Baptiste Assmann | 325137d | 2015-04-13 23:40:55 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Name server resolution |
| 3 | * |
| 4 | * Copyright 2014 Baptiste Assmann <bedis9@gmail.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include <errno.h> |
| 14 | #include <fcntl.h> |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | #include <string.h> |
| 18 | #include <unistd.h> |
| 19 | |
| 20 | #include <sys/types.h> |
| 21 | |
| 22 | #include <common/time.h> |
| 23 | #include <common/ticks.h> |
| 24 | |
| 25 | #include <types/global.h> |
| 26 | #include <types/dns.h> |
| 27 | #include <types/proto_udp.h> |
| 28 | |
| 29 | #include <proto/checks.h> |
| 30 | #include <proto/dns.h> |
| 31 | #include <proto/fd.h> |
| 32 | #include <proto/log.h> |
| 33 | #include <proto/server.h> |
| 34 | #include <proto/task.h> |
| 35 | #include <proto/proto_udp.h> |
| 36 | |
| 37 | struct list dns_resolvers = LIST_HEAD_INIT(dns_resolvers); |
| 38 | struct dns_resolution *resolution = NULL; |
| 39 | |
| 40 | static int64_t dns_query_id_seed; /* random seed */ |
| 41 | |
| 42 | /* proto_udp callback functions for a DNS resolution */ |
| 43 | struct dgram_data_cb resolve_dgram_cb = { |
| 44 | .recv = dns_resolve_recv, |
| 45 | .send = dns_resolve_send, |
| 46 | }; |
| 47 | |
| 48 | #if DEBUG |
| 49 | /* |
| 50 | * go through the resolutions associated to a resolvers section and print the ID and hostname in |
| 51 | * domain name format |
| 52 | * should be used for debug purpose only |
| 53 | */ |
| 54 | void dns_print_current_resolutions(struct dns_resolvers *resolvers) |
| 55 | { |
| 56 | list_for_each_entry(resolution, &resolvers->curr_resolution, list) { |
| 57 | printf(" resolution %d for %s\n", resolution->query_id, resolution->hostname_dn); |
| 58 | } |
| 59 | } |
| 60 | #endif |
| 61 | |
| 62 | /* |
| 63 | * check if there is more than 1 resolution in the resolver's resolution list |
| 64 | * return value: |
| 65 | * 0: empty list |
| 66 | * 1: exactly one entry in the list |
| 67 | * 2: more than one entry in the list |
| 68 | */ |
| 69 | int dns_check_resolution_queue(struct dns_resolvers *resolvers) |
| 70 | { |
| 71 | |
| 72 | if (LIST_ISEMPTY(&resolvers->curr_resolution)) |
| 73 | return 0; |
| 74 | |
| 75 | if ((resolvers->curr_resolution.n) && (resolvers->curr_resolution.n == resolvers->curr_resolution.p)) |
| 76 | return 1; |
| 77 | |
| 78 | if (! ((resolvers->curr_resolution.n == resolvers->curr_resolution.p) |
| 79 | && (&resolvers->curr_resolution != resolvers->curr_resolution.n))) |
| 80 | return 2; |
| 81 | |
| 82 | return 0; |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * reset all parameters of a DNS resolution to 0 (or equivalent) |
| 87 | * and clean it up from all associated lists (resolution->qid and resolution->list) |
| 88 | */ |
| 89 | void dns_reset_resolution(struct dns_resolution *resolution) |
| 90 | { |
| 91 | /* update resolution status */ |
| 92 | resolution->step = RSLV_STEP_NONE; |
| 93 | |
| 94 | resolution->try = 0; |
| 95 | resolution->try_cname = 0; |
| 96 | resolution->last_resolution = now_ms; |
| 97 | resolution->nb_responses = 0; |
| 98 | |
| 99 | /* clean up query id */ |
| 100 | eb32_delete(&resolution->qid); |
| 101 | resolution->query_id = 0; |
| 102 | resolution->qid.key = 0; |
| 103 | |
| 104 | /* default values */ |
| 105 | resolution->query_type = DNS_RTYPE_ANY; |
| 106 | |
| 107 | /* the second resolution in the queue becomes the first one */ |
| 108 | LIST_DEL(&resolution->list); |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * function called when a network IO is generated on a name server socket for an incoming packet |
| 113 | * It performs the following actions: |
| 114 | * - check if the packet requires processing (not outdated resolution) |
| 115 | * - ensure the DNS packet received is valid and call requester's callback |
| 116 | * - call requester's error callback if invalid response |
| 117 | */ |
| 118 | void dns_resolve_recv(struct dgram_conn *dgram) |
| 119 | { |
| 120 | struct dns_nameserver *nameserver; |
| 121 | struct dns_resolvers *resolvers; |
| 122 | struct dns_resolution *resolution; |
| 123 | unsigned char buf[DNS_MAX_UDP_MESSAGE + 1]; |
| 124 | unsigned char *bufend; |
| 125 | int fd, buflen, ret; |
| 126 | unsigned short query_id; |
| 127 | struct eb32_node *eb; |
| 128 | |
| 129 | fd = dgram->t.sock.fd; |
| 130 | |
| 131 | /* check if ready for reading */ |
| 132 | if (!fd_recv_ready(fd)) |
| 133 | return; |
| 134 | |
| 135 | /* no need to go further if we can't retrieve the nameserver */ |
| 136 | if ((nameserver = (struct dns_nameserver *)dgram->owner) == NULL) |
| 137 | return; |
| 138 | |
| 139 | resolvers = nameserver->resolvers; |
| 140 | |
