blob: 9db97d40cfdcc923d9a363e99f970f6f87268c20 [file] [log] [blame]
/*
* Copyright (c) 2018-2021, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/mmc.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32_sdmmc2.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
/* Registers offsets */
#define SDMMC_POWER 0x00U
#define SDMMC_CLKCR 0x04U
#define SDMMC_ARGR 0x08U
#define SDMMC_CMDR 0x0CU
#define SDMMC_RESPCMDR 0x10U
#define SDMMC_RESP1R 0x14U
#define SDMMC_RESP2R 0x18U
#define SDMMC_RESP3R 0x1CU
#define SDMMC_RESP4R 0x20U
#define SDMMC_DTIMER 0x24U
#define SDMMC_DLENR 0x28U
#define SDMMC_DCTRLR 0x2CU
#define SDMMC_DCNTR 0x30U
#define SDMMC_STAR 0x34U
#define SDMMC_ICR 0x38U
#define SDMMC_MASKR 0x3CU
#define SDMMC_ACKTIMER 0x40U
#define SDMMC_IDMACTRLR 0x50U
#define SDMMC_IDMABSIZER 0x54U
#define SDMMC_IDMABASE0R 0x58U
#define SDMMC_IDMABASE1R 0x5CU
#define SDMMC_FIFOR 0x80U
/* SDMMC power control register */
#define SDMMC_POWER_PWRCTRL GENMASK(1, 0)
#define SDMMC_POWER_DIRPOL BIT(4)
/* SDMMC clock control register */
#define SDMMC_CLKCR_WIDBUS_4 BIT(14)
#define SDMMC_CLKCR_WIDBUS_8 BIT(15)
#define SDMMC_CLKCR_NEGEDGE BIT(16)
#define SDMMC_CLKCR_HWFC_EN BIT(17)
#define SDMMC_CLKCR_SELCLKRX_0 BIT(20)
/* SDMMC command register */
#define SDMMC_CMDR_CMDTRANS BIT(6)
#define SDMMC_CMDR_CMDSTOP BIT(7)
#define SDMMC_CMDR_WAITRESP GENMASK(9, 8)
#define SDMMC_CMDR_WAITRESP_SHORT BIT(8)
#define SDMMC_CMDR_WAITRESP_SHORT_NOCRC BIT(9)
#define SDMMC_CMDR_CPSMEN BIT(12)
/* SDMMC data control register */
#define SDMMC_DCTRLR_DTEN BIT(0)
#define SDMMC_DCTRLR_DTDIR BIT(1)
#define SDMMC_DCTRLR_DTMODE GENMASK(3, 2)
#define SDMMC_DCTRLR_DBLOCKSIZE GENMASK(7, 4)
#define SDMMC_DCTRLR_DBLOCKSIZE_SHIFT 4
#define SDMMC_DCTRLR_FIFORST BIT(13)
#define SDMMC_DCTRLR_CLEAR_MASK (SDMMC_DCTRLR_DTEN | \
SDMMC_DCTRLR_DTDIR | \
SDMMC_DCTRLR_DTMODE | \
SDMMC_DCTRLR_DBLOCKSIZE)
/* SDMMC status register */
#define SDMMC_STAR_CCRCFAIL BIT(0)
#define SDMMC_STAR_DCRCFAIL BIT(1)
#define SDMMC_STAR_CTIMEOUT BIT(2)
#define SDMMC_STAR_DTIMEOUT BIT(3)
#define SDMMC_STAR_TXUNDERR BIT(4)
#define SDMMC_STAR_RXOVERR BIT(5)
#define SDMMC_STAR_CMDREND BIT(6)
#define SDMMC_STAR_CMDSENT BIT(7)
#define SDMMC_STAR_DATAEND BIT(8)
#define SDMMC_STAR_DBCKEND BIT(10)
#define SDMMC_STAR_DPSMACT BIT(12)
#define SDMMC_STAR_RXFIFOHF BIT(15)
#define SDMMC_STAR_RXFIFOE BIT(19)
#define SDMMC_STAR_IDMATE BIT(27)
#define SDMMC_STAR_IDMABTC BIT(28)
/* SDMMC DMA control register */
#define SDMMC_IDMACTRLR_IDMAEN BIT(0)
#define SDMMC_STATIC_FLAGS (SDMMC_STAR_CCRCFAIL | \
SDMMC_STAR_DCRCFAIL | \
SDMMC_STAR_CTIMEOUT | \
SDMMC_STAR_DTIMEOUT | \
SDMMC_STAR_TXUNDERR | \
SDMMC_STAR_RXOVERR | \
SDMMC_STAR_CMDREND | \
SDMMC_STAR_CMDSENT | \
SDMMC_STAR_DATAEND | \
SDMMC_STAR_DBCKEND | \
