Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1 | /* |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 2 | * xxHash - Extremely Fast Hash algorithm |
| 3 | * Header File |
| 4 | * Copyright (C) 2012-2020 Yann Collet |
| 5 | * |
| 6 | * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions are |
| 10 | * met: |
| 11 | * |
| 12 | * * Redistributions of source code must retain the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer. |
| 14 | * * Redistributions in binary form must reproduce the above |
| 15 | * copyright notice, this list of conditions and the following disclaimer |
| 16 | * in the documentation and/or other materials provided with the |
| 17 | * distribution. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * You can contact the author at: |
| 32 | * - xxHash homepage: https://www.xxhash.com |
| 33 | * - xxHash source repository: https://github.com/Cyan4973/xxHash |
| 34 | */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 35 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 36 | /* TODO: update */ |
| 37 | /* Notice extracted from xxHash homepage: |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 38 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 39 | xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 40 | It also successfully passes all tests from the SMHasher suite. |
| 41 | |
| 42 | Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
| 43 | |
| 44 | Name Speed Q.Score Author |
| 45 | xxHash 5.4 GB/s 10 |
| 46 | CrapWow 3.2 GB/s 2 Andrew |
| 47 | MumurHash 3a 2.7 GB/s 10 Austin Appleby |
| 48 | SpookyHash 2.0 GB/s 10 Bob Jenkins |
| 49 | SBox 1.4 GB/s 9 Bret Mulvey |
| 50 | Lookup3 1.2 GB/s 9 Bob Jenkins |
| 51 | SuperFastHash 1.2 GB/s 1 Paul Hsieh |
| 52 | CityHash64 1.05 GB/s 10 Pike & Alakuijala |
| 53 | FNV 0.55 GB/s 5 Fowler, Noll, Vo |
| 54 | CRC32 0.43 GB/s 9 |
| 55 | MD5-32 0.33 GB/s 10 Ronald L. Rivest |
| 56 | SHA1-32 0.28 GB/s 10 |
| 57 | |
| 58 | Q.Score is a measure of quality of the hash function. |
| 59 | It depends on successfully passing SMHasher test set. |
| 60 | 10 is a perfect score. |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 61 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 62 | Note: SMHasher's CRC32 implementation is not the fastest one. |
| 63 | Other speed-oriented implementations can be faster, |
| 64 | especially in combination with PCLMUL instruction: |
| 65 | https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
| 66 | |
| 67 | A 64-bit version, named XXH64, is available since r35. |
| 68 | It offers much better speed, but for 64-bit applications only. |
| 69 | Name Speed on 64 bits Speed on 32 bits |
| 70 | XXH64 13.8 GB/s 1.9 GB/s |
| 71 | XXH32 6.8 GB/s 6.0 GB/s |
| 72 | */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 73 | |
| 74 | #if defined (__cplusplus) |
| 75 | extern "C" { |
| 76 | #endif |
| 77 | |
Dragan Dosen | 6f7cc11 | 2020-12-22 14:46:47 +0100 | [diff] [blame] | 78 | #include <haproxy/defaults.h> |
| 79 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 80 | /* **************************** |
| 81 | * INLINE mode |
| 82 | ******************************/ |
| 83 | /*! |
| 84 | * XXH_INLINE_ALL (and XXH_PRIVATE_API) |
| 85 | * Use these build macros to inline xxhash into the target unit. |
| 86 | * Inlining improves performance on small inputs, especially when the length is |
| 87 | * expressed as a compile-time constant: |
| 88 | * |
| 89 | * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
| 90 | * |
| 91 | * It also keeps xxHash symbols private to the unit, so they are not exported. |
| 92 | * |
| 93 | * Usage: |
| 94 | * #define XXH_INLINE_ALL |
| 95 | * #include "xxhash.h" |
| 96 | * |
| 97 | * Do not compile and link xxhash.o as a separate object, as it is not useful. |
| 98 | */ |
| 99 | #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
| 100 | && !defined(XXH_INLINE_ALL_31684351384) |
| 101 | /* this section should be traversed only once */ |
| 102 | # define XXH_INLINE_ALL_31684351384 |
| 103 | /* give access to the advanced API, required to compile implementations */ |
| 104 | # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
| 105 | # define XXH_STATIC_LINKING_ONLY |
| 106 | /* make all functions private */ |
| 107 | # undef XXH_PUBLIC_API |
| 108 | # if defined(__GNUC__) |
| 109 | # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
| 110 | # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| 111 | # define XXH_PUBLIC_API static inline |
| 112 | # elif defined(_MSC_VER) |
| 113 | # define XXH_PUBLIC_API static __inline |
| 114 | # else |
| 115 | /* note: this version may generate warnings for unused static functions */ |
| 116 | # define XXH_PUBLIC_API static |
| 117 | # endif |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 118 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 119 | /* |
| 120 | * This part deals with the special case where a unit wants to inline xxHash, |
| 121 | * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such |
| 122 | * as part of some previously included *.h header file. |
| 123 | * Without further action, the new include would just be ignored, |
| 124 | * and functions would effectively _not_ be inlined (silent failure). |
| 125 | * The following macros solve this situation by prefixing all inlined names, |
| 126 | * avoiding naming collision with previous inclusions. |
| 127 | */ |
| 128 | # ifdef XXH_NAMESPACE |
| 129 | # error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" |
| 130 | /* |
| 131 | * Note: Alternative: #undef all symbols (it's a pretty large list). |
| 132 | * Without #error: it compiles, but functions are actually not inlined. |
| 133 | */ |
| 134 | # endif |
| 135 | # define XXH_NAMESPACE XXH_INLINE_ |
| 136 | /* |
| 137 | * Some identifiers (enums, type names) are not symbols, but they must |
| 138 | * still be renamed to avoid redeclaration. |
| 139 | * Alternative solution: do not redeclare them. |
| 140 | * However, this requires some #ifdefs, and is a more dispersed action. |
| 141 | * Meanwhile, renaming can be achieved in a single block |
| 142 | */ |
| 143 | # define XXH_IPREF(Id) XXH_INLINE_ ## Id |
| 144 | # define XXH_OK XXH_IPREF(XXH_OK) |
| 145 | # define XXH_ERROR XXH_IPREF(XXH_ERROR) |
| 146 | # define XXH_errorcode XXH_IPREF(XXH_errorcode) |
| 147 | # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
| 148 | # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
| 149 | # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
| 150 | # define XXH32_state_s XXH_IPREF(XXH32_state_s) |
| 151 | # define XXH32_state_t XXH_IPREF(XXH32_state_t) |
| 152 | # define XXH64_state_s XXH_IPREF(XXH64_state_s) |
| 153 | # define XXH64_state_t XXH_IPREF(XXH64_state_t) |
| 154 | # define XXH3_state_s XXH_IPREF(XXH3_state_s) |
| 155 | # define XXH3_state_t XXH_IPREF(XXH3_state_t) |
| 156 | # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
| 157 | /* Ensure the header is parsed again, even if it was previously included */ |
| 158 | # undef XXHASH_H_5627135585666179 |
| 159 | # undef XXHASH_H_STATIC_13879238742 |
| 160 | #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 161 | |
| 162 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 163 | |
| 164 | /* **************************************************************** |
| 165 | * Stable API |
| 166 | *****************************************************************/ |
| 167 | #ifndef XXHASH_H_5627135585666179 |
| 168 | #define XXHASH_H_5627135585666179 1 |
| 169 | |
| 170 | /* specific declaration modes for Windows */ |
| 171 | #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
| 172 | # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
| 173 | # ifdef XXH_EXPORT |
| 174 | # define XXH_PUBLIC_API __declspec(dllexport) |
| 175 | # elif XXH_IMPORT |
| 176 | # define XXH_PUBLIC_API __declspec(dllimport) |
| 177 | # endif |
| 178 | # else |
| 179 | # define XXH_PUBLIC_API /* do nothing */ |
| 180 | # endif |
| 181 | #endif |
| 182 | |
| 183 | /*! |
| 184 | * XXH_NAMESPACE, aka Namespace Emulation: |
| 185 | * |
| 186 | * If you want to include _and expose_ xxHash functions from within your own |
| 187 | * library, but also want to avoid symbol collisions with other libraries which |
| 188 | * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix |
| 189 | * any public symbol from xxhash library with the value of XXH_NAMESPACE |
| 190 | * (therefore, avoid empty or numeric values). |