| 141 | /* process all pending input messages */ |
| 142 | while (1) { |
| 143 | /* read message received */ |
| 144 | memset(buf, '\0', DNS_MAX_UDP_MESSAGE + 1); |
| 145 | if ((buflen = recv(fd, (char*)buf , DNS_MAX_UDP_MESSAGE, 0)) < 0) { |
| 146 | /* FIXME : for now we consider EAGAIN only */ |
| 147 | fd_cant_recv(fd); |
| 148 | break; |
| 149 | } |
| 150 | |
| 151 | /* message too big */ |
| 152 | if (buflen > DNS_MAX_UDP_MESSAGE) { |
| 153 | nameserver->counters.too_big += 1; |
| 154 | continue; |
| 155 | } |
| 156 | |
| 157 | /* initializing variables */ |
| 158 | bufend = buf + buflen; /* pointer to mark the end of the buffer */ |
| 159 | |
| 160 | /* read the query id from the packet (16 bits) */ |
| 161 | if (buf + 2 > bufend) { |
| 162 | nameserver->counters.invalid += 1; |
| 163 | continue; |
| 164 | } |
| 165 | query_id = dns_response_get_query_id(buf); |
| 166 | |
| 167 | /* search the query_id in the pending resolution tree */ |
| 168 | if ((eb = eb32_lookup(&resolvers->query_ids, query_id)) == NULL) { |
| 169 | /* unknown query id means an outdated response and can be safely ignored */ |
| 170 | nameserver->counters.outdated += 1; |
| 171 | continue; |
| 172 | } |
| 173 | |
| 174 | /* known query id means a resolution in prgress */ |
| 175 | resolution = eb32_entry(eb, struct dns_resolution, qid); |
| 176 | |
| 177 | if (!resolution) { |
| 178 | nameserver->counters.outdated += 1; |
| 179 | continue; |
| 180 | } |
| 181 | |
| 182 | /* number of responses received */ |
| 183 | resolution->nb_responses += 1; |
| 184 | |
| 185 | ret = dns_validate_dns_response(buf, bufend, resolution->hostname_dn, resolution->hostname_dn_len); |
| 186 | |
| 187 | /* treat only errors */ |
| 188 | switch (ret) { |
| 189 | case DNS_RESP_INVALID: |
| 190 | case DNS_RESP_WRONG_NAME: |
| 191 | nameserver->counters.invalid += 1; |
| 192 | resolution->requester_error_cb(resolution, DNS_RESP_INVALID); |
| 193 | continue; |
| 194 | |
| 195 | case DNS_RESP_ERROR: |
| 196 | nameserver->counters.other += 1; |
| 197 | resolution->requester_error_cb(resolution, DNS_RESP_ERROR); |
| 198 | continue; |
| 199 | |
| 200 | case DNS_RESP_ANCOUNT_ZERO: |
| 201 | nameserver->counters.any_err += 1; |
| 202 | resolution->requester_error_cb(resolution, DNS_RESP_ANCOUNT_ZERO); |
| 203 | continue; |
| 204 | |
| 205 | case DNS_RESP_NX_DOMAIN: |
| 206 | nameserver->counters.nx += 1; |
| 207 | resolution->requester_error_cb(resolution, DNS_RESP_NX_DOMAIN); |
| 208 | continue; |
| 209 | |
| 210 | case DNS_RESP_REFUSED: |
| 211 | nameserver->counters.refused += 1; |
| 212 | resolution->requester_error_cb(resolution, DNS_RESP_REFUSED); |
| 213 | continue; |
| 214 | |
| 215 | case DNS_RESP_CNAME_ERROR: |
| 216 | nameserver->counters.cname_error += 1; |
| 217 | resolution->requester_error_cb(resolution, DNS_RESP_CNAME_ERROR); |
| 218 | continue; |
| 219 | |
| 220 | } |
| 221 | |
| 222 | resolution->requester_cb(resolution, nameserver, buf, buflen); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * function called when a resolvers network socket is ready to send data |
| 228 | * It performs the following actions: |
| 229 | */ |
| 230 | void dns_resolve_send(struct dgram_conn *dgram) |
| 231 | { |
| 232 | int fd; |
| 233 | struct dns_nameserver *nameserver; |
| 234 | struct dns_resolvers *resolvers; |
| 235 | struct dns_resolution *resolution; |
| 236 | |
| 237 | fd = dgram->t.sock.fd; |
| 238 | |
| 239 | /* check if ready for sending */ |
| 240 | if (!fd_send_ready(fd)) |
| 241 | return; |
| 242 | |
| 243 | /* we don't want/need to be waked up any more for sending */ |
| 244 | fd_stop_send(fd); |
| 245 | |
| 246 | /* no need to go further if we can't retrieve the nameserver */ |
| 247 | if ((nameserver = (struct dns_nameserver *)dgram->owner) == NULL) |
| 248 | return; |
| 249 | |
| 250 | resolvers = nameserver->resolvers; |
| 251 | resolution = LIST_NEXT(&resolvers->curr_resolution, struct dns_resolution *, list); |
| 252 | |
| 253 | dns_send_query(resolution); |
| 254 | dns_update_resolvers_timeout(resolvers); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * forge and send a DNS query to resolvers associated to a resolution |
| 259 | * It performs the following actions: |
| 260 | * returns: |
| 261 | * 0 in case of error or safe ignorance |
| 262 | * 1 if no error |
| 263 | */ |
| 264 | int dns_send_query(struct dns_resolution *resolution) |
| 265 | { |
| 266 | struct dns_resolvers *resolvers; |
| 267 | struct dns_nameserver *nameserver; |
| 268 | int ret, send_error, bufsize, fd; |
| 269 | |
| 270 | resolvers = resolution->resolvers; |
| 271 | |
| 272 | ret = send_error = 0; |
| 273 | bufsize = dns_build_query(resolution->query_id, resolution->query_type, resolution->hostname_dn, |
