Willy Tarreau | e6d2e4d | 2007-11-15 23:56:17 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Elastic Binary Trees - macros and structures for operations on pointer nodes. |
| 3 | * (C) 2002-2007 - Willy Tarreau <w@1wt.eu> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | */ |
| 19 | |
Willy Tarreau | f56fd8a | 2007-11-19 18:43:04 +0100 | [diff] [blame] | 20 | #ifndef _COMMON_EBPTTREE_H |
| 21 | #define _COMMON_EBPTTREE_H |
| 22 | |
Willy Tarreau | e6d2e4d | 2007-11-15 23:56:17 +0100 | [diff] [blame] | 23 | #include "ebtree.h" |
| 24 | |
| 25 | |
| 26 | /* Return the structure of type <type> whose member <member> points to <ptr> */ |
| 27 | #define ebpt_entry(ptr, type, member) container_of(ptr, type, member) |
| 28 | |
| 29 | #define EBPT_ROOT EB_ROOT |
| 30 | #define EBPT_TREE_HEAD EB_TREE_HEAD |
| 31 | |
| 32 | /* on *almost* all platforms, a pointer can be cast into a size_t which is unsigned */ |
| 33 | #ifndef PTR_INT_TYPE |
| 34 | #define PTR_INT_TYPE size_t |
| 35 | #endif |
| 36 | |
| 37 | typedef PTR_INT_TYPE ptr_t; |
| 38 | |
| 39 | /* This structure carries a node, a leaf, and a key. It must start with the |
| 40 | * eb_node so that it can be cast into an eb_node. We could also have put some |
| 41 | * sort of transparent union here to reduce the indirection level, but the fact |
| 42 | * is, the end user is not meant to manipulate internals, so this is pointless. |
| 43 | */ |
| 44 | struct ebpt_node { |
| 45 | struct eb_node node; /* the tree node, must be at the beginning */ |
| 46 | void *key; |
| 47 | }; |
| 48 | |
| 49 | /* |
| 50 | * Exported functions and macros. |
| 51 | * Many of them are always inlined because they are extremely small, and |
| 52 | * are generally called at most once or twice in a program. |
| 53 | */ |
| 54 | |
| 55 | /* Return leftmost node in the tree, or NULL if none */ |
| 56 | static inline struct ebpt_node *ebpt_first(struct eb_root *root) |
| 57 | { |
| 58 | return ebpt_entry(eb_first(root), struct ebpt_node, node); |
| 59 | } |
| 60 | |
| 61 | /* Return rightmost node in the tree, or NULL if none */ |
| 62 | static inline struct ebpt_node *ebpt_last(struct eb_root *root) |
| 63 | { |
| 64 | return ebpt_entry(eb_last(root), struct ebpt_node, node); |
| 65 | } |
| 66 | |
| 67 | /* Return next node in the tree, or NULL if none */ |
| 68 | static inline struct ebpt_node *ebpt_next(struct ebpt_node *ebpt) |
| 69 | { |
| 70 | return ebpt_entry(eb_next(&ebpt->node), struct ebpt_node, node); |
| 71 | } |
| 72 | |
| 73 | /* Return previous node in the tree, or NULL if none */ |
| 74 | static inline struct ebpt_node *ebpt_prev(struct ebpt_node *ebpt) |
| 75 | { |
| 76 | return ebpt_entry(eb_prev(&ebpt->node), struct ebpt_node, node); |
| 77 | } |
| 78 | |
| 79 | /* Return next node in the tree, skipping duplicates, or NULL if none */ |
| 80 | static inline struct ebpt_node *ebpt_next_unique(struct ebpt_node *ebpt) |
| 81 | { |
| 82 | return ebpt_entry(eb_next_unique(&ebpt->node), struct ebpt_node, node); |
| 83 | } |
| 84 | |
| 85 | /* Return previous node in the tree, skipping duplicates, or NULL if none */ |
| 86 | static inline struct ebpt_node *ebpt_prev_unique(struct ebpt_node *ebpt) |
| 87 | { |
| 88 | return ebpt_entry(eb_prev_unique(&ebpt->node), struct ebpt_node, node); |
| 89 | } |
| 90 | |
| 91 | /* Delete node from the tree if it was linked in. Mark the node unused. Note |
| 92 | * that this function relies on a non-inlined generic function: eb_delete. |
| 93 | */ |
| 94 | static inline void ebpt_delete(struct ebpt_node *ebpt) |
| 95 | { |
| 96 | eb_delete(&ebpt->node); |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * The following functions are not inlined by default. They are declared |
| 101 | * in ebpttree.c, which simply relies on their inline version. |
| 102 | */ |
| 103 | REGPRM2 struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x); |
| 104 | REGPRM2 struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new); |
| 105 | |
| 106 | /* |
| 107 | * The following functions are less likely to be used directly, because their |
| 108 | * code is larger. The non-inlined version is preferred. |
| 109 | */ |
| 110 | |
| 111 | /* Delete node from the tree if it was linked in. Mark the node unused. */ |