| 191 | * |
| 192 | * Note that no change is required within the calling program as long as it |
| 193 | * includes `xxhash.h`: Regular symbol names will be automatically translated |
| 194 | * by this header. |
| 195 | */ |
| 196 | #ifdef XXH_NAMESPACE |
| 197 | # define XXH_CAT(A,B) A##B |
| 198 | # define XXH_NAME2(A,B) XXH_CAT(A,B) |
| 199 | # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
| 200 | /* XXH32 */ |
| 201 | # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
| 202 | # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
| 203 | # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
| 204 | # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
| 205 | # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
| 206 | # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
| 207 | # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
| 208 | # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
| 209 | # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
| 210 | /* XXH64 */ |
| 211 | # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
| 212 | # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
| 213 | # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
| 214 | # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
| 215 | # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
| 216 | # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
| 217 | # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
| 218 | # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
| 219 | # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
| 220 | /* XXH3_64bits */ |
| 221 | # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
| 222 | # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
| 223 | # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
| 224 | # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
| 225 | # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
| 226 | # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
| 227 | # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
| 228 | # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
| 229 | # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
| 230 | # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
| 231 | # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
| 232 | # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
| 233 | /* XXH3_128bits */ |
| 234 | # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
| 235 | # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
| 236 | # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
| 237 | # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
| 238 | # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
| 239 | # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
| 240 | # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
| 241 | # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
| 242 | # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
| 243 | # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
| 244 | # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
| 245 | # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
| 246 | # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
| 247 | #endif |
| 248 | |
| 249 | |
| 250 | /* ************************************* |
| 251 | * Version |
| 252 | ***************************************/ |
| 253 | #define XXH_VERSION_MAJOR 0 |
| 254 | #define XXH_VERSION_MINOR 8 |
| 255 | #define XXH_VERSION_RELEASE 0 |
| 256 | #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
| 257 | XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
| 258 | |
| 259 | |
| 260 | /* **************************** |
| 261 | * Definitions |
| 262 | ******************************/ |
| 263 | #include <stddef.h> /* size_t */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 264 | typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
| 265 | |
| 266 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 267 | /*-********************************************************************** |
| 268 | * 32-bit hash |
| 269 | ************************************************************************/ |
| 270 | #if !defined (__VMS) \ |
| 271 | && (defined (__cplusplus) \ |
| 272 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 273 | # include <stdint.h> |
| 274 | typedef uint32_t XXH32_hash_t; |
| 275 | #else |
| 276 | # include <limits.h> |
| 277 | # if UINT_MAX == 0xFFFFFFFFUL |
| 278 | typedef unsigned int XXH32_hash_t; |
| 279 | # else |
| 280 | # if ULONG_MAX == 0xFFFFFFFFUL |
| 281 | typedef unsigned long XXH32_hash_t; |
| 282 | # else |
| 283 | # error "unsupported platform: need a 32-bit type" |
| 284 | # endif |
| 285 | # endif |
| 286 | #endif |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 287 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 288 | /*! |
| 289 | * XXH32(): |
| 290 | * Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input". |
| 291 | * The memory between input & input+length must be valid (allocated and read-accessible). |
| 292 | * "seed" can be used to alter the result predictably. |
| 293 | * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
| 294 | * |
| 295 | * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
| 296 | * and offers true 64/128 bit hash results. It provides a superior level of |
| 297 | * dispersion, and greatly reduces the risks of collisions. |
| 298 | */ |
| 299 | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 300 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 301 | /******* Streaming *******/ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 302 | |
| 303 | /* |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 304 | * Streaming functions generate the xxHash value from an incrememtal input. |
| 305 | * This method is slower than single-call functions, due to state management. |
| 306 | * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
| 307 | * |
| 308 | * An XXH state must first be allocated using `XXH*_createState()`. |
| 309 | * |
| 310 | * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
| 311 | * |
| 312 | * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
| 313 | * |
| 314 | * The function returns an error code, with 0 meaning OK, and any other value |
| 315 | * meaning there is an error. |
| 316 | * |
| 317 | * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
| 318 | * This function returns the nn-bits hash as an int or long long. |
| 319 | * |
| 320 | * It's still possible to continue inserting input into the hash state after a |
| 321 | * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
| 322 | * |
| 323 | * When done, release the state using `XXH*_freeState()`. |
| 324 | */ |
| 325 | |
| 326 | typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ |
| 327 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
| 328 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
| 329 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
| 330 | |
| 331 | XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
| 332 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
| 333 | XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
| 334 | |
| 335 | /******* Canonical representation *******/ |
| 336 | |
| 337 | /* |
| 338 | * The default return values from XXH functions are unsigned 32 and 64 bit |
| 339 | * integers. |
| 340 | * This the simplest and fastest format for further post-processing. |
| 341 | * |
| 342 | * However, this leaves open the question of what is the order on the byte level, |
| 343 | * since little and big endian conventions will store the same number differently. |
| 344 | * |
| 345 | * The canonical representation settles this issue by mandating big-endian |
| 346 | * convention, the same convention as human-readable numbers (large digits first). |
| 347 | * |
| 348 | * When writing hash values to storage, sending them over a network, or printing |
| 349 | * them, it's highly recommended to use the canonical representation to ensure |
| 350 | * portability across a wider range of systems, present and future. |
| 351 | * |
| 352 | * The following functions allow transformation of hash values to and from |
| 353 | * canonical format. |
| 354 | */ |
| 355 | |
| 356 | typedef struct { unsigned char digest[4]; } XXH32_canonical_t; |
| 357 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
| 358 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
