blob: 974c742f496e593ad1ac6cdd45f2d821ca2cb6ad [file] [log] [blame]
Christopher Fauletd7c91962015-04-30 11:48:27 +02001/*
2 * Stream filters related variables and functions.
3 *
4 * Copyright (C) 2015 Qualys Inc., Christopher Faulet <cfaulet@qualys.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 */
12
13#include <common/buffer.h>
14#include <common/debug.h>
15#include <common/cfgparse.h>
16#include <common/compat.h>
17#include <common/config.h>
18#include <common/errors.h>
19#include <common/namespace.h>
20#include <common/standard.h>
21
22#include <types/filters.h>
23#include <types/proto_http.h>
24
25#include <proto/compression.h>
26#include <proto/filters.h>
Christopher Faulet92d36382015-11-05 13:35:03 +010027#include <proto/flt_http_comp.h>
Christopher Fauletd7c91962015-04-30 11:48:27 +020028#include <proto/proto_http.h>
29#include <proto/stream.h>
30#include <proto/stream_interface.h>
31
32/* Pool used to allocate filters */
33struct pool_head *pool2_filter = NULL;
34
35static int handle_analyzer_result(struct stream *s, struct channel *chn, unsigned int an_bit, int ret);
36
37/* - RESUME_FILTER_LOOP and RESUME_FILTER_END must always be used together.
38 * The first one begins a loop and the seconds one ends it.
39 *
40 * - BREAK_EXECUTION must be used to break the loop and set the filter from
41 * which to resume the next time.
42 *
43 * Here is an exemple:
44 *
45 * RESUME_FILTER_LOOP(stream, channel) {
46 * ...
47 * if (cond)
48 * BREAK_EXECUTION(stream, channel, label);
49 * ...
50 * } RESUME_FILTER_END;
51 * ...
52 * label:
53 * ...
54 *
55 */
56#define RESUME_FILTER_LOOP(strm, chn) \
57 do { \
58 struct filter *filter; \
59 \
60 if ((strm)->strm_flt.current[CHN_IDX(chn)]) { \
61 filter = (strm)->strm_flt.current[CHN_IDX(chn)]; \
62 (strm)->strm_flt.current[CHN_IDX(chn)] = NULL; \
63 goto resume_execution; \
64 } \
65 \
66 list_for_each_entry(filter, &s->strm_flt.filters, list) { \
67 resume_execution:
68
69#define RESUME_FILTER_END \
70 } \
71 } while(0)
72
73#define BREAK_EXECUTION(strm, chn, label) \
74 do { \
75 (strm)->strm_flt.current[CHN_IDX(chn)] = filter; \
76 goto label; \
77 } while (0)
78
79
80/* List head of all known filter keywords */
81static struct flt_kw_list flt_keywords = {
82 .list = LIST_HEAD_INIT(flt_keywords.list)
83};
84
85/*
86 * Registers the filter keyword list <kwl> as a list of valid keywords for next
87 * parsing sessions.
88 */
89void
90flt_register_keywords(struct flt_kw_list *kwl)
91{
92 LIST_ADDQ(&flt_keywords.list, &kwl->list);
93}
94
95/*
96 * Returns a pointer to the filter keyword <kw>, or NULL if not found. If the
97 * keyword is found with a NULL ->parse() function, then an attempt is made to
98 * find one with a valid ->parse() function. This way it is possible to declare
99 * platform-dependant, known keywords as NULL, then only declare them as valid
100 * if some options are met. Note that if the requested keyword contains an
101 * opening parenthesis, everything from this point is ignored.
102 */
103struct flt_kw *
104flt_find_kw(const char *kw)
105{
106 int index;
107 const char *kwend;
108 struct flt_kw_list *kwl;
109 struct flt_kw *ret = NULL;
110
111 kwend = strchr(kw, '(');
112 if (!kwend)
113 kwend = kw + strlen(kw);
114
115 list_for_each_entry(kwl, &flt_keywords.list, list) {
116 for (index = 0; kwl->kw[index].kw != NULL; index++) {
117 if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
118 kwl->kw[index].kw[kwend-kw] == 0) {
119 if (kwl->kw[index].parse)
120 return &kwl->kw[index]; /* found it !*/
121 else
122 ret = &kwl->kw[index]; /* may be OK */
123 }
124 }
125 }
126 return ret;
127}
128
129/*
130 * Dumps all registered "filter" keywords to the <out> string pointer. The
131 * unsupported keywords are only dumped if their supported form was not found.
