blob: 26c7578929461866774fcc16a0c72ab0d3e13194 [file] [log] [blame]
/*
* Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef EL3_COMMON_MACROS_S
#define EL3_COMMON_MACROS_S
#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>
#include <context.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
/*
* Helper macro to initialise EL3 registers we care about.
*/
.macro el3_arch_init_common
/* ---------------------------------------------------------------------
* SCTLR_EL3 has already been initialised - read current value before
* modifying.
*
* SCTLR_EL3.I: Enable the instruction cache.
*
* SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault
* exception is generated if a load or store instruction executed at
* EL3 uses the SP as the base address and the SP is not aligned to a
* 16-byte boundary.
*
* SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
* load or store one or more registers have an alignment check that the
* address being accessed is aligned to the size of the data element(s)
* being accessed.
* ---------------------------------------------------------------------
*/
mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
mrs x0, sctlr_el3
orr x0, x0, x1
msr sctlr_el3, x0
isb
#ifdef IMAGE_BL31
/* ---------------------------------------------------------------------
* Initialise the per-cpu cache pointer to the CPU.
* This is done early to enable crash reporting to have access to crash
* stack. Since crash reporting depends on cpu_data to report the
* unhandled exception, not doing so can lead to recursive exceptions
* due to a NULL TPIDR_EL3.
* ---------------------------------------------------------------------
*/
bl init_cpu_data_ptr
#endif /* IMAGE_BL31 */
/* ---------------------------------------------------------------------
* Initialise SCR_EL3, setting all fields rather than relying on hw.
* All fields are architecturally UNKNOWN on reset. The following fields
* do not change during the TF lifetime. The remaining fields are set to
* zero here but are updated ahead of transitioning to a lower EL in the
* function cm_init_context_common().
*
* SCR_EL3.SIF: Set to one to disable instruction fetches from
* Non-secure memory.
*
* SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
* to EL3 when executing at any EL.
*
* SCR_EL3.EEL2: Set to one if S-EL2 is present and enabled.
*
* NOTE: Modifying EEL2 bit along with EA bit ensures that we mitigate
* against ERRATA_V2_3099206.
* ---------------------------------------------------------------------
*/
mov_imm x0, (SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT)
#if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
mrs x1, id_aa64pfr0_el1
and x1, x1, #(ID_AA64PFR0_SEL2_MASK << ID_AA64PFR0_SEL2_SHIFT)
cbz x1, 1f
orr x0, x0, #SCR_EEL2_BIT
#endif
1:
msr scr_el3, x0
/* ---------------------------------------------------------------------
* Initialise MDCR_EL3, setting all fields rather than relying on hw.
* Some fields are architecturally UNKNOWN on reset.
*
* MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
* Debug exceptions, other than Breakpoint Instruction exceptions, are
* disabled from all ELs in Secure state.
*
* MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
* privileged debug from S-EL1.
*
* MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
* access to the powerdown debug registers do not trap to EL3.
*
* MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
* debug registers, other than those registers that are controlled by
* MDCR_EL3.TDOSA.
*/
mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | \
MDCR_SPD32(MDCR_SPD32_DISABLE)) & \
~(MDCR_TDOSA_BIT | MDCR_TDA_BIT))
msr mdcr_el3, x0
/* ---------------------------------------------------------------------
* Enable External Aborts and SError Interrupts now that the exception
* vectors have been setup.
* ---------------------------------------------------------------------
*/
msr daifclr, #DAIF_ABT_BIT
/* ---------------------------------------------------------------------
* Initialise CPTR_EL3, setting all fields rather than relying on hw.
* All fields are architecturally UNKNOWN on reset.
* ---------------------------------------------------------------------
*/
mov_imm x0, CPTR_EL3_RESET_VAL
msr cptr_el3, x0
/*
* If Data Independent Timing (DIT) functionality is implemented,
* always enable DIT in EL3.