| 359 | |
| 360 | |
| 361 | #ifndef XXH_NO_LONG_LONG |
| 362 | /*-********************************************************************** |
| 363 | * 64-bit hash |
| 364 | ************************************************************************/ |
| 365 | #if !defined (__VMS) \ |
| 366 | && (defined (__cplusplus) \ |
| 367 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 368 | # include <stdint.h> |
| 369 | typedef uint64_t XXH64_hash_t; |
| 370 | #else |
| 371 | /* the following type must have a width of 64-bit */ |
| 372 | typedef unsigned long long XXH64_hash_t; |
| 373 | #endif |
| 374 | |
| 375 | /*! |
| 376 | * XXH64(): |
| 377 | * Returns the 64-bit hash of sequence of length @length stored at memory |
| 378 | * address @input. |
| 379 | * @seed can be used to alter the result predictably. |
| 380 | * |
| 381 | * This function usually runs faster on 64-bit systems, but slower on 32-bit |
| 382 | * systems (see benchmark). |
| 383 | * |
| 384 | * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
| 385 | * and offers true 64/128 bit hash results. It provides a superior level of |
| 386 | * dispersion, and greatly reduces the risks of collisions. |
| 387 | */ |
| 388 | XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed); |
| 389 | |
| 390 | /******* Streaming *******/ |
| 391 | typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
| 392 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
| 393 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
| 394 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
| 395 | |
| 396 | XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); |
| 397 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
| 398 | XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
| 399 | |
| 400 | /******* Canonical representation *******/ |
| 401 | typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
| 402 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
| 403 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
| 404 | |
| 405 | |
| 406 | /*-********************************************************************** |
| 407 | * XXH3 64-bit variant |
| 408 | ************************************************************************/ |
| 409 | |
| 410 | /* ************************************************************************ |
| 411 | * XXH3 is a new hash algorithm featuring: |
| 412 | * - Improved speed for both small and large inputs |
| 413 | * - True 64-bit and 128-bit outputs |
| 414 | * - SIMD acceleration |
| 415 | * - Improved 32-bit viability |
| 416 | * |
| 417 | * Speed analysis methodology is explained here: |
| 418 | * |
| 419 | * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
| 420 | * |
| 421 | * In general, expect XXH3 to run about ~2x faster on large inputs and >3x |
| 422 | * faster on small ones compared to XXH64, though exact differences depend on |
| 423 | * the platform. |
| 424 | * |
| 425 | * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash |
| 426 | * on all platforms. |
| 427 | * |
| 428 | * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it. |
| 429 | * |
| 430 | * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run |
| 431 | * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are |
| 432 | * explained in the implementation. |
| 433 | * |
| 434 | * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, |
| 435 | * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro. |
| 436 | * |
| 437 | * XXH3 offers 2 variants, _64bits and _128bits. |
| 438 | * When only 64 bits are needed, prefer calling the _64bits variant, as it |
| 439 | * reduces the amount of mixing, resulting in faster speed on small inputs. |
| 440 | * |
| 441 | * It's also generally simpler to manipulate a scalar return type than a struct. |
| 442 | * |
| 443 | * The 128-bit version adds additional strength, but it is slightly slower. |
| 444 | * |
| 445 | * The XXH3 algorithm is still in development. |
| 446 | * The results it produces may still change in future versions. |
| 447 | * |
| 448 | * Results produced by v0.7.x are not comparable with results from v0.7.y. |
| 449 | * However, the API is completely stable, and it can safely be used for |
| 450 | * ephemeral data (local sessions). |
| 451 | * |
| 452 | * Avoid storing values in long-term storage until the algorithm is finalized. |
| 453 | * XXH3's return values will be officially finalized upon reaching v0.8.0. |
| 454 | * |
| 455 | * After which, return values of XXH3 and XXH128 will no longer change in |
| 456 | * future versions. |
| 457 | * |
| 458 | * The API supports one-shot hashing, streaming mode, and custom secrets. |
| 459 | */ |
| 460 | |
| 461 | /* XXH3_64bits(): |
| 462 | * default 64-bit variant, using default secret and default seed of 0. |
| 463 | * It's the fastest variant. */ |
| 464 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); |
| 465 | |
| 466 | /* |
| 467 | * XXH3_64bits_withSeed(): |
| 468 | * This variant generates a custom secret on the fly |
| 469 | * based on default secret altered using the `seed` value. |
| 470 | * While this operation is decently fast, note that it's not completely free. |
| 471 | * Note: seed==0 produces the same results as XXH3_64bits(). |
| 472 | */ |
| 473 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
| 474 | |
| 475 | /* |
| 476 | * XXH3_64bits_withSecret(): |
| 477 | * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
| 478 | * This makes it more difficult for an external actor to prepare an intentional collision. |
| 479 | * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
| 480 | * However, the quality of produced hash values depends on secret's entropy. |
| 481 | * Technically, the secret must look like a bunch of random bytes. |
| 482 | * Avoid "trivial" or structured data such as repeated sequences or a text document. |
| 483 | * Whenever unsure about the "randomness" of the blob of bytes, |
| 484 | * consider relabelling it as a "custom seed" instead, |
| 485 | * and employ "XXH3_generateSecret()" (see below) |
| 486 | * to generate a high entropy secret derived from the custom seed. |
| 487 | */ |
| 488 | #define XXH3_SECRET_SIZE_MIN 136 |
| 489 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
| 490 | |
| 491 | |
| 492 | /******* Streaming *******/ |
| 493 | /* |
| 494 | * Streaming requires state maintenance. |
| 495 | * This operation costs memory and CPU. |
| 496 | * As a consequence, streaming is slower than one-shot hashing. |
| 497 | * For better performance, prefer one-shot functions whenever applicable. |
| 498 | */ |
| 499 | typedef struct XXH3_state_s XXH3_state_t; |
| 500 | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); |
| 501 | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
| 502 | XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); |
| 503 | |
| 504 | /* |
| 505 | * XXH3_64bits_reset(): |
| 506 | * Initialize with default parameters. |
| 507 | * digest will be equivalent to `XXH3_64bits()`. |
| 508 | */ |
| 509 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); |
| 510 | /* |
| 511 | * XXH3_64bits_reset_withSeed(): |
| 512 | * Generate a custom secret from `seed`, and store it into `statePtr`. |
| 513 | * digest will be equivalent to `XXH3_64bits_withSeed()`. |
| 514 | */ |
| 515 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
| 516 | /* |
| 517 | * XXH3_64bits_reset_withSecret(): |
| 518 | * `secret` is referenced, it _must outlive_ the hash streaming session. |
| 519 | * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
| 520 | * and the quality of produced hash values depends on secret's entropy |
| 521 | * (secret's content should look like a bunch of random bytes). |
| 522 | * When in doubt about the randomness of a candidate `secret`, |
| 523 | * consider employing `XXH3_generateSecret()` instead (see below). |
| 524 | */ |
| 525 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
| 526 | |
| 527 | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
| 528 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); |
| 529 | |
| 530 | /* note : canonical representation of XXH3 is the same as XXH64 |
| 531 | * since they both produce XXH64_hash_t values */ |
| 532 | |
| 533 | |
| 534 | /*-********************************************************************** |
| 535 | * XXH3 128-bit variant |
| 536 | ************************************************************************/ |