SDMMC_STAR_IDMATE | \
SDMMC_STAR_IDMABTC)
#define TIMEOUT_US_1_MS 1000U
#define TIMEOUT_US_10_MS 10000U
#define TIMEOUT_US_1_S 1000000U
#define DT_SDMMC2_COMPAT "st,stm32-sdmmc2"
static void stm32_sdmmc2_init(void);
static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd);
static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd);
static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width);
static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size);
static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size);
static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size);
static const struct mmc_ops stm32_sdmmc2_ops = {
.init = stm32_sdmmc2_init,
.send_cmd = stm32_sdmmc2_send_cmd,
.set_ios = stm32_sdmmc2_set_ios,
.prepare = stm32_sdmmc2_prepare,
.read = stm32_sdmmc2_read,
.write = stm32_sdmmc2_write,
};
static struct stm32_sdmmc2_params sdmmc2_params;
#pragma weak plat_sdmmc2_use_dma
bool plat_sdmmc2_use_dma(unsigned int instance, unsigned int memory)
{
return false;
}
static void stm32_sdmmc2_init(void)
{
uint32_t clock_div;
uint32_t freq = STM32MP_MMC_INIT_FREQ;
uintptr_t base = sdmmc2_params.reg_base;
if (sdmmc2_params.max_freq != 0U) {
freq = MIN(sdmmc2_params.max_freq, freq);
}
clock_div = div_round_up(sdmmc2_params.clk_rate, freq * 2U);
mmio_write_32(base + SDMMC_CLKCR, SDMMC_CLKCR_HWFC_EN | clock_div |
sdmmc2_params.negedge |
sdmmc2_params.pin_ckin);
mmio_write_32(base + SDMMC_POWER,
SDMMC_POWER_PWRCTRL | sdmmc2_params.dirpol);
mdelay(1);
}
static int stm32_sdmmc2_stop_transfer(void)
{
struct mmc_cmd cmd_stop;
zeromem(&cmd_stop, sizeof(struct mmc_cmd));
cmd_stop.cmd_idx = MMC_CMD(12);
cmd_stop.resp_type = MMC_RESPONSE_R1B;
return stm32_sdmmc2_send_cmd(&cmd_stop);
}
static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd)
{
uint64_t timeout;
uint32_t flags_cmd, status;
uint32_t flags_data = 0;
int err = 0;
uintptr_t base = sdmmc2_params.reg_base;
unsigned int cmd_reg, arg_reg;
if (cmd == NULL) {
return -EINVAL;
}
flags_cmd = SDMMC_STAR_CTIMEOUT;
arg_reg = cmd->cmd_arg;
if ((mmio_read_32(base + SDMMC_CMDR) & SDMMC_CMDR_CPSMEN) != 0U) {
mmio_write_32(base + SDMMC_CMDR, 0);
}
cmd_reg = cmd->cmd_idx | SDMMC_CMDR_CPSMEN;
if (cmd->resp_type == 0U) {
flags_cmd |= SDMMC_STAR_CMDSENT;
}
if ((cmd->resp_type & MMC_RSP_48) != 0U) {
if ((cmd->resp_type & MMC_RSP_136) != 0U) {
flags_cmd |= SDMMC_STAR_CMDREND;
cmd_reg |= SDMMC_CMDR_WAITRESP;
} else if ((cmd->resp_type & MMC_RSP_CRC) != 0U) {
flags_cmd |= SDMMC_STAR_CMDREND | SDMMC_STAR_CCRCFAIL;
cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT;
} else {
flags_cmd |= SDMMC_STAR_CMDREND;
cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT_NOCRC;
}
}
switch (cmd->cmd_idx) {
case MMC_CMD(1):
arg_reg |= OCR_POWERUP;
break;