| 274 | resolution->hostname_dn_len, trash.str, trash.size); |
| 275 | |
| 276 | if (bufsize == -1) |
| 277 | return 0; |
| 278 | |
| 279 | list_for_each_entry(nameserver, &resolvers->nameserver_list, list) { |
| 280 | fd = nameserver->dgram->t.sock.fd; |
| 281 | errno = 0; |
| 282 | |
| 283 | ret = send(fd, trash.str, bufsize, 0); |
| 284 | |
| 285 | if (ret > 0) |
| 286 | nameserver->counters.sent += 1; |
| 287 | |
| 288 | if (ret == 0 || errno == EAGAIN) { |
| 289 | /* nothing written, let's update the poller that we wanted to send |
| 290 | * but we were not able to */ |
| 291 | fd_want_send(fd); |
| 292 | fd_cant_send(fd); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /* update resolution */ |
| 297 | resolution->try += 1; |
| 298 | resolution->nb_responses = 0; |
| 299 | resolution->last_sent_packet = now_ms; |
| 300 | |
| 301 | return 1; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * update a resolvers' task timeout for next wake up |
| 306 | */ |
| 307 | void dns_update_resolvers_timeout(struct dns_resolvers *resolvers) |
| 308 | { |
| 309 | struct dns_resolution *resolution; |
| 310 | |
| 311 | if (LIST_ISEMPTY(&resolvers->curr_resolution)) { |
| 312 | /* no more resolution pending, so no wakeup anymore */ |
| 313 | resolvers->t->expire = TICK_ETERNITY; |
| 314 | } |
| 315 | else { |
| 316 | resolution = LIST_NEXT(&resolvers->curr_resolution, struct dns_resolution *, list); |
| 317 | resolvers->t->expire = tick_add(resolution->last_sent_packet, resolvers->timeout.retry); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Function to validate that the buffer DNS response provided in <resp> and |
| 323 | * finishing before <bufend> is valid from a DNS protocol point of view. |
| 324 | * The caller can also ask the function to check if the response contains data |
| 325 | * for a domain name <dn_name> whose length is <dn_name_len> returns one of the |
| 326 | * DNS_RESP_* code. |
| 327 | */ |
| 328 | int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, char *dn_name, int dn_name_len) |
| 329 | { |
| 330 | unsigned char *reader, *cname, *ptr; |
| 331 | int i, len, type, ancount, cnamelen; |
| 332 | |
| 333 | reader = resp; |
| 334 | cname = NULL; |
| 335 | cnamelen = 0; |
| 336 | len = 0; |
| 337 | |
| 338 | /* move forward 2 bytes for the query id */ |
| 339 | reader += 2; |
| 340 | if (reader >= bufend) |
| 341 | return DNS_RESP_INVALID; |
| 342 | |
| 343 | /* |
| 344 | * analyzing flags |
| 345 | * 1st byte can be ignored for now |
| 346 | * rcode is at the beginning of the second byte |
| 347 | */ |
| 348 | reader += 1; |
| 349 | if (reader >= bufend) |
| 350 | return DNS_RESP_INVALID; |
| 351 | |
| 352 | /* |
| 353 | * rcode is 4 latest bits |
| 354 | * ignore response if it contains an error |
| 355 | */ |
| 356 | if ((*reader & 0x0f) != DNS_RCODE_NO_ERROR) { |
| 357 | if ((*reader & 0x0f) == DNS_RCODE_NX_DOMAIN) |
| 358 | return DNS_RESP_NX_DOMAIN; |
| 359 | else if ((*reader & 0x0f) == DNS_RCODE_REFUSED) |
| 360 | return DNS_RESP_REFUSED; |
| 361 | |
| 362 | return DNS_RESP_ERROR; |
| 363 | } |
| 364 | |
| 365 | /* move forward 1 byte for rcode */ |
| 366 | reader += 1; |
| 367 | if (reader >= bufend) |
| 368 | return DNS_RESP_INVALID; |
| 369 | |
| 370 | /* move forward 2 bytes for question count */ |
| 371 | reader += 2; |
| 372 | if (reader >= bufend) |
| 373 | return DNS_RESP_INVALID; |
| 374 | |
| 375 | /* analyzing answer count */ |
| 376 | if (reader + 2 > bufend) |
| 377 | return DNS_RESP_INVALID; |
| 378 | ancount = reader[0] * 256 + reader[1]; |
| 379 | |
| 380 | if (ancount == 0) |
| 381 | return DNS_RESP_ANCOUNT_ZERO; |
| 382 | |
| 383 | /* move forward 2 bytes for answer count */ |
| 384 | reader += 2; |
| 385 | if (reader >= bufend) |
| 386 | return DNS_RESP_INVALID; |
| 387 | |
| 388 | /* move forward 4 bytes authority and additional count */ |
| 389 | reader += 4; |
| 390 | if (reader >= bufend) |
| 391 | return DNS_RESP_INVALID; |
| 392 | |
| 393 | /* check if the name can stand in response */ |
| 394 | if (dn_name && ((reader + dn_name_len + 1) > bufend)) |
| 395 | return DNS_RESP_INVALID; |
| 396 | |
| 397 | /* check hostname */ |
| 398 | if (dn_name && (memcmp(reader, dn_name, dn_name_len) != 0)) |
| 399 | return DNS_RESP_WRONG_NAME; |
| 400 | |
| 401 | /* move forward hostname len bytes + 1 for NULL byte */ |
| 402 | if (dn_name) { |
| 403 | reader = reader + dn_name_len + 1; |
| 404 | } |
| 405 | else { |
| 406 | ptr = reader; |
| 407 | while (*ptr) { |
| 408 | ptr++; |
| 409 | if (ptr >= bufend) |
| 410 | return DNS_RESP_INVALID; |
| 411 | } |
| 412 | reader = ptr + 1; |
| 413 | } |
| 414 | |
| 415 | /* move forward 4 bytes for question type and question class */ |
| 416 | reader += 4; |
