blob: de3500329cefee940109e91110d2ed24163076b2 [file] [log] [blame]
Dan Handley610e7e12018-03-01 18:44:00 +00001Trusted Firmware-A Porting Guide
2================================
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
10--------------
11
12Introduction
13------------
14
Dan Handley610e7e12018-03-01 18:44:00 +000015Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +010016mandatory and optional modifications for both the cold and warm boot paths.
17Modifications consist of:
18
19- Implementing a platform-specific function or variable,
20- Setting up the execution context in a certain way, or
21- Defining certain constants (for example #defines).
22
23The platform-specific functions and variables are declared in
24`include/plat/common/platform.h`_. The firmware provides a default implementation
25of variables and functions to fulfill the optional requirements. These
26implementations are all weakly defined; they are provided to ease the porting
27effort. Each platform port can override them with its own implementation if the
28default implementation is inadequate.
29
Dan Handley610e7e12018-03-01 18:44:00 +000030Platform ports that want to be aligned with standard Arm platforms (for example
Douglas Raillardd7c21b72017-06-28 15:23:03 +010031FVP and Juno) may also use `include/plat/arm/common/plat\_arm.h`_ and the
32corresponding source files in ``plat/arm/common/``. These provide standard
33implementations for some of the required platform porting functions. However,
34using these functions requires the platform port to implement additional
Dan Handley610e7e12018-03-01 18:44:00 +000035Arm standard platform porting functions. These additional functions are not
Douglas Raillardd7c21b72017-06-28 15:23:03 +010036documented here.
37
38Some modifications are common to all Boot Loader (BL) stages. Section 2
39discusses these in detail. The subsequent sections discuss the remaining
40modifications for each BL stage in detail.
41
Dan Handley610e7e12018-03-01 18:44:00 +000042This document should be read in conjunction with the TF-A `User Guide`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010043
44Common modifications
45--------------------
46
47This section covers the modifications that should be made by the platform for
48each BL stage to correctly port the firmware stack. They are categorized as
49either mandatory or optional.
50
51Common mandatory modifications
52------------------------------
53
54A platform port must enable the Memory Management Unit (MMU) as well as the
55instruction and data caches for each BL stage. Setting up the translation
56tables is the responsibility of the platform port because memory maps differ
57across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010058provided to help in this setup.
59
60Note that although this library supports non-identity mappings, this is intended
61only for re-mapping peripheral physical addresses and allows platforms with high
62I/O addresses to reduce their virtual address space. All other addresses
63corresponding to code and data must currently use an identity mapping.
64
Dan Handley610e7e12018-03-01 18:44:00 +000065Also, the only translation granule size supported in TF-A is 4KB, as various
66parts of the code assume that is the case. It is not possible to switch to
6716 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010068
Dan Handley610e7e12018-03-01 18:44:00 +000069In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010070platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
71an identity mapping for all addresses.
72
73If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
74block of identity mapped secure memory with Device-nGnRE attributes aligned to
75page boundary (4K) for each BL stage. All sections which allocate coherent
76memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
77section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
78possible for the firmware to place variables in it using the following C code
79directive:
80
81::
82
83 __section("bakery_lock")
84
85Or alternatively the following assembler code directive:
86
87::
88
89 .section bakery_lock
90
91The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
92used to allocate any data structures that are accessed both when a CPU is
93executing with its MMU and caches enabled, and when it's running with its MMU
94and caches disabled. Examples are given below.
95
96The following variables, functions and constants must be defined by the platform
97for the firmware to work correctly.
98
99File : platform\_def.h [mandatory]
100~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101
102Each platform must ensure that a header file of this name is in the system
103include path with the following constants defined. This may require updating the
Dan Handley610e7e12018-03-01 18:44:00 +0000104list of ``PLAT_INCLUDES`` in the ``platform.mk`` file. In the Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100105platforms, this file is found in ``plat/arm/board/<plat_name>/include/``.
106
107Platform ports may optionally use the file `include/plat/common/common\_def.h`_,
108which provides typical values for some of the constants below. These values are
109likely to be suitable for all platform ports.
110
Dan Handley610e7e12018-03-01 18:44:00 +0000111Platform ports that want to be aligned with standard Arm platforms (for example
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100112FVP and Juno) may also use `include/plat/arm/common/arm\_def.h`_, which provides
113standard values for some of the constants below. However, this requires the
114platform port to define additional platform porting constants in
115``platform_def.h``. These additional constants are not documented here.
116
117- **#define : PLATFORM\_LINKER\_FORMAT**
118
119 Defines the linker format used by the platform, for example
120 ``elf64-littleaarch64``.
121
122- **#define : PLATFORM\_LINKER\_ARCH**
123
124 Defines the processor architecture for the linker by the platform, for
125 example ``aarch64``.
126
127- **#define : PLATFORM\_STACK\_SIZE**
128
129 Defines the normal stack memory available to each CPU. This constant is used
130 by `plat/common/aarch64/platform\_mp\_stack.S`_ and
131 `plat/common/aarch64/platform\_up\_stack.S`_.
132
133- **define : CACHE\_WRITEBACK\_GRANULE**
134
135 Defines the size in bits of the largest cache line across all the cache
136 levels in the platform.
137
138- **#define : FIRMWARE\_WELCOME\_STR**
139
140 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
141 function.
142
143- **#define : PLATFORM\_CORE\_COUNT**
144
145 Defines the total number of CPUs implemented by the platform across all
146 clusters in the system.
147
148- **#define : PLAT\_NUM\_PWR\_DOMAINS**
149
150 Defines the total number of nodes in the power domain topology
151 tree at all the power domain levels used by the platform.
152 This macro is used by the PSCI implementation to allocate
153 data structures to represent power domain topology.
154
155- **#define : PLAT\_MAX\_PWR\_LVL**
156
157 Defines the maximum power domain level that the power management operations
158 should apply to. More often, but not always, the power domain level
159 corresponds to affinity level. This macro allows the PSCI implementation
160 to know the highest power domain level that it should consider for power
161 management operations in the system that the platform implements. For
162 example, the Base AEM FVP implements two clusters with a configurable
163 number of CPUs and it reports the maximum power domain level as 1.
164
165- **#define : PLAT\_MAX\_OFF\_STATE**
166
167 Defines the local power state corresponding to the deepest power down
168 possible at every power domain level in the platform. The local power
169 states for each level may be sparsely allocated between 0 and this value
170 with 0 being reserved for the RUN state. The PSCI implementation uses this
171 value to initialize the local power states of the power domain nodes and
172 to specify the requested power state for a PSCI\_CPU\_OFF call.
173
174- **#define : PLAT\_MAX\_RET\_STATE**
175
176 Defines the local power state corresponding to the deepest retention state
177 possible at every power domain level in the platform. This macro should be
178 a value less than PLAT\_MAX\_OFF\_STATE and greater than 0. It is used by the
179 PSCI implementation to distinguish between retention and power down local
180 power states within PSCI\_CPU\_SUSPEND call.
181
182- **#define : PLAT\_MAX\_PWR\_LVL\_STATES**
183
184 Defines the maximum number of local power states per power domain level
185 that the platform supports. The default value of this macro is 2 since
186 most platforms just support a maximum of two local power states at each
187 power domain level (power-down and retention). If the platform needs to
188 account for more local power states, then it must redefine this macro.
189
190 Currently, this macro is used by the Generic PSCI implementation to size
191 the array used for PSCI\_STAT\_COUNT/RESIDENCY accounting.
192
193- **#define : BL1\_RO\_BASE**
194
195 Defines the base address in secure ROM where BL1 originally lives. Must be
196 aligned on a page-size boundary.
197
198- **#define : BL1\_RO\_LIMIT**
199
200 Defines the maximum address in secure ROM that BL1's actual content (i.e.
201 excluding any data section allocated at runtime) can occupy.
202
203- **#define : BL1\_RW\_BASE**
204
205 Defines the base address in secure RAM where BL1's read-write data will live
206 at runtime. Must be aligned on a page-size boundary.
207
208- **#define : BL1\_RW\_LIMIT**
209
210 Defines the maximum address in secure RAM that BL1's read-write data can
211 occupy at runtime.
212
213- **#define : BL2\_BASE**
214
215 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000216 Must be aligned on a page-size boundary. This constant is not applicable
217 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100218
219- **#define : BL2\_LIMIT**
220
221 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000222 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
223
224- **#define : BL2\_RO\_BASE**
225
226 Defines the base address in secure XIP memory where BL2 RO section originally
227 lives. Must be aligned on a page-size boundary. This constant is only needed
228 when BL2_IN_XIP_MEM is set to '1'.
229
230- **#define : BL2\_RO\_LIMIT**
231
232 Defines the maximum address in secure XIP memory that BL2's actual content
233 (i.e. excluding any data section allocated at runtime) can occupy. This
234 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
235
236- **#define : BL2\_RW\_BASE**
237
238 Defines the base address in secure RAM where BL2's read-write data will live
239 at runtime. Must be aligned on a page-size boundary. This constant is only
240 needed when BL2_IN_XIP_MEM is set to '1'.
241
242- **#define : BL2\_RW\_LIMIT**
243
244 Defines the maximum address in secure RAM that BL2's read-write data can
245 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
246 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100247
248- **#define : BL31\_BASE**
249
250 Defines the base address in secure RAM where BL2 loads the BL31 binary
251 image. Must be aligned on a page-size boundary.
252
253- **#define : BL31\_LIMIT**
254
255 Defines the maximum address in secure RAM that the BL31 image can occupy.
256
257For every image, the platform must define individual identifiers that will be
258used by BL1 or BL2 to load the corresponding image into memory from non-volatile
259storage. For the sake of performance, integer numbers will be used as
260identifiers. The platform will use those identifiers to return the relevant
261information about the image to be loaded (file handler, load address,
262authentication information, etc.). The following image identifiers are
263mandatory:
264
265- **#define : BL2\_IMAGE\_ID**
266
267 BL2 image identifier, used by BL1 to load BL2.
268
269- **#define : BL31\_IMAGE\_ID**
270
271 BL31 image identifier, used by BL2 to load BL31.
272
273- **#define : BL33\_IMAGE\_ID**
274
275 BL33 image identifier, used by BL2 to load BL33.
276
277If Trusted Board Boot is enabled, the following certificate identifiers must
278also be defined:
279
280- **#define : TRUSTED\_BOOT\_FW\_CERT\_ID**
281
282 BL2 content certificate identifier, used by BL1 to load the BL2 content
283 certificate.
284
285- **#define : TRUSTED\_KEY\_CERT\_ID**
286
287 Trusted key certificate identifier, used by BL2 to load the trusted key
288 certificate.
289
290- **#define : SOC\_FW\_KEY\_CERT\_ID**
291
292 BL31 key certificate identifier, used by BL2 to load the BL31 key
293 certificate.
294
295- **#define : SOC\_FW\_CONTENT\_CERT\_ID**
296
297 BL31 content certificate identifier, used by BL2 to load the BL31 content
298 certificate.
299
300- **#define : NON\_TRUSTED\_FW\_KEY\_CERT\_ID**
301
302 BL33 key certificate identifier, used by BL2 to load the BL33 key
303 certificate.
304
305- **#define : NON\_TRUSTED\_FW\_CONTENT\_CERT\_ID**
306
307 BL33 content certificate identifier, used by BL2 to load the BL33 content
308 certificate.
309
310- **#define : FWU\_CERT\_ID**
311
312 Firmware Update (FWU) certificate identifier, used by NS\_BL1U to load the
313 FWU content certificate.
314
315- **#define : PLAT\_CRYPTOCELL\_BASE**
316
Dan Handley610e7e12018-03-01 18:44:00 +0000317 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100318 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000319 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100320 set.
321
322If the AP Firmware Updater Configuration image, BL2U is used, the following
323must also be defined:
324
325- **#define : BL2U\_BASE**
326
327 Defines the base address in secure memory where BL1 copies the BL2U binary
328 image. Must be aligned on a page-size boundary.
329
330- **#define : BL2U\_LIMIT**
331
332 Defines the maximum address in secure memory that the BL2U image can occupy.
333
334- **#define : BL2U\_IMAGE\_ID**
335
336 BL2U image identifier, used by BL1 to fetch an image descriptor
337 corresponding to BL2U.