case MMC_CMD(8):
if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) {
cmd_reg |= SDMMC_CMDR_CMDTRANS;
}
break;
case MMC_CMD(12):
cmd_reg |= SDMMC_CMDR_CMDSTOP;
break;
case MMC_CMD(17):
case MMC_CMD(18):
cmd_reg |= SDMMC_CMDR_CMDTRANS;
if (sdmmc2_params.use_dma) {
flags_data |= SDMMC_STAR_DCRCFAIL |
SDMMC_STAR_DTIMEOUT |
SDMMC_STAR_DATAEND |
SDMMC_STAR_RXOVERR |
SDMMC_STAR_IDMATE;
}
break;
case MMC_ACMD(41):
arg_reg |= OCR_3_2_3_3 | OCR_3_3_3_4;
break;
case MMC_ACMD(51):
cmd_reg |= SDMMC_CMDR_CMDTRANS;
if (sdmmc2_params.use_dma) {
flags_data |= SDMMC_STAR_DCRCFAIL |
SDMMC_STAR_DTIMEOUT |
SDMMC_STAR_DATAEND |
SDMMC_STAR_RXOVERR |
SDMMC_STAR_IDMATE |
SDMMC_STAR_DBCKEND;
}
break;
default:
break;
}
mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS);
/*
* Clear the SDMMC_DCTRLR if the command does not await data.
* Skip CMD55 as the next command could be data related, and
* the register could have been set in prepare function.
*/
if (((cmd_reg & SDMMC_CMDR_CMDTRANS) == 0U) &&
(cmd->cmd_idx != MMC_CMD(55))) {
mmio_write_32(base + SDMMC_DCTRLR, 0U);
}
if ((cmd->resp_type & MMC_RSP_BUSY) != 0U) {
mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX);
}
mmio_write_32(base + SDMMC_ARGR, arg_reg);
mmio_write_32(base + SDMMC_CMDR, cmd_reg);
status = mmio_read_32(base + SDMMC_STAR);
timeout = timeout_init_us(TIMEOUT_US_10_MS);
while ((status & flags_cmd) == 0U) {
if (timeout_elapsed(timeout)) {
err = -ETIMEDOUT;
ERROR("%s: timeout 10ms (cmd = %d,status = %x)\n",
__func__, cmd->cmd_idx, status);
goto err_exit;
}
status = mmio_read_32(base + SDMMC_STAR);
}
if ((status & (SDMMC_STAR_CTIMEOUT | SDMMC_STAR_CCRCFAIL)) != 0U) {
if ((status & SDMMC_STAR_CTIMEOUT) != 0U) {
err = -ETIMEDOUT;
/*
* Those timeouts can occur, and framework will handle
* the retries. CMD8 is expected to return this timeout
* for eMMC
*/
if (!((cmd->cmd_idx == MMC_CMD(1)) ||
(cmd->cmd_idx == MMC_CMD(13)) ||
((cmd->cmd_idx == MMC_CMD(8)) &&
(cmd->resp_type == MMC_RESPONSE_R7)))) {
ERROR("%s: CTIMEOUT (cmd = %d,status = %x)\n",
__func__, cmd->cmd_idx, status);
}
} else {
err = -EIO;
ERROR("%s: CRCFAIL (cmd = %d,status = %x)\n",
__func__, cmd->cmd_idx, status);
}
goto err_exit;
}
if ((cmd_reg & SDMMC_CMDR_WAITRESP) != 0U) {
if ((cmd->cmd_idx == MMC_CMD(9)) &&
((cmd_reg & SDMMC_CMDR_WAITRESP) == SDMMC_CMDR_WAITRESP)) {
/* Need to invert response to match CSD structure */
cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP4R);
cmd->resp_data[1] = mmio_read_32(base + SDMMC_RESP3R);
cmd->resp_data[2] = mmio_read_32(base + SDMMC_RESP2R);
cmd->resp_data[3] = mmio_read_32(base + SDMMC_RESP1R);
} else {
cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP1R);
if ((cmd_reg & SDMMC_CMDR_WAITRESP) ==
SDMMC_CMDR_WAITRESP) {