| 417 | if (reader >= bufend) |
| 418 | return DNS_RESP_INVALID; |
| 419 | |
| 420 | /* now parsing response records */ |
| 421 | for (i = 1; i <= ancount; i++) { |
| 422 | if (reader >= bufend) |
| 423 | return DNS_RESP_INVALID; |
| 424 | |
| 425 | /* |
| 426 | * name can be a pointer, so move forward reader cursor accordingly |
| 427 | * if 1st byte is '11XXXXXX', it means name is a pointer |
| 428 | * and 2nd byte gives the offset from resp where the hostname can |
| 429 | * be found |
| 430 | */ |
| 431 | if ((*reader & 0xc0) == 0xc0) { |
| 432 | /* |
| 433 | * pointer, hostname can be found at resp + *(reader + 1) |
| 434 | */ |
| 435 | if (reader + 1 > bufend) |
| 436 | return DNS_RESP_INVALID; |
| 437 | |
| 438 | ptr = resp + *(reader + 1); |
| 439 | |
| 440 | /* check if the pointer points inside the buffer */ |
| 441 | if (ptr >= bufend) |
| 442 | return DNS_RESP_INVALID; |
| 443 | } |
| 444 | else { |
| 445 | /* |
| 446 | * name is a string which starts at first byte |
| 447 | * checking against last cname when recursing through the response |
| 448 | */ |
| 449 | /* look for the end of the string and ensure it's in the buffer */ |
| 450 | ptr = reader; |
| 451 | len = 0; |
| 452 | while (*ptr) { |
| 453 | ++len; |
| 454 | ++ptr; |
| 455 | if (ptr >= bufend) |
| 456 | return DNS_RESP_INVALID; |
| 457 | } |
| 458 | |
| 459 | /* if cname is set, it means a CNAME recursion is in progress */ |
| 460 | ptr = reader; |
| 461 | } |
| 462 | |
| 463 | /* ptr now points to the name */ |
| 464 | /* if cname is set, it means a CNAME recursion is in progress */ |
| 465 | if (cname) { |
| 466 | /* check if the name can stand in response */ |
| 467 | if ((reader + cnamelen) > bufend) |
| 468 | return DNS_RESP_INVALID; |
| 469 | /* compare cname and current name */ |
| 470 | if (memcmp(ptr, cname, cnamelen) != 0) |
| 471 | return DNS_RESP_CNAME_ERROR; |
| 472 | } |
| 473 | /* compare server hostname to current name */ |
| 474 | else if (dn_name) { |
| 475 | /* check if the name can stand in response */ |
| 476 | if ((reader + dn_name_len) > bufend) |
| 477 | return DNS_RESP_INVALID; |
| 478 | if (memcmp(ptr, dn_name, dn_name_len) != 0) |
| 479 | return DNS_RESP_WRONG_NAME; |
| 480 | } |
| 481 | |
| 482 | if ((*reader & 0xc0) == 0xc0) { |
| 483 | /* move forward 2 bytes for information pointer and address pointer */ |
| 484 | reader += 2; |
| 485 | } |
| 486 | else { |
| 487 | if (cname) { |
| 488 | cname = reader; |
| 489 | cnamelen = dns_str_to_dn_label_len((const char *)cname); |
| 490 | |
| 491 | /* move forward cnamelen bytes + NULL byte */ |
| 492 | reader += (cnamelen + 1); |
| 493 | } |
| 494 | else { |
| 495 | reader += (len + 1); |
| 496 | } |
| 497 | } |
| 498 | if (reader >= bufend) |
| 499 | return DNS_RESP_INVALID; |
| 500 | |
| 501 | /* |
| 502 | * we know the record is either for our server hostname |
| 503 | * or a valid CNAME in a crecursion |
| 504 | */ |
| 505 | |
| 506 | /* now reading record type (A, AAAA, CNAME, etc...) */ |
| 507 | if (reader + 2 > bufend) |
| 508 | return DNS_RESP_INVALID; |
| 509 | type = reader[0] * 256 + reader[1]; |
| 510 | |
| 511 | /* move forward 2 bytes for type (2) */ |
| 512 | reader += 2; |
| 513 | |
| 514 | /* move forward 6 bytes for class (2) and ttl (4) */ |
| 515 | reader += 6; |
| 516 | if (reader >= bufend) |
| 517 | return DNS_RESP_INVALID; |
| 518 | |
| 519 | /* now reading data len */ |
| 520 | if (reader + 2 > bufend) |
| 521 | return DNS_RESP_INVALID; |
| 522 | len = reader[0] * 256 + reader[1]; |
| 523 | |
| 524 | /* move forward 2 bytes for data len */ |
| 525 | reader += 2; |
| 526 | |
| 527 | /* analyzing record content */ |
| 528 | switch (type) { |
| 529 | case DNS_RTYPE_A: |
| 530 | /* ipv4 is stored on 4 bytes */ |
| 531 | if (len != 4) |
| 532 | return DNS_RESP_INVALID; |
| 533 | break; |
| 534 | |
| 535 | case DNS_RTYPE_CNAME: |
| 536 | cname = reader; |
| 537 | cnamelen = len; |
| 538 | break; |
| 539 | |
| 540 | case DNS_RTYPE_AAAA: |
| 541 | /* ipv6 is stored on 16 bytes */ |
| 542 | if (len != 16) |
| 543 | return DNS_RESP_INVALID; |
| 544 | break; |
| 545 | } /* switch (record type) */ |
| 546 | |
| 547 | /* move forward len for analyzing next record in the response */ |
| 548 | reader += len; |
| 549 | } /* for i 0 to ancount */ |
| 550 | |
| 551 | return DNS_RESP_VALID; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * search dn_name resolution in resp. |
| 556 | * If existing IP not found, return the first IP matching family_priority, |
| 557 | * otherwise, first ip found |
| 558 | * The following tasks are the responsibility of the caller: |
| 559 | * - resp contains an error free DNS response |
| 560 | * - the response matches the dn_name |