338
339If the SCP Firmware Update Configuration Image, SCP\_BL2U is used, the following
340must also be defined:
341
342- **#define : SCP\_BL2U\_IMAGE\_ID**
343
344 SCP\_BL2U image identifier, used by BL1 to fetch an image descriptor
345 corresponding to SCP\_BL2U.
Dan Handley610e7e12018-03-01 18:44:00 +0000346 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100347
348If the Non-Secure Firmware Updater ROM, NS\_BL1U is used, the following must
349also be defined:
350
351- **#define : NS\_BL1U\_BASE**
352
353 Defines the base address in non-secure ROM where NS\_BL1U executes.
354 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000355 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
357- **#define : NS\_BL1U\_IMAGE\_ID**
358
359 NS\_BL1U image identifier, used by BL1 to fetch an image descriptor
360 corresponding to NS\_BL1U.
361
362If the Non-Secure Firmware Updater, NS\_BL2U is used, the following must also
363be defined:
364
365- **#define : NS\_BL2U\_BASE**
366
367 Defines the base address in non-secure memory where NS\_BL2U executes.
368 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000369 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100370
371- **#define : NS\_BL2U\_IMAGE\_ID**
372
373 NS\_BL2U image identifier, used by BL1 to fetch an image descriptor
374 corresponding to NS\_BL2U.
375
376For the the Firmware update capability of TRUSTED BOARD BOOT, the following
377macros may also be defined:
378
379- **#define : PLAT\_FWU\_MAX\_SIMULTANEOUS\_IMAGES**
380
381 Total number of images that can be loaded simultaneously. If the platform
382 doesn't specify any value, it defaults to 10.
383
384If a SCP\_BL2 image is supported by the platform, the following constants must
385also be defined:
386
387- **#define : SCP\_BL2\_IMAGE\_ID**
388
389 SCP\_BL2 image identifier, used by BL2 to load SCP\_BL2 into secure memory
390 from platform storage before being transfered to the SCP.
391
392- **#define : SCP\_FW\_KEY\_CERT\_ID**
393
394 SCP\_BL2 key certificate identifier, used by BL2 to load the SCP\_BL2 key
395 certificate (mandatory when Trusted Board Boot is enabled).
396
397- **#define : SCP\_FW\_CONTENT\_CERT\_ID**
398
399 SCP\_BL2 content certificate identifier, used by BL2 to load the SCP\_BL2
400 content certificate (mandatory when Trusted Board Boot is enabled).
401
402If a BL32 image is supported by the platform, the following constants must
403also be defined:
404
405- **#define : BL32\_IMAGE\_ID**
406
407 BL32 image identifier, used by BL2 to load BL32.
408
409- **#define : TRUSTED\_OS\_FW\_KEY\_CERT\_ID**
410
411 BL32 key certificate identifier, used by BL2 to load the BL32 key
412 certificate (mandatory when Trusted Board Boot is enabled).
413
414- **#define : TRUSTED\_OS\_FW\_CONTENT\_CERT\_ID**
415
416 BL32 content certificate identifier, used by BL2 to load the BL32 content
417 certificate (mandatory when Trusted Board Boot is enabled).
418
419- **#define : BL32\_BASE**
420
421 Defines the base address in secure memory where BL2 loads the BL32 binary
422 image. Must be aligned on a page-size boundary.
423
424- **#define : BL32\_LIMIT**
425
426 Defines the maximum address that the BL32 image can occupy.
427
428If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
429platform, the following constants must also be defined:
430
431- **#define : TSP\_SEC\_MEM\_BASE**
432
433 Defines the base address of the secure memory used by the TSP image on the
434 platform. This must be at the same address or below ``BL32_BASE``.
435
436- **#define : TSP\_SEC\_MEM\_SIZE**
437
438 Defines the size of the secure memory used by the BL32 image on the
439 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully accomodate
440 the memory required by the BL32 image, defined by ``BL32_BASE`` and
441 ``BL32_LIMIT``.
442
443- **#define : TSP\_IRQ\_SEC\_PHY\_TIMER**
444
445 Defines the ID of the secure physical generic timer interrupt used by the
446 TSP's interrupt handling code.
447
448If the platform port uses the translation table library code, the following
449constants must also be defined:
450
451- **#define : PLAT\_XLAT\_TABLES\_DYNAMIC**
452
453 Optional flag that can be set per-image to enable the dynamic allocation of
454 regions even when the MMU is enabled. If not defined, only static
455 functionality will be available, if defined and set to 1 it will also
456 include the dynamic functionality.
457
458- **#define : MAX\_XLAT\_TABLES**
459
460 Defines the maximum number of translation tables that are allocated by the
461 translation table library code. To minimize the amount of runtime memory
462 used, choose the smallest value needed to map the required virtual addresses
463 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
464 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
465 as well.
466
467- **#define : MAX\_MMAP\_REGIONS**
468
469 Defines the maximum number of regions that are allocated by the translation
470 table library code. A region consists of physical base address, virtual base
471 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
472 defined in the ``mmap_region_t`` structure. The platform defines the regions
473 that should be mapped. Then, the translation table library will create the
474 corresponding tables and descriptors at runtime. To minimize the amount of
475 runtime memory used, choose the smallest value needed to register the
476 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
477 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
478 the dynamic regions as well.
479
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100480- **#define : PLAT\_VIRT\_ADDR\_SPACE\_SIZE**
481
482 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000483 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100484
485- **#define : PLAT\_PHY\_ADDR\_SPACE\_SIZE**
486
487 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000488 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100489
490If the platform port uses the IO storage framework, the following constants
491must also be defined:
492
493- **#define : MAX\_IO\_DEVICES**
494
495 Defines the maximum number of registered IO devices. Attempting to register
496 more devices than this value using ``io_register_device()`` will fail with
497 -ENOMEM.
498
499- **#define : MAX\_IO\_HANDLES**
500
501 Defines the maximum number of open IO handles. Attempting to open more IO
502 entities than this value using ``io_open()`` will fail with -ENOMEM.
503
504- **#define : MAX\_IO\_BLOCK\_DEVICES**
505
506 Defines the maximum number of registered IO block devices. Attempting to
507 register more devices this value using ``io_dev_open()`` will fail
508 with -ENOMEM. MAX\_IO\_BLOCK\_DEVICES should be less than MAX\_IO\_DEVICES.
509 With this macro, multiple block devices could be supported at the same
510 time.
511
512If the platform needs to allocate data within the per-cpu data framework in
513BL31, it should define the following macro. Currently this is only required if
514the platform decides not to use the coherent memory section by undefining the
515``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
516required memory within the the per-cpu data to minimize wastage.
517
518- **#define : PLAT\_PCPU\_DATA\_SIZE**
519
520 Defines the memory (in bytes) to be reserved within the per-cpu data
521 structure for use by the platform layer.
522
523The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000524memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100525
526- **#define : BL31\_PROGBITS\_LIMIT**
527
528 Defines the maximum address in secure RAM that the BL31's progbits sections
529 can occupy.
530
531- **#define : TSP\_PROGBITS\_LIMIT**
532
533 Defines the maximum address that the TSP's progbits sections can occupy.
534
535If the platform port uses the PL061 GPIO driver, the following constant may
536optionally be defined:
537
538- **PLAT\_PL061\_MAX\_GPIOS**
539 Maximum number of GPIOs required by the platform. This allows control how
540 much memory is allocated for PL061 GPIO controllers. The default value is
541
542 #. $(eval $(call add\_define,PLAT\_PL061\_MAX\_GPIOS))
543
544If the platform port uses the partition driver, the following constant may
545optionally be defined:
546
547- **PLAT\_PARTITION\_MAX\_ENTRIES**
548 Maximum number of partition entries required by the platform. This allows
549 control how much memory is allocated for partition entries. The default
550 value is 128.
551 `For example, define the build flag in platform.mk`_:
552 PLAT\_PARTITION\_MAX\_ENTRIES := 12
553 $(eval $(call add\_define,PLAT\_PARTITION\_MAX\_ENTRIES))
554
555The following constant is optional. It should be defined to override the default
556behaviour of the ``assert()`` function (for example, to save memory).
557
558- **PLAT\_LOG\_LEVEL\_ASSERT**
559 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
560 ``assert()`` prints the name of the file, the line number and the asserted
561 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
562 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
563 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
564 defined, it defaults to ``LOG_LEVEL``.
565
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000566If the platform port uses the Activity Monitor Unit, the following constants
567may be defined:
568
569- **PLAT\_AMU\_GROUP1\_COUNTERS\_MASK**
570 This mask reflects the set of group counters that should be enabled. The
571 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
572 can be at most 0xffff. If the platform does not define this mask, no group 1
573 counters are enabled. If the platform defines this mask, the following
574 constant needs to also be defined.
575
576- **PLAT\_AMU\_GROUP1\_NR\_COUNTERS**
577 This value is used to allocate an array to save and restore the counters
578 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
579 This value should be equal to the highest bit position set in the
580 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
581
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100582File : plat\_macros.S [mandatory]
583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
584
585Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000586the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100587found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
588
589- **Macro : plat\_crash\_print\_regs**
590
591 This macro allows the crash reporting routine to print relevant platform
592 registers in case of an unhandled exception in BL31. This aids in debugging
593 and this macro can be defined to be empty in case register reporting is not
594 desired.
595
596 For instance, GIC or interconnect registers may be helpful for
597 troubleshooting.
598
599Handling Reset
600--------------
601
602BL1 by default implements the reset vector where execution starts from a cold
603or warm boot. BL31 can be optionally set as a reset vector using the
604``RESET_TO_BL31`` make variable.
605
606For each CPU, the reset vector code is responsible for the following tasks:
607
608#. Distinguishing between a cold boot and a warm boot.
609
610#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
611 the CPU is placed in a platform-specific state until the primary CPU
612 performs the necessary steps to remove it from this state.
613
614#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
615 specific address in the BL31 image in the same processor mode as it was
616 when released from reset.
617
618The following functions need to be implemented by the platform port to enable
619reset vector code to perform the above tasks.
620
621Function : plat\_get\_my\_entrypoint() [mandatory when PROGRAMMABLE\_RESET\_ADDRESS == 0]
622~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
623
624::
625
626 Argument : void
627 Return : uintptr_t
628
629This function is called with the MMU and caches disabled
630(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
631distinguishing between a warm and cold reset for the current CPU using
632platform-specific means. If it's a warm reset, then it returns the warm
633reset entrypoint point provided to ``plat_setup_psci_ops()`` during
634BL31 initialization. If it's a cold reset then this function must return zero.
635
636This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000637Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100638not assume that callee saved registers are preserved across a call to this
639function.
640
641This function fulfills requirement 1 and 3 listed above.
642
643Note that for platforms that support programming the reset address, it is
644expected that a CPU will start executing code directly at the right address,
645both on a cold and warm reset. In this case, there is no need to identify the
646type of reset nor to query the warm reset entrypoint. Therefore, implementing
647this function is not required on such platforms.
648
649Function : plat\_secondary\_cold\_boot\_setup() [mandatory when COLD\_BOOT\_SINGLE\_CPU == 0]
650~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
651
652::
653
654 Argument : void
655
656This function is called with the MMU and data caches disabled. It is responsible
657for placing the executing secondary CPU in a platform-specific state until the
658primary CPU performs the necessary actions to bring it out of that state and
659allow entry into the OS. This function must not return.
660
Dan Handley610e7e12018-03-01 18:44:00 +0000661In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100662itself off. The primary CPU is responsible for powering up the secondary CPUs
663when normal world software requires them. When booting an EL3 payload instead,
664they stay powered on and are put in a holding pen until their mailbox gets
665populated.
666
667This function fulfills requirement 2 above.
668
669Note that for platforms that can't release secondary CPUs out of reset, only the
670primary CPU will execute the cold boot code. Therefore, implementing this
671function is not required on such platforms.
672
673Function : plat\_is\_my\_cpu\_primary() [mandatory when COLD\_BOOT\_SINGLE\_CPU == 0]
674~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
675
676::
677
678 Argument : void
679 Return : unsigned int
680
681This function identifies whether the current CPU is the primary CPU or a
682secondary CPU. A return value of zero indicates that the CPU is not the
683primary CPU, while a non-zero return value indicates that the CPU is the
684primary CPU.
685
686Note that for platforms that can't release secondary CPUs out of reset, only the
687primary CPU will execute the cold boot code. Therefore, there is no need to
688distinguish between primary and secondary CPUs and implementing this function is
689not required.