132 */
133void
134flt_dump_kws(char **out)
135{
136 struct flt_kw_list *kwl;
137 int index;
138
139 *out = NULL;
140 list_for_each_entry(kwl, &flt_keywords.list, list) {
141 for (index = 0; kwl->kw[index].kw != NULL; index++) {
142 if (kwl->kw[index].parse ||
143 flt_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) {
144 memprintf(out, "%s[%4s] %s%s\n", *out ? *out : "",
145 kwl->scope,
146 kwl->kw[index].kw,
147 kwl->kw[index].parse ? "" : " (not supported)");
148 }
149 }
150 }
151}
152
153/*
154 * Parses the "filter" keyword. All keywords must be handled by filters
155 * themselves
156 */
157static int
158parse_filter(char **args, int section_type, struct proxy *curpx,
159 struct proxy *defpx, const char *file, int line, char **err)
160{
161 struct filter *filter = NULL;
162
163 /* Filter cannot be defined on a default proxy */
164 if (curpx == defpx) {
165 memprintf(err, "parsing [%s:%d] : %s is only allowed in a 'default' section.",
166 file, line, args[0]);
167 return -1;
168 }
169 if (!strcmp(args[0], "filter")) {
170 struct flt_kw *kw;
171 int cur_arg;
172
173 if (!*args[1]) {
174 memprintf(err,
175 "parsing [%s:%d] : missing argument for '%s' in %s '%s'.",
176 file, line, args[0], proxy_type_str(curpx), curpx->id);
177 goto error;
178 }
179 filter = pool_alloc2(pool2_filter);
180 if (!filter) {
181 memprintf(err, "'%s' : out of memory", args[0]);
182 goto error;
183 }
184 memset(filter, 0, sizeof(*filter));
185
186 cur_arg = 1;
187 kw = flt_find_kw(args[cur_arg]);
188 if (kw) {
189 if (!kw->parse) {
190 memprintf(err, "parsing [%s:%d] : '%s' : "
191 "'%s' option is not implemented in this version (check build options).",
192 file, line, args[0], args[cur_arg]);
193 goto error;
194 }
195 if (kw->parse(args, &cur_arg, curpx, filter, err) != 0) {
196 if (err && *err)
197 memprintf(err, "'%s' : '%s'",
198 args[0], *err);
199 else
200 memprintf(err, "'%s' : error encountered while processing '%s'",
201 args[0], args[cur_arg]);
202 goto error;
203 }
204 }
205 else {
206 flt_dump_kws(err);
207 indent_msg(err, 4);
208 memprintf(err, "'%s' : unknown keyword '%s'.%s%s",
209 args[0], args[cur_arg],
210 err && *err ? " Registered keywords :" : "", err && *err ? *err : "");
211 goto error;
212 }
213 if (*args[cur_arg]) {
214 memprintf(err, "'%s %s' : unknown keyword '%s'.",
215 args[0], args[1], args[cur_arg]);
216 goto error;
217 }
218
219 LIST_ADDQ(&curpx->filters, &filter->list);
220 }
221 return 0;
222
223 error:
224 if (filter)
225 pool_free2(pool2_filter, filter);
226 return -1;
227
228
229}
230
231/*
232 * Calls 'init' callback for all filters attached to a proxy. This happens after
233 * the configuration parsing. Filters can finish to fill their config. Returns
234 * (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise.
235 */
236int
237flt_init(struct proxy *proxy)
238{
239 struct filter *filter;
240
241 list_for_each_entry(filter, &proxy->filters, list) {
242 if (filter->ops->init && filter->ops->init(proxy, filter) < 0)
243 return ERR_ALERT|ERR_FATAL;
244 }
245 return 0;
246}
247
248/*
249 * Calls 'check' callback for all filters attached to a proxy. This happens
250 * after the configuration parsing but before filters initialization. Returns
251 * the number of encountered errors.
252 */
253int
254flt_check(struct proxy *proxy)
255{
256 struct filter *filter;
257 int err = 0;
258
259 list_for_each_entry(filter, &proxy->filters, list) {
260 if (filter->ops->check)
261 err += filter->ops->check(proxy, filter);
262 }
Christopher Faulet92d36382015-11-05 13:35:03 +0100263 err += check_legacy_http_comp_flt(proxy);
Christopher Fauletd7c91962015-04-30 11:48:27 +0200264 return err;
265}
266
267/*
268 * Calls 'denit' callback for all filters attached to a proxy. This happens when
269 * HAProxy is stopped.