| 561 | * For both cases above, dns_validate_dns_response is required |
| 562 | * returns one of the DNS_UPD_* code |
| 563 | */ |
| 564 | int dns_get_ip_from_response(unsigned char *resp, unsigned char *resp_end, |
| 565 | char *dn_name, int dn_name_len, void *currentip, short currentip_sin_family, |
| 566 | int family_priority, void **newip, short *newip_sin_family) |
| 567 | { |
| 568 | int i, ancount, cnamelen, type, data_len, currentip_found; |
| 569 | unsigned char *reader, *cname, *ptr, *newip4, *newip6; |
| 570 | |
| 571 | cname = *newip = newip4 = newip6 = NULL; |
| 572 | cnamelen = currentip_found = 0; |
| 573 | *newip_sin_family = AF_UNSPEC; |
| 574 | ancount = (((struct dns_header *)resp)->ancount); |
| 575 | ancount = *(resp + 7); |
| 576 | |
| 577 | /* bypass DNS response header */ |
| 578 | reader = resp + sizeof(struct dns_header); |
| 579 | |
| 580 | /* bypass DNS query section */ |
| 581 | /* move forward hostname len bytes + 1 for NULL byte */ |
| 582 | reader = reader + dn_name_len + 1; |
| 583 | |
| 584 | /* move forward 4 bytes for question type and question class */ |
| 585 | reader += 4; |
| 586 | |
| 587 | /* now parsing response records */ |
| 588 | for (i = 1; i <= ancount; i++) { |
| 589 | /* |
| 590 | * name can be a pointer, so move forward reader cursor accordingly |
| 591 | * if 1st byte is '11XXXXXX', it means name is a pointer |
| 592 | * and 2nd byte gives the offset from buf where the hostname can |
| 593 | * be found |
| 594 | */ |
| 595 | if ((*reader & 0xc0) == 0xc0) |
| 596 | ptr = resp + *(reader + 1); |
| 597 | else |
| 598 | ptr = reader; |
| 599 | |
| 600 | if (cname && memcmp(ptr, cname, cnamelen)) |
| 601 | return DNS_UPD_NAME_ERROR; |
| 602 | else if (memcmp(ptr, dn_name, dn_name_len)) |
| 603 | return DNS_UPD_NAME_ERROR; |
| 604 | |
| 605 | if ((*reader & 0xc0) == 0xc0) { |
| 606 | /* move forward 2 bytes for information pointer and address pointer */ |
| 607 | reader += 2; |
| 608 | } |
| 609 | else { |
| 610 | if (cname) { |
| 611 | cname = reader; |
| 612 | cnamelen = dns_str_to_dn_label_len((char *)cname); |
| 613 | |
| 614 | /* move forward cnamelen bytes + NULL byte */ |
| 615 | reader += (cnamelen + 1); |
| 616 | } |
| 617 | else { |
| 618 | /* move forward dn_name_len bytes + NULL byte */ |
| 619 | reader += (dn_name_len + 1); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | /* |
| 624 | * we know the record is either for our server hostname |
| 625 | * or a valid CNAME in a crecursion |
| 626 | */ |
| 627 | |
| 628 | /* now reading record type (A, AAAA, CNAME, etc...) */ |
| 629 | type = reader[0] * 256 + reader[1]; |
| 630 | |
| 631 | /* move forward 2 bytes for type (2) */ |
| 632 | reader += 2; |
| 633 | |
| 634 | /* move forward 6 bytes for class (2) and ttl (4) */ |
| 635 | reader += 6; |
| 636 | |
| 637 | /* now reading data len */ |
| 638 | data_len = reader[0] * 256 + reader[1]; |
| 639 | |
| 640 | /* move forward 2 bytes for data len */ |
| 641 | reader += 2; |
| 642 | |
| 643 | /* analyzing record content */ |
| 644 | switch (type) { |
| 645 | case DNS_RTYPE_A: |
| 646 | /* check if current reccord's IP is the same as server one's */ |
| 647 | if ((currentip_sin_family == AF_INET) |
| 648 | && (*(uint32_t *)reader == *(uint32_t *)currentip)) { |
| 649 | currentip_found = 1; |
| 650 | newip4 = reader; |
| 651 | /* we can stop now if server's family preference is IPv4 |
| 652 | * and its current IP is found in the response list */ |
| 653 | if (family_priority == AF_INET) |
| 654 | return DNS_UPD_NO; /* DNS_UPD matrix #1 */ |
| 655 | } |
| 656 | else if (!newip4) { |
| 657 | newip4 = reader; |
| 658 | } |
| 659 | |
| 660 | /* move forward data_len for analyzing next record in the response */ |
| 661 | reader += data_len; |
| 662 | break; |
| 663 | |
| 664 | case DNS_RTYPE_CNAME: |
| 665 | cname = reader; |
| 666 | cnamelen = data_len; |
| 667 | |
| 668 | reader += data_len; |
| 669 | break; |
| 670 | |
| 671 | case DNS_RTYPE_AAAA: |
| 672 | /* check if current record's IP is the same as server's one */ |
| 673 | if ((currentip_sin_family == AF_INET6) && (memcmp(reader, currentip, 16) == 0)) { |
| 674 | currentip_found = 1; |
| 675 | newip6 = reader; |
| 676 | /* we can stop now if server's preference is IPv6 or is not |
| 677 | * set (which implies we prioritize IPv6 over IPv4 */ |
| 678 | if (family_priority == AF_INET6) |
| 679 | return DNS_UPD_NO; |
| 680 | } |
| 681 | else if (!newip6) { |
| 682 | newip6 = reader; |
| 683 | } |
| 684 | |
| 685 | /* move forward data_len for analyzing next record in the response */ |
| 686 | reader += data_len; |
| 687 | break; |
| 688 | |
| 689 | default: |
| 690 | /* not supported record type */ |
| 691 | /* move forward data_len for analyzing next record in the response */ |