690
691Function : platform\_mem\_init() [mandatory]
692~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
693
694::
695
696 Argument : void
697 Return : void
698
699This function is called before any access to data is made by the firmware, in
700order to carry out any essential memory initialization.
701
702Function: plat\_get\_rotpk\_info()
703~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
704
705::
706
707 Argument : void *, void **, unsigned int *, unsigned int *
708 Return : int
709
710This function is mandatory when Trusted Board Boot is enabled. It returns a
711pointer to the ROTPK stored in the platform (or a hash of it) and its length.
712The ROTPK must be encoded in DER format according to the following ASN.1
713structure:
714
715::
716
717 AlgorithmIdentifier ::= SEQUENCE {
718 algorithm OBJECT IDENTIFIER,
719 parameters ANY DEFINED BY algorithm OPTIONAL
720 }
721
722 SubjectPublicKeyInfo ::= SEQUENCE {
723 algorithm AlgorithmIdentifier,
724 subjectPublicKey BIT STRING
725 }
726
727In case the function returns a hash of the key:
728
729::
730
731 DigestInfo ::= SEQUENCE {
732 digestAlgorithm AlgorithmIdentifier,
733 digest OCTET STRING
734 }
735
736The function returns 0 on success. Any other value is treated as error by the
737Trusted Board Boot. The function also reports extra information related
738to the ROTPK in the flags parameter:
739
740::
741
742 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
743 hash.
744 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
745 verification while the platform ROTPK is not deployed.
746 When this flag is set, the function does not need to
747 return a platform ROTPK, and the authentication
748 framework uses the ROTPK in the certificate without
749 verifying it against the platform value. This flag
750 must not be used in a deployed production environment.
751
752Function: plat\_get\_nv\_ctr()
753~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
754
755::
756
757 Argument : void *, unsigned int *
758 Return : int
759
760This function is mandatory when Trusted Board Boot is enabled. It returns the
761non-volatile counter value stored in the platform in the second argument. The
762cookie in the first argument may be used to select the counter in case the
763platform provides more than one (for example, on platforms that use the default
764TBBR CoT, the cookie will correspond to the OID values defined in
765TRUSTED\_FW\_NVCOUNTER\_OID or NON\_TRUSTED\_FW\_NVCOUNTER\_OID).
766
767The function returns 0 on success. Any other value means the counter value could
768not be retrieved from the platform.
769
770Function: plat\_set\_nv\_ctr()
771~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
772
773::
774
775 Argument : void *, unsigned int
776 Return : int
777
778This function is mandatory when Trusted Board Boot is enabled. It sets a new
779counter value in the platform. The cookie in the first argument may be used to
780select the counter (as explained in plat\_get\_nv\_ctr()). The second argument is
781the updated counter value to be written to the NV counter.
782
783The function returns 0 on success. Any other value means the counter value could
784not be updated.
785
786Function: plat\_set\_nv\_ctr2()
787~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
788
789::
790
791 Argument : void *, const auth_img_desc_t *, unsigned int
792 Return : int
793
794This function is optional when Trusted Board Boot is enabled. If this
795interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
796first argument passed is a cookie and is typically used to
797differentiate between a Non Trusted NV Counter and a Trusted NV
798Counter. The second argument is a pointer to an authentication image
799descriptor and may be used to decide if the counter is allowed to be
800updated or not. The third argument is the updated counter value to
801be written to the NV counter.
802
803The function returns 0 on success. Any other value means the counter value
804either could not be updated or the authentication image descriptor indicates
805that it is not allowed to be updated.
806
807Common mandatory function modifications
808---------------------------------------
809
810The following functions are mandatory functions which need to be implemented
811by the platform port.
812
813Function : plat\_my\_core\_pos()
814~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
815
816::
817
818 Argument : void
819 Return : unsigned int
820
821This funtion returns the index of the calling CPU which is used as a
822CPU-specific linear index into blocks of memory (for example while allocating
823per-CPU stacks). This function will be invoked very early in the
824initialization sequence which mandates that this function should be
825implemented in assembly and should not rely on the avalability of a C
826runtime environment. This function can clobber x0 - x8 and must preserve
827x9 - x29.
828
829This function plays a crucial role in the power domain topology framework in
830PSCI and details of this can be found in `Power Domain Topology Design`_.
831
832Function : plat\_core\_pos\_by\_mpidr()
833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
834
835::
836
837 Argument : u_register_t
838 Return : int
839
840This function validates the ``MPIDR`` of a CPU and converts it to an index,
841which can be used as a CPU-specific linear index into blocks of memory. In
842case the ``MPIDR`` is invalid, this function returns -1. This function will only
843be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000844utilize the C runtime environment. For further details about how TF-A
845represents the power domain topology and how this relates to the linear CPU
846index, please refer `Power Domain Topology Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100847
848Common optional modifications
849-----------------------------
850
851The following are helper functions implemented by the firmware that perform
852common platform-specific tasks. A platform may choose to override these
853definitions.
854
855Function : plat\_set\_my\_stack()
856~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
857
858::
859
860 Argument : void
861 Return : void
862
863This function sets the current stack pointer to the normal memory stack that
864has been allocated for the current CPU. For BL images that only require a
865stack for the primary CPU, the UP version of the function is used. The size
866of the stack allocated to each CPU is specified by the platform defined
867constant ``PLATFORM_STACK_SIZE``.
868
869Common implementations of this function for the UP and MP BL images are
870provided in `plat/common/aarch64/platform\_up\_stack.S`_ and
871`plat/common/aarch64/platform\_mp\_stack.S`_
872
873Function : plat\_get\_my\_stack()
874~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
875
876::
877
878 Argument : void
879 Return : uintptr_t
880
881This function returns the base address of the normal memory stack that
882has been allocated for the current CPU. For BL images that only require a
883stack for the primary CPU, the UP version of the function is used. The size
884of the stack allocated to each CPU is specified by the platform defined
885constant ``PLATFORM_STACK_SIZE``.
886
887Common implementations of this function for the UP and MP BL images are
888provided in `plat/common/aarch64/platform\_up\_stack.S`_ and
889`plat/common/aarch64/platform\_mp\_stack.S`_
890
891Function : plat\_report\_exception()
892~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
893
894::
895
896 Argument : unsigned int
897 Return : void
898
899A platform may need to report various information about its status when an
900exception is taken, for example the current exception level, the CPU security
901state (secure/non-secure), the exception type, and so on. This function is
902called in the following circumstances:
903
904- In BL1, whenever an exception is taken.
905- In BL2, whenever an exception is taken.
906
907The default implementation doesn't do anything, to avoid making assumptions
908about the way the platform displays its status information.
909
910For AArch64, this function receives the exception type as its argument.
911Possible values for exceptions types are listed in the
912`include/common/bl\_common.h`_ header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000913related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100914
915For AArch32, this function receives the exception mode as its argument.
916Possible values for exception modes are listed in the
917`include/lib/aarch32/arch.h`_ header file.
918
919Function : plat\_reset\_handler()
920~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
921
922::
923
924 Argument : void
925 Return : void
926
927A platform may need to do additional initialization after reset. This function
928allows the platform to do the platform specific intializations. Platform
929specific errata workarounds could also be implemented here. The api should
930preserve the values of callee saved registers x19 to x29.
931
932The default implementation doesn't do anything. If a platform needs to override
933the default implementation, refer to the `Firmware Design`_ for general
934guidelines.
935
936Function : plat\_disable\_acp()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
938
939::
940
941 Argument : void
942 Return : void
943
John Tsichritzis6dda9762018-07-23 09:18:04 +0100944This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100946doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100947it has restrictions for stack usage and it can use the registers x0 - x17 as
948scratch registers. It should preserve the value in x18 register as it is used
949by the caller to store the return address.
950
951Function : plat\_error\_handler()
952~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
953
954::
955
956 Argument : int
957 Return : void
958
959This API is called when the generic code encounters an error situation from
960which it cannot continue. It allows the platform to perform error reporting or
961recovery actions (for example, reset the system). This function must not return.
962
963The parameter indicates the type of error using standard codes from ``errno.h``.
964Possible errors reported by the generic code are:
965
966- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
967 Board Boot is enabled)
968- ``-ENOENT``: the requested image or certificate could not be found or an IO
969 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +0000970- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
971 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100972
973The default implementation simply spins.
974
975Function : plat\_panic\_handler()
976~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
977
978::
979
980 Argument : void
981 Return : void
982
983This API is called when the generic code encounters an unexpected error
984situation from which it cannot recover. This function must not return,
985and must be implemented in assembly because it may be called before the C
986environment is initialized.
987
988Note: The address from where it was called is stored in x30 (Link Register).
989The default implementation simply spins.
990
991Function : plat\_get\_bl\_image\_load\_info()
992~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
993
994::
995
996 Argument : void
997 Return : bl_load_info_t *
998
999This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001000populated to load. This function is invoked in BL2 to load the
1001BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001002
1003Function : plat\_get\_next\_bl\_params()
1004~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1005
1006::
1007
1008 Argument : void
1009 Return : bl_params_t *
1010
1011This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001012kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001013function is invoked in BL2 to pass this information to the next BL
1014image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001015
1016Function : plat\_get\_stack\_protector\_canary()
1017~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1018
1019::
1020
1021 Argument : void
1022 Return : u_register_t
1023
1024This function returns a random value that is used to initialize the canary used
1025when the stack protector is enabled with ENABLE\_STACK\_PROTECTOR. A predictable
1026value will weaken the protection as the attacker could easily write the right
1027value as part of the attack most of the time. Therefore, it should return a
1028true random number.
1029
1030Note: For the protection to be effective, the global data need to be placed at
1031a lower address than the stack bases. Failure to do so would allow an attacker
1032to overwrite the canary as part of the stack buffer overflow attack.
1033
1034Function : plat\_flush\_next\_bl\_params()
1035~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1036
1037::
1038
1039 Argument : void
1040 Return : void
1041
1042This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001043next image. This function is invoked in BL2 to flush this information
1044to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001045
Soby Mathewaaf15f52017-09-04 11:49:29 +01001046Function : plat\_log\_get\_prefix()
John Tsichritzis30f89642018-06-07 16:31:34 +01001047~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001048
1049::
1050
1051 Argument : unsigned int
1052 Return : const char *
1053
1054This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001055prepended to all the log output from TF-A. The `log_level` (argument) will
1056correspond to one of the standard log levels defined in debug.h. The platform
1057can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001058the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001059increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001060
John Tsichritzis30f89642018-06-07 16:31:34 +01001061Function : plat\_get\_mbedtls\_heap()
1062~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1063
1064::
1065
1066 Arguments : void **heap_addr, size_t *heap_size
John Tsichritzisc34341a2018-07-30 13:41:52 +01001067 Return : int
John Tsichritzis30f89642018-06-07 16:31:34 +01001068
1069This function is invoked during Mbed TLS library initialisation to get
1070a heap, by means of a starting address and a size. This heap will then be used
John Tsichritzisc34341a2018-07-30 13:41:52 +01001071internally by the Mbed TLS library. The heap is requested from the current BL
1072stage, i.e. the current BL image inside which Mbed TLS is used.
John Tsichritzis30f89642018-06-07 16:31:34 +01001073
John Tsichritzisc34341a2018-07-30 13:41:52 +01001074In the default implementation a heap is statically allocated inside every image
1075(i.e. every BL stage) that utilises Mbed TLS. So, in this case, the function
1076simply returns the address and size of this "pre-allocated" heap. However, by
1077overriding the default implementation, platforms have the potential to optimise
1078memory usage. For example, on some Arm platforms, the Mbed TLS heap is shared
1079between BL1 and BL2 stages and, thus, the necessary space is not reserved
1080twice.
John Tsichritzis30f89642018-06-07 16:31:34 +01001081
John Tsichritzisc34341a2018-07-30 13:41:52 +01001082On success the function should return 0 and a negative error code otherwise.
John Tsichritzis30f89642018-06-07 16:31:34 +01001083
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001084Modifications specific to a Boot Loader stage
1085---------------------------------------------
1086
1087Boot Loader Stage 1 (BL1)
1088-------------------------
1089
1090BL1 implements the reset vector where execution starts from after a cold or
1091warm boot. For each CPU, BL1 is responsible for the following tasks:
1092
1093#. Handling the reset as described in section 2.2
1094
1095#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1096 only this CPU executes the remaining BL1 code, including loading and passing
1097 control to the BL2 stage.