270 */
271void
272flt_deinit(struct proxy *proxy)
273{
274 struct filter *filter, *back;
275
276 list_for_each_entry_safe(filter, back, &proxy->filters, list) {
277 if (filter->ops->deinit)
278 filter->ops->deinit(proxy, filter);
279 LIST_DEL(&filter->list);
280 pool_free2(pool2_filter, filter);
281 }
282}
283
Christopher Faulet92d36382015-11-05 13:35:03 +0100284/* Attaches a filter to a stream. Returns -1 if an error occurs, 0 otherwise. */
285static int
286flt_stream_add_filter(struct stream *s, struct filter *filter,
287 int is_backend)
288{
289 struct filter *f = pool_alloc2(pool2_filter);
290 if (!f) /* not enough memory */
291 return -1;
292 memset(f, 0, sizeof(*f));
293 f->id = filter->id;
294 f->ops = filter->ops;
295 f->conf = filter->conf;
296 f->is_backend_filter = is_backend;
297 LIST_ADDQ(&s->strm_flt.filters, &f->list);
298 return 0;
299}
300
301/*
302 * Called when a stream is created. It attaches all frontend filters to the
303 * stream. Returns -1 if an error occurs, 0 otherwise.
304 */
305int
306flt_stream_init(struct stream *s)
307{
308 struct filter *filter;
309
310 LIST_INIT(&s->strm_flt.filters);
311 memset(s->strm_flt.current, 0, sizeof(s->strm_flt.current));
312 list_for_each_entry(filter, &strm_fe(s)->filters, list) {
313 if (flt_stream_add_filter(s, filter, 0) < 0)
314 return -1;
315 }
316 return 0;
317}
318
319/*
320 * Called when a stream is closed or when analyze ends (For an HTTP stream, this
321 * happens after each request/response exchange). When analyze ends, backend
322 * filters are removed. When the stream is closed, all filters attached to the
323 * stream are removed.
324 */
325void
326flt_stream_release(struct stream *s, int only_backend)
327{
328 struct filter *filter, *back;
329
330 list_for_each_entry_safe(filter, back, &s->strm_flt.filters, list) {
331 if (!only_backend || filter->is_backend_filter) {
332 LIST_DEL(&filter->list);
333 pool_free2(pool2_filter, filter);
334 }
335 }
336}
337
Christopher Fauletd7c91962015-04-30 11:48:27 +0200338/*
339 * Calls 'stream_start' for all filters attached to a stream. This happens when
340 * the stream is created, just after calling flt_stream_init
341 * function. Returns -1 if an error occurs, 0 otherwise.
342 */
343int
344flt_stream_start(struct stream *s)
345{
346 struct filter *filter;
347
348 list_for_each_entry(filter, &s->strm_flt.filters, list) {
349 if (filter->ops->stream_start && filter->ops->stream_start(s, filter) < 0)
350 return -1;
351 }
352 return 0;
353}
354
355/*
356 * Calls 'stream_stop' for all filters attached to a stream. This happens when
357 * the stream is stopped, just before calling flt_stream_release function.
358 */
359void
360flt_stream_stop(struct stream *s)
361{
362 struct filter *filter;
363
364 list_for_each_entry(filter, &s->strm_flt.filters, list) {
365 if (filter->ops->stream_stop)
366 filter->ops->stream_stop(s, filter);
367 }
368}
369
Christopher Faulet92d36382015-11-05 13:35:03 +0100370/*
371 * Called when a backend is set for a stream. If the frontend and the backend
372 * are the same, this function does nothing. Else it attaches all backend
373 * filters to the stream. Returns -1 if an error occurs, 0 otherwise.