| 112 | static inline void __ebpt_delete(struct ebpt_node *ebpt) |
| 113 | { |
| 114 | __eb_delete(&ebpt->node); |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Find the first occurence of a key in the tree <root>. If none can be |
| 119 | * found, return NULL. |
| 120 | */ |
| 121 | static inline struct ebpt_node *__ebpt_lookup(struct eb_root *root, void *x) |
| 122 | { |
| 123 | struct ebpt_node *node; |
| 124 | eb_troot_t *troot; |
| 125 | |
| 126 | troot = root->b[EB_LEFT]; |
| 127 | if (unlikely(troot == NULL)) |
| 128 | return NULL; |
| 129 | |
| 130 | while (1) { |
| 131 | if ((eb_gettag(troot) == EB_LEAF)) { |
| 132 | node = container_of(eb_untag(troot, EB_LEAF), |
| 133 | struct ebpt_node, node.branches); |
| 134 | if (node->key == x) |
| 135 | return node; |
| 136 | else |
| 137 | return NULL; |
| 138 | } |
| 139 | node = container_of(eb_untag(troot, EB_NODE), |
| 140 | struct ebpt_node, node.branches); |
| 141 | |
| 142 | if (x == node->key) { |
| 143 | /* Either we found the node which holds the key, or |
| 144 | * we have a dup tree. In the later case, we have to |
| 145 | * walk it down left to get the first entry. |
| 146 | */ |
| 147 | if (node->node.bit < 0) { |
| 148 | troot = node->node.branches.b[EB_LEFT]; |
| 149 | while (eb_gettag(troot) != EB_LEAF) |
| 150 | troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT]; |
| 151 | node = container_of(eb_untag(troot, EB_LEAF), |
| 152 | struct ebpt_node, node.branches); |
| 153 | } |
| 154 | return node; |
| 155 | } |
| 156 | |
| 157 | troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK]; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | /* Insert ebpt_node <new> into subtree starting at node root <root>. |
| 162 | * Only new->key needs be set with the key. The ebpt_node is returned. |
| 163 | */ |
| 164 | static inline struct ebpt_node * |
| 165 | __ebpt_insert(struct eb_root *root, struct ebpt_node *new) { |
| 166 | struct ebpt_node *old; |
| 167 | unsigned int side; |
| 168 | eb_troot_t *troot; |
| 169 | void *newkey; /* caching the key saves approximately one cycle */ |
| 170 | |
| 171 | side = EB_LEFT; |
| 172 | troot = root->b[EB_LEFT]; |
| 173 | if (unlikely(troot == NULL)) { |
| 174 | /* Tree is empty, insert the leaf part below the left branch */ |
| 175 | root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF); |
| 176 | new->node.leaf_p = eb_dotag(root, EB_LEFT); |
| 177 | new->node.node_p = NULL; /* node part unused */ |
| 178 | return new; |
| 179 | } |
| 180 | |
| 181 | /* The tree descent is fairly easy : |
| 182 | * - first, check if we have reached a leaf node |
| 183 | * - second, check if we have gone too far |
| 184 | * - third, reiterate |
| 185 | * Everywhere, we use <new> for the node node we are inserting, <root> |
| 186 | * for the node we attach it to, and <old> for the node we are |
| 187 | * displacing below <new>. <troot> will always point to the future node |
| 188 | * (tagged with its type). <side> carries the side the node <new> is |
| 189 | * attached to below its parent, which is also where previous node |
| 190 | * was attached. <newkey> carries the key being inserted. |
| 191 | */ |
| 192 | newkey = new->key; |
| 193 | |
| 194 | while (1) { |
| 195 | if (unlikely(eb_gettag(troot) == EB_LEAF)) { |
| 196 | eb_troot_t *new_left, *new_rght; |
| 197 | eb_troot_t *new_leaf, *old_leaf; |
| 198 | |
| 199 | old = container_of(eb_untag(troot, EB_LEAF), |
| 200 | struct ebpt_node, node.branches); |
| 201 | |
| 202 | new_left = eb_dotag(&new->node.branches, EB_LEFT); |
| 203 | new_rght = eb_dotag(&new->node.branches, EB_RGHT); |
| 204 | new_leaf = eb_dotag(&new->node.branches, EB_LEAF); |
| 205 | old_leaf = eb_dotag(&old->node.branches, EB_LEAF); |
| 206 | |
| 207 | new->node.node_p = old->node.leaf_p; |
| 208 | |
| 209 | /* Right here, we have 3 possibilities : |
| 210 | - the tree does not contain the key, and we have |
| 211 | new->key < old->key. We insert new above old, on |
| 212 | the left ; |
| 213 | |
| 214 | - the tree does not contain the key, and we have |
| 215 | new->key > old->key. We insert new above old, on |
| 216 | the right ; |
| 217 | |
| 218 | - the tree does contain the key, which implies it |
