blob: c68d12754a92e7e3df60bfa271831405c52c577a [file] [log] [blame]
developerb11a5392022-03-31 00:34:47 +08001// SPDX-License-Identifier: ISC
2/*
3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4 */
5
6#include <linux/dma-mapping.h>
7#include "mt76.h"
8#include "dma.h"
9
10static struct mt76_txwi_cache *
11mt76_alloc_txwi(struct mt76_dev *dev)
12{
13 struct mt76_txwi_cache *t;
14 dma_addr_t addr;
15 u8 *txwi;
16 int size;
17
18 size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19 txwi = kzalloc(size, GFP_ATOMIC);
20 if (!txwi)
21 return NULL;
22
23 addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24 DMA_TO_DEVICE);
25 t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26 t->dma_addr = addr;
27
28 return t;
29}
30
31static struct mt76_txwi_cache *
32__mt76_get_txwi(struct mt76_dev *dev)
33{
34 struct mt76_txwi_cache *t = NULL;
35
36 spin_lock(&dev->lock);
37 if (!list_empty(&dev->txwi_cache)) {
38 t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39 list);
40 list_del(&t->list);
41 }
42 spin_unlock(&dev->lock);
43
44 return t;
45}
46
47static struct mt76_txwi_cache *
48mt76_get_txwi(struct mt76_dev *dev)
49{
50 struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51
52 if (t)
53 return t;
54
55 return mt76_alloc_txwi(dev);
56}
57
58void
59mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60{
61 if (!t)
62 return;
63
64 spin_lock(&dev->lock);
65 list_add(&t->list, &dev->txwi_cache);
66 spin_unlock(&dev->lock);
67}
68EXPORT_SYMBOL_GPL(mt76_put_txwi);
69
70static void
71mt76_free_pending_txwi(struct mt76_dev *dev)
72{
73 struct mt76_txwi_cache *t;
74
75 local_bh_disable();
76 while ((t = __mt76_get_txwi(dev)) != NULL) {
77 dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
78 DMA_TO_DEVICE);
79 kfree(mt76_get_txwi_ptr(dev, t));
80 }
81 local_bh_enable();
82}
83
84static void
85mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
86{
87 writel(q->desc_dma, &q->regs->desc_base);
88 writel(q->ndesc, &q->regs->ring_size);
89 q->head = readl(&q->regs->dma_idx);
90 q->tail = q->head;
91}
92
93static void
94mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
95{
96 int i;
97
98 if (!q || !q->ndesc)
99 return;
100
101 /* clear descriptors */
102 for (i = 0; i < q->ndesc; i++)
103 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
104
105 writel(0, &q->regs->cpu_idx);
106 writel(0, &q->regs->dma_idx);
107 mt76_dma_sync_idx(dev, q);
108}
109
110static int
111mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
112 int idx, int n_desc, int bufsize,
113 u32 ring_base)
114{
115 int size;
116
117 spin_lock_init(&q->lock);
118 spin_lock_init(&q->cleanup_lock);
119
120 q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
121 q->ndesc = n_desc;
122 q->buf_size = bufsize;
123 q->hw_idx = idx;
124
125 size = q->ndesc * sizeof(struct mt76_desc);
126 q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
127 if (!q->desc)
128 return -ENOMEM;
129
130 size = q->ndesc * sizeof(*q->entry);
131 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
132 if (!q->entry)
133 return -ENOMEM;
134
135 mt76_dma_queue_reset(dev, q);
136
137 return 0;
138}
139
140static int
141mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
142 struct mt76_queue_buf *buf, int nbufs, u32 info,
143 struct sk_buff *skb, void *txwi)
144{
145 struct mt76_queue_entry *entry;
146 struct mt76_desc *desc;
147 u32 ctrl;
148 int i, idx = -1;
149
150 if (txwi) {
151 q->entry[q->head].txwi = DMA_DUMMY_DATA;
152 q->entry[q->head].skip_buf0 = true;
153 }
154
155 for (i = 0; i < nbufs; i += 2, buf += 2) {
156 u32 buf0 = buf[0].addr, buf1 = 0;
157
158 idx = q->head;
159 q->head = (q->head + 1) % q->ndesc;
160
161 desc = &q->desc[idx];
162 entry = &q->entry[idx];
163
164 if (buf[0].skip_unmap)
165 entry->skip_buf0 = true;
166 entry->skip_buf1 = i == nbufs - 1;
167
168 entry->dma_addr[0] = buf[0].addr;
169 entry->dma_len[0] = buf[0].len;
170
171 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
172 if (i < nbufs - 1) {
173 entry->dma_addr[1] = buf[1].addr;
174 entry->dma_len[1] = buf[1].len;
175 buf1 = buf[1].addr;
176 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
177 if (buf[1].skip_unmap)
178 entry->skip_buf1 = true;
179 }
180
181 if (i == nbufs - 1)