374 */
375int
376flt_set_stream_backend(struct stream *s, struct proxy *be)
377{
378 struct filter *filter;
379
380 if (strm_fe(s) == be)
381 return 0;
382
383 list_for_each_entry(filter, &be->filters, list) {
384 if (flt_stream_add_filter(s, filter, 1) < 0)
385 return -1;
386 }
387 return 0;
388}
389
Christopher Fauletd7c91962015-04-30 11:48:27 +0200390int
391flt_http_headers(struct stream *s, struct http_msg *msg)
392{
393 struct filter *filter;
394 int ret = 1;
395
396 if (LIST_ISEMPTY(&s->strm_flt.filters))
397 goto end;
398
399 RESUME_FILTER_LOOP(s, msg->chn) {
400 if (filter->ops && filter->ops->http_headers) {
401 ret = filter->ops->http_headers(s, filter, msg);
402 if (ret <= 0)
403 BREAK_EXECUTION(s, msg->chn, end);
404 }
405 } RESUME_FILTER_END;
406
407 /* We increase FLT_NXT offset after all processing on headers because
408 * any filter can alter them. So the definitive size of headers
409 * (msg->sov) is only known when all filters have been called. */
410 list_for_each_entry(filter, &s->strm_flt.filters, list) {
411 FLT_NXT(filter, msg->chn) = msg->sov;
412 }
413 end:
414 return ret;
415}
416
417int
418flt_http_start_chunk(struct stream *s, struct http_msg *msg)
419{
420 int ret = 1;
421
422 if (LIST_ISEMPTY(&s->strm_flt.filters))
423 goto end;
424
425 RESUME_FILTER_LOOP(s, msg->chn) {
426 if (filter->ops->http_start_chunk) {
427 ret = filter->ops->http_start_chunk(s, filter, msg);
428 if (ret <= 0)
429 BREAK_EXECUTION(s, msg->chn, end);
430 }
431 FLT_NXT(filter, msg->chn) += msg->sol;
432 } RESUME_FILTER_END;
433 end:
434 return ret;
435}
436
437/*
438 * Calls 'http_data' callback for all "data" filters attached to a stream. This
439 * function is called when incoming data are available (excluding chunks
440 * envelope for chunked messages) in the AN_REQ_HTTP_XFER_BODY and
441 * AN_RES_HTTP_XFER_BODY analyzers. It takes care to update the next offset of
442 * filters and adjusts available data to be sure that a filter cannot parse more
443 * data than its predecessors. A filter can choose to not consume all available
444 * data. Returns -1 if an error occurs, the number of consumed bytes otherwise.
445 */
446int
447flt_http_data(struct stream *s, struct http_msg *msg)
448{
449 struct filter *filter = NULL;
450 unsigned int buf_i;
451 int ret = 0;
452
453 /* No filter, consume all available data */
454 if (LIST_ISEMPTY(&s->strm_flt.filters)) {
455 ret = MIN(msg->chunk_len, msg->chn->buf->i - msg->next);
456 goto end;
457 }
458
459 /* Save buffer state */
460 buf_i = msg->chn->buf->i;
461 list_for_each_entry(filter, &s->strm_flt.filters, list) {
462 if (filter->ops->http_data && !flt_want_forward_data(filter, msg->chn)) {
463 ret = filter->ops->http_data(s, filter, msg);
464 if (ret < 0)
465 break;
466 }
467 else {
468 /* msg->chunk_len is the remaining size of data to parse
469 * in the body (or in the current chunk for
470 * chunk-encoded messages) from the HTTP parser point of
471 * view (relatively to msg->next). To have it from the
472 * filter point of view, we need to be add (msg->next
473 * -FLT_NEXT) to it. */
474 ret = MIN(msg->chunk_len + msg->next, msg->chn->buf->i) - FLT_NXT(filter, msg->chn);
475 }
476
477 /* Increase FLT_NXT offset of the current filter */
478 FLT_NXT(filter, msg->chn) += ret;
479
480 /* And set this value as the bound for the next filter. It will
481 * not able to parse more data than the current one. */
482 msg->chn->buf->i = FLT_NXT(filter, msg->chn);
483 }
484 /* Restore the original buffer state */
485 msg->chn->buf->i = buf_i;
486 end:
487 return ret;
488}
489
490int
491flt_http_end_chunk(struct stream *s, struct http_msg *msg)
492{
493 int ret = 1;
494
495 if (LIST_ISEMPTY(&s->strm_flt.filters))
496 goto end;
497
498 RESUME_FILTER_LOOP(s, msg->chn) {
499 if (filter->ops->http_end_chunk) {
500 ret = filter->ops->http_end_chunk(s, filter, msg);
501 if (ret <= 0)
502 BREAK_EXECUTION(s, msg->chn, end);
503 }
504 flt_reset_forward_data(filter, msg->chn);
505 FLT_NXT(filter, msg->chn) += msg->sol;
506 } RESUME_FILTER_END;
507 end:
508 return ret;
509}
510
511int
512flt_http_last_chunk(struct stream *s, struct http_msg *msg)
513{
514 int ret = 1;
515
516 if (LIST_ISEMPTY(&s->strm_flt.filters))
517 goto end;
518
519 RESUME_FILTER_LOOP(s, msg->chn) {
520 if (filter->ops->http_last_chunk) {
521 ret = filter->ops->http_last_chunk(s, filter, msg);
522 if (ret <= 0)
523 BREAK_EXECUTION(s, msg->chn, end);
524 }
525 flt_reset_forward_data(filter, msg->chn);
526 FLT_NXT(filter, msg->chn) += msg->sol;
527 } RESUME_FILTER_END;
528 end:
529 return ret;
530}
531
532
533/*
534 * Calls 'http_chunk_trailers' callback for all "data" filters attached to a
535 * stream. This function is called for chunked messages only when a part of the
536 * trailers was parsed in the AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY
537 * analyzers. Filters can know how much data were parsed by the HTTP parsing
538 * until the last call with the msg->sol value. Returns a negative value if an
539 * error occurs, any other value otherwise.