* First assert that the FEAT_DIT build flag matches the feature id
* register value for DIT.
*/
#if ENABLE_FEAT_DIT
#if ENABLE_ASSERTIONS || ENABLE_FEAT_DIT > 1
mrs x0, id_aa64pfr0_el1
ubfx x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH
#if ENABLE_FEAT_DIT > 1
cbz x0, 1f
#else
cmp x0, #ID_AA64PFR0_DIT_SUPPORTED
ASM_ASSERT(eq)
#endif
#endif /* ENABLE_ASSERTIONS */
mov x0, #DIT_BIT
msr DIT, x0
1:
#endif
.endm
/* -----------------------------------------------------------------------------
* This is the super set of actions that need to be performed during a cold boot
* or a warm boot in EL3. This code is shared by BL1 and BL31.
*
* This macro will always perform reset handling, architectural initialisations
* and stack setup. The rest of the actions are optional because they might not
* be needed, depending on the context in which this macro is called. This is
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
* _init_sctlr:
* Whether the macro needs to initialise SCTLR_EL3, including configuring
* the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* detection is based on the platform entrypoint address : if it is zero
* then it is a cold boot, otherwise it is a warm boot. In the latter case,
* this macro jumps on the platform entrypoint address.
*
* _secondary_cold_boot:
* Whether the macro needs to identify the CPU that is calling it: primary
* CPU or secondary CPU. The primary CPU will be allowed to carry on with
* the platform initialisations, while the secondaries will be put in a
* platform-specific state in the meantime.
*
* If the caller knows this macro will only be called by the primary CPU
* then this parameter can be defined to 0 to skip this step.
*
* _init_memory:
* Whether the macro needs to initialise the memory.
*
* _init_c_runtime:
* Whether the macro needs to initialise the C runtime environment.
*
* _exception_vectors:
* Address of the exception vectors to program in the VBAR_EL3 register.
*
* _pie_fixup_size:
* Size of memory region to fixup Global Descriptor Table (GDT).
*
* A non-zero value is expected when firmware needs GDT to be fixed-up.
*
* -----------------------------------------------------------------------------
*/
.macro el3_entrypoint_common \
_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors, \
_pie_fixup_size
.if \_init_sctlr
/* -------------------------------------------------------------
* This is the initialisation of SCTLR_EL3 and so must ensure
* that all fields are explicitly set rather than relying on hw.
* Some fields reset to an IMPLEMENTATION DEFINED value and
* others are architecturally UNKNOWN on reset.
*
* SCTLR.EE: Set the CPU endianness before doing anything that
* might involve memory reads or writes. Set to zero to select
* Little Endian.
*
* SCTLR_EL3.WXN: For the EL3 translation regime, this field can
* force all memory regions that are writeable to be treated as
* XN (Execute-never). Set to zero so that this control has no
* effect on memory access permissions.
*
* SCTLR_EL3.SA: Set to zero to disable Stack Alignment check.
*
* SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
*
* SCTLR.DSSBS: Set to zero to disable speculation store bypass
* safe behaviour upon exception entry to EL3.
* -------------------------------------------------------------
*/
mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
| SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT))
#if ENABLE_FEAT_RAS
/* If FEAT_RAS is present assume FEAT_IESB is also present */
orr x0, x0, #SCTLR_IESB_BIT
#endif
msr sctlr_el3, x0
isb
.endif /* _init_sctlr */
.if \_warm_boot_mailbox
/* -------------------------------------------------------------
* This code will be executed for both warm and cold resets.
* Now is the time to distinguish between the two.
* Query the platform entrypoint address and if it is not zero
* then it means it is a warm boot so jump to this address.
* -------------------------------------------------------------
*/
bl plat_get_my_entrypoint
cbz x0, do_cold_boot
br x0
do_cold_boot:
.endif /* _warm_boot_mailbox */
.if \_pie_fixup_size
#if ENABLE_PIE
/*
* ------------------------------------------------------------
* If PIE is enabled fixup the Global descriptor Table only
* once during primary core cold boot path.
