SPM: Introduce Secure Partition Manager

A Secure Partition is a software execution environment instantiated in
S-EL0 that can be used to implement simple management and security
services. Since S-EL0 is an unprivileged exception level, a Secure
Partition relies on privileged firmware e.g. ARM Trusted Firmware to be
granted access to system and processor resources. Essentially, it is a
software sandbox that runs under the control of privileged software in
the Secure World and accesses the following system resources:

- Memory and device regions in the system address map.
- PE system registers.
- A range of asynchronous exceptions e.g. interrupts.
- A range of synchronous exceptions e.g. SMC function identifiers.

A Secure Partition enables privileged firmware to implement only the
absolutely essential secure services in EL3 and instantiate the rest in
a partition. Since the partition executes in S-EL0, its implementation
cannot be overly complex.

The component in ARM Trusted Firmware responsible for managing a Secure
Partition is called the Secure Partition Manager (SPM). The SPM is
responsible for the following:

- Validating and allocating resources requested by a Secure Partition.
- Implementing a well defined interface that is used for initialising a
  Secure Partition.
- Implementing a well defined interface that is used by the normal world
  and other secure services for accessing the services exported by a
  Secure Partition.
- Implementing a well defined interface that is used by a Secure
  Partition to fulfil service requests.
- Instantiating the software execution environment required by a Secure
  Partition to fulfil a service request.

Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
diff --git a/services/std_svc/spm/secure_partition_setup.c b/services/std_svc/spm/secure_partition_setup.c
new file mode 100644
index 0000000..6624e2b
--- /dev/null
+++ b/services/std_svc/spm/secure_partition_setup.c
@@ -0,0 +1,310 @@
+/*
+ * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <arm_spm_def.h>
+#include <assert.h>
+#include <common_def.h>
+#include <context.h>
+#include <context_mgmt.h>
+#include <debug.h>
+#include <platform_def.h>
+#include <platform.h>
+#include <secure_partition.h>
+#include <string.h>
+#include <types.h>
+#include <xlat_tables_v2.h>
+
+#include "spm_private.h"
+#include "spm_shim_private.h"
+
+/* Allocate and initialise the translation context for the secure partition. */
+REGISTER_XLAT_CONTEXT2(secure_partition,
+			PLAT_SP_IMAGE_MMAP_REGIONS,
+			PLAT_SP_IMAGE_MAX_XLAT_TABLES,
+			PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
+			EL1_EL0_REGIME);
+
+/* Export a handle on the secure partition translation context */
+xlat_ctx_t *secure_partition_xlat_ctx_handle = &secure_partition_xlat_ctx;
+
+/* Setup context of the Secure Partition */
+void secure_partition_setup(void)
+{
+	VERBOSE("S-EL1/S-EL0 context setup start...\n");
+
+	cpu_context_t *ctx = cm_get_context(SECURE);
+
+	/* Make sure that we got a Secure context. */
+	assert(ctx != NULL);
+
+	/* Assert we are in Secure state. */
+	assert((read_scr_el3() & SCR_NS_BIT) == 0);
+
+	/* Disable MMU at EL1. */
+	disable_mmu_icache_el1();
+
+	/* Invalidate TLBs at EL1. */
+	tlbivmalle1();
+
+	/*
+	 * General-Purpose registers
+	 * -------------------------
+	 */
+
+	/*
+	 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
+	 *     The buffer will be mapped in the Secure EL1 translation regime
+	 *     with Normal IS WBWA attributes and RO data and Execute Never
+	 *     instruction access permissions.
+	 *
+	 * X1: Size of the buffer in bytes
+	 *
+	 * X2: cookie value (Implementation Defined)
+	 *
+	 * X3: cookie value (Implementation Defined)
+	 *
+	 * X4 to X30 = 0 (already done by cm_init_my_context())
+	 */
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0, PLAT_SPM_BUF_BASE);
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1, PLAT_SPM_BUF_SIZE);
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2, PLAT_SPM_COOKIE_0);
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3, PLAT_SPM_COOKIE_1);
+
+	/*
+	 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
+	 * initialized the stack pointer for the current CPU through
+	 * implementation defined means. The value will be 0 otherwise.
+	 */
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
+			PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE);
+
+	/*
+	 * Setup translation tables
+	 * ------------------------
+	 */
+
+#if ENABLE_ASSERTIONS
+
+	/* Get max granularity supported by the platform. */
+
+	u_register_t id_aa64prf0_el1 = read_id_aa64pfr0_el1();
+
+	int tgran64_supported =
+		((id_aa64prf0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
+		 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
+		 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
+
+	int tgran16_supported =
+		((id_aa64prf0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
+		 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
+		 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
+
+	int tgran4_supported =
+		((id_aa64prf0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
+		 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
+		 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
+
+	uintptr_t max_granule_size;
+
+	if (tgran64_supported) {
+		max_granule_size = 64 * 1024;
+	} else if (tgran16_supported) {
+		max_granule_size = 16 * 1024;
+	} else {
+		assert(tgran4_supported);
+		max_granule_size = 4 * 1024;
+	}
+
+	VERBOSE("Max translation granule supported: %lu KiB\n",
+		max_granule_size);
+
+	uintptr_t max_granule_size_mask = max_granule_size - 1;
+
+	/* Base must be aligned to the max granularity */
+	assert((ARM_SP_IMAGE_NS_BUF_BASE & max_granule_size_mask) == 0);
+
+	/* Size must be a multiple of the max granularity */
+	assert((ARM_SP_IMAGE_NS_BUF_SIZE & max_granule_size_mask) == 0);
+
+#endif /* ENABLE_ASSERTIONS */
+
+	/* This region contains the exception vectors used at S-EL1. */
+	const mmap_region_t sel1_exception_vectors =
+		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
+				SPM_SHIM_EXCEPTIONS_SIZE,
+				MT_CODE | MT_SECURE | MT_PRIVILEGED);
+	mmap_add_region_ctx(&secure_partition_xlat_ctx,
+			    &sel1_exception_vectors);
+
+	mmap_add_ctx(&secure_partition_xlat_ctx,
+		     plat_get_secure_partition_mmap(NULL));
+
+	init_xlat_tables_ctx(&secure_partition_xlat_ctx);
+
+	/*
+	 * MMU-related registers
+	 * ---------------------
+	 */
+
+	/* Set attributes in the right indices of the MAIR */
+	u_register_t mair_el1 =
+		MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX) |
+		MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX) |
+		MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
+
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, mair_el1);
+
+	/* Setup TCR_EL1. */
+	u_register_t tcr_ps_bits = tcr_physical_addr_size_bits(PLAT_PHY_ADDR_SPACE_SIZE);
+
+	u_register_t tcr_el1 =
+		/* Size of region addressed by TTBR0_EL1 = 2^(64-T0SZ) bytes. */
+		(64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE))		|
+		/* Inner and outer WBWA, shareable. */
+		TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA	|
+		/* Set the granularity to 4KB. */
+		TCR_TG0_4K							|
+		/* Limit Intermediate Physical Address Size. */
+		tcr_ps_bits << TCR_EL1_IPS_SHIFT				|
+		/* Disable translations using TBBR1_EL1. */
+		TCR_EPD1_BIT
+		/* The remaining fields related to TBBR1_EL1 are left as zero. */
+	;
+
+	tcr_el1 &= ~(
+		/* Enable translations using TBBR0_EL1 */
+		TCR_EPD0_BIT
+	);
+
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, tcr_el1);
+
+	/* Setup SCTLR_EL1 */
+	u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1);
+
+	sctlr_el1 |=
+		/*SCTLR_EL1_RES1 |*/
+		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
+		SCTLR_UCI_BIT							|
+		/* RW regions at xlat regime EL1&0 are forced to be XN. */
+		SCTLR_WXN_BIT							|
+		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
+		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT					|
+		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
+		SCTLR_UCT_BIT							|
+		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
+		SCTLR_DZE_BIT							|
+		/* Enable SP Alignment check for EL0 */
+		SCTLR_SA0_BIT							|
+		/* Allow cacheable data and instr. accesses to normal memory. */
+		SCTLR_C_BIT | SCTLR_I_BIT					|
+		/* Alignment fault checking enabled when at EL1 and EL0. */
+		SCTLR_A_BIT							|
+		/* Enable MMU. */
+		SCTLR_M_BIT
+	;
+
+	sctlr_el1 &= ~(
+		/* Explicit data accesses at EL0 are little-endian. */
+		SCTLR_E0E_BIT							|
+		/* Accesses to DAIF from EL0 are trapped to EL1. */
+		SCTLR_UMA_BIT
+	);
+
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
+
+	/* Point TTBR0_EL1 at the tables of the context created for the SP. */
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
+			(u_register_t)secure_partition_base_xlat_table);
+
+	/*
+	 * Setup other system registers
+	 * ----------------------------
+	 */
+
+	/* Shim Exception Vector Base Address */
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1,
+			SPM_SHIM_EXCEPTIONS_PTR);
+
+	/*
+	 * FPEN: Forbid the Secure Partition to access FP/SIMD registers.
+	 * TTA: Enable access to trace registers.
+	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
+	 */
+	write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1,
+			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_ALL));
+
+	/*
+	 * Prepare information in buffer shared between EL3 and S-EL0
+	 * ----------------------------------------------------------
+	 */
+
+	void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE;
+
+	/* Copy the boot information into the shared buffer with the SP. */
+	assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t)
+	       <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE));
+
+	assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1));
+
+	const secure_partition_boot_info_t *sp_boot_info =
+			plat_get_secure_partition_boot_info(NULL);
+
+	assert(sp_boot_info != NULL);
+
+	memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
+	       sizeof(secure_partition_boot_info_t));
+
+	/* Pointer to the MP information from the platform port. */
+	secure_partition_mp_info_t *sp_mp_info =
+		((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
+
+	assert(sp_mp_info != NULL);
+
+	/*
+	 * Point the shared buffer MP information pointer to where the info will
+	 * be populated, just after the boot info.
+	 */
+	((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info =
+		((secure_partition_mp_info_t *) shared_buf_ptr) +
+		sizeof(secure_partition_boot_info_t);
+
+	/*
+	 * Update the shared buffer pointer to where the MP information for the
+	 * payload will be populated
+	 */
+	shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
+
+	/*
+	 * Copy the cpu information into the shared buffer area after the boot
+	 * information.
+	 */
+	assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
+
+	assert((uintptr_t)shared_buf_ptr
+	       <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE -
+		       (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
+
+	memcpy(shared_buf_ptr, (const void *) sp_mp_info,
+		sp_boot_info->num_cpus * sizeof(*sp_mp_info));
+
+	/*
+	 * Calculate the linear indices of cores in boot information for the
+	 * secure partition and flag the primary CPU
+	 */
+	sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr;
+
+	for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
+		u_register_t mpidr = sp_mp_info[index].mpidr;
+
+		sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
+		if (plat_my_core_pos() == sp_mp_info[index].linear_id)
+			sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
+	}
+
+	VERBOSE("S-EL1/S-EL0 context setup end.\n");
+}