blob: c1f0edf69ae1f96bc24bdf8d3dad5b0c1c7bca04 [file] [log] [blame]
Antonio Nino Diazc41f2062017-10-24 10:07:35 +01001/*
2 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <arch_helpers.h>
Antonio Nino Diazc41f2062017-10-24 10:07:35 +01009#include <assert.h>
10#include <common_def.h>
11#include <context.h>
12#include <context_mgmt.h>
13#include <debug.h>
14#include <platform_def.h>
15#include <platform.h>
16#include <secure_partition.h>
17#include <string.h>
18#include <types.h>
19#include <xlat_tables_v2.h>
20
21#include "spm_private.h"
22#include "spm_shim_private.h"
23
Antonio Nino Diaz086fbd62017-11-17 11:48:55 +000024/* Place translation tables by default along with the ones used by BL31. */
25#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
26#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
27#endif
28
Antonio Nino Diazc41f2062017-10-24 10:07:35 +010029/* Allocate and initialise the translation context for the secure partition. */
30REGISTER_XLAT_CONTEXT2(secure_partition,
31 PLAT_SP_IMAGE_MMAP_REGIONS,
32 PLAT_SP_IMAGE_MAX_XLAT_TABLES,
33 PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
Antonio Nino Diaz086fbd62017-11-17 11:48:55 +000034 EL1_EL0_REGIME, PLAT_SP_IMAGE_XLAT_SECTION_NAME);
Antonio Nino Diazc41f2062017-10-24 10:07:35 +010035
36/* Export a handle on the secure partition translation context */
37xlat_ctx_t *secure_partition_xlat_ctx_handle = &secure_partition_xlat_ctx;
38
39/* Setup context of the Secure Partition */
40void secure_partition_setup(void)
41{
42 VERBOSE("S-EL1/S-EL0 context setup start...\n");
43
44 cpu_context_t *ctx = cm_get_context(SECURE);
45
46 /* Make sure that we got a Secure context. */
47 assert(ctx != NULL);
48
49 /* Assert we are in Secure state. */
50 assert((read_scr_el3() & SCR_NS_BIT) == 0);
51
52 /* Disable MMU at EL1. */
53 disable_mmu_icache_el1();
54
55 /* Invalidate TLBs at EL1. */
56 tlbivmalle1();
57
58 /*
59 * General-Purpose registers
60 * -------------------------
61 */
62
63 /*
64 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
65 * The buffer will be mapped in the Secure EL1 translation regime
66 * with Normal IS WBWA attributes and RO data and Execute Never
67 * instruction access permissions.
68 *
69 * X1: Size of the buffer in bytes
70 *
71 * X2: cookie value (Implementation Defined)
72 *
73 * X3: cookie value (Implementation Defined)
74 *
75 * X4 to X30 = 0 (already done by cm_init_my_context())
76 */
77 write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0, PLAT_SPM_BUF_BASE);
78 write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1, PLAT_SPM_BUF_SIZE);
79 write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2, PLAT_SPM_COOKIE_0);
80 write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3, PLAT_SPM_COOKIE_1);
81
82 /*
83 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
84 * initialized the stack pointer for the current CPU through
85 * implementation defined means. The value will be 0 otherwise.
86 */
87 write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
88 PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE);
89
90 /*
91 * Setup translation tables
92 * ------------------------
93 */
94
95#if ENABLE_ASSERTIONS
96
97 /* Get max granularity supported by the platform. */
98
Antonio Nino Diaz097e2e12017-11-14 13:41:27 +000099 u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100100
101 int tgran64_supported =
Antonio Nino Diaz097e2e12017-11-14 13:41:27 +0000102 ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100103 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
104 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
105
106 int tgran16_supported =
Antonio Nino Diaz097e2e12017-11-14 13:41:27 +0000107 ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100108 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
109 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
110
111 int tgran4_supported =
Antonio Nino Diaz097e2e12017-11-14 13:41:27 +0000112 ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100113 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
114 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
115
116 uintptr_t max_granule_size;
117
118 if (tgran64_supported) {
119 max_granule_size = 64 * 1024;
120 } else if (tgran16_supported) {
121 max_granule_size = 16 * 1024;
122 } else {
123 assert(tgran4_supported);
124 max_granule_size = 4 * 1024;
125 }
126
127 VERBOSE("Max translation granule supported: %lu KiB\n",
Antonio Nino Diaz097e2e12017-11-14 13:41:27 +0000128 max_granule_size / 1024);
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100129
130 uintptr_t max_granule_size_mask = max_granule_size - 1;
131
132 /* Base must be aligned to the max granularity */
133 assert((ARM_SP_IMAGE_NS_BUF_BASE & max_granule_size_mask) == 0);
134
135 /* Size must be a multiple of the max granularity */
136 assert((ARM_SP_IMAGE_NS_BUF_SIZE & max_granule_size_mask) == 0);
137
138#endif /* ENABLE_ASSERTIONS */
139
140 /* This region contains the exception vectors used at S-EL1. */
141 const mmap_region_t sel1_exception_vectors =
142 MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
143 SPM_SHIM_EXCEPTIONS_SIZE,
144 MT_CODE | MT_SECURE | MT_PRIVILEGED);
145 mmap_add_region_ctx(&secure_partition_xlat_ctx,
146 &sel1_exception_vectors);
147
148 mmap_add_ctx(&secure_partition_xlat_ctx,
149 plat_get_secure_partition_mmap(NULL));
150
151 init_xlat_tables_ctx(&secure_partition_xlat_ctx);
152
153 /*
154 * MMU-related registers
155 * ---------------------
156 */
157
158 /* Set attributes in the right indices of the MAIR */