540 */
541int
542flt_http_chunk_trailers(struct stream *s, struct http_msg *msg)
543{
544 int ret = 1;
545
546 if (LIST_ISEMPTY(&s->strm_flt.filters))
547 goto end;
548
549 RESUME_FILTER_LOOP(s, msg->chn) {
550 if (filter->ops->http_chunk_trailers) {
551 ret = filter->ops->http_chunk_trailers(s, filter, msg);
552 if (ret <= 0)
553 BREAK_EXECUTION(s, msg->chn, end);
554 }
555 FLT_NXT(filter, msg->chn) += msg->sol;
556 } RESUME_FILTER_END;
557end:
558 return ret;
559}
560
561/*
562 * Calls 'http_end' callback for all filters attached to a stream. All filters
563 * are called here, but only if there is at least one "data" filter. This
564 * functions is called when all data were parsed and forwarded. 'http_end'
565 * callback is resumable, so this function returns a negative value if an error
566 * occurs, 0 if it needs to wait for some reason, any other value otherwise.
567 */
568int
569flt_http_end(struct stream *s, struct http_msg *msg)
570{
571 int ret = 1;
572
573 if (LIST_ISEMPTY(&s->strm_flt.filters))
574 goto end;
575
576 RESUME_FILTER_LOOP(s, msg->chn) {
577 if (filter->ops->http_end) {
578 ret = filter->ops->http_end(s, filter, msg);
579 if (ret <= 0)
580 BREAK_EXECUTION(s, msg->chn, end);
581 }
582 flt_reset_forward_data(filter, msg->chn);
583 } RESUME_FILTER_END;
584end:
585 return ret;
586}
587
588/*
589 * Calls 'http_reset' callback for all filters attached to a stream. This
590 * happens when a 100-continue response is received.
591 */
592void
593flt_http_reset(struct stream *s, struct http_msg *msg)
594{
595 struct filter *filter;
596
597 if (LIST_ISEMPTY(&s->strm_flt.filters))
598 return;
599
600 list_for_each_entry(filter, &s->strm_flt.filters, list) {
601 if (filter->ops->http_reset)
602 filter->ops->http_reset(s, filter, msg);
603 }
604}
605
606/*
607 * Calls 'http_reply' callback for all filters attached to a stream when HA
608 * decides to stop the HTTP message processing.
609 */
610void
611flt_http_reply(struct stream *s, short status, const struct chunk *msg)
612{
613 struct filter *filter;
614
615 if (LIST_ISEMPTY(&s->strm_flt.filters))
616 return;
617
618 list_for_each_entry(filter, &s->strm_flt.filters, list) {
619 if (filter->ops->http_reply)
620 filter->ops->http_reply(s, filter, status, msg);
621 }
622}
623
624/*
625 * Calls 'http_forward_data' callback for all "data" filters attached to a
626 * stream. This function is called when some data can be forwarded in the
627 * AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY analyzers. It takes care to
628 * update the forward offset of filters and adjusts "forwardable" data to be
629 * sure that a filter cannot forward more data than its predecessors. A filter
630 * can choose to not forward all parsed data. Returns a negative value if an
631 * error occurs, else the number of forwarded bytes.