| 537 | |
| 538 | typedef struct { |
| 539 | XXH64_hash_t low64; |
| 540 | XXH64_hash_t high64; |
| 541 | } XXH128_hash_t; |
| 542 | |
| 543 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); |
| 544 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
| 545 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
| 546 | |
| 547 | /******* Streaming *******/ |
| 548 | /* |
| 549 | * Streaming requires state maintenance. |
| 550 | * This operation costs memory and CPU. |
| 551 | * As a consequence, streaming is slower than one-shot hashing. |
| 552 | * For better performance, prefer one-shot functions whenever applicable. |
| 553 | * |
| 554 | * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
| 555 | * Use already declared XXH3_createState() and XXH3_freeState(). |
| 556 | * |
| 557 | * All reset and streaming functions have same meaning as their 64-bit counterpart. |
| 558 | */ |
| 559 | |
| 560 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); |
| 561 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
| 562 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
| 563 | |
| 564 | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
| 565 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); |
| 566 | |
| 567 | /* Following helper functions make it possible to compare XXH128_hast_t values. |
| 568 | * Since XXH128_hash_t is a structure, this capability is not offered by the language. |
| 569 | * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
| 570 | |
| 571 | /*! |
| 572 | * XXH128_isEqual(): |
| 573 | * Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
| 574 | */ |
| 575 | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
| 576 | |
| 577 | /*! |
| 578 | * XXH128_cmp(): |
| 579 | * |
| 580 | * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
| 581 | * |
| 582 | * return: >0 if *h128_1 > *h128_2 |
| 583 | * =0 if *h128_1 == *h128_2 |
| 584 | * <0 if *h128_1 < *h128_2 |
| 585 | */ |
| 586 | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); |
| 587 | |
| 588 | |
| 589 | /******* Canonical representation *******/ |
| 590 | typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
| 591 | XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); |
| 592 | XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); |
| 593 | |
| 594 | |
| 595 | #endif /* XXH_NO_LONG_LONG */ |
| 596 | |
| 597 | #endif /* XXHASH_H_5627135585666179 */ |
| 598 | |
| 599 | |
| 600 | |
| 601 | #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
| 602 | #define XXHASH_H_STATIC_13879238742 |
| 603 | /* **************************************************************************** |
| 604 | * This section contains declarations which are not guaranteed to remain stable. |
| 605 | * They may change in future versions, becoming incompatible with a different |
| 606 | * version of the library. |
| 607 | * These declarations should only be used with static linking. |
| 608 | * Never use them in association with dynamic linking! |
| 609 | ***************************************************************************** */ |
| 610 | |
| 611 | /* |
| 612 | * These definitions are only present to allow static allocation |
| 613 | * of XXH states, on stack or in a struct, for example. |
| 614 | * Never **ever** access their members directly. |
| 615 | */ |
| 616 | |
| 617 | struct XXH32_state_s { |
| 618 | XXH32_hash_t total_len_32; |
| 619 | XXH32_hash_t large_len; |
| 620 | XXH32_hash_t v1; |
| 621 | XXH32_hash_t v2; |
| 622 | XXH32_hash_t v3; |
| 623 | XXH32_hash_t v4; |
| 624 | XXH32_hash_t mem32[4]; |
| 625 | XXH32_hash_t memsize; |
| 626 | XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */ |
| 627 | }; /* typedef'd to XXH32_state_t */ |
| 628 | |
| 629 | |
| 630 | #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
| 631 | |
| 632 | struct XXH64_state_s { |
| 633 | XXH64_hash_t total_len; |
| 634 | XXH64_hash_t v1; |
| 635 | XXH64_hash_t v2; |
| 636 | XXH64_hash_t v3; |
| 637 | XXH64_hash_t v4; |
| 638 | XXH64_hash_t mem64[4]; |
| 639 | XXH32_hash_t memsize; |
| 640 | XXH32_hash_t reserved32; /* required for padding anyway */ |
| 641 | XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */ |
| 642 | }; /* typedef'd to XXH64_state_t */ |
| 643 | |
| 644 | #if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */ |
| 645 | # include <stdalign.h> |
| 646 | # define XXH_ALIGN(n) alignas(n) |
| 647 | #elif defined(__GNUC__) |
| 648 | # define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
| 649 | #elif defined(_MSC_VER) |
| 650 | # define XXH_ALIGN(n) __declspec(align(n)) |
| 651 | #else |
| 652 | # define XXH_ALIGN(n) /* disabled */ |
| 653 | #endif |
| 654 | |
| 655 | /* Old GCC versions only accept the attribute after the type in structures. */ |
| 656 | #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
| 657 | && defined(__GNUC__) |
| 658 | # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
| 659 | #else |
| 660 | # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
| 661 | #endif |
| 662 | |
| 663 | #define XXH3_INTERNALBUFFER_SIZE 256 |
| 664 | #define XXH3_SECRET_DEFAULT_SIZE 192 |
| 665 | struct XXH3_state_s { |
| 666 | XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
| 667 | /* used to store a custom secret generated from a seed */ |
| 668 | XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
| 669 | XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
| 670 | XXH32_hash_t bufferedSize; |
| 671 | XXH32_hash_t reserved32; |
| 672 | size_t nbStripesSoFar; |
| 673 | XXH64_hash_t totalLen; |
| 674 | size_t nbStripesPerBlock; |
| 675 | size_t secretLimit; |
| 676 | XXH64_hash_t seed; |
| 677 | XXH64_hash_t reserved64; |
| 678 | const unsigned char* extSecret; /* reference to external secret; |
| 679 | * if == NULL, use .customSecret instead */ |
| 680 | /* note: there may be some padding at the end due to alignment on 64 bytes */ |
| 681 | }; /* typedef'd to XXH3_state_t */ |
| 682 | |
| 683 | #undef XXH_ALIGN_MEMBER |
| 684 | |
| 685 | /* When the XXH3_state_t structure is merely emplaced on stack, |
| 686 | * it should be initialized with XXH3_INITSTATE() or a memset() |
| 687 | * in case its first reset uses XXH3_NNbits_reset_withSeed(). |
| 688 | * This init can be omitted if the first reset uses default or _withSecret mode. |
| 689 | * This operation isn't necessary when the state is created with XXH3_createState(). |
| 690 | * Note that this doesn't prepare the state for a streaming operation, |
| 691 | * it's still necessary to use XXH3_NNbits_reset*() afterwards. |
| 692 | */ |
| 693 | #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } |
| 694 | |
| 695 | |
| 696 | /* === Experimental API === */ |
| 697 | /* Symbols defined below must be considered tied to a specific library version. */ |
| 698 | |
| 699 | /* |
| 700 | * XXH3_generateSecret(): |
| 701 | * |
| 702 | * Derive a high-entropy secret from any user-defined content, named customSeed. |
| 703 | * The generated secret can be used in combination with `*_withSecret()` functions. |
| 704 | * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, |
| 705 | * as it becomes much more difficult for an external actor to guess how to impact the calculation logic. |
| 706 | * |
| 707 | * The function accepts as input a custom seed of any length and any content, |
| 708 | * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE |
| 709 | * into an already allocated buffer secretBuffer. |
| 710 | * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long. |
| 711 | * |
| 712 | * The generated secret can then be used with any `*_withSecret()` variant. |
| 713 | * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
| 714 | * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
| 715 | * are part of this list. They all accept a `secret` parameter |
| 716 | * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
| 717 | * _and_ feature very high entropy (consist of random-looking bytes). |
| 718 | * These conditions can be a high bar to meet, so |
| 719 | * this function can be used to generate a secret of proper quality. |
| 720 | * |
| 721 | * customSeed can be anything. It can have any size, even small ones, |
| 722 | * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes. |
| 723 | * The resulting `secret` will nonetheless provide all expected qualities. |
| 724 | * |
| 725 | * Supplying NULL as the customSeed copies the default secret into `secretBuffer`. |