182 ctrl |= MT_DMA_CTL_LAST_SEC0;
183 else if (i == nbufs - 2)
184 ctrl |= MT_DMA_CTL_LAST_SEC1;
185
186 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
187 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
188 WRITE_ONCE(desc->info, cpu_to_le32(info));
189 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
190
191 q->queued++;
192 }
193
194 q->entry[idx].txwi = txwi;
195 q->entry[idx].skb = skb;
196 q->entry[idx].wcid = 0xffff;
197
198 return idx;
199}
200
201static void
202mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
203 struct mt76_queue_entry *prev_e)
204{
205 struct mt76_queue_entry *e = &q->entry[idx];
206
207 if (!e->skip_buf0)
208 dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
209 DMA_TO_DEVICE);
210
211 if (!e->skip_buf1)
212 dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
213 DMA_TO_DEVICE);
214
215 if (e->txwi == DMA_DUMMY_DATA)
216 e->txwi = NULL;
217
218 if (e->skb == DMA_DUMMY_DATA)
219 e->skb = NULL;
220
221 *prev_e = *e;
222 memset(e, 0, sizeof(*e));
223}
224
225static void
226mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
227{
228 wmb();
229 writel(q->head, &q->regs->cpu_idx);
230}
231
232static void
233mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
234{
235 struct mt76_queue_entry entry;
236 int last;
237
238 if (!q || !q->ndesc)
239 return;
240
241 spin_lock_bh(&q->cleanup_lock);
242 if (flush)
243 last = -1;
244 else
245 last = readl(&q->regs->dma_idx);
246
247 while (q->queued > 0 && q->tail != last) {
248 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
249 mt76_queue_tx_complete(dev, q, &entry);
250
251 if (entry.txwi) {
252 if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
253 mt76_put_txwi(dev, entry.txwi);
254 }
255
256 if (!flush && q->tail == last)
257 last = readl(&q->regs->dma_idx);
258
259 }
260 spin_unlock_bh(&q->cleanup_lock);
261
262 if (flush) {
263 spin_lock_bh(&q->lock);
264 mt76_dma_sync_idx(dev, q);
265 mt76_dma_kick_queue(dev, q);
266 spin_unlock_bh(&q->lock);
267 }
268
269 if (!q->queued)
270 wake_up(&dev->tx_wait);
271}
272
273static void *
274mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
275 int *len, u32 *info, bool *more)
276{
277 struct mt76_queue_entry *e = &q->entry[idx];
278 struct mt76_desc *desc = &q->desc[idx];
279 dma_addr_t buf_addr;
280 void *buf = e->buf;
281 int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
282
283 buf_addr = e->dma_addr[0];
284 if (len) {
285 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
286 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
287 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
288 }
289
290 if (info)
291 *info = le32_to_cpu(desc->info);
292
293 dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
294 e->buf = NULL;
295
296 return buf;
297}
298
299static void *
300mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
301 int *len, u32 *info, bool *more)
302{
303 int idx = q->tail;
304
305 *more = false;
306 if (!q->queued)
307 return NULL;
308
309 if (flush)
310 q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
311 else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
312 return NULL;
313
314 q->tail = (q->tail + 1) % q->ndesc;
315 q->queued--;
316
317 return mt76_dma_get_buf(dev, q, idx, len, info, more);
318}
319
320static int
321mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
322 struct sk_buff *skb, u32 tx_info)
323{
324 struct mt76_queue_buf buf = {};
325 dma_addr_t addr;
326
327 if (q->queued + 1 >= q->ndesc - 1)
328 goto error;
329
330 addr = dma_map_single(dev->dev, skb->data, skb->len,
331 DMA_TO_DEVICE);
332 if (unlikely(dma_mapping_error(dev->dev, addr)))
333 goto error;
334
335 buf.addr = addr;
336 buf.len = skb->len;
337
338 spin_lock_bh(&q->lock);
339 mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
340 mt76_dma_kick_queue(dev, q);
341 spin_unlock_bh(&q->lock);
342
343 return 0;
344
345error:
346 dev_kfree_skb(skb);
347 return -ENOMEM;
348}
349
350static int
351mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
352 struct sk_buff *skb, struct mt76_wcid *wcid,
353 struct ieee80211_sta *sta)
354{
355 struct ieee80211_tx_status status = {
356 .sta = sta,
357 };
358 struct mt76_tx_info tx_info = {
359 .skb = skb,
360 };
361 struct ieee80211_hw *hw;