| 219 | is alone. We add the new key next to it as a |
| 220 | first duplicate. |
| 221 | |
| 222 | The last two cases can easily be partially merged. |
| 223 | */ |
| 224 | |
| 225 | if (new->key < old->key) { |
| 226 | new->node.leaf_p = new_left; |
| 227 | old->node.leaf_p = new_rght; |
| 228 | new->node.branches.b[EB_LEFT] = new_leaf; |
| 229 | new->node.branches.b[EB_RGHT] = old_leaf; |
| 230 | } else { |
| 231 | /* new->key >= old->key, new goes the right */ |
| 232 | old->node.leaf_p = new_left; |
| 233 | new->node.leaf_p = new_rght; |
| 234 | new->node.branches.b[EB_LEFT] = old_leaf; |
| 235 | new->node.branches.b[EB_RGHT] = new_leaf; |
| 236 | |
| 237 | if (new->key == old->key) { |
| 238 | new->node.bit = -1; |
| 239 | root->b[side] = eb_dotag(&new->node.branches, EB_NODE); |
| 240 | return new; |
| 241 | } |
| 242 | } |
| 243 | break; |
| 244 | } |
| 245 | |
| 246 | /* OK we're walking down this link */ |
| 247 | old = container_of(eb_untag(troot, EB_NODE), |
| 248 | struct ebpt_node, node.branches); |
| 249 | |
| 250 | /* Stop going down when we don't have common bits anymore. We |
| 251 | * also stop in front of a duplicates tree because it means we |
| 252 | * have to insert above. |
| 253 | */ |
| 254 | |
| 255 | if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */ |
| 256 | ((((ptr_t)new->key ^ (ptr_t)old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) { |
| 257 | /* The tree did not contain the key, so we insert <new> before the node |
| 258 | * <old>, and set ->bit to designate the lowest bit position in <new> |
| 259 | * which applies to ->branches.b[]. |
| 260 | */ |
| 261 | eb_troot_t *new_left, *new_rght; |
| 262 | eb_troot_t *new_leaf, *old_node; |
| 263 | |
| 264 | new_left = eb_dotag(&new->node.branches, EB_LEFT); |
| 265 | new_rght = eb_dotag(&new->node.branches, EB_RGHT); |
| 266 | new_leaf = eb_dotag(&new->node.branches, EB_LEAF); |
| 267 | old_node = eb_dotag(&old->node.branches, EB_NODE); |
| 268 | |
| 269 | new->node.node_p = old->node.node_p; |
| 270 | |
| 271 | if (new->key < old->key) { |
| 272 | new->node.leaf_p = new_left; |
| 273 | old->node.node_p = new_rght; |
| 274 | new->node.branches.b[EB_LEFT] = new_leaf; |
| 275 | new->node.branches.b[EB_RGHT] = old_node; |
| 276 | } |
| 277 | else if (new->key > old->key) { |
| 278 | old->node.node_p = new_left; |
| 279 | new->node.leaf_p = new_rght; |
| 280 | new->node.branches.b[EB_LEFT] = old_node; |
| 281 | new->node.branches.b[EB_RGHT] = new_leaf; |
| 282 | } |
| 283 | else { |
| 284 | struct eb_node *ret; |
| 285 | ret = eb_insert_dup(&old->node, &new->node); |
| 286 | return container_of(ret, struct ebpt_node, node); |
| 287 | } |
| 288 | break; |
| 289 | } |
| 290 | |
| 291 | /* walk down */ |
| 292 | root = &old->node.branches; |
| 293 | side = ((ptr_t)newkey >> old->node.bit) & EB_NODE_BRANCH_MASK; |
| 294 | troot = root->b[side]; |
| 295 | } |
| 296 | |
| 297 | /* Ok, now we are inserting <new> between <root> and <old>. <old>'s |
| 298 | * parent is already set to <new>, and the <root>'s branch is still in |
| 299 | * <side>. Update the root's leaf till we have it. Note that we can also |
| 300 | * find the side by checking the side of new->node.node_p. |
| 301 | */ |
| 302 | |
| 303 | /* We need the common higher bits between new->key and old->key. |
| 304 | * What differences are there between new->key and the node here ? |
| 305 | * NOTE that bit(new) is always < bit(root) because highest |
| 306 | * bit of new->key and old->key are identical here (otherwise they |
| 307 | * would sit on different branches). |
| 308 | */ |
| 309 | // note that if EB_NODE_BITS > 1, we should check that it's still >= 0 |
| 310 | |
| 311 | /* let the compiler choose the best branch based on the pointer size */ |
| 312 | if (sizeof(ptr_t) == 4) |
| 313 | new->node.bit = flsnz((ptr_t)new->key ^ (ptr_t)old->key) - EB_NODE_BITS; |
| 314 | else |
| 315 | new->node.bit = fls64((ptr_t)new->key ^ (ptr_t)old->key) - EB_NODE_BITS; |
| 316 | root->b[side] = eb_dotag(&new->node.branches, EB_NODE); |
| 317 | |
| 318 | return new; |
| 319 | } |
| 320 | |
Willy Tarreau | f56fd8a | 2007-11-19 18:43:04 +0100 | [diff] [blame] | 321 | #endif /* _COMMON_EBPTTREE_H */ |