Frédéric Lécaille | a7e7ce9 | 2020-11-23 14:14:04 +0100 | [diff] [blame] | 1 | #include <string.h> |
| 2 | |
| 3 | #include <openssl/ssl.h> |
| 4 | |
| 5 | #if defined(OPENSSL_IS_BORINGSSL) |
| 6 | #include <openssl/hkdf.h> |
| 7 | #else |
| 8 | #include <openssl/evp.h> |
| 9 | #include <openssl/kdf.h> |
| 10 | #endif |
| 11 | |
| 12 | #include <haproxy/buf.h> |
| 13 | #include <haproxy/chunk.h> |
| 14 | //#include <haproxy/quic_tls-t.h> |
| 15 | #include <haproxy/xprt_quic.h> |
| 16 | |
| 17 | |
| 18 | __attribute__((format (printf, 3, 4))) |
| 19 | void hexdump(const void *buf, size_t buflen, const char *title_fmt, ...); |
| 20 | |
| 21 | /* Initial salt depending on QUIC version to derive client/server initial secrets. |
Frédéric Lécaille | b4e1738 | 2020-12-16 11:28:58 +0100 | [diff] [blame] | 22 | * This one is for draft-29 QUIC version. |
Frédéric Lécaille | a7e7ce9 | 2020-11-23 14:14:04 +0100 | [diff] [blame] | 23 | */ |
| 24 | unsigned char initial_salt[20] = { |
Frédéric Lécaille | b4e1738 | 2020-12-16 11:28:58 +0100 | [diff] [blame] | 25 | 0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, |
| 26 | 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, |
| 27 | 0x43, 0x90, 0xa8, 0x99 |
Frédéric Lécaille | a7e7ce9 | 2020-11-23 14:14:04 +0100 | [diff] [blame] | 28 | }; |
| 29 | |
| 30 | /* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */ |
| 31 | void quic_tls_keys_hexdump(struct buffer *buf, struct quic_tls_secrets *secs) |
| 32 | { |
| 33 | int i; |
| 34 | size_t aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead); |
| 35 | size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead); |
| 36 | size_t hp_len = (size_t)EVP_CIPHER_key_length(secs->hp); |
| 37 | |
| 38 | chunk_appendf(buf, "\n key="); |
| 39 | for (i = 0; i < aead_keylen; i++) |
| 40 | chunk_appendf(buf, "%02x", secs->key[i]); |
| 41 | chunk_appendf(buf, "\n iv="); |
| 42 | for (i = 0; i < aead_ivlen; i++) |
| 43 | chunk_appendf(buf, "%02x", secs->iv[i]); |
| 44 | chunk_appendf(buf, "\n hp="); |
| 45 | for (i = 0; i < hp_len; i++) |
| 46 | chunk_appendf(buf, "%02x", secs->hp_key[i]); |
| 47 | } |
| 48 | |
| 49 | /* Dump <secret> TLS secret. */ |
| 50 | void quic_tls_secret_hexdump(struct buffer *buf, |
| 51 | const unsigned char *secret, size_t secret_len) |
| 52 | { |
| 53 | int i; |
| 54 | |
| 55 | chunk_appendf(buf, " secret="); |
| 56 | for (i = 0; i < secret_len; i++) |
| 57 | chunk_appendf(buf, "%02x", secret[i]); |
| 58 | } |
| 59 | |
| 60 | #if defined(OPENSSL_IS_BORINGSSL) |
| 61 | int quic_hkdf_extract(const EVP_MD *md, |
| 62 | unsigned char *buf, size_t *buflen, |
| 63 | const unsigned char *key, size_t keylen, |
| 64 | unsigned char *salt, size_t saltlen) |
| 65 | { |
| 66 | return HKDF_extract(buf, buflen, md, key, keylen, salt, saltlen); |
| 67 | } |
| 68 | |
| 69 | int quic_hkdf_expand(const EVP_MD *md, |
| 70 | unsigned char *buf, size_t buflen, |
| 71 | const unsigned char *key, size_t keylen, |
| 72 | const unsigned char *label, size_t labellen) |
| 73 | { |
| 74 | return HKDF_expand(buf, buflen, md, key, keylen, label, labellen); |
| 75 | } |
| 76 | #else |
| 77 | int quic_hkdf_extract(const EVP_MD *md, |
| 78 | unsigned char *buf, size_t *buflen, |
| 79 | const unsigned char *key, size_t keylen, |
| 80 | unsigned char *salt, size_t saltlen) |
| 81 | { |
| 82 | EVP_PKEY_CTX *ctx; |
| 83 | |
| 84 | ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| 85 | if (!ctx) |
| 86 | return 0; |
| 87 | |
| 88 | if (EVP_PKEY_derive_init(ctx) <= 0 || |
| 89 | EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 || |
| 90 | EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || |
| 91 | EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 || |
| 92 | EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || |
| 93 | EVP_PKEY_derive(ctx, buf, buflen) <= 0) |
| 94 | goto err; |
| 95 | |
| 96 | EVP_PKEY_CTX_free(ctx); |
| 97 | return 1; |
| 98 | |
| 99 | err: |
| 100 | EVP_PKEY_CTX_free(ctx); |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | int quic_hkdf_expand(const EVP_MD *md, |
| 105 | unsigned char *buf, size_t buflen, |
| 106 | const unsigned char *key, size_t keylen, |
| 107 | const unsigned char *label, size_t labellen) |
| 108 | { |
| 109 | EVP_PKEY_CTX *ctx; |
| 110 | |
| 111 | ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| 112 | if (!ctx) |
| 113 | return 0; |
| 114 | |
| 115 | if (EVP_PKEY_derive_init(ctx) <= 0 || |
| 116 | EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 || |
| 117 | EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || |
| 118 | EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || |
| 119 | EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 || |
| 120 | EVP_PKEY_derive(ctx, buf, &buflen) <= 0) |
| 121 | goto err; |
| 122 | |
| 123 | EVP_PKEY_CTX_free(ctx); |
| 124 | return 1; |
| 125 | |
| 126 | err: |
| 127 | EVP_PKEY_CTX_free(ctx); |
| 128 | return 0; |
| 129 | } |
| 130 | #endif |
| 131 | |
| 132 | /* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys |
| 133 | * refers to: |
| 134 | * |
| 135 | * https://tools.ietf.org/html/rfc8446#section-7.1: |
| 136 | * 7.1. Key Schedule |
| 137 | * |
| 138 | * The key derivation process makes use of the HKDF-Extract and |
| 139 | * HKDF-Expand functions as defined for HKDF [RFC5869], as well as the |
| 140 | * functions defined below: |
| 141 | * |
| 142 | * HKDF-Expand-Label(Secret, Label, Context, Length) = |
| 143 | * HKDF-Expand(Secret, HkdfLabel, Length) |
| 144 | * |
| 145 | * Where HkdfLabel is specified as: |
| 146 | * |
| 147 | * struct { |
| 148 | * uint16 length = Length; |
| 149 | * opaque label<7..255> = "tls13 " + Label; |
| 150 | * opaque context<0..255> = Context; |
| 151 | * } HkdfLabel; |
| 152 | * |
| 153 | * Derive-Secret(Secret, Label, Messages) = |
| 154 | * HKDF-Expand-Label(Secret, Label, |
| 155 | * Transcript-Hash(Messages), Hash.length) |
| 156 | * |
| 157 | */ |
| 158 | int quic_hkdf_expand_label(const EVP_MD *md, |
| 159 | unsigned char *buf, size_t buflen, |
| 160 | const unsigned char *key, size_t keylen, |
| 161 | const unsigned char *label, size_t labellen) |
| 162 | { |
| 163 | unsigned char hdkf_label[256], *pos; |
| 164 | const unsigned char hdkf_label_label[] = "tls13 "; |
| 165 | size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1; |
| 166 | |
| 167 | pos = hdkf_label; |
| 168 | *pos++ = buflen >> 8; |
| 169 | *pos++ = buflen & 0xff; |
| 170 | *pos++ = hdkf_label_label_sz + labellen; |
| 171 | memcpy(pos, hdkf_label_label, hdkf_label_label_sz); |
| 172 | pos += hdkf_label_label_sz; |
| 173 | memcpy(pos, label, labellen); |
| 174 | pos += labellen; |
| 175 | *pos++ = '\0'; |
| 176 | |
| 177 | return quic_hkdf_expand(md, buf, buflen, |
| 178 | key, keylen, hdkf_label, pos - hdkf_label); |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * This function derives two keys from <secret> is <ctx> as TLS cryptographic context. |
| 183 | * ->key is the TLS key to be derived to encrypt/decrypt data at TLS level. |
| 184 | * ->iv is the initialization vector to be used with ->key. |
| 185 | * ->hp_key is the key to be derived for header protection. |
| 186 | * Obviouly these keys have the same size becaused derived with the same TLS cryptographic context. |
| 187 | */ |
| 188 | int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp, |
| 189 | const EVP_MD *md, |
| 190 | unsigned char *key, size_t keylen, |
| 191 | unsigned char *iv, size_t ivlen, |
| 192 | unsigned char *hp_key, size_t hp_keylen, |
| 193 | const unsigned char *secret, size_t secretlen) |