| 726 | * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
| 727 | */ |
| 728 | XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize); |
| 729 | |
| 730 | |
| 731 | /* simple short-cut to pre-selected XXH3_128bits variant */ |
| 732 | XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); |
| 733 | |
| 734 | |
| 735 | #endif /* XXH_NO_LONG_LONG */ |
| 736 | |
| 737 | |
| 738 | #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
| 739 | # define XXH_IMPLEMENTATION |
| 740 | #endif |
| 741 | |
| 742 | #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
| 743 | |
| 744 | |
| 745 | /* ======================================================================== */ |
| 746 | /* ======================================================================== */ |
| 747 | /* ======================================================================== */ |
| 748 | |
| 749 | |
| 750 | /*-********************************************************************** |
| 751 | * xxHash implementation |
| 752 | *-********************************************************************** |
| 753 | * xxHash's implementation used to be hosted inside xxhash.c. |
| 754 | * |
| 755 | * However, inlining requires implementation to be visible to the compiler, |
| 756 | * hence be included alongside the header. |
| 757 | * Previously, implementation was hosted inside xxhash.c, |
| 758 | * which was then #included when inlining was activated. |
| 759 | * This construction created issues with a few build and install systems, |
| 760 | * as it required xxhash.c to be stored in /include directory. |
| 761 | * |
| 762 | * xxHash implementation is now directly integrated within xxhash.h. |
| 763 | * As a consequence, xxhash.c is no longer needed in /include. |
| 764 | * |
| 765 | * xxhash.c is still available and is still useful. |
| 766 | * In a "normal" setup, when xxhash is not inlined, |
| 767 | * xxhash.h only exposes the prototypes and public symbols, |
| 768 | * while xxhash.c can be built into an object file xxhash.o |
| 769 | * which can then be linked into the final binary. |
| 770 | ************************************************************************/ |
| 771 | |
| 772 | #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
| 773 | || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
| 774 | # define XXH_IMPLEM_13a8737387 |
| 775 | |
| 776 | /* ************************************* |
| 777 | * Tuning parameters |
| 778 | ***************************************/ |
| 779 | /*! |
| 780 | * XXH_FORCE_MEMORY_ACCESS: |
| 781 | * By default, access to unaligned memory is controlled by `memcpy()`, which is |
| 782 | * safe and portable. |
| 783 | * |
| 784 | * Unfortunately, on some target/compiler combinations, the generated assembly |
| 785 | * is sub-optimal. |
| 786 | * |
| 787 | * The below switch allow selection of a different access method |
| 788 | * in the search for improved performance. |
| 789 | * Method 0 (default): |
| 790 | * Use `memcpy()`. Safe and portable. Default. |
| 791 | * Method 1: |
| 792 | * `__attribute__((packed))` statement. It depends on compiler extensions |
| 793 | * and is therefore not portable. |
| 794 | * This method is safe if your compiler supports it, and *generally* as |
| 795 | * fast or faster than `memcpy`. |
| 796 | * Method 2: |
| 797 | * Direct access via cast. This method doesn't depend on the compiler but |
| 798 | * violates the C standard. |
| 799 | * It can generate buggy code on targets which do not support unaligned |
| 800 | * memory accesses. |
| 801 | * But in some circumstances, it's the only known way to get the most |
| 802 | * performance (example: GCC + ARMv6) |
| 803 | * Method 3: |
| 804 | * Byteshift. This can generate the best code on old compilers which don't |
| 805 | * inline small `memcpy()` calls, and it might also be faster on big-endian |
| 806 | * systems which lack a native byteswap instruction. |
| 807 | * See https://stackoverflow.com/a/32095106/646947 for details. |
| 808 | * Prefer these methods in priority order (0 > 1 > 2 > 3) |
| 809 | */ |
| 810 | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| 811 | # if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6) |
| 812 | # define XXH_FORCE_MEMORY_ACCESS 2 |
| 813 | # elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
| 814 | (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) |
| 815 | # define XXH_FORCE_MEMORY_ACCESS 1 |
| 816 | # endif |
| 817 | #endif |
| 818 | |
| 819 | /*! |
| 820 | * XXH_ACCEPT_NULL_INPUT_POINTER: |
| 821 | * If the input pointer is NULL, xxHash's default behavior is to dereference it, |
| 822 | * triggering a segfault. |
| 823 | * When this macro is enabled, xxHash actively checks the input for a null pointer. |
| 824 | * If it is, the result for null input pointers is the same as a zero-length input. |
| 825 | */ |
| 826 | #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
| 827 | # define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
| 828 | #endif |
| 829 | |
| 830 | /*! |
| 831 | * XXH_FORCE_ALIGN_CHECK: |
| 832 | * This is an important performance trick |
| 833 | * for architectures without decent unaligned memory access performance. |
| 834 | * It checks for input alignment, and when conditions are met, |
| 835 | * uses a "fast path" employing direct 32-bit/64-bit read, |
| 836 | * resulting in _dramatically faster_ read speed. |
| 837 | * |
| 838 | * The check costs one initial branch per hash, which is generally negligible, but not zero. |
| 839 | * Moreover, it's not useful to generate binary for an additional code path |
| 840 | * if memory access uses same instruction for both aligned and unaligned adresses. |
| 841 | * |
| 842 | * In these cases, the alignment check can be removed by setting this macro to 0. |
| 843 | * Then the code will always use unaligned memory access. |
| 844 | * Align check is automatically disabled on x86, x64 & arm64, |
| 845 | * which are platforms known to offer good unaligned memory accesses performance. |
| 846 | * |
| 847 | * This option does not affect XXH3 (only XXH32 and XXH64). |
| 848 | */ |
| 849 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| 850 | # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ |
| 851 | || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
| 852 | # define XXH_FORCE_ALIGN_CHECK 0 |
| 853 | # else |
| 854 | # define XXH_FORCE_ALIGN_CHECK 1 |
| 855 | # endif |
| 856 | #endif |
| 857 | |
| 858 | /*! |
| 859 | * XXH_NO_INLINE_HINTS: |
| 860 | * |
| 861 | * By default, xxHash tries to force the compiler to inline almost all internal |
| 862 | * functions. |
| 863 | * |
| 864 | * This can usually improve performance due to reduced jumping and improved |
| 865 | * constant folding, but significantly increases the size of the binary which |
| 866 | * might not be favorable. |
| 867 | * |
| 868 | * Additionally, sometimes the forced inlining can be detrimental to performance, |
| 869 | * depending on the architecture. |
| 870 | * |
| 871 | * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
| 872 | * compiler full control on whether to inline or not. |
| 873 | * |
| 874 | * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
| 875 | * -fno-inline with GCC or Clang, this will automatically be defined. |
| 876 | */ |
| 877 | #ifndef XXH_NO_INLINE_HINTS |
| 878 | # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ |
| 879 | || defined(__NO_INLINE__) /* -O0, -fno-inline */ |
| 880 | # define XXH_NO_INLINE_HINTS 1 |
| 881 | # else |
| 882 | # define XXH_NO_INLINE_HINTS 0 |
| 883 | # endif |
| 884 | #endif |
| 885 | |
| 886 | /*! |
| 887 | * XXH_REROLL: |
| 888 | * Whether to reroll XXH32_finalize, and XXH64_finalize, |
| 889 | * instead of using an unrolled jump table/if statement loop. |
| 890 | * |
| 891 | * This is automatically defined on -Os/-Oz on GCC and Clang. |
| 892 | */ |
| 893 | #ifndef XXH_REROLL |
| 894 | # if defined(__OPTIMIZE_SIZE__) |
| 895 | # define XXH_REROLL 1 |
| 896 | # else |
| 897 | # define XXH_REROLL 0 |
| 898 | # endif |
| 899 | #endif |
| 900 | |
| 901 | |
| 902 | /* ************************************* |
| 903 | * Includes & Memory related functions |
| 904 | ***************************************/ |
| 905 | /*! |
| 906 | * Modify the local functions below should you wish to use |
| 907 | * different memory routines for malloc() and free() |
| 908 | */ |
| 909 | #include <stdlib.h> |
| 910 | |