| 692 | reader += data_len; |
| 693 | } /* switch (record type) */ |
| 694 | } /* for i 0 to ancount */ |
| 695 | |
| 696 | /* only CNAMEs in the response, no IP found */ |
| 697 | if (cname && !newip4 && !newip6) { |
| 698 | return DNS_UPD_CNAME; |
| 699 | } |
| 700 | |
| 701 | /* case when the caller looks first for an IPv4 address */ |
| 702 | if (family_priority == AF_INET) { |
| 703 | if (newip4) { |
| 704 | *newip = newip4; |
| 705 | *newip_sin_family = AF_INET; |
| 706 | if (currentip_found == 1) |
| 707 | return DNS_UPD_NO; |
| 708 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 709 | } |
| 710 | else if (newip6) { |
| 711 | *newip = newip6; |
| 712 | *newip_sin_family = AF_INET6; |
| 713 | if (currentip_found == 1) |
| 714 | return DNS_UPD_NO; |
| 715 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 716 | } |
| 717 | } |
| 718 | /* case when the caller looks first for an IPv6 address */ |
| 719 | else if (family_priority == AF_INET6) { |
| 720 | if (newip6) { |
| 721 | *newip = newip6; |
| 722 | *newip_sin_family = AF_INET6; |
| 723 | if (currentip_found == 1) |
| 724 | return DNS_UPD_NO; |
| 725 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 726 | } |
| 727 | else if (newip4) { |
| 728 | *newip = newip4; |
| 729 | *newip_sin_family = AF_INET; |
| 730 | if (currentip_found == 1) |
| 731 | return DNS_UPD_NO; |
| 732 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 733 | } |
| 734 | } |
| 735 | /* case when the caller have no preference (we prefer IPv6) */ |
| 736 | else if (family_priority == AF_UNSPEC) { |
| 737 | if (newip6) { |
| 738 | *newip = newip6; |
| 739 | *newip_sin_family = AF_INET6; |
| 740 | if (currentip_found == 1) |
| 741 | return DNS_UPD_NO; |
| 742 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 743 | } |
| 744 | else if (newip4) { |
| 745 | *newip = newip4; |
| 746 | *newip_sin_family = AF_INET; |
| 747 | if (currentip_found == 1) |
| 748 | return DNS_UPD_NO; |
| 749 | return DNS_UPD_SRVIP_NOT_FOUND; |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | /* no reason why we should change the server's IP address */ |
| 754 | return DNS_UPD_NO; |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * returns the query id contained in a DNS response |
| 759 | */ |
| 760 | int dns_response_get_query_id(unsigned char *resp) |
| 761 | { |
| 762 | /* read the query id from the response */ |
| 763 | return resp[0] * 256 + resp[1]; |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * used during haproxy's init phase |
| 768 | * parses resolvers sections and initializes: |
| 769 | * - task (time events) for each resolvers section |
| 770 | * - the datagram layer (network IO events) for each nameserver |
| 771 | * returns: |
| 772 | * 0 in case of error |
| 773 | * 1 when no error |
| 774 | */ |
| 775 | int dns_init_resolvers(void) |
| 776 | { |
| 777 | struct dns_resolvers *curr_resolvers; |
| 778 | struct dns_nameserver *curnameserver; |
| 779 | struct dgram_conn *dgram; |
| 780 | struct task *t; |
| 781 | int fd; |
| 782 | |
| 783 | /* give a first random value to our dns query_id seed */ |
| 784 | dns_query_id_seed = random(); |
| 785 | |
| 786 | /* run through the resolvers section list */ |
| 787 | list_for_each_entry(curr_resolvers, &dns_resolvers, list) { |
| 788 | /* create the task associated to the resolvers section */ |
| 789 | if ((t = task_new()) == NULL) { |
| 790 | Alert("Starting [%s] resolvers: out of memory.\n", curr_resolvers->id); |
| 791 | return 0; |
| 792 | } |
| 793 | |
| 794 | /* update task's parameters */ |
| 795 | t->process = dns_process_resolve; |
| 796 | t->context = curr_resolvers; |
| 797 | t->expire = TICK_ETERNITY; |
| 798 | |
| 799 | curr_resolvers->t = t; |
| 800 | |
| 801 | list_for_each_entry(curnameserver, &curr_resolvers->nameserver_list, list) { |
| 802 | if ((dgram = calloc(1, sizeof(struct dgram_conn))) == NULL) { |
| 803 | Alert("Starting [%s/%s] nameserver: out of memory.\n", curr_resolvers->id, |
| 804 | curnameserver->id); |
| 805 | return 0; |
| 806 | } |
| 807 | /* update datagram's parameters */ |
| 808 | dgram->owner = (void *)curnameserver; |
| 809 | dgram->data = &resolve_dgram_cb; |
| 810 | |
| 811 | /* create network UDP socket for this nameserver */ |
| 812 | if ((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) { |
| 813 | Alert("Starting [%s/%s] nameserver: can't create socket.\n", curr_resolvers->id, |
| 814 | curnameserver->id); |
| 815 | free(dgram); |
| 816 | dgram = NULL; |
| 817 | return 0; |
| 818 | } |
| 819 | |
| 820 | /* "connect" the UDP socket to the name server IP */ |
| 821 | if (connect(fd, (struct sockaddr*)&curnameserver->addr, sizeof(curnameserver->addr)) == -1) { |