1098
1099#. Identifying and starting the Firmware Update process (if required).
1100
1101#. Loading the BL2 image from non-volatile storage into secure memory at the
1102 address specified by the platform defined constant ``BL2_BASE``.
1103
1104#. Populating a ``meminfo`` structure with the following information in memory,
1105 accessible by BL2 immediately upon entry.
1106
1107 ::
1108
1109 meminfo.total_base = Base address of secure RAM visible to BL2
1110 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001111
Soby Mathew97b1bff2018-09-27 16:46:41 +01001112 By default, BL1 places this ``meminfo`` structure at the end of secure
1113 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001114
Soby Mathewb1bf0442018-02-16 14:52:52 +00001115 It is possible for the platform to decide where it wants to place the
1116 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1117 BL2 by overriding the weak default implementation of
1118 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001119
1120The following functions need to be implemented by the platform port to enable
1121BL1 to perform the above tasks.
1122
1123Function : bl1\_early\_platform\_setup() [mandatory]
1124~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1125
1126::
1127
1128 Argument : void
1129 Return : void
1130
1131This function executes with the MMU and data caches disabled. It is only called
1132by the primary CPU.
1133
Dan Handley610e7e12018-03-01 18:44:00 +00001134On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001135
1136- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1137
1138- Initializes a UART (PL011 console), which enables access to the ``printf``
1139 family of functions in BL1.
1140
1141- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1142 the CCI slave interface corresponding to the cluster that includes the
1143 primary CPU.
1144
1145Function : bl1\_plat\_arch\_setup() [mandatory]
1146~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1147
1148::
1149
1150 Argument : void
1151 Return : void
1152
1153This function performs any platform-specific and architectural setup that the
1154platform requires. Platform-specific setup might include configuration of
1155memory controllers and the interconnect.
1156
Dan Handley610e7e12018-03-01 18:44:00 +00001157In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001158
1159This function helps fulfill requirement 2 above.
1160
1161Function : bl1\_platform\_setup() [mandatory]
1162~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1163
1164::
1165
1166 Argument : void
1167 Return : void
1168
1169This function executes with the MMU and data caches enabled. It is responsible
1170for performing any remaining platform-specific setup that can occur after the
1171MMU and data cache have been enabled.
1172
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001173if support for multiple boot sources is required, it initializes the boot
1174sequence used by plat\_try\_next\_boot\_source().
1175
Dan Handley610e7e12018-03-01 18:44:00 +00001176In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001177layer used to load the next bootloader image.
1178
1179This function helps fulfill requirement 4 above.
1180
1181Function : bl1\_plat\_sec\_mem\_layout() [mandatory]
1182~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1183
1184::
1185
1186 Argument : void
1187 Return : meminfo *
1188
1189This function should only be called on the cold boot path. It executes with the
1190MMU and data caches enabled. The pointer returned by this function must point to
1191a ``meminfo`` structure containing the extents and availability of secure RAM for
1192the BL1 stage.
1193
1194::
1195
1196 meminfo.total_base = Base address of secure RAM visible to BL1
1197 meminfo.total_size = Size of secure RAM visible to BL1
1198 meminfo.free_base = Base address of secure RAM available for allocation
1199 to BL1
1200 meminfo.free_size = Size of secure RAM available for allocation to BL1
1201
1202This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1203populates a similar structure to tell BL2 the extents of memory available for
1204its own use.
1205
1206This function helps fulfill requirements 4 and 5 above.
1207
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001208Function : bl1\_plat\_prepare\_exit() [optional]
1209~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1210
1211::
1212
1213 Argument : entry_point_info_t *
1214 Return : void
1215
1216This function is called prior to exiting BL1 in response to the
1217``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1218platform specific clean up or bookkeeping operations before transferring
1219control to the next image. It receives the address of the ``entry_point_info_t``
1220structure passed from BL2. This function runs with MMU disabled.
1221
1222Function : bl1\_plat\_set\_ep\_info() [optional]
1223~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1224
1225::
1226
1227 Argument : unsigned int image_id, entry_point_info_t *ep_info
1228 Return : void
1229
1230This function allows platforms to override ``ep_info`` for the given ``image_id``.
1231
1232The default implementation just returns.
1233
1234Function : bl1\_plat\_get\_next\_image\_id() [optional]
1235~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1236
1237::
1238
1239 Argument : void
1240 Return : unsigned int
1241
1242This and the following function must be overridden to enable the FWU feature.
1243
1244BL1 calls this function after platform setup to identify the next image to be
1245loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1246with the normal boot sequence, which loads and executes BL2. If the platform
1247returns a different image id, BL1 assumes that Firmware Update is required.
1248
Dan Handley610e7e12018-03-01 18:44:00 +00001249The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001250platforms override this function to detect if firmware update is required, and
1251if so, return the first image in the firmware update process.
1252
1253Function : bl1\_plat\_get\_image\_desc() [optional]
1254~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1255
1256::
1257
1258 Argument : unsigned int image_id
1259 Return : image_desc_t *
1260
1261BL1 calls this function to get the image descriptor information ``image_desc_t``
1262for the provided ``image_id`` from the platform.
1263
Dan Handley610e7e12018-03-01 18:44:00 +00001264The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001265standard platforms return an image descriptor corresponding to BL2 or one of
1266the firmware update images defined in the Trusted Board Boot Requirements
1267specification.
1268
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001269Function : bl1\_plat\_handle\_pre\_image\_load() [optional]
1270~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1271
1272::
1273
Soby Mathew2f38ce32018-02-08 17:45:12 +00001274 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001275 Return : int
1276
1277This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001278corresponding to ``image_id``. This function is invoked in BL1, both in cold
1279boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001280
1281Function : bl1\_plat\_handle\_post\_image\_load() [optional]
1282~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1283
1284::
1285
Soby Mathew2f38ce32018-02-08 17:45:12 +00001286 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001287 Return : int
1288
1289This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001290corresponding to ``image_id``. This function is invoked in BL1, both in cold
1291boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001292
Soby Mathewb1bf0442018-02-16 14:52:52 +00001293The default weak implementation of this function calculates the amount of
1294Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1295structure at the beginning of this free memory and populates it. The address
1296of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1297information to BL2.
1298
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001299Function : bl1\_plat\_fwu\_done() [optional]
1300~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1301
1302::
1303
1304 Argument : unsigned int image_id, uintptr_t image_src,
1305 unsigned int image_size
1306 Return : void
1307
1308BL1 calls this function when the FWU process is complete. It must not return.
1309The platform may override this function to take platform specific action, for
1310example to initiate the normal boot flow.
1311
1312The default implementation spins forever.
1313
1314Function : bl1\_plat\_mem\_check() [mandatory]
1315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1316
1317::
1318
1319 Argument : uintptr_t mem_base, unsigned int mem_size,
1320 unsigned int flags
1321 Return : int
1322
1323BL1 calls this function while handling FWU related SMCs, more specifically when
1324copying or authenticating an image. Its responsibility is to ensure that the
1325region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1326that this memory corresponds to either a secure or non-secure memory region as
1327indicated by the security state of the ``flags`` argument.
1328
1329This function can safely assume that the value resulting from the addition of
1330``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1331overflow.
1332
1333This function must return 0 on success, a non-null error code otherwise.
1334
1335The default implementation of this function asserts therefore platforms must
1336override it when using the FWU feature.
1337
1338Boot Loader Stage 2 (BL2)
1339-------------------------
1340
1341The BL2 stage is executed only by the primary CPU, which is determined in BL1
1342using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001343``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1344``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1345non-volatile storage to secure/non-secure RAM. After all the images are loaded
1346then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1347images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001348
1349The following functions must be implemented by the platform port to enable BL2
1350to perform the above tasks.
1351
Soby Mathew97b1bff2018-09-27 16:46:41 +01001352Function : bl2\_early\_platform\_setup2() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001353~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1354
1355::
1356
Soby Mathew97b1bff2018-09-27 16:46:41 +01001357 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001358 Return : void
1359
1360This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001361by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1362are platform specific.
1363
1364On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001365
Soby Mathew97b1bff2018-09-27 16:46:41 +01001366 arg0 - Points to load address of HW_CONFIG if present
1367
1368 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1369 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001370
Dan Handley610e7e12018-03-01 18:44:00 +00001371On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001372
1373- Initializes a UART (PL011 console), which enables access to the ``printf``
1374 family of functions in BL2.
1375
1376- Initializes the storage abstraction layer used to load further bootloader
1377 images. It is necessary to do this early on platforms with a SCP\_BL2 image,
1378 since the later ``bl2_platform_setup`` must be done after SCP\_BL2 is loaded.
1379
1380Function : bl2\_plat\_arch\_setup() [mandatory]
1381~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1382
1383::
1384
1385 Argument : void
1386 Return : void
1387
1388This function executes with the MMU and data caches disabled. It is only called
1389by the primary CPU.
1390
1391The purpose of this function is to perform any architectural initialization
1392that varies across platforms.
1393
Dan Handley610e7e12018-03-01 18:44:00 +00001394On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001395
1396Function : bl2\_platform\_setup() [mandatory]
1397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1398
1399::
1400
1401 Argument : void
1402 Return : void
1403
1404This function may execute with the MMU and data caches enabled if the platform
1405port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1406called by the primary CPU.
1407
1408The purpose of this function is to perform any platform initialization
1409specific to BL2.
1410
Dan Handley610e7e12018-03-01 18:44:00 +00001411In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001412configuration of the TrustZone controller to allow non-secure masters access
1413to most of DRAM. Part of DRAM is reserved for secure world use.
1414
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001415Function : bl2\_plat\_handle\_pre\_image\_load() [optional]
1416~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001417
1418::
1419
1420 Argument : unsigned int
1421 Return : int
1422
1423This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001424for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001425loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001426
1427Function : bl2\_plat\_handle\_post\_image\_load() [optional]
1428~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1429
1430::
1431
1432 Argument : unsigned int
1433 Return : int
1434
1435This function can be used by the platforms to update/use image information
1436for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001437loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001438
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001439Function : bl2\_plat\_preload\_setup [optional]
1440~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1441
1442::
John Tsichritzisee10e792018-06-06 09:38:10 +01001443
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001444 Argument : void
1445 Return : void
1446
1447This optional function performs any BL2 platform initialization
1448required before image loading, that is not done later in
1449bl2\_platform\_setup(). Specifically, if support for multiple
1450boot sources is required, it initializes the boot sequence used by
1451plat\_try\_next\_boot\_source().
1452
1453Function : plat\_try\_next\_boot\_source() [optional]
1454~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1455
1456::
John Tsichritzisee10e792018-06-06 09:38:10 +01001457
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001458 Argument : void
1459 Return : int
1460
1461This optional function passes to the next boot source in the redundancy
1462sequence.
1463
1464This function moves the current boot redundancy source to the next
1465element in the boot sequence. If there are no more boot sources then it
1466must return 0, otherwise it must return 1. The default implementation
1467of this always returns 0.
1468
Roberto Vargasb1584272017-11-20 13:36:10 +00001469Boot Loader Stage 2 (BL2) at EL3
1470--------------------------------
1471
Dan Handley610e7e12018-03-01 18:44:00 +00001472When the platform has a non-TF-A Boot ROM it is desirable to jump
1473directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Roberto Vargasb1584272017-11-20 13:36:10 +00001474execute at EL3 instead of executing at EL1. Refer to the `Firmware
1475Design`_ for more information.
1476
1477All mandatory functions of BL2 must be implemented, except the functions
1478bl2\_early\_platform\_setup and bl2\_el3\_plat\_arch\_setup, because
1479their work is done now by bl2\_el3\_early\_platform\_setup and
1480bl2\_el3\_plat\_arch\_setup. These functions should generally implement
1481the bl1\_plat\_xxx() and bl2\_plat\_xxx() functionality combined.
1482
1483
1484Function : bl2\_el3\_early\_platform\_setup() [mandatory]
1485~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1486
1487::
John Tsichritzisee10e792018-06-06 09:38:10 +01001488
Roberto Vargasb1584272017-11-20 13:36:10 +00001489 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1490 Return : void
1491
1492This function executes with the MMU and data caches disabled. It is only called
1493by the primary CPU. This function receives four parameters which can be used
1494by the platform to pass any needed information from the Boot ROM to BL2.