632 */
633int
634flt_http_forward_data(struct stream *s, struct http_msg *msg, unsigned int len)
635{
636 struct filter *filter = NULL;
637 int ret = len;
638
639 /* No filter, forward all data */
640 if (LIST_ISEMPTY(&s->strm_flt.filters))
641 goto end;
642
643 list_for_each_entry(filter, &s->strm_flt.filters, list) {
644 if (filter->ops->http_forward_data) {
645 /* Remove bytes that the current filter considered as
646 * forwarded */
647 ret = filter->ops->http_forward_data(s, filter, msg,
648 ret - FLT_FWD(filter, msg->chn));
649 if (ret < 0)
650 goto end;
651 }
652
653 /* Adjust bytes that the current filter considers as
654 * forwarded */
655 FLT_FWD(filter, msg->chn) += ret;
656
657 /* And set this value as the bound for the next filter. It will
658 * not able to forward more data than the current one. */
659 ret = FLT_FWD(filter, msg->chn);
660 }
661
662 if (!ret)
663 goto end;
664
665 /* Finally, adjust filters offsets by removing data that HAProxy will
666 * forward. */
667 list_for_each_entry(filter, &s->strm_flt.filters, list) {
668 FLT_NXT(filter, msg->chn) -= ret;
669 FLT_FWD(filter, msg->chn) -= ret;
670 }
671 end:
672 return ret;
673}
674
675/*
676 * Calls 'channel_start_analyze' callback for all filters attached to a
677 * stream. This function is called when we start to analyze a request or a
678 * response. For frontend filters, it is called before all other analyzers. For
679 * backend ones, it is called before all backend
680 * analyzers. 'channel_start_analyze' callback is resumable, so this function
681 * returns 0 if an error occurs or if it needs to wait, any other value
682 * otherwise.
683 */
684int
685flt_start_analyze(struct stream *s, struct channel *chn, unsigned int an_bit)
686{
687 int ret = 1;
688
689 /* If this function is called, this means there is at least one filter,
690 * so we do not need to check the filter list's emptiness. */
691
692 RESUME_FILTER_LOOP(s, chn) {
693 if (an_bit == AN_FLT_START_BE && !filter->is_backend_filter)
694 continue;
695
696 filter->next[CHN_IDX(chn)] = 0;
697 filter->fwd[CHN_IDX(chn)] = 0;
698
699 if (filter->ops->channel_start_analyze) {
700 ret = filter->ops->channel_start_analyze(s, filter, chn);
701 if (ret <= 0)
702 BREAK_EXECUTION(s, chn, end);
703 }
704 } RESUME_FILTER_END;
705
706 end:
707 return handle_analyzer_result(s, chn, an_bit, ret);
708}
709
710/*
711 * Calls 'channel_analyze' callback for all filters attached to a stream. This
712 * function is called before each analyzer attached to a channel, expects
713 * analyzers responsible for data sending. 'channel_analyze' callback is
714 * resumable, so this function returns 0 if an error occurs or if it needs to
715 * wait, any other value otherwise.
716 */
717int
718flt_analyze(struct stream *s, struct channel *chn, unsigned int an_bit)
719{
720 int ret = 1;
721
722 if (LIST_ISEMPTY(&s->strm_flt.filters))
723 goto end;
724
725 RESUME_FILTER_LOOP(s, chn) {
726 if (filter->ops->channel_analyze) {
727 ret = filter->ops->channel_analyze(s, filter, chn, an_bit);
728 if (ret <= 0)
729 BREAK_EXECUTION(s, chn, check_result);
730 }
731 } RESUME_FILTER_END;
732
733 check_result:
734 ret = handle_analyzer_result(s, chn, 0, ret);
735 end:
736 return ret;
737}
738
739/*
740 * Calls 'channel_end_analyze' callback for all filters attached to a
741 * stream. This function is called when we stop to analyze a request or a
742 * response. It is called after all other analyzers. 'channel_end_analyze'
743 * callback is resumable, so this function returns 0 if an error occurs or if it
744 * needs to wait, any other value otherwise.