| 911 | static void* XXH_malloc(size_t s) { return malloc(s); } |
| 912 | static void XXH_free(void* p) { free(p); } |
| 913 | |
| 914 | /*! and for memcpy() */ |
| 915 | #include <string.h> |
| 916 | static void* XXH_memcpy(void* dest, const void* src, size_t size) |
| 917 | { |
| 918 | return memcpy(dest,src,size); |
| 919 | } |
| 920 | |
| 921 | #include <limits.h> /* ULLONG_MAX */ |
| 922 | |
| 923 | |
| 924 | /* ************************************* |
| 925 | * Compiler Specific Options |
| 926 | ***************************************/ |
| 927 | #ifdef _MSC_VER /* Visual Studio warning fix */ |
| 928 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| 929 | #endif |
| 930 | |
| 931 | #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
| 932 | # if defined(__GNUC__) |
| 933 | # define XXH_FORCE_INLINE static __attribute__((unused)) |
| 934 | # else |
| 935 | # define XXH_FORCE_INLINE static |
| 936 | # endif |
| 937 | # define XXH_NO_INLINE static |
| 938 | /* enable inlining hints */ |
| 939 | #elif defined(_MSC_VER) /* Visual Studio */ |
| 940 | # define XXH_FORCE_INLINE static __forceinline |
| 941 | # define XXH_NO_INLINE static __declspec(noinline) |
| 942 | #elif defined(__GNUC__) |
| 943 | # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
| 944 | # define XXH_NO_INLINE static __attribute__((noinline)) |
| 945 | #elif defined (__cplusplus) \ |
| 946 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
| 947 | # define XXH_FORCE_INLINE static inline |
| 948 | # define XXH_NO_INLINE static |
| 949 | #else |
| 950 | # define XXH_FORCE_INLINE static |
| 951 | # define XXH_NO_INLINE static |
| 952 | #endif |
| 953 | |
| 954 | |
| 955 | |
| 956 | /* ************************************* |
| 957 | * Debug |
| 958 | ***************************************/ |
| 959 | /* |
| 960 | * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
| 961 | * compiler's command line options. The value must be a number. |
| 962 | */ |
| 963 | #ifndef XXH_DEBUGLEVEL |
| 964 | # ifdef DEBUGLEVEL /* backwards compat */ |
| 965 | # define XXH_DEBUGLEVEL DEBUGLEVEL |
| 966 | # else |
| 967 | # define XXH_DEBUGLEVEL 0 |
| 968 | # endif |
| 969 | #endif |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 970 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 971 | #if (XXH_DEBUGLEVEL>=1) |
| 972 | # include <assert.h> /* note: can still be disabled with NDEBUG */ |
| 973 | # define XXH_ASSERT(c) assert(c) |
| 974 | #else |
| 975 | # define XXH_ASSERT(c) ((void)0) |
| 976 | #endif |
| 977 | |
| 978 | /* note: use after variable declarations */ |
| 979 | #define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0) |
| 980 | |
| 981 | |
| 982 | /* ************************************* |
| 983 | * Basic Types |
| 984 | ***************************************/ |
| 985 | #if !defined (__VMS) \ |
| 986 | && (defined (__cplusplus) \ |
| 987 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 988 | # include <stdint.h> |
| 989 | typedef uint8_t xxh_u8; |
| 990 | #else |
| 991 | typedef unsigned char xxh_u8; |
| 992 | #endif |
| 993 | typedef XXH32_hash_t xxh_u32; |
| 994 | |
| 995 | #ifdef XXH_OLD_NAMES |
| 996 | # define BYTE xxh_u8 |
| 997 | # define U8 xxh_u8 |
| 998 | # define U32 xxh_u32 |
| 999 | #endif |
| 1000 | |
| 1001 | /* *** Memory access *** */ |
| 1002 | |
| 1003 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| 1004 | /* |
| 1005 | * Manual byteshift. Best for old compilers which don't inline memcpy. |
| 1006 | * We actually directly use XXH_readLE32 and XXH_readBE32. |
| 1007 | */ |
| 1008 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| 1009 | |
| 1010 | /* |
| 1011 | * Force direct memory access. Only works on CPU which support unaligned memory |
| 1012 | * access in hardware. |
| 1013 | */ |
| 1014 | static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
| 1015 | |
| 1016 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| 1017 | |
| 1018 | /* |
| 1019 | * __pack instructions are safer but compiler specific, hence potentially |
| 1020 | * problematic for some compilers. |
| 1021 | * |
| 1022 | * Currently only defined for GCC and ICC. |
| 1023 | */ |
| 1024 | #ifdef XXH_OLD_NAMES |
| 1025 | typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
| 1026 | #endif |
| 1027 | static xxh_u32 XXH_read32(const void* ptr) |
| 1028 | { |
| 1029 | typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; |
| 1030 | return ((const xxh_unalign*)ptr)->u32; |
| 1031 | } |
| 1032 | |
| 1033 | #else |
| 1034 | |
| 1035 | /* |
| 1036 | * Portable and safe solution. Generally efficient. |
| 1037 | * see: https://stackoverflow.com/a/32095106/646947 |
| 1038 | */ |
| 1039 | static xxh_u32 XXH_read32(const void* memPtr) |
| 1040 | { |
| 1041 | xxh_u32 val; |
| 1042 | memcpy(&val, memPtr, sizeof(val)); |
| 1043 | return val; |
| 1044 | } |
| 1045 | |
| 1046 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| 1047 | |
| 1048 | |
| 1049 | /* *** Endianess *** */ |
| 1050 | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
| 1051 | |
| 1052 | /*! |
| 1053 | * XXH_CPU_LITTLE_ENDIAN: |
| 1054 | * Defined to 1 if the target is little endian, or 0 if it is big endian. |
| 1055 | * It can be defined externally, for example on the compiler command line. |
| 1056 | * |
| 1057 | * If it is not defined, a runtime check (which is usually constant folded) |
| 1058 | * is used instead. |
| 1059 | */ |
| 1060 | #ifndef XXH_CPU_LITTLE_ENDIAN |
| 1061 | /* |
| 1062 | * Try to detect endianness automatically, to avoid the nonstandard behavior |
| 1063 | * in `XXH_isLittleEndian()` |
| 1064 | */ |
| 1065 | # if defined(_WIN32) /* Windows is always little endian */ \ |
| 1066 | || defined(__LITTLE_ENDIAN__) \ |
| 1067 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| 1068 | # define XXH_CPU_LITTLE_ENDIAN 1 |
| 1069 | # elif defined(__BIG_ENDIAN__) \ |
| 1070 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| 1071 | # define XXH_CPU_LITTLE_ENDIAN 0 |
| 1072 | # else |
| 1073 | /* |
| 1074 | * runtime test, presumed to simplify to a constant by compiler |
| 1075 | */ |
| 1076 | static int XXH_isLittleEndian(void) |
| 1077 | { |
| 1078 | /* |
| 1079 | * Portable and well-defined behavior. |
| 1080 | * Don't use static: it is detrimental to performance. |
| 1081 | */ |
| 1082 | const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
| 1083 | return one.c[0]; |
| 1084 | } |
| 1085 | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
| 1086 | # endif |
| 1087 | #endif |
| 1088 | |
| 1089 | |
| 1090 | |
| 1091 | |
| 1092 | /* **************************************** |
| 1093 | * Compiler-specific Functions and Macros |
| 1094 | ******************************************/ |
| 1095 | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| 1096 | |
| 1097 | #ifdef __has_builtin |
| 1098 | # define XXH_HAS_BUILTIN(x) __has_builtin(x) |
| 1099 | #else |
| 1100 | # define XXH_HAS_BUILTIN(x) 0 |
| 1101 | #endif |
| 1102 | |
| 1103 | #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
| 1104 | && XXH_HAS_BUILTIN(__builtin_rotateleft64) |
| 1105 | # define XXH_rotl32 __builtin_rotateleft32 |
| 1106 | # define XXH_rotl64 __builtin_rotateleft64 |
| 1107 | /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
| 1108 | #elif defined(_MSC_VER) |
| 1109 | # define XXH_rotl32(x,r) _rotl(x,r) |
| 1110 | # define XXH_rotl64(x,r) _rotl64(x,r) |
| 1111 | #else |
| 1112 | # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
| 1113 | # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
| 1114 | #endif |
| 1115 | |
| 1116 | #if defined(_MSC_VER) /* Visual Studio */ |
| 1117 | # define XXH_swap32 _byteswap_ulong |
| 1118 | #elif XXH_GCC_VERSION >= 403 |
| 1119 | # define XXH_swap32 __builtin_bswap32 |
| 1120 | #else |
| 1121 | static xxh_u32 XXH_swap32 (xxh_u32 x) |
| 1122 | { |
| 1123 | return ((x << 24) & 0xff000000 ) | |
| 1124 | ((x << 8) & 0x00ff0000 ) | |
| 1125 | ((x >> 8) & 0x0000ff00 ) | |
| 1126 | ((x >> 24) & 0x000000ff ); |
| 1127 | } |
| 1128 | #endif |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1129 | |
| 1130 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1131 | /* *************************** |
| 1132 | * Memory reads |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1133 | *****************************/ |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1134 | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1135 | |