1495
Dan Handley610e7e12018-03-01 18:44:00 +00001496On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001497
1498- Initializes a UART (PL011 console), which enables access to the ``printf``
1499 family of functions in BL2.
1500
1501- Initializes the storage abstraction layer used to load further bootloader
1502 images. It is necessary to do this early on platforms with a SCP\_BL2 image,
1503 since the later ``bl2_platform_setup`` must be done after SCP\_BL2 is loaded.
1504
1505- Initializes the private variables that define the memory layout used.
1506
1507Function : bl2\_el3\_plat\_arch\_setup() [mandatory]
1508~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1509
1510::
John Tsichritzisee10e792018-06-06 09:38:10 +01001511
Roberto Vargasb1584272017-11-20 13:36:10 +00001512 Argument : void
1513 Return : void
1514
1515This function executes with the MMU and data caches disabled. It is only called
1516by the primary CPU.
1517
1518The purpose of this function is to perform any architectural initialization
1519that varies across platforms.
1520
Dan Handley610e7e12018-03-01 18:44:00 +00001521On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001522
1523Function : bl2\_el3\_plat\_prepare\_exit() [optional]
1524~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1525
1526::
John Tsichritzisee10e792018-06-06 09:38:10 +01001527
Roberto Vargasb1584272017-11-20 13:36:10 +00001528 Argument : void
1529 Return : void
1530
1531This function is called prior to exiting BL2 and run the next image.
1532It should be used to perform platform specific clean up or bookkeeping
1533operations before transferring control to the next image. This function
1534runs with MMU disabled.
1535
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001536FWU Boot Loader Stage 2 (BL2U)
1537------------------------------
1538
1539The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1540process and is executed only by the primary CPU. BL1 passes control to BL2U at
1541``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1542
1543#. (Optional) Transfering the optional SCP\_BL2U binary image from AP secure
1544 memory to SCP RAM. BL2U uses the SCP\_BL2U ``image_info`` passed by BL1.
1545 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP\_BL2U
1546 should be copied from. Subsequent handling of the SCP\_BL2U image is
1547 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1548 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1549
1550#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001551 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001552 normal world can access DDR memory.
1553
1554The following functions must be implemented by the platform port to enable
1555BL2U to perform the tasks mentioned above.
1556
1557Function : bl2u\_early\_platform\_setup() [mandatory]
1558~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1559
1560::
1561
1562 Argument : meminfo *mem_info, void *plat_info
1563 Return : void
1564
1565This function executes with the MMU and data caches disabled. It is only
1566called by the primary CPU. The arguments to this function is the address
1567of the ``meminfo`` structure and platform specific info provided by BL1.
1568
1569The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1570private storage as the original memory may be subsequently overwritten by BL2U.
1571
Dan Handley610e7e12018-03-01 18:44:00 +00001572On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001573to extract SCP\_BL2U image information, which is then copied into a private
1574variable.
1575
1576Function : bl2u\_plat\_arch\_setup() [mandatory]
1577~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1578
1579::
1580
1581 Argument : void
1582 Return : void
1583
1584This function executes with the MMU and data caches disabled. It is only
1585called by the primary CPU.
1586
1587The purpose of this function is to perform any architectural initialization
1588that varies across platforms, for example enabling the MMU (since the memory
1589map differs across platforms).
1590
1591Function : bl2u\_platform\_setup() [mandatory]
1592~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1593
1594::
1595
1596 Argument : void
1597 Return : void
1598
1599This function may execute with the MMU and data caches enabled if the platform
1600port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1601called by the primary CPU.
1602
1603The purpose of this function is to perform any platform initialization
1604specific to BL2U.
1605
Dan Handley610e7e12018-03-01 18:44:00 +00001606In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001607configuration of the TrustZone controller to allow non-secure masters access
1608to most of DRAM. Part of DRAM is reserved for secure world use.
1609
1610Function : bl2u\_plat\_handle\_scp\_bl2u() [optional]
1611~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1612
1613::
1614
1615 Argument : void
1616 Return : int
1617
1618This function is used to perform any platform-specific actions required to
1619handle the SCP firmware. Typically it transfers the image into SCP memory using
1620a platform-specific protocol and waits until SCP executes it and signals to the
1621Application Processor (AP) for BL2U execution to continue.
1622
1623This function returns 0 on success, a negative error code otherwise.
1624This function is included if SCP\_BL2U\_BASE is defined.
1625
1626Boot Loader Stage 3-1 (BL31)
1627----------------------------
1628
1629During cold boot, the BL31 stage is executed only by the primary CPU. This is
1630determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1631control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1632CPUs. BL31 executes at EL3 and is responsible for:
1633
1634#. Re-initializing all architectural and platform state. Although BL1 performs
1635 some of this initialization, BL31 remains resident in EL3 and must ensure
1636 that EL3 architectural and platform state is completely initialized. It
1637 should make no assumptions about the system state when it receives control.
1638
1639#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001640 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1641 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001642
1643#. Providing runtime firmware services. Currently, BL31 only implements a
1644 subset of the Power State Coordination Interface (PSCI) API as a runtime
1645 service. See Section 3.3 below for details of porting the PSCI
1646 implementation.
1647
1648#. Optionally passing control to the BL32 image, pre-loaded at a platform-
1649 specific address by BL2. BL31 exports a set of apis that allow runtime
1650 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001651 executed and run the corresponding image. On ARM platforms, BL31 uses the
1652 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001653
1654If BL31 is a reset vector, It also needs to handle the reset as specified in
1655section 2.2 before the tasks described above.
1656
1657The following functions must be implemented by the platform port to enable BL31
1658to perform the above tasks.
1659
Soby Mathew97b1bff2018-09-27 16:46:41 +01001660Function : bl31\_early\_platform\_setup2() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001661~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1662
1663::
1664
Soby Mathew97b1bff2018-09-27 16:46:41 +01001665 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001666 Return : void
1667
1668This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001669by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1670platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001671
Soby Mathew97b1bff2018-09-27 16:46:41 +01001672In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001673
Soby Mathew97b1bff2018-09-27 16:46:41 +01001674 arg0 - The pointer to the head of `bl_params_t` list
1675 which is list of executable images following BL31,
1676
1677 arg1 - Points to load address of SOC_FW_CONFIG if present
1678
1679 arg2 - Points to load address of HW_CONFIG if present
1680
1681 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1682 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001683
Soby Mathew97b1bff2018-09-27 16:46:41 +01001684The function runs through the `bl_param_t` list and extracts the entry point
1685information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001686
1687- Initialize a UART (PL011 console), which enables access to the ``printf``
1688 family of functions in BL31.
1689
1690- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1691 CCI slave interface corresponding to the cluster that includes the primary
1692 CPU.
1693
1694Function : bl31\_plat\_arch\_setup() [mandatory]
1695~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1696
1697::
1698
1699 Argument : void
1700 Return : void
1701
1702This function executes with the MMU and data caches disabled. It is only called
1703by the primary CPU.
1704
1705The purpose of this function is to perform any architectural initialization
1706that varies across platforms.
1707
Dan Handley610e7e12018-03-01 18:44:00 +00001708On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001709
1710Function : bl31\_platform\_setup() [mandatory]
1711~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1712
1713::
1714
1715 Argument : void
1716 Return : void
1717
1718This function may execute with the MMU and data caches enabled if the platform
1719port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1720called by the primary CPU.
1721
1722The purpose of this function is to complete platform initialization so that both
1723BL31 runtime services and normal world software can function correctly.
1724
Dan Handley610e7e12018-03-01 18:44:00 +00001725On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001726
1727- Initialize the generic interrupt controller.
1728
1729 Depending on the GIC driver selected by the platform, the appropriate GICv2
1730 or GICv3 initialization will be done, which mainly consists of:
1731
1732 - Enable secure interrupts in the GIC CPU interface.
1733 - Disable the legacy interrupt bypass mechanism.
1734 - Configure the priority mask register to allow interrupts of all priorities
1735 to be signaled to the CPU interface.
1736 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1737 - Target all secure SPIs to CPU0.
1738 - Enable these secure interrupts in the GIC distributor.
1739 - Configure all other interrupts as non-secure.
1740 - Enable signaling of secure interrupts in the GIC distributor.
1741
1742- Enable system-level implementation of the generic timer counter through the
1743 memory mapped interface.
1744
1745- Grant access to the system counter timer module
1746
1747- Initialize the power controller device.
1748
1749 In particular, initialise the locks that prevent concurrent accesses to the
1750 power controller device.
1751
1752Function : bl31\_plat\_runtime\_setup() [optional]
1753~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1754
1755::
1756
1757 Argument : void
1758 Return : void
1759
1760The purpose of this function is allow the platform to perform any BL31 runtime
1761setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001762implementation of this function will invoke ``console_switch_state()`` to switch
1763console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001764
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001765Function : bl31\_plat\_get\_next\_image\_ep\_info() [mandatory]
1766~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767
1768::
1769
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001770 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001771 Return : entry_point_info *
1772
1773This function may execute with the MMU and data caches enabled if the platform
1774port does the necessary initializations in ``bl31_plat_arch_setup()``.
1775
1776This function is called by ``bl31_main()`` to retrieve information provided by
1777BL2 for the next image in the security state specified by the argument. BL31
1778uses this information to pass control to that image in the specified security
1779state. This function must return a pointer to the ``entry_point_info`` structure
1780(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1781should return NULL otherwise.
1782
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001783Function : bl31_plat_enable_mmu [optional]
1784~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1785
1786::
1787
1788 Argument : uint32_t
1789 Return : void
1790
1791This function enables the MMU. The boot code calls this function with MMU and
1792caches disabled. This function should program necessary registers to enable
1793translation, and upon return, the MMU on the calling PE must be enabled.
1794
1795The function must honor flags passed in the first argument. These flags are
1796defined by the translation library, and can be found in the file
1797``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1798
1799On DynamIQ systems, this function must not use stack while enabling MMU, which
1800is how the function in xlat table library version 2 is implementated.
1801
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001802Function : plat\_get\_syscnt\_freq2() [mandatory]
1803~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1804
1805::
1806
1807 Argument : void
1808 Return : unsigned int
1809
1810This function is used by the architecture setup code to retrieve the counter
1811frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001812``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001813of the system counter, which is retrieved from the first entry in the frequency
1814modes table.
1815
1816#define : PLAT\_PERCPU\_BAKERY\_LOCK\_SIZE [optional]
1817~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1818
1819When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1820bytes) aligned to the cache line boundary that should be allocated per-cpu to
1821accommodate all the bakery locks.
1822
1823If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1824calculates the size of the ``bakery_lock`` input section, aligns it to the
1825nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1826and stores the result in a linker symbol. This constant prevents a platform
1827from relying on the linker and provide a more efficient mechanism for
1828accessing per-cpu bakery lock information.
1829
1830If this constant is defined and its value is not equal to the value
1831calculated by the linker then a link time assertion is raised. A compile time
1832assertion is raised if the value of the constant is not aligned to the cache
1833line boundary.
1834
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001835SDEI porting requirements
1836~~~~~~~~~~~~~~~~~~~~~~~~~
1837
1838The SDEI dispatcher requires the platform to provide the following macros
1839and functions, of which some are optional, and some others mandatory.
1840
1841Macros
1842......
1843
1844Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1846
1847This macro must be defined to the EL3 exception priority level associated with
1848Normal SDEI events on the platform. This must have a higher value (therefore of
1849lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
1850
1851Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1853
1854This macro must be defined to the EL3 exception priority level associated with
1855Critical SDEI events on the platform. This must have a lower value (therefore of
1856higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
1857
Jeenu Viswambharan7af48132018-01-16 09:29:30 +00001858**Note**: SDEI exception priorities must be the lowest among Secure priorities.
1859Among the SDEI exceptions, Critical SDEI priority must be higher than Normal
1860SDEI priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001861
1862Functions
1863.........
1864
1865Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1867
1868::
1869
1870 Argument: uintptr_t
1871 Return: int
1872
1873This function validates the address of client entry points provided for both
1874event registration and *Complete and Resume* SDEI calls. The function takes one
1875argument, which is the address of the handler the SDEI client requested to
1876register. The function must return ``0`` for successful validation, or ``-1``
1877upon failure.
1878
Dan Handley610e7e12018-03-01 18:44:00 +00001879The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001880is implemented to translate the entry point to physical address, and further to
1881ensure that the address is located in Non-secure DRAM.