745 */
746int
747flt_end_analyze(struct stream *s, struct channel *chn, unsigned int an_bit)
748{
749 int ret = 1;
750
751 /* If this function is called, this means there is at least one filter,
752 * so we do not need to check the filter list's emptiness. */
753
754 RESUME_FILTER_LOOP(s, chn) {
755 filter->next[CHN_IDX(chn)] = 0;
756
757 if (filter->ops->channel_end_analyze) {
758 ret = filter->ops->channel_end_analyze(s, filter, chn);
759 if (ret <= 0)
760 BREAK_EXECUTION(s, chn, end);
761 }
762 } RESUME_FILTER_END;
763
764end:
765 ret = handle_analyzer_result(s, chn, an_bit, ret);
Christopher Faulet02c7b222015-12-22 12:01:29 +0100766
767 /* Check if 'channel_end_analyze' callback has been called for the
768 * request and the response. */
769 if (!(s->req.analysers & AN_FLT_END) && !(s->res.analysers & AN_FLT_END)) {
Christopher Faulet02c7b222015-12-22 12:01:29 +0100770 /* When we are waiting for a new request, so we must reset
771 * stream analyzers. The input must not be closed the request
772 * channel, else it is useless to wait. */
773 if (s->txn && (s->txn->flags & TX_WAIT_NEXT_RQ) && !channel_input_closed(&s->req)) {
774 s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0;
775 s->res.analysers = 0;
776 }
Christopher Fauletd7c91962015-04-30 11:48:27 +0200777
Christopher Faulet92d36382015-11-05 13:35:03 +0100778 /* Remove backend filters from the list */
779 flt_stream_release(s, 1);
Christopher Fauletd7c91962015-04-30 11:48:27 +0200780 }
781 else if (ret) {
782 /* Analyzer ends only for one channel. So wake up the stream to
783 * be sure to process it for the other side as soon as
784 * possible. */
785 task_wakeup(s->task, TASK_WOKEN_MSG);
786 }
787 return ret;
788}
789
790
791/*
792 * Calls 'tcp_data' callback for all "data" filters attached to a stream. This
793 * function is called when incoming data are available. It takes care to update
794 * the next offset of filters and adjusts available data to be sure that a
795 * filter cannot parse more data than its predecessors. A filter can choose to
796 * not consume all available data. Returns -1 if an error occurs, the number of
797 * consumed bytes otherwise.
798 */
799static int
800flt_data(struct stream *s, struct channel *chn)
801{
802 struct filter *filter = NULL;
803 unsigned int buf_i;
804 int ret = chn->buf->i;
805
806 /* Save buffer state */
807 buf_i = chn->buf->i;
808 list_for_each_entry(filter, &s->strm_flt.filters, list) {
809 if (filter->ops->tcp_data && !flt_want_forward_data(filter, chn)) {
810 ret = filter->ops->tcp_data(s, filter, chn);
811 if (ret < 0)
812 break;
813 }
814 else
815 ret = chn->buf->i - FLT_NXT(filter, chn);
816
817 /* Increase next offset of the current filter */
818 FLT_NXT(filter, chn) += ret;
819
820 /* Update <ret> value to be sure to have the last one when we
821 * exit from the loop. */
822 ret = FLT_NXT(filter, chn);
823
824 /* And set this value as the bound for the next filter. It will
825 * not able to parse more data than the current one. */
826 chn->buf->i = FLT_NXT(filter, chn);
827 }
828 // Restore the original buffer state
829 chn->buf->i = buf_i;
830 return ret;
831}
832
833/*
834 * Calls 'tcp_forward_data' callback for all "data" filters attached to a
835 * stream. This function is called when some data can be forwarded. It takes
836 * care to update the forward offset of filters and adjusts "forwardable" data
837 * to be sure that a filter cannot forward more data than its predecessors. A
838 * filter can choose to not forward all parsed data. Returns a negative value if
839 * an error occurs, else the number of forwarded bytes.
840 */
841static int
842flt_forward_data(struct stream *s, struct channel *chn, unsigned int len)
843{
844 struct filter *filter = NULL;
845 int ret = len;
846
847 list_for_each_entry(filter, &s->strm_flt.filters, list) {
848 if (filter->ops->tcp_forward_data) {
849 /* Remove bytes that the current filter considered as
850 * forwarded */
851 ret = filter->ops->tcp_forward_data(s, filter, chn, ret - FLT_FWD(filter, chn));
852 if (ret < 0)
853 goto end;
854 }
855
856 /* Adjust bytes taht the current filter considers as
857 * forwarded */
858 FLT_FWD(filter, chn) += ret;
859
860 /* And set this value as the bound for the next filter. It will
861 * not able to forward more data than the current one. */
862 ret = FLT_FWD(filter, chn);
863 }
864
865 if (!ret)
866 goto end;
867
868 /* Adjust forward counter and next offset of filters by removing data
869 * that HAProxy will consider as forwarded. */
870 list_for_each_entry(filter, &s->strm_flt.filters, list) {
871 FLT_NXT(filter, chn) -= ret;
872 FLT_FWD(filter, chn) -= ret;
873 }
874
875 /* Consume data that all filters consider as forwarded. */
876 b_adv(chn->buf, ret);
877 end:
878 return ret;
879}
880
881/*
882 * Called when TCP data must be filtered on a channel. This function is the
883 * AN_FLT_XFER_DATA analyzer. When called, it is responsible to forward data
884 * when the proxy is not in http mode. Behind the scene, it calls consecutively
885 * 'tcp_data' and 'tcp_forward_data' callbacks for all "data" filters attached
886 * to a stream. Returns 0 if an error occurs or if it needs to wait, any other
887 * value otherwise.