| 194 | { |
| 195 | size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead); |
| 196 | size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead); |
| 197 | size_t hp_len = (size_t)EVP_CIPHER_key_length(hp); |
| 198 | const unsigned char key_label[] = "quic key"; |
| 199 | const unsigned char iv_label[] = "quic iv"; |
| 200 | const unsigned char hp_key_label[] = "quic hp"; |
| 201 | |
| 202 | if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen) |
| 203 | return 0; |
| 204 | |
| 205 | if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen, |
| 206 | key_label, sizeof key_label - 1) || |
| 207 | !quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen, |
| 208 | iv_label, sizeof iv_label - 1) || |
| 209 | !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen, |
| 210 | hp_key_label, sizeof hp_key_label - 1)) |
| 211 | return 0; |
| 212 | |
| 213 | return 1; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Derive the initial secret from <secret> and QUIC version dependent salt. |
| 218 | * Returns the size of the derived secret if succeeded, 0 if not. |
| 219 | */ |
| 220 | int quic_derive_initial_secret(const EVP_MD *md, |
| 221 | unsigned char *initial_secret, size_t initial_secret_sz, |
| 222 | const unsigned char *secret, size_t secret_sz) |
| 223 | { |
| 224 | if (!quic_hkdf_extract(md, initial_secret, &initial_secret_sz, secret, secret_sz, |
| 225 | initial_salt, sizeof initial_salt)) |
| 226 | return 0; |
| 227 | |
| 228 | return 1; |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * Derive the client initial secret from the initial secret. |
| 233 | * Returns the size of the derived secret if succeeded, 0 if not. |
| 234 | */ |
| 235 | int quic_tls_derive_initial_secrets(const EVP_MD *md, |
| 236 | unsigned char *rx, size_t rx_sz, |
| 237 | unsigned char *tx, size_t tx_sz, |
| 238 | const unsigned char *secret, size_t secret_sz, |
| 239 | int server) |
| 240 | { |
| 241 | const unsigned char client_label[] = "client in"; |
| 242 | const unsigned char server_label[] = "server in"; |
| 243 | const unsigned char *tx_label, *rx_label; |
| 244 | size_t rx_label_sz, tx_label_sz; |
| 245 | |
| 246 | if (server) { |
| 247 | rx_label = client_label; |
| 248 | rx_label_sz = sizeof client_label; |
| 249 | tx_label = server_label; |
| 250 | tx_label_sz = sizeof server_label; |
| 251 | } |
| 252 | else { |
| 253 | rx_label = server_label; |
| 254 | rx_label_sz = sizeof server_label; |
| 255 | tx_label = client_label; |
| 256 | tx_label_sz = sizeof client_label; |
| 257 | } |
| 258 | |
| 259 | if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz, |
| 260 | rx_label, rx_label_sz - 1) || |
| 261 | !quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz, |
| 262 | tx_label, tx_label_sz - 1)) |
| 263 | return 0; |
| 264 | |
| 265 | return 1; |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with |
| 270 | * <aead_ivlen> as size depending on <pn> packet number. |
| 271 | * This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm |
| 272 | * used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>. |
| 273 | * This function fails and return 0 only if the two buffer lengths are different, 1 if not. |
| 274 | */ |
| 275 | int quic_aead_iv_build(unsigned char *iv, size_t ivlen, |
| 276 | unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn) |
| 277 | { |
| 278 | int i; |
| 279 | unsigned int shift; |
| 280 | unsigned char *pos = iv; |
| 281 | |
| 282 | if (ivlen != aead_ivlen) |
| 283 | return 0; |
| 284 | |
| 285 | for (i = 0; i < ivlen - sizeof pn; i++) |
| 286 | *pos++ = *aead_iv++; |
| 287 | |
| 288 | /* Only the remaining (sizeof pn) bytes are XOR'ed. */ |
| 289 | shift = 56; |
| 290 | for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8) |