1882
1883Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1885
1886::
1887
1888 Argument: uint64_t
1889 Argument: unsigned int
1890 Return: void
1891
1892SDEI specification requires that a PE comes out of reset with the events masked.
1893The client therefore is expected to call ``PE_UNMASK`` to unmask SDEI events on
1894the PE. No SDEI events can be dispatched until such time.
1895
1896Should a PE receive an interrupt that was bound to an SDEI event while the
1897events are masked on the PE, the dispatcher implementation invokes the function
1898``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1899interrupt and the interrupt ID are passed as parameters.
1900
1901The default implementation only prints out a warning message.
1902
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001903Power State Coordination Interface (in BL31)
1904--------------------------------------------
1905
Dan Handley610e7e12018-03-01 18:44:00 +00001906The TF-A implementation of the PSCI API is based around the concept of a
1907*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1908share some state on which power management operations can be performed as
1909specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1910a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1911*power domains* are arranged in a hierarchical tree structure and each
1912*power domain* can be identified in a system by the cpu index of any CPU that
1913is part of that domain and a *power domain level*. A processing element (for
1914example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1915logical grouping of CPUs that share some state, then level 1 is that group of
1916CPUs (for example, a cluster), and level 2 is a group of clusters (for
1917example, the system). More details on the power domain topology and its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001918organization can be found in `Power Domain Topology Design`_.
1919
1920BL31's platform initialization code exports a pointer to the platform-specific
1921power management operations required for the PSCI implementation to function
1922correctly. This information is populated in the ``plat_psci_ops`` structure. The
1923PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
1924power management operations on the power domains. For example, the target
1925CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
1926handler (if present) is called for the CPU power domain.
1927
1928The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
1929describe composite power states specific to a platform. The PSCI implementation
1930defines a generic representation of the power-state parameter viz which is an
1931array of local power states where each index corresponds to a power domain
1932level. Each entry contains the local power state the power domain at that power
1933level could enter. It depends on the ``validate_power_state()`` handler to
1934convert the power-state parameter (possibly encoding a composite power state)
1935passed in a PSCI ``CPU_SUSPEND`` call to this representation.
1936
1937The following functions form part of platform port of PSCI functionality.
1938
1939Function : plat\_psci\_stat\_accounting\_start() [optional]
1940~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1941
1942::
1943
1944 Argument : const psci_power_state_t *
1945 Return : void
1946
1947This is an optional hook that platforms can implement for residency statistics
1948accounting before entering a low power state. The ``pwr_domain_state`` field of
1949``state_info`` (first argument) can be inspected if stat accounting is done
1950differently at CPU level versus higher levels. As an example, if the element at
1951index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1952state, special hardware logic may be programmed in order to keep track of the
1953residency statistics. For higher levels (array indices > 0), the residency
1954statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1955default implementation will use PMF to capture timestamps.
1956
1957Function : plat\_psci\_stat\_accounting\_stop() [optional]
1958~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1959
1960::
1961
1962 Argument : const psci_power_state_t *
1963 Return : void
1964
1965This is an optional hook that platforms can implement for residency statistics
1966accounting after exiting from a low power state. The ``pwr_domain_state`` field
1967of ``state_info`` (first argument) can be inspected if stat accounting is done
1968differently at CPU level versus higher levels. As an example, if the element at
1969index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1970state, special hardware logic may be programmed in order to keep track of the
1971residency statistics. For higher levels (array indices > 0), the residency
1972statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1973default implementation will use PMF to capture timestamps.
1974
1975Function : plat\_psci\_stat\_get\_residency() [optional]
1976~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1977
1978::
1979
1980 Argument : unsigned int, const psci_power_state_t *, int
1981 Return : u_register_t
1982
1983This is an optional interface that is is invoked after resuming from a low power
1984state and provides the time spent resident in that low power state by the power
1985domain at a particular power domain level. When a CPU wakes up from suspend,
1986all its parent power domain levels are also woken up. The generic PSCI code
1987invokes this function for each parent power domain that is resumed and it
1988identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
1989argument) describes the low power state that the power domain has resumed from.
1990The current CPU is the first CPU in the power domain to resume from the low
1991power state and the ``last_cpu_idx`` (third parameter) is the index of the last
1992CPU in the power domain to suspend and may be needed to calculate the residency
1993for that power domain.
1994
1995Function : plat\_get\_target\_pwr\_state() [optional]
1996~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1997
1998::
1999
2000 Argument : unsigned int, const plat_local_state_t *, unsigned int
2001 Return : plat_local_state_t
2002
2003The PSCI generic code uses this function to let the platform participate in
2004state coordination during a power management operation. The function is passed
2005a pointer to an array of platform specific local power state ``states`` (second
2006argument) which contains the requested power state for each CPU at a particular
2007power domain level ``lvl`` (first argument) within the power domain. The function
2008is expected to traverse this array of upto ``ncpus`` (third argument) and return
2009a coordinated target power state by the comparing all the requested power
2010states. The target power state should not be deeper than any of the requested
2011power states.
2012
2013A weak definition of this API is provided by default wherein it assumes
2014that the platform assigns a local state value in order of increasing depth
2015of the power state i.e. for two power states X & Y, if X < Y
2016then X represents a shallower power state than Y. As a result, the
2017coordinated target local power state for a power domain will be the minimum
2018of the requested local power state values.
2019
2020Function : plat\_get\_power\_domain\_tree\_desc() [mandatory]
2021~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2022
2023::
2024
2025 Argument : void
2026 Return : const unsigned char *
2027
2028This function returns a pointer to the byte array containing the power domain
2029topology tree description. The format and method to construct this array are
2030described in `Power Domain Topology Design`_. The BL31 PSCI initilization code
2031requires this array to be described by the platform, either statically or
2032dynamically, to initialize the power domain topology tree. In case the array
2033is populated dynamically, then plat\_core\_pos\_by\_mpidr() and
2034plat\_my\_core\_pos() should also be implemented suitably so that the topology
2035tree description matches the CPU indices returned by these APIs. These APIs
2036together form the platform interface for the PSCI topology framework.
2037
2038Function : plat\_setup\_psci\_ops() [mandatory]
Douglas Raillard0929f092017-08-02 14:44:42 +01002039~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002040
2041::
2042
2043 Argument : uintptr_t, const plat_psci_ops **
2044 Return : int
2045
2046This function may execute with the MMU and data caches enabled if the platform
2047port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2048called by the primary CPU.
2049
2050This function is called by PSCI initialization code. Its purpose is to let
2051the platform layer know about the warm boot entrypoint through the
2052``sec_entrypoint`` (first argument) and to export handler routines for
2053platform-specific psci power management actions by populating the passed
2054pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2055
2056A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002057the Arm FVP specific implementation of these handlers in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002058`plat/arm/board/fvp/fvp\_pm.c`_ as an example. For each PSCI function that the
2059platform wants to support, the associated operation or operations in this
2060structure must be provided and implemented (Refer section 4 of
Dan Handley610e7e12018-03-01 18:44:00 +00002061`Firmware Design`_ for the PSCI API supported in TF-A). To disable a PSCI
2062function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002063structure instead of providing an empty implementation.
2064
2065plat\_psci\_ops.cpu\_standby()
Douglas Raillard0929f092017-08-02 14:44:42 +01002066..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002067
2068Perform the platform-specific actions to enter the standby state for a cpu
2069indicated by the passed argument. This provides a fast path for CPU standby
2070wherein overheads of PSCI state management and lock acquistion is avoided.
2071For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2072the suspend state type specified in the ``power-state`` parameter should be
2073STANDBY and the target power domain level specified should be the CPU. The
2074handler should put the CPU into a low power retention state (usually by
2075issuing a wfi instruction) and ensure that it can be woken up from that
2076state by a normal interrupt. The generic code expects the handler to succeed.
2077
2078plat\_psci\_ops.pwr\_domain\_on()
Douglas Raillard0929f092017-08-02 14:44:42 +01002079.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002080
2081Perform the platform specific actions to power on a CPU, specified
2082by the ``MPIDR`` (first argument). The generic code expects the platform to
2083return PSCI\_E\_SUCCESS on success or PSCI\_E\_INTERN\_FAIL for any failure.
2084
2085plat\_psci\_ops.pwr\_domain\_off()
Douglas Raillard0929f092017-08-02 14:44:42 +01002086..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002087
2088Perform the platform specific actions to prepare to power off the calling CPU
2089and its higher parent power domain levels as indicated by the ``target_state``
2090(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2091
2092The ``target_state`` encodes the platform coordinated target local power states
2093for the CPU power domain and its parent power domain levels. The handler
2094needs to perform power management operation corresponding to the local state
2095at each power level.
2096
2097For this handler, the local power state for the CPU power domain will be a
2098power down state where as it could be either power down, retention or run state
2099for the higher power domain levels depending on the result of state
2100coordination. The generic code expects the handler to succeed.
2101
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002102plat\_psci\_ops.pwr\_domain\_suspend\_pwrdown\_early() [optional]
Douglas Raillard0929f092017-08-02 14:44:42 +01002103.................................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002104
2105This optional function may be used as a performance optimization to replace
2106or complement pwr_domain_suspend() on some platforms. Its calling semantics
2107are identical to pwr_domain_suspend(), except the PSCI implementation only
2108calls this function when suspending to a power down state, and it guarantees
2109that data caches are enabled.
2110
2111When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2112before calling pwr_domain_suspend(). If the target_state corresponds to a
2113power down state and it is safe to perform some or all of the platform
2114specific actions in that function with data caches enabled, it may be more
2115efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2116= 1, data caches remain enabled throughout, and so there is no advantage to
2117moving platform specific actions to this function.
2118
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002119plat\_psci\_ops.pwr\_domain\_suspend()
Douglas Raillard0929f092017-08-02 14:44:42 +01002120......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002121
2122Perform the platform specific actions to prepare to suspend the calling
2123CPU and its higher parent power domain levels as indicated by the
2124``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2125API implementation.
2126
2127The ``target_state`` has a similar meaning as described in
2128the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2129target local power states for the CPU power domain and its parent
2130power domain levels. The handler needs to perform power management operation
2131corresponding to the local state at each power level. The generic code
2132expects the handler to succeed.
2133
Douglas Raillarda84996b2017-08-02 16:57:32 +01002134The difference between turning a power domain off versus suspending it is that
2135in the former case, the power domain is expected to re-initialize its state
2136when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2137case, the power domain is expected to save enough state so that it can resume
2138execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002139``pwr_domain_suspend_finish()``).
2140
Douglas Raillarda84996b2017-08-02 16:57:32 +01002141When suspending a core, the platform can also choose to power off the GICv3
2142Redistributor and ITS through an implementation-defined sequence. To achieve
2143this safely, the ITS context must be saved first. The architectural part is
2144implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2145sequence is implementation defined and it is therefore the responsibility of
2146the platform code to implement the necessary sequence. Then the GIC
2147Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2148Powering off the Redistributor requires the implementation to support it and it
2149is the responsibility of the platform code to execute the right implementation
2150defined sequence.
2151
2152When a system suspend is requested, the platform can also make use of the
2153``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2154it has saved the context of the Redistributors and ITS of all the cores in the
2155system. The context of the Distributor can be large and may require it to be
2156allocated in a special area if it cannot fit in the platform's global static
2157data, for example in DRAM. The Distributor can then be powered down using an
2158implementation-defined sequence.
2159
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002160plat\_psci\_ops.pwr\_domain\_pwr\_down\_wfi()
Douglas Raillard0929f092017-08-02 14:44:42 +01002161.............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002162
2163This is an optional function and, if implemented, is expected to perform
2164platform specific actions including the ``wfi`` invocation which allows the
2165CPU to powerdown. Since this function is invoked outside the PSCI locks,
2166the actions performed in this hook must be local to the CPU or the platform
2167must ensure that races between multiple CPUs cannot occur.
2168
2169The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2170operation and it encodes the platform coordinated target local power states for
2171the CPU power domain and its parent power domain levels. This function must
2172not return back to the caller.
2173
2174If this function is not implemented by the platform, PSCI generic
2175implementation invokes ``psci_power_down_wfi()`` for power down.