362 int len, n = 0, ret = -ENOMEM;
363 struct mt76_txwi_cache *t;
364 struct sk_buff *iter;
365 dma_addr_t addr;
366 u8 *txwi;
367
368 t = mt76_get_txwi(dev);
369 if (!t)
370 goto free_skb;
371
372 txwi = mt76_get_txwi_ptr(dev, t);
373
374 skb->prev = skb->next = NULL;
375 if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
376 mt76_insert_hdr_pad(skb);
377
378 len = skb_headlen(skb);
379 addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
380 if (unlikely(dma_mapping_error(dev->dev, addr)))
381 goto free;
382
383 tx_info.buf[n].addr = t->dma_addr;
384 tx_info.buf[n++].len = dev->drv->txwi_size;
385 tx_info.buf[n].addr = addr;
386 tx_info.buf[n++].len = len;
387
388 skb_walk_frags(skb, iter) {
389 if (n == ARRAY_SIZE(tx_info.buf))
390 goto unmap;
391
392 addr = dma_map_single(dev->dev, iter->data, iter->len,
393 DMA_TO_DEVICE);
394 if (unlikely(dma_mapping_error(dev->dev, addr)))
395 goto unmap;
396
397 tx_info.buf[n].addr = addr;
398 tx_info.buf[n++].len = iter->len;
399 }
400 tx_info.nbuf = n;
401
402 if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
403 ret = -ENOMEM;
404 goto unmap;
405 }
406
407 dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
408 DMA_TO_DEVICE);
409 ret = dev->drv->tx_prepare_skb(dev, txwi, q->qid, wcid, sta, &tx_info);
410 dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
411 DMA_TO_DEVICE);
412 if (ret < 0)
413 goto unmap;
414
415 return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
416 tx_info.info, tx_info.skb, t);
417
418unmap:
419 for (n--; n > 0; n--)
420 dma_unmap_single(dev->dev, tx_info.buf[n].addr,
421 tx_info.buf[n].len, DMA_TO_DEVICE);
422
423free:
424#ifdef CONFIG_NL80211_TESTMODE
425 /* fix tx_done accounting on queue overflow */
426 if (mt76_is_testmode_skb(dev, skb, &hw)) {
427 struct mt76_phy *phy = hw->priv;
428
429 if (tx_info.skb == phy->test.tx_skb)
430 phy->test.tx_done--;
431 }
432#endif
433
434 mt76_put_txwi(dev, t);
435
436free_skb:
437 status.skb = tx_info.skb;
438 hw = mt76_tx_status_get_hw(dev, tx_info.skb);
439 ieee80211_tx_status_ext(hw, &status);
440
441 return ret;
442}
443
444static int
445mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
446{
447 dma_addr_t addr;
448 void *buf;
449 int frames = 0;
450 int len = SKB_WITH_OVERHEAD(q->buf_size);
451 int offset = q->buf_offset;
452
453 if (!q->ndesc)
454 return 0;
455
456 spin_lock_bh(&q->lock);
457
458 while (q->queued < q->ndesc - 1) {
459 struct mt76_queue_buf qbuf;
460
461 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
462 if (!buf)
463 break;
464
465 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
466 if (unlikely(dma_mapping_error(dev->dev, addr))) {
467 skb_free_frag(buf);
468 break;
469 }
470
471 qbuf.addr = addr + offset;
472 qbuf.len = len - offset;
473 qbuf.skip_unmap = false;
474 mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
475 frames++;
476 }
477
478 if (frames)
479 mt76_dma_kick_queue(dev, q);
480
481 spin_unlock_bh(&q->lock);
482
483 return frames;
484}
485
486static void
487mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
488{
489 struct page *page;
490 void *buf;
491 bool more;
492
493 if (!q->ndesc)
494 return;
495
496 spin_lock_bh(&q->lock);
497 do {
498 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
499 if (!buf)
500 break;
501
502 skb_free_frag(buf);
503 } while (1);
504 spin_unlock_bh(&q->lock);
505
506 if (!q->rx_page.va)
507 return;
508
509 page = virt_to_page(q->rx_page.va);
510 __page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
511 memset(&q->rx_page, 0, sizeof(q->rx_page));
512}
513
514static void
515mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
516{
517 struct mt76_queue *q = &dev->q_rx[qid];
518 int i;
519
520 if (!q->ndesc)
521 return;
522
523 for (i = 0; i < q->ndesc; i++)
524 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
525
526 mt76_dma_rx_cleanup(dev, q);
527 mt76_dma_sync_idx(dev, q);
528 mt76_dma_rx_fill(dev, q);
529
530 if (!q->rx_head)
531 return;
532
533 dev_kfree_skb(q->rx_head);
534 q->rx_head = NULL;
535}
536
537static void
538mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
539 int len, bool more)
540{
541 struct sk_buff *skb = q->rx_head;
542 struct skb_shared_info *shinfo = skb_shinfo(skb);