| 291 | *pos++ = *aead_iv++ ^ (pn >> shift); |
| 292 | |
| 293 | return 1; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead |
| 298 | * |
| 299 | * 5.3. AEAD Usage |
| 300 | * |
| 301 | * Packets are protected prior to applying header protection (Section 5.4). |
| 302 | * The unprotected packet header is part of the associated data (A). When removing |
| 303 | * packet protection, an endpoint first removes the header protection. |
| 304 | * (...) |
| 305 | * These ciphersuites have a 16-byte authentication tag and produce an output 16 |
| 306 | * bytes larger than their input. |
| 307 | * The key and IV for the packet are computed as described in Section 5.1. The nonce, |
| 308 | * N, is formed by combining the packet protection IV with the packet number. The 62 |
| 309 | * bits of the reconstructed QUIC packet number in network byte order are left-padded |
| 310 | * with zeros to the size of the IV. The exclusive OR of the padded packet number and |
| 311 | * the IV forms the AEAD nonce. |
| 312 | * |
| 313 | * The associated data, A, for the AEAD is the contents of the QUIC header, starting |
| 314 | * from the flags byte in either the short or long header, up to and including the |
| 315 | * unprotected packet number. |
| 316 | * |
| 317 | * The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described |
| 318 | * in [QUIC-TRANSPORT]. |
| 319 | * |
| 320 | * The output ciphertext, C, of the AEAD is transmitted in place of P. |
| 321 | * |
| 322 | * Some AEAD functions have limits for how many packets can be encrypted under the same |
| 323 | * key and IV (see for example [AEBounds]). This might be lower than the packet number limit. |
| 324 | * An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for |
| 325 | * the AEAD that is in use. |
| 326 | */ |
| 327 | |
| 328 | int quic_tls_encrypt(unsigned char *buf, size_t len, |
| 329 | const unsigned char *aad, size_t aad_len, |
| 330 | const EVP_CIPHER *aead, const unsigned char *key, const unsigned char *iv) |
| 331 | { |
| 332 | EVP_CIPHER_CTX *ctx; |
| 333 | int ret, outlen; |
| 334 | |
| 335 | ret = 0; |
| 336 | ctx = EVP_CIPHER_CTX_new(); |
| 337 | if (!ctx) |
| 338 | return 0; |
| 339 | |
| 340 | if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, iv) || |
| 341 | !EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) || |
| 342 | !EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) || |
| 343 | !EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) || |
| 344 | !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len)) |
| 345 | goto out; |
| 346 | |
| 347 | ret = 1; |
| 348 | |
| 349 | out: |
| 350 | EVP_CIPHER_CTX_free(ctx); |
| 351 | |
| 352 | return ret; |
| 353 | } |
| 354 | |
| 355 | int quic_tls_decrypt(unsigned char *buf, size_t len, |
| 356 | unsigned char *aad, size_t aad_len, |
| 357 | const EVP_CIPHER *aead, const unsigned char *key, const unsigned char *iv) |
| 358 | { |
| 359 | int ret, outlen; |
| 360 | size_t off; |
| 361 | EVP_CIPHER_CTX *ctx; |
| 362 | |
| 363 | ret = 0; |
| 364 | off = 0; |
| 365 | ctx = EVP_CIPHER_CTX_new(); |
| 366 | if (!ctx) |
| 367 | return 0; |
| 368 | |
| 369 | if (!EVP_DecryptInit_ex(ctx, aead, NULL, key, iv) || |
| 370 | !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) || |
| 371 | !EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN)) |
| 372 | goto out; |
| 373 | |
| 374 | off += outlen; |
| 375 | |
| 376 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, |
| 377 | buf + len - QUIC_TLS_TAG_LEN) || |
| 378 | !EVP_DecryptFinal_ex(ctx, buf + off, &outlen)) |
| 379 | goto out; |
| 380 | |
| 381 | off += outlen; |
| 382 | |
| 383 | ret = off; |
| 384 | |
| 385 | out: |
| 386 | EVP_CIPHER_CTX_free(ctx); |
| 387 | return ret; |
| 388 | } |