2176
2177plat\_psci\_ops.pwr\_domain\_on\_finish()
Douglas Raillard0929f092017-08-02 14:44:42 +01002178.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002179
2180This function is called by the PSCI implementation after the calling CPU is
2181powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2182It performs the platform-specific setup required to initialize enough state for
2183this CPU to enter the normal world and also provide secure runtime firmware
2184services.
2185
2186The ``target_state`` (first argument) is the prior state of the power domains
2187immediately before the CPU was turned on. It indicates which power domains
2188above the CPU might require initialization due to having previously been in
2189low power states. The generic code expects the handler to succeed.
2190
2191plat\_psci\_ops.pwr\_domain\_suspend\_finish()
Douglas Raillard0929f092017-08-02 14:44:42 +01002192..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002193
2194This function is called by the PSCI implementation after the calling CPU is
2195powered on and released from reset in response to an asynchronous wakeup
2196event, for example a timer interrupt that was programmed by the CPU during the
2197``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2198setup required to restore the saved state for this CPU to resume execution
2199in the normal world and also provide secure runtime firmware services.
2200
2201The ``target_state`` (first argument) has a similar meaning as described in
2202the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2203to succeed.
2204
Douglas Raillarda84996b2017-08-02 16:57:32 +01002205If the Distributor, Redistributors or ITS have been powered off as part of a
2206suspend, their context must be restored in this function in the reverse order
2207to how they were saved during suspend sequence.
2208
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002209plat\_psci\_ops.system\_off()
Douglas Raillard0929f092017-08-02 14:44:42 +01002210.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002211
2212This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2213call. It performs the platform-specific system poweroff sequence after
2214notifying the Secure Payload Dispatcher.
2215
2216plat\_psci\_ops.system\_reset()
Douglas Raillard0929f092017-08-02 14:44:42 +01002217...............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002218
2219This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2220call. It performs the platform-specific system reset sequence after
2221notifying the Secure Payload Dispatcher.
2222
2223plat\_psci\_ops.validate\_power\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002224........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002225
2226This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2227call to validate the ``power_state`` parameter of the PSCI API and if valid,
2228populate it in ``req_state`` (second argument) array as power domain level
2229specific local states. If the ``power_state`` is invalid, the platform must
2230return PSCI\_E\_INVALID\_PARAMS as error, which is propagated back to the
2231normal world PSCI client.
2232
2233plat\_psci\_ops.validate\_ns\_entrypoint()
Douglas Raillard0929f092017-08-02 14:44:42 +01002234..........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002235
2236This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2237``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2238parameter passed by the normal world. If the ``entry_point`` is invalid,
2239the platform must return PSCI\_E\_INVALID\_ADDRESS as error, which is
2240propagated back to the normal world PSCI client.
2241
2242plat\_psci\_ops.get\_sys\_suspend\_power\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002243.................................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002244
2245This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2246call to get the ``req_state`` parameter from platform which encodes the power
2247domain level specific local states to suspend to system affinity level. The
2248``req_state`` will be utilized to do the PSCI state coordination and
2249``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2250enter system suspend.
2251
2252plat\_psci\_ops.get\_pwr\_lvl\_state\_idx()
Douglas Raillard0929f092017-08-02 14:44:42 +01002253...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002254
2255This is an optional function and, if implemented, is invoked by the PSCI
2256implementation to convert the ``local_state`` (first argument) at a specified
2257``pwr_lvl`` (second argument) to an index between 0 and
2258``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2259supports more than two local power states at each power domain level, that is
2260``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2261local power states.
2262
2263plat\_psci\_ops.translate\_power\_state\_by\_mpidr()
Douglas Raillard0929f092017-08-02 14:44:42 +01002264....................................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002265
2266This is an optional function and, if implemented, verifies the ``power_state``
2267(second argument) parameter of the PSCI API corresponding to a target power
2268domain. The target power domain is identified by using both ``MPIDR`` (first
2269argument) and the power domain level encoded in ``power_state``. The power domain
2270level specific local states are to be extracted from ``power_state`` and be
2271populated in the ``output_state`` (third argument) array. The functionality
2272is similar to the ``validate_power_state`` function described above and is
2273envisaged to be used in case the validity of ``power_state`` depend on the
2274targeted power domain. If the ``power_state`` is invalid for the targeted power
2275domain, the platform must return PSCI\_E\_INVALID\_PARAMS as error. If this
2276function is not implemented, then the generic implementation relies on
2277``validate_power_state`` function to translate the ``power_state``.
2278
2279This function can also be used in case the platform wants to support local
2280power state encoding for ``power_state`` parameter of PSCI\_STAT\_COUNT/RESIDENCY
2281APIs as described in Section 5.18 of `PSCI`_.
2282
2283plat\_psci\_ops.get\_node\_hw\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002284......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002285
2286This is an optional function. If implemented this function is intended to return
2287the power state of a node (identified by the first parameter, the ``MPIDR``) in
2288the power domain topology (identified by the second parameter, ``power_level``),
2289as retrieved from a power controller or equivalent component on the platform.
2290Upon successful completion, the implementation must map and return the final
2291status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2292must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2293appropriate.
2294
2295Implementations are not expected to handle ``power_levels`` greater than
2296``PLAT_MAX_PWR_LVL``.
2297
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002298plat\_psci\_ops.system\_reset2()
2299................................
2300
2301This is an optional function. If implemented this function is
2302called during the ``SYSTEM_RESET2`` call to perform a reset
2303based on the first parameter ``reset_type`` as specified in
2304`PSCI`_. The parameter ``cookie`` can be used to pass additional
2305reset information. If the ``reset_type`` is not supported, the
2306function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2307resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2308and vendor reset can return other PSCI error codes as defined
2309in `PSCI`_. On success this function will not return.
2310
2311plat\_psci\_ops.write\_mem\_protect()
2312....................................
2313
2314This is an optional function. If implemented it enables or disables the
2315``MEM_PROTECT`` functionality based on the value of ``val``.
2316A non-zero value enables ``MEM_PROTECT`` and a value of zero
2317disables it. Upon encountering failures it must return a negative value
2318and on success it must return 0.
2319
2320plat\_psci\_ops.read\_mem\_protect()
2321.....................................
2322
2323This is an optional function. If implemented it returns the current
2324state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2325failures it must return a negative value and on success it must
2326return 0.
2327
2328plat\_psci\_ops.mem\_protect\_chk()
2329...................................
2330
2331This is an optional function. If implemented it checks if a memory
2332region defined by a base address ``base`` and with a size of ``length``
2333bytes is protected by ``MEM_PROTECT``. If the region is protected
2334then it must return 0, otherwise it must return a negative number.
2335
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002336Interrupt Management framework (in BL31)
2337----------------------------------------
2338
2339BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2340generated in either security state and targeted to EL1 or EL2 in the non-secure
2341state or EL3/S-EL1 in the secure state. The design of this framework is
2342described in the `IMF Design Guide`_
2343
2344A platform should export the following APIs to support the IMF. The following
Dan Handley610e7e12018-03-01 18:44:00 +00002345text briefly describes each api and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002346platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002347present in the platform. Arm standard platform layer supports both
2348`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2349and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2350FVP can be configured to use either GICv2 or GICv3 depending on the build flag
2351``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in
2352`User Guide`_ for more details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002353
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002354See also: `Interrupt Controller Abstraction APIs`__.
2355
2356.. __: platform-interrupt-controller-API.rst
2357
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002358Function : plat\_interrupt\_type\_to\_line() [mandatory]
2359~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2360
2361::
2362
2363 Argument : uint32_t, uint32_t
2364 Return : uint32_t
2365
Dan Handley610e7e12018-03-01 18:44:00 +00002366The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002367interrupt line. The specific line that is signaled depends on how the interrupt
2368controller (IC) reports different interrupt types from an execution context in
2369either security state. The IMF uses this API to determine which interrupt line
2370the platform IC uses to signal each type of interrupt supported by the framework
2371from a given security state. This API must be invoked at EL3.
2372
2373The first parameter will be one of the ``INTR_TYPE_*`` values (see
2374`IMF Design Guide`_) indicating the target type of the interrupt, the second parameter is the
2375security state of the originating execution context. The return result is the
2376bit position in the ``SCR_EL3`` register of the respective interrupt trap: IRQ=1,
2377FIQ=2.
2378
Dan Handley610e7e12018-03-01 18:44:00 +00002379In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002380configured as FIQs and Non-secure interrupts as IRQs from either security
2381state.
2382
Dan Handley610e7e12018-03-01 18:44:00 +00002383In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002384configured depends on the security state of the execution context when the
2385interrupt is signalled and are as follows:
2386
2387- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2388 NS-EL0/1/2 context.
2389- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2390 in the NS-EL0/1/2 context.
2391- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2392 context.
2393
2394Function : plat\_ic\_get\_pending\_interrupt\_type() [mandatory]
2395~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2396
2397::
2398
2399 Argument : void
2400 Return : uint32_t
2401
2402This API returns the type of the highest priority pending interrupt at the
2403platform IC. The IMF uses the interrupt type to retrieve the corresponding
2404handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2405pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2406``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2407
Dan Handley610e7e12018-03-01 18:44:00 +00002408In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002409Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2410the pending interrupt. The type of interrupt depends upon the id value as
2411follows.
2412
2413#. id < 1022 is reported as a S-EL1 interrupt
2414#. id = 1022 is reported as a Non-secure interrupt.
2415#. id = 1023 is reported as an invalid interrupt type.
2416
Dan Handley610e7e12018-03-01 18:44:00 +00002417In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002418``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2419is read to determine the id of the pending interrupt. The type of interrupt
2420depends upon the id value as follows.
2421
2422#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2423#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2424#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2425#. All other interrupt id's are reported as EL3 interrupt.
2426
2427Function : plat\_ic\_get\_pending\_interrupt\_id() [mandatory]
2428~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2429
2430::
2431
2432 Argument : void
2433 Return : uint32_t
2434
2435This API returns the id of the highest priority pending interrupt at the
2436platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2437pending.
2438
Dan Handley610e7e12018-03-01 18:44:00 +00002439In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002440Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2441pending interrupt. The id that is returned by API depends upon the value of
2442the id read from the interrupt controller as follows.
2443
2444#. id < 1022. id is returned as is.
2445#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2446 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2447 This id is returned by the API.
2448#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2449
Dan Handley610e7e12018-03-01 18:44:00 +00002450In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002451EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2452group 0 Register*, is read to determine the id of the pending interrupt. The id
2453that is returned by API depends upon the value of the id read from the
2454interrupt controller as follows.
2455
2456#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2457#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2458 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2459 Register* is read to determine the id of the group 1 interrupt. This id
2460 is returned by the API as long as it is a valid interrupt id
2461#. If the id is any of the special interrupt identifiers,
2462 ``INTR_ID_UNAVAILABLE`` is returned.
2463
2464When the API invoked from S-EL1 for GICv3 systems, the id read from system
2465register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
2466Register*, is returned if is not equal to GIC\_SPURIOUS\_INTERRUPT (1023) else
2467``INTR_ID_UNAVAILABLE`` is returned.
2468
2469Function : plat\_ic\_acknowledge\_interrupt() [mandatory]
2470~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2471
2472::
2473
2474 Argument : void
2475 Return : uint32_t
2476
2477This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002478the highest pending interrupt has begun. It should return the raw, unmodified
2479value obtained from the interrupt controller when acknowledging an interrupt.
2480The actual interrupt number shall be extracted from this raw value using the API
2481`plat_ic_get_interrupt_id()`__.
2482
2483.. __: platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002484
Dan Handley610e7e12018-03-01 18:44:00 +00002485This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002486Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2487priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002488It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002489
Dan Handley610e7e12018-03-01 18:44:00 +00002490In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002491from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2492Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2493reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2494group 1*. The read changes the state of the highest pending interrupt from
2495pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002496unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002497
2498The TSP uses this API to start processing of the secure physical timer
2499interrupt.
2500
2501Function : plat\_ic\_end\_of\_interrupt() [mandatory]
2502~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2503
2504::
2505
2506 Argument : uint32_t
2507 Return : void
2508
2509This API is used by the CPU to indicate to the platform IC that processing of
2510the interrupt corresponding to the id (passed as the parameter) has
2511finished. The id should be the same as the id returned by the
2512``plat_ic_acknowledge_interrupt()`` API.
2513
Dan Handley610e7e12018-03-01 18:44:00 +00002514Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002515(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2516system register in case of GICv3 depending on where the API is invoked from,
2517EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2518controller.