| 822 | Alert("Starting [%s/%s] nameserver: can't connect socket.\n", curr_resolvers->id, |
| 823 | curnameserver->id); |
| 824 | close(fd); |
| 825 | free(dgram); |
| 826 | dgram = NULL; |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | /* make the socket non blocking */ |
| 831 | fcntl(fd, F_SETFL, O_NONBLOCK); |
| 832 | |
| 833 | /* add the fd in the fd list and update its parameters */ |
| 834 | fd_insert(fd); |
| 835 | fdtab[fd].owner = dgram; |
| 836 | fdtab[fd].iocb = dgram_fd_handler; |
| 837 | fd_want_recv(fd); |
| 838 | dgram->t.sock.fd = fd; |
| 839 | |
| 840 | /* update nameserver's datagram property */ |
| 841 | curnameserver->dgram = dgram; |
| 842 | |
| 843 | continue; |
| 844 | } |
| 845 | |
| 846 | /* task can be queued */ |
| 847 | task_queue(t); |
| 848 | } |
| 849 | |
| 850 | return 1; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Forge a DNS query. It needs the following information from the caller: |
| 855 | * - <query_id>: the DNS query id corresponding to this query |
| 856 | * - <query_type>: DNS_RTYPE_* request DNS record type (A, AAAA, ANY, etc...) |
| 857 | * - <hostname_dn>: hostname in domain name format |
| 858 | * - <hostname_dn_len>: length of <hostname_dn> |
| 859 | * To store the query, the caller must pass a buffer <buf> and its size <bufsize> |
| 860 | * |
| 861 | * the DNS query is stored in <buf> |
| 862 | * returns: |
| 863 | * -1 if <buf> is too short |
| 864 | */ |
| 865 | int dns_build_query(int query_id, int query_type, char *hostname_dn, int hostname_dn_len, char *buf, int bufsize) |
| 866 | { |
| 867 | struct dns_header *dns; |
| 868 | struct dns_question *qinfo; |
| 869 | char *ptr, *bufend; |
| 870 | |
| 871 | memset(buf, '\0', bufsize); |
| 872 | ptr = buf; |
| 873 | bufend = buf + bufsize; |
| 874 | |
| 875 | /* check if there is enough room for DNS headers */ |
| 876 | if (ptr + sizeof(struct dns_header) >= bufend) |
| 877 | return -1; |
| 878 | |
| 879 | /* set dns query headers */ |
| 880 | dns = (struct dns_header *)ptr; |
| 881 | dns->id = (unsigned short) htons(query_id); |
| 882 | dns->qr = 0; /* query */ |
| 883 | dns->opcode = 0; |
| 884 | dns->aa = 0; |
| 885 | dns->tc = 0; |
| 886 | dns->rd = 1; /* recursion desired */ |
| 887 | dns->ra = 0; |
| 888 | dns->z = 0; |
| 889 | dns->rcode = 0; |
| 890 | dns->qdcount = htons(1); /* 1 question */ |
| 891 | dns->ancount = 0; |
| 892 | dns->nscount = 0; |
| 893 | dns->arcount = 0; |
| 894 | |
| 895 | /* move forward ptr */ |
| 896 | ptr += sizeof(struct dns_header); |
| 897 | |
| 898 | /* check if there is enough room for query hostname */ |
| 899 | if ((ptr + hostname_dn_len) >= bufend) |
| 900 | return -1; |
| 901 | |
| 902 | /* set up query hostname */ |
| 903 | memcpy(ptr, hostname_dn, hostname_dn_len); |
| 904 | ptr[hostname_dn_len + 1] = '\0'; |
| 905 | |
| 906 | /* move forward ptr */ |
| 907 | ptr += (hostname_dn_len + 1); |
| 908 | |
| 909 | /* check if there is enough room for query hostname*/ |
| 910 | if (ptr + sizeof(struct dns_question) >= bufend) |
| 911 | return -1; |
| 912 | |
| 913 | /* set up query info (type and class) */ |
| 914 | qinfo = (struct dns_question *)ptr; |
| 915 | qinfo->qtype = htons(query_type); |
| 916 | qinfo->qclass = htons(DNS_RCLASS_IN); |
| 917 | |
| 918 | ptr += sizeof(struct dns_question); |
| 919 | |
| 920 | return ptr - buf; |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * turn a string into domain name label: |
| 925 | * www.haproxy.org into 3www7haproxy3org |
| 926 | * if dn memory is pre-allocated, you must provide its size in dn_len |
| 927 | * if dn memory isn't allocated, dn_len must be set to 0. |
| 928 | * In the second case, memory will be allocated. |
| 929 | * in case of error, -1 is returned, otherwise, number of bytes copied in dn |
| 930 | */ |
| 931 | char *dns_str_to_dn_label(char *string, char *dn, int dn_len) |
| 932 | { |
| 933 | char *c, *d; |
| 934 | int i, offset; |
| 935 | |
| 936 | /* offset between string size and theorical dn size */ |
| 937 | offset = 1; |
| 938 | |
| 939 | /* |
| 940 | * first, get the size of the string turned into its domain name version |
| 941 | * This function also validates the string respect the RFC |
| 942 | */ |
| 943 | if ((i = dns_str_to_dn_label_len(string)) == -1) |
| 944 | return NULL; |
| 945 | |
| 946 | /* yes, so let's check there is enough memory */ |
| 947 | if (dn_len < i + offset) |
| 948 | return NULL; |
| 949 | |
| 950 | i = strlen(string) + offset; |
| 951 | memcpy(dn + offset, string, i); |
| 952 | dn[i + offset] = '\0'; |
| 953 | /* avoid a '\0' at the beginning of dn string which may prevent the for loop |
| 954 | * below from working. |
| 955 | * Actually, this is the reason of the offset. */ |
| 956 | dn[0] = '0'; |
| 957 | |
| 958 | for (c = dn; *c ; ++c) { |