159 u_register_t mair_el1 =
160 MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX) |
161 MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX) |
162 MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
163
164 write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, mair_el1);
165
166 /* Setup TCR_EL1. */
167 u_register_t tcr_ps_bits = tcr_physical_addr_size_bits(PLAT_PHY_ADDR_SPACE_SIZE);
168
169 u_register_t tcr_el1 =
170 /* Size of region addressed by TTBR0_EL1 = 2^(64-T0SZ) bytes. */
171 (64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE)) |
172 /* Inner and outer WBWA, shareable. */
173 TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA |
174 /* Set the granularity to 4KB. */
175 TCR_TG0_4K |
176 /* Limit Intermediate Physical Address Size. */
177 tcr_ps_bits << TCR_EL1_IPS_SHIFT |
178 /* Disable translations using TBBR1_EL1. */
179 TCR_EPD1_BIT
180 /* The remaining fields related to TBBR1_EL1 are left as zero. */
181 ;
182
183 tcr_el1 &= ~(
184 /* Enable translations using TBBR0_EL1 */
185 TCR_EPD0_BIT
186 );
187
188 write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, tcr_el1);
189
190 /* Setup SCTLR_EL1 */
191 u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1);
192
193 sctlr_el1 |=
194 /*SCTLR_EL1_RES1 |*/
195 /* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
196 SCTLR_UCI_BIT |
197 /* RW regions at xlat regime EL1&0 are forced to be XN. */
198 SCTLR_WXN_BIT |
199 /* Don't trap to EL1 execution of WFI or WFE at EL0. */
200 SCTLR_NTWI_BIT | SCTLR_NTWE_BIT |
201 /* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
202 SCTLR_UCT_BIT |
203 /* Don't trap to EL1 execution of DZ ZVA at EL0. */
204 SCTLR_DZE_BIT |
205 /* Enable SP Alignment check for EL0 */
206 SCTLR_SA0_BIT |
207 /* Allow cacheable data and instr. accesses to normal memory. */
208 SCTLR_C_BIT | SCTLR_I_BIT |
209 /* Alignment fault checking enabled when at EL1 and EL0. */
210 SCTLR_A_BIT |
211 /* Enable MMU. */
212 SCTLR_M_BIT
213 ;
214
215 sctlr_el1 &= ~(
216 /* Explicit data accesses at EL0 are little-endian. */
217 SCTLR_E0E_BIT |
218 /* Accesses to DAIF from EL0 are trapped to EL1. */
219 SCTLR_UMA_BIT
220 );
221
222 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
223
224 /* Point TTBR0_EL1 at the tables of the context created for the SP. */
225 write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
226 (u_register_t)secure_partition_base_xlat_table);
227
228 /*
229 * Setup other system registers
230 * ----------------------------
231 */
232
233 /* Shim Exception Vector Base Address */
234 write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1,
235 SPM_SHIM_EXCEPTIONS_PTR);
236
237 /*
238 * FPEN: Forbid the Secure Partition to access FP/SIMD registers.
239 * TTA: Enable access to trace registers.
240 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
241 */
242 write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1,
243 CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_ALL));
244
245 /*
246 * Prepare information in buffer shared between EL3 and S-EL0
247 * ----------------------------------------------------------
248 */
249
250 void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE;
251
252 /* Copy the boot information into the shared buffer with the SP. */
253 assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t)
254 <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE));
255
256 assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1));
257
258 const secure_partition_boot_info_t *sp_boot_info =
259 plat_get_secure_partition_boot_info(NULL);
260
261 assert(sp_boot_info != NULL);
262
263 memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
264 sizeof(secure_partition_boot_info_t));
265
266 /* Pointer to the MP information from the platform port. */
267 secure_partition_mp_info_t *sp_mp_info =
268 ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
269
270 assert(sp_mp_info != NULL);
271
272 /*
273 * Point the shared buffer MP information pointer to where the info will
274 * be populated, just after the boot info.
275 */
276 ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info =
Antonio Nino Diaz0dcebaf2017-11-10 12:25:49 +0000277 (secure_partition_mp_info_t *) ((uintptr_t)shared_buf_ptr
278 + sizeof(secure_partition_boot_info_t));
Antonio Nino Diazc41f2062017-10-24 10:07:35 +0100279
280 /*
281 * Update the shared buffer pointer to where the MP information for the
282 * payload will be populated
283 */
284 shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
285
286 /*
287 * Copy the cpu information into the shared buffer area after the boot
288 * information.
289 */
290 assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
291
292 assert((uintptr_t)shared_buf_ptr
293 <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE -
294 (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
295
296 memcpy(shared_buf_ptr, (const void *) sp_mp_info,
297 sp_boot_info->num_cpus * sizeof(*sp_mp_info));
298
299 /*
300 * Calculate the linear indices of cores in boot information for the
301 * secure partition and flag the primary CPU
302 */
303 sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr;
304
305 for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
306 u_register_t mpidr = sp_mp_info[index].mpidr;
307
308 sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
309 if (plat_my_core_pos() == sp_mp_info[index].linear_id)
310 sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
311 }
312
313 VERBOSE("S-EL1/S-EL0 context setup end.\n");
314}