cmd->resp_data[1] = mmio_read_32(base +
SDMMC_RESP2R);
cmd->resp_data[2] = mmio_read_32(base +
SDMMC_RESP3R);
cmd->resp_data[3] = mmio_read_32(base +
SDMMC_RESP4R);
}
}
}
if (flags_data == 0U) {
mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS);
return 0;
}
status = mmio_read_32(base + SDMMC_STAR);
timeout = timeout_init_us(TIMEOUT_US_10_MS);
while ((status & flags_data) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: timeout 10ms (cmd = %d,status = %x)\n",
__func__, cmd->cmd_idx, status);
err = -ETIMEDOUT;
goto err_exit;
}
status = mmio_read_32(base + SDMMC_STAR);
};
if ((status & (SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DCRCFAIL |
SDMMC_STAR_TXUNDERR | SDMMC_STAR_RXOVERR |
SDMMC_STAR_IDMATE)) != 0U) {
ERROR("%s: Error flag (cmd = %d,status = %x)\n", __func__,
cmd->cmd_idx, status);
err = -EIO;
}
err_exit:
mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS);
mmio_clrbits_32(base + SDMMC_CMDR, SDMMC_CMDR_CMDTRANS);
if ((err != 0) && ((status & SDMMC_STAR_DPSMACT) != 0U)) {
int ret_stop = stm32_sdmmc2_stop_transfer();
if (ret_stop != 0) {
return ret_stop;
}
}
return err;
}
static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd)
{
uint8_t retry;
int err;
assert(cmd != NULL);
for (retry = 0U; retry < 3U; retry++) {
err = stm32_sdmmc2_send_cmd_req(cmd);
if (err == 0) {
return 0;
}
if ((cmd->cmd_idx == MMC_CMD(1)) ||
(cmd->cmd_idx == MMC_CMD(13))) {
return 0; /* Retry managed by framework */
}
/* Command 8 is expected to fail for eMMC */
if (cmd->cmd_idx != MMC_CMD(8)) {
WARN(" CMD%u, Retry: %u, Error: %d\n",
cmd->cmd_idx, retry + 1U, err);
}
udelay(10U);
}
return err;
}
static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width)
{
uintptr_t base = sdmmc2_params.reg_base;
uint32_t bus_cfg = 0;
uint32_t clock_div, max_freq, freq;
uint32_t clk_rate = sdmmc2_params.clk_rate;
uint32_t max_bus_freq = sdmmc2_params.device_info->max_bus_freq;
switch (width) {
case MMC_BUS_WIDTH_1:
break;
case MMC_BUS_WIDTH_4:
bus_cfg |= SDMMC_CLKCR_WIDBUS_4;
break;
case MMC_BUS_WIDTH_8:
bus_cfg |= SDMMC_CLKCR_WIDBUS_8;
break;
default:
panic();
break;
}
if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) {
if (max_bus_freq >= 52000000U) {
max_freq = STM32MP_EMMC_HIGH_SPEED_MAX_FREQ;
} else {
max_freq = STM32MP_EMMC_NORMAL_SPEED_MAX_FREQ;
}
} else {
if (max_bus_freq >= 50000000U) {
max_freq = STM32MP_SD_HIGH_SPEED_MAX_FREQ;
} else {
max_freq = STM32MP_SD_NORMAL_SPEED_MAX_FREQ;
}
}
if (sdmmc2_params.max_freq != 0U) {
freq = MIN(sdmmc2_params.max_freq, max_freq);
} else {
freq = max_freq;
}
clock_div = div_round_up(clk_rate, freq * 2U);
mmio_write_32(base + SDMMC_CLKCR,
SDMMC_CLKCR_HWFC_EN | clock_div | bus_cfg |
sdmmc2_params.negedge |
sdmmc2_params.pin_ckin);
return 0;
}
static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size)