| 959 | /* c points to the first '0' char or a dot, which we don't want to read */ |
| 960 | d = c + offset; |
| 961 | i = 0; |
| 962 | while (*d != '.' && *d) { |
| 963 | i++; |
| 964 | d++; |
| 965 | } |
| 966 | *c = i; |
| 967 | |
| 968 | c = d - 1; /* because of c++ of the for loop */ |
| 969 | } |
| 970 | |
| 971 | return dn; |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * compute and return the length of <string> it it were translated into domain name |
| 976 | * label: |
| 977 | * www.haproxy.org into 3www7haproxy3org would return 16 |
| 978 | * NOTE: add +1 for '\0' when allocating memory ;) |
| 979 | */ |
| 980 | int dns_str_to_dn_label_len(const char *string) |
| 981 | { |
| 982 | return strlen(string) + 1; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * validates host name: |
| 987 | * - total size |
| 988 | * - each label size individually |
| 989 | * returns: |
| 990 | * 0 in case of error. If <err> is not NULL, an error message is stored there. |
| 991 | * 1 when no error. <err> is left unaffected. |
| 992 | */ |
| 993 | int dns_hostname_validation(const char *string, char **err) |
| 994 | { |
| 995 | const char *c, *d; |
| 996 | int i; |
| 997 | |
| 998 | if (strlen(string) > DNS_MAX_NAME_SIZE) { |
| 999 | if (err) |
| 1000 | *err = DNS_TOO_LONG_FQDN; |
| 1001 | return 0; |
| 1002 | } |
| 1003 | |
| 1004 | c = string; |
| 1005 | while (*c) { |
| 1006 | d = c; |
| 1007 | |
| 1008 | i = 0; |
| 1009 | while (*d != '.' && *d && i <= DNS_MAX_LABEL_SIZE) { |
| 1010 | i++; |
| 1011 | if (!((*d == '-') || (*d == '_') || |
| 1012 | ((*d >= 'a') && (*d <= 'z')) || |
| 1013 | ((*d >= 'A') && (*d <= 'Z')) || |
| 1014 | ((*d >= '0') && (*d <= '9')))) { |
| 1015 | if (err) |
| 1016 | *err = DNS_INVALID_CHARACTER; |
| 1017 | return 0; |
| 1018 | } |
| 1019 | d++; |
| 1020 | } |
| 1021 | |
| 1022 | if ((i >= DNS_MAX_LABEL_SIZE) && (d[i] != '.')) { |
| 1023 | if (err) |
| 1024 | *err = DNS_LABEL_TOO_LONG; |
| 1025 | return 0; |
| 1026 | } |
| 1027 | |
| 1028 | if (*d == '\0') |
| 1029 | goto out; |
| 1030 | |
| 1031 | c = ++d; |
| 1032 | } |
| 1033 | out: |
| 1034 | return 1; |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * 2 bytes random generator to generate DNS query ID |
| 1039 | */ |
| 1040 | uint16_t dns_rnd16(void) |
| 1041 | { |
| 1042 | dns_query_id_seed ^= dns_query_id_seed << 13; |
| 1043 | dns_query_id_seed ^= dns_query_id_seed >> 7; |
| 1044 | dns_query_id_seed ^= dns_query_id_seed << 17; |
| 1045 | return dns_query_id_seed; |
| 1046 | } |
| 1047 | |
| 1048 | |
| 1049 | /* |
| 1050 | * function called when a timeout occurs during name resolution process |
| 1051 | * if max number of tries is reached, then stop, otherwise, retry. |
| 1052 | */ |
| 1053 | struct task *dns_process_resolve(struct task *t) |
| 1054 | { |
| 1055 | struct dns_resolvers *resolvers = t->context; |
| 1056 | struct dns_resolution *resolution, *res_back; |
| 1057 | |
| 1058 | /* timeout occurs inevitably for the first element of the FIFO queue */ |
| 1059 | if (LIST_ISEMPTY(&resolvers->curr_resolution)) { |
| 1060 | /* no first entry, so wake up was useless */ |
| 1061 | t->expire = TICK_ETERNITY; |
| 1062 | return t; |
| 1063 | } |
| 1064 | |
| 1065 | /* look for the first resolution which is not expired */ |
| 1066 | list_for_each_entry_safe(resolution, res_back, &resolvers->curr_resolution, list) { |
| 1067 | /* when we find the first resolution in the future, then we can stop here */ |
| 1068 | if (tick_is_le(now_ms, resolution->last_sent_packet)) |
| 1069 | goto out; |
| 1070 | |
| 1071 | /* |
| 1072 | * if current resolution has been tried too many times and finishes in timeout |
| 1073 | * we update its status and remove it from the list |
| 1074 | */ |
| 1075 | if (resolution->try >= resolvers->resolve_retries) { |
| 1076 | /* clean up resolution information and remove from the list */ |
| 1077 | dns_reset_resolution(resolution); |
| 1078 | |
| 1079 | /* notify the result to the requester */ |
| 1080 | resolution->requester_error_cb(resolution, DNS_RESP_TIMEOUT); |
| 1081 | } |
| 1082 | |
| 1083 | /* check current resolution status */ |
| 1084 | if (resolution->step == RSLV_STEP_RUNNING) { |
| 1085 | /* resend the DNS query */ |
| 1086 | dns_send_query(resolution); |
| 1087 | |
| 1088 | /* check if we have more than one resolution in the list */ |
| 1089 | if (dns_check_resolution_queue(resolvers) > 1) { |
| 1090 | /* move the rsolution to the end of the list */ |
| 1091 | LIST_DEL(&resolution->list); |
| 1092 | LIST_ADDQ(&resolvers->curr_resolution, &resolution->list); |
| 1093 | } |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | out: |
| 1098 | dns_update_resolvers_timeout(resolvers); |
| 1099 | return t; |
| 1100 | } |