*
* Compile time base address, required for fixup, is calculated
* using "pie_fixup" label present within first page.
* ------------------------------------------------------------
*/
pie_fixup:
ldr x0, =pie_fixup
and x0, x0, #~(PAGE_SIZE_MASK)
mov_imm x1, \_pie_fixup_size
add x1, x1, x0
bl fixup_gdt_reloc
#endif /* ENABLE_PIE */
.endif /* _pie_fixup_size */
/* ---------------------------------------------------------------------
* Set the exception vectors.
* ---------------------------------------------------------------------
*/
adr x0, \_exception_vectors
msr vbar_el3, x0
isb
#if !(defined(IMAGE_BL2) && ENABLE_RME)
/* ---------------------------------------------------------------------
* It is a cold boot.
* Perform any processor specific actions upon reset e.g. cache, TLB
* invalidations etc.
* ---------------------------------------------------------------------
*/
bl reset_handler
#endif
el3_arch_init_common
.if \_secondary_cold_boot
/* -------------------------------------------------------------
* Check if this is a primary or secondary CPU cold boot.
* The primary CPU will set up the platform while the
* secondaries are placed in a platform-specific state until the
* primary CPU performs the necessary actions to bring them out
* of that state and allows entry into the OS.
* -------------------------------------------------------------
*/
bl plat_is_my_cpu_primary
cbnz w0, do_primary_cold_boot
/* This is a cold boot on a secondary CPU */
bl plat_secondary_cold_boot_setup
/* plat_secondary_cold_boot_setup() is not supposed to return */
bl el3_panic
do_primary_cold_boot:
.endif /* _secondary_cold_boot */
/* ---------------------------------------------------------------------
* Initialize memory now. Secondary CPU initialization won't get to this
* point.
* ---------------------------------------------------------------------
*/
.if \_init_memory
bl platform_mem_init
.endif /* _init_memory */
/* ---------------------------------------------------------------------
* Init C runtime environment:
* - Zero-initialise the NOBITS sections. There are 2 of them:
* - the .bss section;
* - the coherent memory section (if any).
* - Relocate the data section from ROM to RAM, if required.
* ---------------------------------------------------------------------
*/
.if \_init_c_runtime
#if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && \
((RESET_TO_BL2 && BL2_INV_DCACHE) || ENABLE_RME))
/* -------------------------------------------------------------
* Invalidate the RW memory used by the BL31 image. This
* includes the data and NOBITS sections. This is done to
* safeguard against possible corruption of this memory by
* dirty cache lines in a system cache as a result of use by
* an earlier boot loader stage. If PIE is enabled however,
* RO sections including the GOT may be modified during
* pie fixup. Therefore, to be on the safe side, invalidate
* the entire image region if PIE is enabled.