543 int nr_frags = shinfo->nr_frags;
544
545 if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
546 struct page *page = virt_to_head_page(data);
547 int offset = data - page_address(page) + q->buf_offset;
548
549 skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
550 } else {
551 skb_free_frag(data);
552 }
553
554 if (more)
555 return;
556
557 q->rx_head = NULL;
558 if (nr_frags < ARRAY_SIZE(shinfo->frags))
559 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
560 else
561 dev_kfree_skb(skb);
562}
563
564static int
565mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
566{
567 int len, data_len, done = 0;
568 struct sk_buff *skb;
569 unsigned char *data;
570 bool more;
571
572 while (done < budget) {
573 u32 info;
574
575 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
576 if (!data)
577 break;
578
579 if (q->rx_head)
580 data_len = q->buf_size;
581 else
582 data_len = SKB_WITH_OVERHEAD(q->buf_size);
583
584 if (data_len < len + q->buf_offset) {
585 dev_kfree_skb(q->rx_head);
586 q->rx_head = NULL;
587 goto free_frag;
588 }
589
590 if (q->rx_head) {
591 mt76_add_fragment(dev, q, data, len, more);
592 continue;
593 }
594
595 if (!more && dev->drv->rx_check &&
596 !(dev->drv->rx_check(dev, q - dev->q_rx, data, len)))
597 goto free_frag;
598
599 skb = build_skb(data, q->buf_size);
600 if (!skb)
601 goto free_frag;
602
603 skb_reserve(skb, q->buf_offset);
604
605 if (q == &dev->q_rx[MT_RXQ_MCU]) {
606 u32 *rxfce = (u32 *)skb->cb;
607 *rxfce = info;
608 }
609
610 __skb_put(skb, len);
611 done++;
612
613 if (more) {
614 q->rx_head = skb;
615 continue;
616 }
617
618 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
619 continue;
620
621free_frag:
622 skb_free_frag(data);
623 }
624
625 mt76_dma_rx_fill(dev, q);
626 return done;
627}
628
629int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
630{
631 struct mt76_dev *dev;
632 int qid, done = 0, cur;
633
634 dev = container_of(napi->dev, struct mt76_dev, napi_dev);
635 qid = napi - dev->napi;
636
637 rcu_read_lock();
638
639 do {
640 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
641 mt76_rx_poll_complete(dev, qid, napi);
642 done += cur;
643 } while (cur && done < budget);
644
645 rcu_read_unlock();
646
647 if (done < budget && napi_complete(napi))
648 dev->drv->rx_poll_complete(dev, qid);
649
650 return done;
651}
652EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
653
654static int
655mt76_dma_init(struct mt76_dev *dev,
656 int (*poll)(struct napi_struct *napi, int budget))
657{
658 int i;
659
660 init_dummy_netdev(&dev->napi_dev);
661 init_dummy_netdev(&dev->tx_napi_dev);
662 snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
663 wiphy_name(dev->hw->wiphy));
664 dev->napi_dev.threaded = 1;
665
666 mt76_for_each_q_rx(dev, i) {
667 netif_napi_add(&dev->napi_dev, &dev->napi[i], poll, 64);
668 mt76_dma_rx_fill(dev, &dev->q_rx[i]);
669 napi_enable(&dev->napi[i]);
670 }
671
672 return 0;
673}
674
675static const struct mt76_queue_ops mt76_dma_ops = {
676 .init = mt76_dma_init,
677 .alloc = mt76_dma_alloc_queue,
678 .reset_q = mt76_dma_queue_reset,
679 .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
680 .tx_queue_skb = mt76_dma_tx_queue_skb,
681 .tx_cleanup = mt76_dma_tx_cleanup,
682 .rx_cleanup = mt76_dma_rx_cleanup,
683 .rx_reset = mt76_dma_rx_reset,
684 .kick = mt76_dma_kick_queue,
685};
686
687void mt76_dma_attach(struct mt76_dev *dev)
688{
689 dev->queue_ops = &mt76_dma_ops;
690}
691EXPORT_SYMBOL_GPL(mt76_dma_attach);
692
693void mt76_dma_cleanup(struct mt76_dev *dev)
694{
695 int i;
696
697 mt76_worker_disable(&dev->tx_worker);
698 netif_napi_del(&dev->tx_napi);
699
700 for (i = 0; i < ARRAY_SIZE(dev->phy.q_tx); i++) {
701 mt76_dma_tx_cleanup(dev, dev->phy.q_tx[i], true);
702 if (dev->phy2)
703 mt76_dma_tx_cleanup(dev, dev->phy2->q_tx[i], true);
704 if (dev->phy3)
705 mt76_dma_tx_cleanup(dev, dev->phy3->q_tx[i], true);
706 }
707
708 for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
709 mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
710
711 mt76_for_each_q_rx(dev, i) {
712 netif_napi_del(&dev->napi[i]);
713 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
714 }
715
716 mt76_free_pending_txwi(dev);
717}
718EXPORT_SYMBOL_GPL(mt76_dma_cleanup);