if (IS_ERR(clk))
return PTR_ERR(clk);
ret = clk_enable(clk);
if (ret)
return ret;
ret = enetc_probe(dev);
if (ret)
clk_disable(clk);
return ret;
}
U_BOOT_DRIVER(eth_enetc_imx) = {
.name = ENETC_DRIVER_NAME,
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe_imx,
.remove = enetc_remove,
.ops = &enetc_ops_imx,
.priv_auto = sizeof(struct enetc_priv),
.plat_auto = sizeof(struct eth_pdata),
};
static const struct enetc_data enetc_data_imx = {
.reg_offset_pmr = ENETC_PMR_OFFSET_IMX,
.reg_offset_psipmar = ENETC_PSIPMARn_OFFSET_IMX,
.reg_offset_pcapr = ENETC_PCAPR_OFFSET_IMX,
.reg_offset_psicfgr = ENETC_PSICFGR_OFFSET_IMX,
.reg_offset_mac = ENETC_PM_OFFSET_IMX,
};
static struct pci_device_id enetc_ids_imx[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_ENETC4_ETH),
.driver_data = (ulong)&enetc_data_imx,
},
{}
};
U_BOOT_PCI_DEVICE(eth_enetc_imx, enetc_ids_imx);
#endif
static const struct eth_ops enetc_ops_ls = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
.free_pkt = enetc_free_pkt,
.write_hwaddr = enetc_write_hwaddr,
};
U_BOOT_DRIVER(eth_enetc_ls) = {
.name = ENETC_DRIVER_NAME,
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe,
.remove = enetc_remove,
.ops = &enetc_ops_ls,
.priv_auto = sizeof(struct enetc_priv),
.plat_auto = sizeof(struct eth_pdata),
};
static const struct enetc_data enetc_data_ls = {
.reg_offset_pmr = ENETC_PMR_OFFSET_LS,
.reg_offset_psipmar = ENETC_PSIPMARn_OFFSET_LS,
.reg_offset_pcapr = ENETC_PCAPR_OFFSET_LS,
.reg_offset_psicfgr = ENETC_PSICFGR_OFFSET_LS,
.reg_offset_mac = ENETC_PM_OFFSET_LS,
};
static struct pci_device_id enetc_ids_ls[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH),
.driver_data = (ulong)&enetc_data_ls,
},
{}
};
U_BOOT_PCI_DEVICE(eth_enetc_ls, enetc_ids_ls);