| 1136 | /* |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1137 | * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
| 1138 | * |
| 1139 | * This is ideal for older compilers which don't inline memcpy. |
| 1140 | */ |
| 1141 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1142 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1143 | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
| 1144 | { |
| 1145 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| 1146 | return bytePtr[0] |
| 1147 | | ((xxh_u32)bytePtr[1] << 8) |
| 1148 | | ((xxh_u32)bytePtr[2] << 16) |
| 1149 | | ((xxh_u32)bytePtr[3] << 24); |
| 1150 | } |
| 1151 | |
| 1152 | XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
| 1153 | { |
| 1154 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| 1155 | return bytePtr[3] |
| 1156 | | ((xxh_u32)bytePtr[2] << 8) |
| 1157 | | ((xxh_u32)bytePtr[1] << 16) |
| 1158 | | ((xxh_u32)bytePtr[0] << 24); |
| 1159 | } |
| 1160 | |
| 1161 | #else |
| 1162 | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
| 1163 | { |
| 1164 | return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| 1165 | } |
| 1166 | |
| 1167 | static xxh_u32 XXH_readBE32(const void* ptr) |
| 1168 | { |
| 1169 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| 1170 | } |
| 1171 | #endif |
| 1172 | |
| 1173 | XXH_FORCE_INLINE xxh_u32 |
| 1174 | XXH_readLE32_align(const void* ptr, XXH_alignment align) |
| 1175 | { |
| 1176 | if (align==XXH_unaligned) { |
| 1177 | return XXH_readLE32(ptr); |
| 1178 | } else { |
| 1179 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | |
| 1184 | /* ************************************* |
| 1185 | * Misc |
| 1186 | ***************************************/ |
| 1187 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
| 1188 | |
| 1189 | |
| 1190 | /* ******************************************************************* |
| 1191 | * 32-bit hash functions |
| 1192 | *********************************************************************/ |
| 1193 | static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ |
| 1194 | static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ |
| 1195 | static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ |
| 1196 | static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ |
| 1197 | static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */ |
| 1198 | |
| 1199 | #ifdef XXH_OLD_NAMES |
| 1200 | # define PRIME32_1 XXH_PRIME32_1 |
| 1201 | # define PRIME32_2 XXH_PRIME32_2 |
| 1202 | # define PRIME32_3 XXH_PRIME32_3 |
| 1203 | # define PRIME32_4 XXH_PRIME32_4 |
| 1204 | # define PRIME32_5 XXH_PRIME32_5 |
| 1205 | #endif |
| 1206 | |
| 1207 | static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
| 1208 | { |
| 1209 | acc += input * XXH_PRIME32_2; |
| 1210 | acc = XXH_rotl32(acc, 13); |
| 1211 | acc *= XXH_PRIME32_1; |
| 1212 | #if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
| 1213 | /* |
| 1214 | * UGLY HACK: |
| 1215 | * This inline assembly hack forces acc into a normal register. This is the |
| 1216 | * only thing that prevents GCC and Clang from autovectorizing the XXH32 |
| 1217 | * loop (pragmas and attributes don't work for some resason) without globally |
| 1218 | * disabling SSE4.1. |
| 1219 | * |
| 1220 | * The reason we want to avoid vectorization is because despite working on |
| 1221 | * 4 integers at a time, there are multiple factors slowing XXH32 down on |
| 1222 | * SSE4: |
| 1223 | * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
| 1224 | * newer chips!) making it slightly slower to multiply four integers at |
| 1225 | * once compared to four integers independently. Even when pmulld was |
| 1226 | * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
| 1227 | * just to multiply unless doing a long operation. |
| 1228 | * |
| 1229 | * - Four instructions are required to rotate, |
| 1230 | * movqda tmp, v // not required with VEX encoding |
| 1231 | * pslld tmp, 13 // tmp <<= 13 |
| 1232 | * psrld v, 19 // x >>= 19 |
| 1233 | * por v, tmp // x |= tmp |
| 1234 | * compared to one for scalar: |
| 1235 | * roll v, 13 // reliably fast across the board |
| 1236 | * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
| 1237 | * |
| 1238 | * - Instruction level parallelism is actually more beneficial here because |
| 1239 | * the SIMD actually serializes this operation: While v1 is rotating, v2 |
| 1240 | * can load data, while v3 can multiply. SSE forces them to operate |
| 1241 | * together. |
| 1242 | * |
| 1243 | * How this hack works: |
| 1244 | * __asm__("" // Declare an assembly block but don't declare any instructions |
| 1245 | * : // However, as an Input/Output Operand, |
| 1246 | * "+r" // constrain a read/write operand (+) as a general purpose register (r). |
| 1247 | * (acc) // and set acc as the operand |
| 1248 | * ); |
| 1249 | * |
| 1250 | * Because of the 'r', the compiler has promised that seed will be in a |
| 1251 | * general purpose register and the '+' says that it will be 'read/write', |
| 1252 | * so it has to assume it has changed. It is like volatile without all the |
| 1253 | * loads and stores. |
| 1254 | * |
| 1255 | * Since the argument has to be in a normal register (not an SSE register), |
| 1256 | * each time XXH32_round is called, it is impossible to vectorize. |
| 1257 | */ |
| 1258 | __asm__("" : "+r" (acc)); |
| 1259 | #endif |
| 1260 | return acc; |
| 1261 | } |
| 1262 | |
| 1263 | /* mix all bits */ |
| 1264 | static xxh_u32 XXH32_avalanche(xxh_u32 h32) |
| 1265 | { |
| 1266 | h32 ^= h32 >> 15; |
| 1267 | h32 *= XXH_PRIME32_2; |
| 1268 | h32 ^= h32 >> 13; |
| 1269 | h32 *= XXH_PRIME32_3; |
| 1270 | h32 ^= h32 >> 16; |
| 1271 | return(h32); |
| 1272 | } |
| 1273 | |
| 1274 | #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
| 1275 | |
| 1276 | static xxh_u32 |
| 1277 | XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) |
| 1278 | { |
| 1279 | #define XXH_PROCESS1 do { \ |
| 1280 | h32 += (*ptr++) * XXH_PRIME32_5; \ |
| 1281 | h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
| 1282 | } while (0) |
| 1283 | |
| 1284 | #define XXH_PROCESS4 do { \ |
| 1285 | h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
| 1286 | ptr += 4; \ |
| 1287 | h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
| 1288 | } while (0) |
| 1289 | |
| 1290 | /* Compact rerolled version */ |
| 1291 | if (XXH_REROLL) { |
| 1292 | len &= 15; |
| 1293 | while (len >= 4) { |
| 1294 | XXH_PROCESS4; |
| 1295 | len -= 4; |
| 1296 | } |
| 1297 | while (len > 0) { |
| 1298 | XXH_PROCESS1; |
| 1299 | --len; |
| 1300 | } |
| 1301 | return XXH32_avalanche(h32); |
| 1302 | } else { |
| 1303 | switch(len&15) /* or switch(bEnd - p) */ { |
| 1304 | case 12: XXH_PROCESS4; |
| 1305 | /* fallthrough */ |
| 1306 | case 8: XXH_PROCESS4; |
| 1307 | /* fallthrough */ |
| 1308 | case 4: XXH_PROCESS4; |
| 1309 | return XXH32_avalanche(h32); |
| 1310 | |
| 1311 | case 13: XXH_PROCESS4; |
| 1312 | /* fallthrough */ |
| 1313 | case 9: XXH_PROCESS4; |
| 1314 | /* fallthrough */ |
| 1315 | case 5: XXH_PROCESS4; |
| 1316 | XXH_PROCESS1; |
| 1317 | return XXH32_avalanche(h32); |
| 1318 | |
| 1319 | case 14: XXH_PROCESS4; |
| 1320 | /* fallthrough */ |
| 1321 | case 10: XXH_PROCESS4; |
| 1322 | /* fallthrough */ |
| 1323 | case 6: XXH_PROCESS4; |
| 1324 | XXH_PROCESS1; |
| 1325 | XXH_PROCESS1; |
| 1326 | return XXH32_avalanche(h32); |
| 1327 | |
| 1328 | case 15: XXH_PROCESS4; |
| 1329 | /* fallthrough */ |
| 1330 | case 11: XXH_PROCESS4; |
| 1331 | /* fallthrough */ |
| 1332 | case 7: XXH_PROCESS4; |
| 1333 | /* fallthrough */ |
| 1334 | case 3: XXH_PROCESS1; |
| 1335 | /* fallthrough */ |
| 1336 | case 2: XXH_PROCESS1; |
| 1337 | /* fallthrough */ |
| 1338 | case 1: XXH_PROCESS1; |
| 1339 | /* fallthrough */ |
| 1340 | case 0: return XXH32_avalanche(h32); |
| 1341 | } |
| 1342 | XXH_ASSERT(0); |
| 1343 | return h32; /* reaching this point is deemed impossible */ |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | #ifdef XXH_OLD_NAMES |
| 1348 | # define PROCESS1 XXH_PROCESS1 |
| 1349 | # define PROCESS4 XXH_PROCESS4 |
| 1350 | #else |
| 1351 | # undef XXH_PROCESS1 |
| 1352 | # undef XXH_PROCESS4 |
| 1353 | #endif |
| 1354 | |
| 1355 | XXH_FORCE_INLINE xxh_u32 |
| 1356 | XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
| 1357 | { |
| 1358 | const xxh_u8* bEnd = input + len; |
| 1359 | xxh_u32 h32; |
| 1360 | |
| 1361 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 1362 | if (input==NULL) { |