2519
2520The TSP uses this API to finish processing of the secure physical timer
2521interrupt.
2522
2523Function : plat\_ic\_get\_interrupt\_type() [mandatory]
2524~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2525
2526::
2527
2528 Argument : uint32_t
2529 Return : uint32_t
2530
2531This API returns the type of the interrupt id passed as the parameter.
2532``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2533interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2534returned depending upon how the interrupt has been configured by the platform
2535IC. This API must be invoked at EL3.
2536
Dan Handley610e7e12018-03-01 18:44:00 +00002537Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002538and Non-secure interrupts as Group1 interrupts. It reads the group value
2539corresponding to the interrupt id from the relevant *Interrupt Group Register*
2540(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2541
Dan Handley610e7e12018-03-01 18:44:00 +00002542In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002543Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2544(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2545as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2546
2547Crash Reporting mechanism (in BL31)
2548-----------------------------------
2549
Julius Werneraae9bb12017-09-18 16:49:48 -07002550NOTE: This section assumes that your platform is enabling the MULTI_CONSOLE_API
2551flag in its platform.mk. Not using this flag is deprecated for new platforms.
2552
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002553BL31 implements a crash reporting mechanism which prints the various registers
Julius Werneraae9bb12017-09-18 16:49:48 -07002554of the CPU to enable quick crash analysis and debugging. By default, the
2555definitions in ``plat/common/aarch64/platform\_helpers.S`` will cause the crash
2556output to be routed over the normal console infrastructure and get printed on
2557consoles configured to output in crash state. ``console_set_scope()`` can be
2558used to control whether a console is used for crash output.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002559
Julius Werneraae9bb12017-09-18 16:49:48 -07002560In some cases (such as debugging very early crashes that happen before the
2561normal boot console can be set up), platforms may want to control crash output
2562more explicitly. For these, the following functions can be overridden by
2563platform code. They are executed outside of a C environment and without a stack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002564
2565Function : plat\_crash\_console\_init
2566~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2567
2568::
2569
2570 Argument : void
2571 Return : int
2572
2573This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002574console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002575initialization and returns 1 on success.
2576
Julius Werneraae9bb12017-09-18 16:49:48 -07002577If you are trying to debug crashes before the console driver would normally get
2578registered, you can use this to register a driver from assembly with hardcoded
2579parameters. For example, you could register the 16550 driver like this:
2580
2581::
2582
2583 .section .data.crash_console /* Reserve space for console structure */
2584 crash_console:
2585 .zero 6 * 8 /* console_16550_t has 6 8-byte words */
2586 func plat_crash_console_init
2587 ldr x0, =YOUR_16550_BASE_ADDR
2588 ldr x1, =YOUR_16550_SRCCLK_IN_HZ
2589 ldr x2, =YOUR_16550_TARGET_BAUD_RATE
2590 adrp x3, crash_console
2591 add x3, x3, :lo12:crash_console
2592 b console_16550_register /* tail call, returns 1 on success */
2593 endfunc plat_crash_console_init
2594
2595If you're trying to debug crashes in BL1, you can call the console_xxx_core_init
2596function exported by some console drivers from here.
2597
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002598Function : plat\_crash\_console\_putc
2599~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2600
2601::
2602
2603 Argument : int
2604 Return : int
2605
2606This API is used by the crash reporting mechanism to print a character on the
2607designated crash console. It must only use general purpose registers x1 and
2608x2 to do its work. The parameter and the return value are in general purpose
2609register x0.
2610
Julius Werneraae9bb12017-09-18 16:49:48 -07002611If you have registered a normal console driver in ``plat_crash_console_init``,
2612you can keep the default implementation here (which calls ``console_putc()``).
2613
2614If you're trying to debug crashes in BL1, you can call the console_xxx_core_putc
2615function exported by some console drivers from here.
2616
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002617Function : plat\_crash\_console\_flush
2618~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2619
2620::
2621
2622 Argument : void
2623 Return : int
2624
2625This API is used by the crash reporting mechanism to force write of all buffered
2626data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002627registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002628completion; otherwise the return value is -1.
2629
Julius Werneraae9bb12017-09-18 16:49:48 -07002630If you have registered a normal console driver in ``plat_crash_console_init``,
2631you can keep the default implementation here (which calls ``console_flush()``).
2632
2633If you're trying to debug crashes in BL1, you can call the console_xx_core_flush
2634function exported by some console drivers from here.
2635
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002636Extternal Abort handling and RAS Support
2637----------------------------------------
2638
2639Function : plat_ea_handler
2640~~~~~~~~~~~~~~~~~~~~~~~~~~
2641
2642::
2643
2644 Argument : int
2645 Argument : uint64_t
2646 Argument : void *
2647 Argument : void *
2648 Argument : uint64_t
2649 Return : void
2650
2651This function is invoked by the RAS framework for the platform to handle an
2652External Abort received at EL3. The intention of the function is to attempt to
2653resolve the cause of External Abort and return; if that's not possible, to
2654initiate orderly shutdown of the system.
2655
2656The first parameter (``int ea_reason``) indicates the reason for External Abort.
2657Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2658
2659The second parameter (``uint64_t syndrome``) is the respective syndrome
2660presented to EL3 after having received the External Abort. Depending on the
2661nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2662can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2663
2664The third parameter (``void *cookie``) is unused for now. The fourth parameter
2665(``void *handle``) is a pointer to the preempted context. The fifth parameter
2666(``uint64_t flags``) indicates the preempted security state. These parameters
2667are received from the top-level exception handler.
2668
2669If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2670function iterates through RAS handlers registered by the platform. If any of the
2671RAS handlers resolve the External Abort, no further action is taken.
2672
2673If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2674could resolve the External Abort, the default implementation prints an error
2675message, and panics.
2676
2677Function : plat_handle_uncontainable_ea
2678~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2679
2680::
2681
2682 Argument : int
2683 Argument : uint64_t
2684 Return : void
2685
2686This function is invoked by the RAS framework when an External Abort of
2687Uncontainable type is received at EL3. Due to the critical nature of
2688Uncontainable errors, the intention of this function is to initiate orderly
2689shutdown of the system, and is not expected to return.
2690
2691This function must be implemented in assembly.
2692
2693The first and second parameters are the same as that of ``plat_ea_handler``.
2694
2695The default implementation of this function calls
2696``report_unhandled_exception``.
2697
2698Function : plat_handle_double_fault
2699~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2700
2701::
2702
2703 Argument : int
2704 Argument : uint64_t
2705 Return : void
2706
2707This function is invoked by the RAS framework when another External Abort is
2708received at EL3 while one is already being handled. I.e., a call to
2709``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2710this function is to initiate orderly shutdown of the system, and is not expected
2711recover or return.
2712
2713This function must be implemented in assembly.
2714
2715The first and second parameters are the same as that of ``plat_ea_handler``.
2716
2717The default implementation of this function calls
2718``report_unhandled_exception``.
2719
2720Function : plat_handle_el3_ea
2721~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2722
2723::
2724
2725 Return : void
2726
2727This function is invoked when an External Abort is received while executing in
2728EL3. Due to its critical nature, the intention of this function is to initiate
2729orderly shutdown of the system, and is not expected recover or return.
2730
2731This function must be implemented in assembly.
2732
2733The default implementation of this function calls
2734``report_unhandled_exception``.
2735
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002736Build flags
2737-----------
2738
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002739There are some build flags which can be defined by the platform to control
2740inclusion or exclusion of certain BL stages from the FIP image. These flags
2741need to be defined in the platform makefile which will get included by the
2742build system.
2743
2744- **NEED\_BL33**
2745 By default, this flag is defined ``yes`` by the build system and ``BL33``
2746 build option should be supplied as a build option. The platform has the
2747 option of excluding the BL33 image in the ``fip`` image by defining this flag
2748 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2749 are used, this flag will be set to ``no`` automatically.
2750
2751C Library
2752---------
2753
2754To avoid subtle toolchain behavioral dependencies, the header files provided
2755by the compiler are not used. The software is built with the ``-nostdinc`` flag
2756to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002757required headers are included in the TF-A source tree. The library only
2758contains those C library definitions required by the local implementation. If
2759more functionality is required, the needed library functions will need to be
2760added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002761
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002762Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
2763been written specifically for TF-A. Fome implementation files have been obtained
2764from `FreeBSD`_, others have been written specifically for TF-A as well. The
2765files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002766
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002767SCC can be found in `http://www.simple-cc.org/`_. A copy of the `FreeBSD`_
2768sources can be obtained from `http://github.com/freebsd/freebsd`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002769
2770Storage abstraction layer
2771-------------------------
2772
2773In order to improve platform independence and portability an storage abstraction
2774layer is used to load data from non-volatile platform storage.
2775
2776Each platform should register devices and their drivers via the Storage layer.
2777These drivers then need to be initialized by bootloader phases as
2778required in their respective ``blx_platform_setup()`` functions. Currently
2779storage access is only required by BL1 and BL2 phases. The ``load_image()``
2780function uses the storage layer to access non-volatile platform storage.
2781
Dan Handley610e7e12018-03-01 18:44:00 +00002782It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002783development platforms the Firmware Image Package (FIP) driver is provided as
2784the default means to load data from storage (see the "Firmware Image Package"
2785section in the `User Guide`_). The storage layer is described in the header file
2786``include/drivers/io/io_storage.h``. The implementation of the common library
2787is in ``drivers/io/io_storage.c`` and the driver files are located in
2788``drivers/io/``.
2789
2790Each IO driver must provide ``io_dev_*`` structures, as described in
2791``drivers/io/io_driver.h``. These are returned via a mandatory registration
2792function that is called on platform initialization. The semi-hosting driver
2793implementation in ``io_semihosting.c`` can be used as an example.
2794
2795The Storage layer provides mechanisms to initialize storage devices before
2796IO operations are called. The basic operations supported by the layer
2797include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2798Drivers do not have to implement all operations, but each platform must
2799provide at least one driver for a device capable of supporting generic
2800operations such as loading a bootloader image.
2801
2802The current implementation only allows for known images to be loaded by the
2803firmware. These images are specified by using their identifiers, as defined in
2804[include/plat/common/platform\_def.h] (or a separate header file included from
2805there). The platform layer (``plat_get_image_source()``) then returns a reference
2806to a device and a driver-specific ``spec`` which will be understood by the driver
2807to allow access to the image data.
2808
2809The layer is designed in such a way that is it possible to chain drivers with
2810other drivers. For example, file-system drivers may be implemented on top of
2811physical block devices, both represented by IO devices with corresponding
2812drivers. In such a case, the file-system "binding" with the block device may
2813be deferred until the file-system device is initialised.
2814
2815The abstraction currently depends on structures being statically allocated
2816by the drivers and callers, as the system does not yet provide a means of
2817dynamically allocating memory. This may also have the affect of limiting the
2818amount of open resources per driver.
2819
2820--------------
2821
Dan Handley610e7e12018-03-01 18:44:00 +00002822*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002823
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002824.. _include/plat/common/platform.h: ../include/plat/common/platform.h
2825.. _include/plat/arm/common/plat\_arm.h: ../include/plat/arm/common/plat_arm.h%5D
2826.. _User Guide: user-guide.rst
2827.. _include/plat/common/common\_def.h: ../include/plat/common/common_def.h
2828.. _include/plat/arm/common/arm\_def.h: ../include/plat/arm/common/arm_def.h
2829.. _plat/common/aarch64/platform\_mp\_stack.S: ../plat/common/aarch64/platform_mp_stack.S
2830.. _plat/common/aarch64/platform\_up\_stack.S: ../plat/common/aarch64/platform_up_stack.S
2831.. _For example, define the build flag in platform.mk: PLAT_PL061_MAX_GPIOS%20:=%20160
2832.. _Power Domain Topology Design: psci-pd-tree.rst
2833.. _include/common/bl\_common.h: ../include/common/bl_common.h
2834.. _include/lib/aarch32/arch.h: ../include/lib/aarch32/arch.h
2835.. _Firmware Design: firmware-design.rst
2836.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
2837.. _plat/arm/board/fvp/fvp\_pm.c: ../plat/arm/board/fvp/fvp_pm.c
2838.. _IMF Design Guide: interrupt-framework-design.rst
Dan Handley610e7e12018-03-01 18:44:00 +00002839.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002840.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
2841.. _FreeBSD: http://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002842.. _SCC: http://www.simple-cc.org/