blob: 76e6db8f972601f6b875759a8b0e6e1566b12976 [file] [log] [blame]
Willy Tarreauc2186022009-10-26 19:48:54 +01001/*
2 * Elastic Binary Trees - exported functions for operations on pointer nodes.
3 * (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20/* Consult ebpttree.h for more details about those functions */
21
22#include "ebpttree.h"
23
24REGPRM2 struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new)
25{
26 return __ebpt_insert(root, new);
27}
28
29REGPRM2 struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x)
30{
31 return __ebpt_lookup(root, x);
32}
33
34/*
35 * Find the last occurrence of the highest key in the tree <root>, which is
36 * equal to or less than <x>. NULL is returned is no key matches.
37 */
38REGPRM2 struct ebpt_node *ebpt_lookup_le(struct eb_root *root, void *x)
39{
40 struct ebpt_node *node;
41 eb_troot_t *troot;
42
43 troot = root->b[EB_LEFT];
44 if (unlikely(troot == NULL))
45 return NULL;
46
47 while (1) {
48 if ((eb_gettag(troot) == EB_LEAF)) {
49 /* We reached a leaf, which means that the whole upper
50 * parts were common. We will return either the current
51 * node or its next one if the former is too small.
52 */
53 node = container_of(eb_untag(troot, EB_LEAF),
54 struct ebpt_node, node.branches);
55 if (node->key <= x)
56 return node;
57 /* return prev */
58 troot = node->node.leaf_p;
59 break;
60 }
61 node = container_of(eb_untag(troot, EB_NODE),
62 struct ebpt_node, node.branches);
63
64 if (node->node.bit < 0) {
65 /* We're at the top of a dup tree. Either we got a
66 * matching value and we return the rightmost node, or
67 * we don't and we skip the whole subtree to return the
68 * prev node before the subtree. Note that since we're
69 * at the top of the dup tree, we can simply return the
70 * prev node without first trying to escape from the
71 * tree.
72 */
73 if (node->key <= x) {
74 troot = node->node.branches.b[EB_RGHT];
75 while (eb_gettag(troot) != EB_LEAF)
76 troot = (eb_untag(troot, EB_NODE))->b[EB_RGHT];
77 return container_of(eb_untag(troot, EB_LEAF),
78 struct ebpt_node, node.branches);
79 }
80 /* return prev */
81 troot = node->node.node_p;
82 break;
83 }
84
85 if ((((ptr_t)x ^ (ptr_t)node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
86 /* No more common bits at all. Either this node is too
87 * small and we need to get its highest value, or it is
88 * too large, and we need to get the prev value.
89 */
90 if (((ptr_t)node->key >> node->node.bit) > ((ptr_t)x >> node->node.bit)) {
91 troot = node->node.branches.b[EB_RGHT];
92 return ebpt_entry(eb_walk_down(troot, EB_RGHT), struct ebpt_node, node);
93 }
94
95 /* Further values will be too high here, so return the prev
96 * unique node (if it exists).
97 */
98 troot = node->node.node_p;
99 break;
100 }
101 troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK];
102 }
103
104 /* If we get here, it means we want to report previous node before the
105 * current one which is not above. <troot> is already initialised to
106 * the parent's branches.
107 */
108 while (eb_gettag(troot) == EB_LEFT) {
109 /* Walking up from left branch. We must ensure that we never
110 * walk beyond root.
111 */
112 if (unlikely(eb_clrtag((eb_untag(troot, EB_LEFT))->b[EB_RGHT]) == NULL))
113 return NULL;
114 troot = (eb_root_to_node(eb_untag(troot, EB_LEFT)))->node_p;
115 }
116 /* Note that <troot> cannot be NULL at this stage */
117 troot = (eb_untag(troot, EB_RGHT))->b[EB_LEFT];
118 node = ebpt_entry(eb_walk_down(troot, EB_RGHT), struct ebpt_node, node);
119 return node;
120}
121
122/*
123 * Find the first occurrence of the lowest key in the tree <root>, which is
124 * equal to or greater than <x>. NULL is returned is no key matches.
125 */
126REGPRM2 struct ebpt_node *ebpt_lookup_ge(struct eb_root *root, void *x)
127{
128 struct ebpt_node *node;
129 eb_troot_t *troot;
130
131 troot = root->b[EB_LEFT];
132 if (unlikely(troot == NULL))
133 return NULL;
134
135 while (1) {
136 if ((eb_gettag(troot) == EB_LEAF)) {
137 /* We reached a leaf, which means that the whole upper
138 * parts were common. We will return either the current
139 * node or its next one if the former is too small.
140 */
141 node = container_of(eb_untag(troot, EB_LEAF),
142 struct ebpt_node, node.branches);
143 if (node->key >= x)
144 return node;
145 /* return next */
146 troot = node->node.leaf_p;
147 break;
148 }
149 node = container_of(eb_untag(troot, EB_NODE),
150 struct ebpt_node, node.branches);
151
152 if (node->node.bit < 0) {
153 /* We're at the top of a dup tree. Either we got a
154 * matching value and we return the leftmost node, or
155 * we don't and we skip the whole subtree to return the
156 * next node after the subtree. Note that since we're
157 * at the top of the dup tree, we can simply return the
158 * next node without first trying to escape from the
159 * tree.
160 */
161 if (node->key >= x) {
162 troot = node->node.branches.b[EB_LEFT];
163 while (eb_gettag(troot) != EB_LEAF)
164 troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
165 return container_of(eb_untag(troot, EB_LEAF),
166 struct ebpt_node, node.branches);
167 }
168 /* return next */
169 troot = node->node.node_p;
170 break;
171 }
172
173 if ((((ptr_t)x ^ (ptr_t)node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
174 /* No more common bits at all. Either this node is too
175 * large and we need to get its lowest value, or it is too
176 * small, and we need to get the next value.
177 */
178 if (((ptr_t)node->key >> node->node.bit) > ((ptr_t)x >> node->node.bit)) {
179 troot = node->node.branches.b[EB_LEFT];
180 return ebpt_entry(eb_walk_down(troot, EB_LEFT), struct ebpt_node, node);
181 }
182
183 /* Further values will be too low here, so return the next
184 * unique node (if it exists).
185 */
186 troot = node->node.node_p;
187 break;
188 }
189 troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK];
190 }
191
192 /* If we get here, it means we want to report next node after the
193 * current one which is not below. <troot> is already initialised
194 * to the parent's branches.
195 */
196 while (eb_gettag(troot) != EB_LEFT)
197 /* Walking up from right branch, so we cannot be below root */
198 troot = (eb_root_to_node(eb_untag(troot, EB_RGHT)))->node_p;
199
200 /* Note that <troot> cannot be NULL at this stage */
201 troot = (eb_untag(troot, EB_LEFT))->b[EB_RGHT];
202 if (eb_clrtag(troot) == NULL)
203 return NULL;
204
205 node = ebpt_entry(eb_walk_down(troot, EB_LEFT), struct ebpt_node, node);
206 return node;
207}