{
struct mmc_cmd cmd;
int ret;
uintptr_t base = sdmmc2_params.reg_base;
uint32_t data_ctrl = SDMMC_DCTRLR_DTDIR;
uint32_t arg_size;
assert(size != 0U);
if (size > MMC_BLOCK_SIZE) {
arg_size = MMC_BLOCK_SIZE;
} else {
arg_size = size;
}
sdmmc2_params.use_dma = plat_sdmmc2_use_dma(base, buf);
if (sdmmc2_params.use_dma) {
inv_dcache_range(buf, size);
}
/* Prepare CMD 16*/
mmio_write_32(base + SDMMC_DTIMER, 0);
mmio_write_32(base + SDMMC_DLENR, 0);
mmio_write_32(base + SDMMC_DCTRLR, 0);
zeromem(&cmd, sizeof(struct mmc_cmd));
cmd.cmd_idx = MMC_CMD(16);
cmd.cmd_arg = arg_size;
cmd.resp_type = MMC_RESPONSE_R1;
ret = stm32_sdmmc2_send_cmd(&cmd);
if (ret != 0) {
ERROR("CMD16 failed\n");
return ret;
}
/* Prepare data command */
mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX);
mmio_write_32(base + SDMMC_DLENR, size);
if (sdmmc2_params.use_dma) {
mmio_write_32(base + SDMMC_IDMACTRLR,
SDMMC_IDMACTRLR_IDMAEN);
mmio_write_32(base + SDMMC_IDMABASE0R, buf);
flush_dcache_range(buf, size);
}
data_ctrl |= __builtin_ctz(arg_size) << SDMMC_DCTRLR_DBLOCKSIZE_SHIFT;
mmio_clrsetbits_32(base + SDMMC_DCTRLR,
SDMMC_DCTRLR_CLEAR_MASK,
data_ctrl);
return 0;
}
static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size)
{
uint32_t error_flags = SDMMC_STAR_RXOVERR | SDMMC_STAR_DCRCFAIL |
SDMMC_STAR_DTIMEOUT;
uint32_t flags = error_flags | SDMMC_STAR_DATAEND;
uint32_t status;
uint32_t *buffer;
uintptr_t base = sdmmc2_params.reg_base;
uintptr_t fifo_reg = base + SDMMC_FIFOR;
uint64_t timeout;
int ret;
/* Assert buf is 4 bytes aligned */
assert((buf & GENMASK(1, 0)) == 0U);
buffer = (uint32_t *)buf;
if (sdmmc2_params.use_dma) {
inv_dcache_range(buf, size);
return 0;
}
if (size <= MMC_BLOCK_SIZE) {
flags |= SDMMC_STAR_DBCKEND;
}
timeout = timeout_init_us(TIMEOUT_US_1_S);
do {
status = mmio_read_32(base + SDMMC_STAR);
if ((status & error_flags) != 0U) {
ERROR("%s: Read error (status = %x)\n", __func__,
status);
mmio_write_32(base + SDMMC_DCTRLR,
SDMMC_DCTRLR_FIFORST);
mmio_write_32(base + SDMMC_ICR,
SDMMC_STATIC_FLAGS);
ret = stm32_sdmmc2_stop_transfer();
if (ret != 0) {
return ret;
}
return -EIO;
}
if (timeout_elapsed(timeout)) {
ERROR("%s: timeout 1s (status = %x)\n",
__func__, status);
mmio_write_32(base + SDMMC_ICR,
SDMMC_STATIC_FLAGS);
ret = stm32_sdmmc2_stop_transfer();
if (ret != 0) {
return ret;
}
return -ETIMEDOUT;
}
if (size < (8U * sizeof(uint32_t))) {
if ((mmio_read_32(base + SDMMC_DCNTR) > 0U) &&
((status & SDMMC_STAR_RXFIFOE) == 0U)) {
*buffer = mmio_read_32(fifo_reg);
buffer++;
}
} else if ((status & SDMMC_STAR_RXFIFOHF) != 0U) {
uint32_t count;
/* Read data from SDMMC Rx FIFO */
for (count = 0; count < 8U; count++) {
*buffer = mmio_read_32(fifo_reg);
buffer++;
}
}
} while ((status & flags) == 0U);
mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS);
if ((status & SDMMC_STAR_DPSMACT) != 0U) {
WARN("%s: DPSMACT=1, send stop\n", __func__);
return stm32_sdmmc2_stop_transfer();
}
return 0;
}
static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size)
{
return 0;
}
static int stm32_sdmmc2_dt_get_config(void)
{
int sdmmc_node;
void *fdt = NULL;
const fdt32_t *cuint;
struct dt_node_info dt_info;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
if (fdt == NULL) {
return -FDT_ERR_NOTFOUND;
}
sdmmc_node = dt_match_instance_by_compatible(DT_SDMMC2_COMPAT,
sdmmc2_params.reg_base);
if (sdmmc_node == -FDT_ERR_NOTFOUND) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(&dt_info, sdmmc_node);
if (dt_info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
if (dt_set_pinctrl_config(sdmmc_node) != 0) {
return -FDT_ERR_BADVALUE;
}
sdmmc2_params.clock_id = dt_info.clock;
sdmmc2_params.reset_id = dt_info.reset;
if ((fdt_getprop(fdt, sdmmc_node, "st,use-ckin", NULL)) != NULL) {
sdmmc2_params.pin_ckin = SDMMC_CLKCR_SELCLKRX_0;
}
if ((fdt_getprop(fdt, sdmmc_node, "st,sig-dir", NULL)) != NULL) {
sdmmc2_params.dirpol = SDMMC_POWER_DIRPOL;
}
if ((fdt_getprop(fdt, sdmmc_node, "st,neg-edge", NULL)) != NULL) {
sdmmc2_params.negedge = SDMMC_CLKCR_NEGEDGE;
}
cuint = fdt_getprop(fdt, sdmmc_node, "bus-width", NULL);
if (cuint != NULL) {
switch (fdt32_to_cpu(*cuint)) {
case 4:
sdmmc2_params.bus_width = MMC_BUS_WIDTH_4;
break;
case 8:
sdmmc2_params.bus_width = MMC_BUS_WIDTH_8;
break;
default:
break;
}
}
cuint = fdt_getprop(fdt, sdmmc_node, "max-frequency", NULL);
if (cuint != NULL) {
sdmmc2_params.max_freq = fdt32_to_cpu(*cuint);
}
return 0;
}
unsigned long long stm32_sdmmc2_mmc_get_device_size(void)
{
return sdmmc2_params.device_info->device_size;
}
int stm32_sdmmc2_mmc_init(struct stm32_sdmmc2_params *params)
{
int rc;
assert((params != NULL) &&
((params->reg_base & MMC_BLOCK_MASK) == 0U) &&
((params->bus_width == MMC_BUS_WIDTH_1) ||
(params->bus_width == MMC_BUS_WIDTH_4) ||
(params->bus_width == MMC_BUS_WIDTH_8)));
memcpy(&sdmmc2_params, params, sizeof(struct stm32_sdmmc2_params));
if (stm32_sdmmc2_dt_get_config() != 0) {
ERROR("%s: DT error\n", __func__);
return -ENOMEM;
}
clk_enable(sdmmc2_params.clock_id);
rc = stm32mp_reset_assert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS);
if (rc != 0) {
panic();
}
udelay(2);
rc = stm32mp_reset_deassert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS);
if (rc != 0) {
panic();
}
mdelay(1);
sdmmc2_params.clk_rate = clk_get_rate(sdmmc2_params.clock_id);
sdmmc2_params.device_info->ocr_voltage = OCR_3_2_3_3 | OCR_3_3_3_4;
return mmc_init(&stm32_sdmmc2_ops, sdmmc2_params.clk_rate,
sdmmc2_params.bus_width, sdmmc2_params.flags,
sdmmc2_params.device_info);
}