888 */
889int
890flt_xfer_data(struct stream *s, struct channel *chn, unsigned int an_bit)
891{
892 int ret = 1;
893
894 /* If this function is called, this means there is at least one filter,
895 * so we do not need to check the filter list's emptiness. */
896
897 /* Be sure that the output is still opened. Else we stop the data
898 * filtering. */
899 if ((chn->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
900 ((chn->flags & CF_SHUTW) && (chn->to_forward || chn->buf->o)))
901 goto end;
902
903 /* Let all "data" filters parsing incoming data */
904 ret = flt_data(s, chn);
905 if (ret < 0)
906 goto end;
907
908 /* And forward them */
909 ret = flt_forward_data(s, chn, ret);
910 if (ret < 0)
911 goto end;
912
913 /* Stop waiting data if the input in closed and no data is pending or if
914 * the output is closed. */
915 if ((chn->flags & CF_SHUTW) ||
916 ((chn->flags & CF_SHUTR) && !buffer_pending(chn->buf))) {
917 ret = 1;
918 goto end;
919 }
920
921 /* Wait for data */
922 return 0;
923 end:
924 /* Terminate the data filtering. If <ret> is negative, an error was
925 * encountered during the filtering. */
926 return handle_analyzer_result(s, chn, an_bit, ret);
927}
928
929/*
930 * Handles result of filter's analyzers. It returns 0 if an error occurs or if
931 * it needs to wait, any other value otherwise.
932 */
933static int
934handle_analyzer_result(struct stream *s, struct channel *chn,
935 unsigned int an_bit, int ret)
936{
937 int finst;
938
939 if (ret < 0)
940 goto return_bad_req;
941 else if (!ret)
942 goto wait;
943
944 /* End of job, return OK */
945 if (an_bit) {
946 chn->analysers &= ~an_bit;
947 chn->analyse_exp = TICK_ETERNITY;
948 }
949 return 1;
950
951 return_bad_req:
952 /* An error occurs */
953 channel_abort(&s->req);
954 channel_abort(&s->res);
955
956 if (!(chn->flags & CF_ISRESP)) {
957 s->req.analysers &= AN_FLT_END;
958 finst = SF_FINST_R;
959 /* FIXME: incr counters */
960 }
961 else {
962 s->res.analysers &= AN_FLT_END;
963 finst = SF_FINST_H;
964 /* FIXME: incr counters */
965 }
966
967 if (s->txn) {
968 /* Do not do that when we are waiting for the next request */
969 if (s->txn->status)
970 http_reply_and_close(s, s->txn->status, NULL);
971 else {
972 s->txn->status = 400;
973 http_reply_and_close(s, 400, http_error_message(s, HTTP_ERR_400));
974 }
975 }
976
977 if (!(s->flags & SF_ERR_MASK))
978 s->flags |= SF_ERR_PRXCOND;
979 if (!(s->flags & SF_FINST_MASK))
980 s->flags |= finst;
981 return 0;
982
983 wait:
984 if (!(chn->flags & CF_ISRESP))
985 channel_dont_connect(chn);
986 return 0;
987}
988
989
990/* Note: must not be declared <const> as its list will be overwritten.
991 * Please take care of keeping this list alphabetically sorted, doing so helps
992 * all code contributors.
993 * Optional keywords are also declared with a NULL ->parse() function so that
994 * the config parser can report an appropriate error when a known keyword was
995 * not enabled. */
996static struct cfg_kw_list cfg_kws = {ILH, {
997 { CFG_LISTEN, "filter", parse_filter },
998 { 0, NULL, NULL },
999 }
1000};
1001
1002__attribute__((constructor))
1003static void
1004__filters_init(void)
1005{
1006 pool2_filter = create_pool("filter", sizeof(struct filter), MEM_F_SHARED);
1007 cfg_register_keywords(&cfg_kws);
1008}
1009
1010__attribute__((destructor))
1011static void
1012__filters_deinit(void)
1013{
1014 pool_destroy2(pool2_filter);
1015}
1016
1017/*
1018 * Local variables:
1019 * c-indent-level: 8
1020 * c-basic-offset: 8
1021 * End:
1022 */