* -------------------------------------------------------------
*/
#if ENABLE_PIE
#if SEPARATE_CODE_AND_RODATA
adrp x0, __TEXT_START__
add x0, x0, :lo12:__TEXT_START__
#else
adrp x0, __RO_START__
add x0, x0, :lo12:__RO_START__
#endif /* SEPARATE_CODE_AND_RODATA */
#else
adrp x0, __RW_START__
add x0, x0, :lo12:__RW_START__
#endif /* ENABLE_PIE */
adrp x1, __RW_END__
add x1, x1, :lo12:__RW_END__
sub x1, x1, x0
bl inv_dcache_range
#if defined(IMAGE_BL31) && SEPARATE_NOBITS_REGION
adrp x0, __NOBITS_START__
add x0, x0, :lo12:__NOBITS_START__
adrp x1, __NOBITS_END__
add x1, x1, :lo12:__NOBITS_END__
sub x1, x1, x0
bl inv_dcache_range
#endif
#if defined(IMAGE_BL2) && SEPARATE_BL2_NOLOAD_REGION
adrp x0, __BL2_NOLOAD_START__
add x0, x0, :lo12:__BL2_NOLOAD_START__
adrp x1, __BL2_NOLOAD_END__
add x1, x1, :lo12:__BL2_NOLOAD_END__
sub x1, x1, x0
bl inv_dcache_range
#endif
#endif
adrp x0, __BSS_START__
add x0, x0, :lo12:__BSS_START__
adrp x1, __BSS_END__
add x1, x1, :lo12:__BSS_END__
sub x1, x1, x0
bl zeromem
#if USE_COHERENT_MEM
adrp x0, __COHERENT_RAM_START__
add x0, x0, :lo12:__COHERENT_RAM_START__
adrp x1, __COHERENT_RAM_END_UNALIGNED__
add x1, x1, :lo12: __COHERENT_RAM_END_UNALIGNED__
sub x1, x1, x0
bl zeromem
#endif
#if defined(IMAGE_BL1) || \
(defined(IMAGE_BL2) && RESET_TO_BL2 && BL2_IN_XIP_MEM)
adrp x0, __DATA_RAM_START__
add x0, x0, :lo12:__DATA_RAM_START__
adrp x1, __DATA_ROM_START__
add x1, x1, :lo12:__DATA_ROM_START__
adrp x2, __DATA_RAM_END__
add x2, x2, :lo12:__DATA_RAM_END__
sub x2, x2, x0
bl memcpy16
#endif
.endif /* _init_c_runtime */
/* ---------------------------------------------------------------------
* Use SP_EL0 for the C runtime stack.
* ---------------------------------------------------------------------
*/
msr spsel, #0
/* ---------------------------------------------------------------------
* Allocate a stack whose memory will be marked as Normal-IS-WBWA when
* the MMU is enabled. There is no risk of reading stale stack memory
* after enabling the MMU as only the primary CPU is running at the
* moment.
* ---------------------------------------------------------------------
*/
bl plat_set_my_stack
#if STACK_PROTECTOR_ENABLED
.if \_init_c_runtime
bl update_stack_protector_canary
.endif /* _init_c_runtime */
#endif
.endm
.macro apply_at_speculative_wa
#if ERRATA_SPECULATIVE_AT
/*
* This function expects x30 has been saved.
* Also, save x29 which will be used in the called function.
*/
str x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
bl save_and_update_ptw_el1_sys_regs
ldr x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
#endif
.endm
.macro restore_ptw_el1_sys_regs
#if ERRATA_SPECULATIVE_AT
/* -----------------------------------------------------------
* In case of ERRATA_SPECULATIVE_AT, must follow below order
* to ensure that page table walk is not enabled until
* restoration of all EL1 system registers. TCR_EL1 register
* should be updated at the end which restores previous page
* table walk setting of stage1 i.e.(TCR_EL1.EPDx) bits. ISB
* ensures that CPU does below steps in order.
*
* 1. Ensure all other system registers are written before
* updating SCTLR_EL1 using ISB.
* 2. Restore SCTLR_EL1 register.
* 3. Ensure SCTLR_EL1 written successfully using ISB.
* 4. Restore TCR_EL1 register.
* -----------------------------------------------------------
*/
isb
ldp x28, x29, [sp, #CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1]
msr sctlr_el1, x28
isb
msr tcr_el1, x29
#endif
.endm
/* -----------------------------------------------------------------
* The below macro reads SCR_EL3 from the context structure to
* determine the security state of the context upon ERET.
* ------------------------------------------------------------------
*/
.macro get_security_state _ret:req, _scr_reg:req
ubfx \_ret, \_scr_reg, #SCR_NSE_SHIFT, #1
cmp \_ret, #1
beq realm_state
bfi \_ret, \_scr_reg, #0, #1
b end
realm_state:
mov \_ret, #2
end:
.endm
#endif /* EL3_COMMON_MACROS_S */