| 1363 | len=0; |
| 1364 | bEnd=input=(const xxh_u8*)(size_t)16; |
| 1365 | } |
| 1366 | #endif |
| 1367 | |
| 1368 | if (len>=16) { |
| 1369 | const xxh_u8* const limit = bEnd - 15; |
| 1370 | xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| 1371 | xxh_u32 v2 = seed + XXH_PRIME32_2; |
| 1372 | xxh_u32 v3 = seed + 0; |
| 1373 | xxh_u32 v4 = seed - XXH_PRIME32_1; |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1374 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1375 | do { |
| 1376 | v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
| 1377 | v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
| 1378 | v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
| 1379 | v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
| 1380 | } while (input < limit); |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1381 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1382 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
| 1383 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| 1384 | } else { |
| 1385 | h32 = seed + XXH_PRIME32_5; |
| 1386 | } |
| 1387 | |
| 1388 | h32 += (xxh_u32)len; |
| 1389 | |
| 1390 | return XXH32_finalize(h32, input, len&15, align); |
| 1391 | } |
| 1392 | |
| 1393 | |
| 1394 | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
| 1395 | { |
| 1396 | #if 0 |
| 1397 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| 1398 | XXH32_state_t state; |
| 1399 | XXH32_reset(&state, seed); |
| 1400 | XXH32_update(&state, (const xxh_u8*)input, len); |
| 1401 | return XXH32_digest(&state); |
| 1402 | |
| 1403 | #else |
| 1404 | |
| 1405 | if (XXH_FORCE_ALIGN_CHECK) { |
| 1406 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| 1407 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
| 1408 | } } |
| 1409 | |
| 1410 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
| 1411 | #endif |
| 1412 | } |
| 1413 | |
| 1414 | |
| 1415 | |
| 1416 | /******* Hash streaming *******/ |
| 1417 | |
| 1418 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
| 1419 | { |
| 1420 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| 1421 | } |
| 1422 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| 1423 | { |
| 1424 | XXH_free(statePtr); |
| 1425 | return XXH_OK; |
| 1426 | } |
| 1427 | |
| 1428 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
| 1429 | { |
| 1430 | memcpy(dstState, srcState, sizeof(*dstState)); |
| 1431 | } |
| 1432 | |
| 1433 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
| 1434 | { |
| 1435 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| 1436 | memset(&state, 0, sizeof(state)); |
| 1437 | state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| 1438 | state.v2 = seed + XXH_PRIME32_2; |
| 1439 | state.v3 = seed + 0; |
| 1440 | state.v4 = seed - XXH_PRIME32_1; |
| 1441 | /* do not write into reserved, planned to be removed in a future version */ |
| 1442 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
| 1443 | return XXH_OK; |
| 1444 | } |
| 1445 | |
| 1446 | |
| 1447 | XXH_PUBLIC_API XXH_errorcode |
| 1448 | XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
| 1449 | { |
| 1450 | if (input==NULL) |
| 1451 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 1452 | return XXH_OK; |
| 1453 | #else |
| 1454 | return XXH_ERROR; |
| 1455 | #endif |
| 1456 | |
| 1457 | { const xxh_u8* p = (const xxh_u8*)input; |
| 1458 | const xxh_u8* const bEnd = p + len; |
| 1459 | |
| 1460 | state->total_len_32 += (XXH32_hash_t)len; |
| 1461 | state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
| 1462 | |
| 1463 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| 1464 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
| 1465 | state->memsize += (XXH32_hash_t)len; |
| 1466 | return XXH_OK; |
| 1467 | } |
| 1468 | |
| 1469 | if (state->memsize) { /* some data left from previous update */ |
| 1470 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| 1471 | { const xxh_u32* p32 = state->mem32; |
| 1472 | state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++; |
| 1473 | state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++; |
| 1474 | state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++; |
| 1475 | state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); |
| 1476 | } |
| 1477 | p += 16-state->memsize; |
| 1478 | state->memsize = 0; |
| 1479 | } |
| 1480 | |
| 1481 | if (p <= bEnd-16) { |
| 1482 | const xxh_u8* const limit = bEnd - 16; |
| 1483 | xxh_u32 v1 = state->v1; |
| 1484 | xxh_u32 v2 = state->v2; |
| 1485 | xxh_u32 v3 = state->v3; |
| 1486 | xxh_u32 v4 = state->v4; |
| 1487 | |
| 1488 | do { |
| 1489 | v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4; |
| 1490 | v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4; |
| 1491 | v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4; |
| 1492 | v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4; |
| 1493 | } while (p<=limit); |
| 1494 | |
| 1495 | state->v1 = v1; |
| 1496 | state->v2 = v2; |
| 1497 | state->v3 = v3; |
| 1498 | state->v4 = v4; |
| 1499 | } |
| 1500 | |
| 1501 | if (p < bEnd) { |
| 1502 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
| 1503 | state->memsize = (unsigned)(bEnd-p); |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | return XXH_OK; |
| 1508 | } |
| 1509 | |
| 1510 | |
| 1511 | XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state) |
| 1512 | { |
| 1513 | xxh_u32 h32; |
| 1514 | |
| 1515 | if (state->large_len) { |
| 1516 | h32 = XXH_rotl32(state->v1, 1) |
| 1517 | + XXH_rotl32(state->v2, 7) |
| 1518 | + XXH_rotl32(state->v3, 12) |
| 1519 | + XXH_rotl32(state->v4, 18); |
| 1520 | } else { |
| 1521 | h32 = state->v3 /* == seed */ + XXH_PRIME32_5; |
| 1522 | } |
| 1523 | |
| 1524 | h32 += state->total_len_32; |
| 1525 | |
| 1526 | return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
| 1527 | } |
| 1528 | |
| 1529 | |
| 1530 | /******* Canonical representation *******/ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1531 | |
| 1532 | /* |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1533 | * The default return values from XXH functions are unsigned 32 and 64 bit |
| 1534 | * integers. |
| 1535 | * |
| 1536 | * The canonical representation uses big endian convention, the same convention |
| 1537 | * as human-readable numbers (large digits first). |
| 1538 | * |
| 1539 | * This way, hash values can be written into a file or buffer, remaining |
| 1540 | * comparable across different systems. |
| 1541 | * |
| 1542 | * The following functions allow transformation of hash values to and from their |
| 1543 | * canonical format. |
| 1544 | */ |
| 1545 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
| 1546 | { |
| 1547 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| 1548 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| 1549 | memcpy(dst, &hash, sizeof(*dst)); |
| 1550 | } |
| 1551 | |
| 1552 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
| 1553 | { |
| 1554 | return XXH_readBE32(src); |
| 1555 | } |
| 1556 | |
| 1557 | |
| 1558 | #ifndef XXH_NO_LONG_LONG |
| 1559 | |
| 1560 | /* ******************************************************************* |
| 1561 | * 64-bit hash functions |
| 1562 | *********************************************************************/ |
| 1563 | |
| 1564 | /******* Memory access *******/ |
| 1565 | |
| 1566 | typedef XXH64_hash_t xxh_u64; |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1567 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1568 | #ifdef XXH_OLD_NAMES |
| 1569 | # define U64 xxh_u64 |
| 1570 | #endif |
| 1571 | |
| 1572 | /*! |
| 1573 | * XXH_REROLL_XXH64: |
| 1574 | * Whether to reroll the XXH64_finalize() loop. |
| 1575 | * |
| 1576 | * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a |
| 1577 | * performance gain on 64-bit hosts, as only one jump is required. |
| 1578 | * |
| 1579 | * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit |
| 1580 | * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial |
| 1581 | * to unroll. The code becomes ridiculously large (the largest function in the |
| 1582 | * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is |
| 1583 | * also slightly faster because it fits into cache better and is more likely |
| 1584 | * to be inlined by the compiler. |
| 1585 | * |
| 1586 | * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. |
| 1587 | */ |
| 1588 | #ifndef XXH_REROLL_XXH64 |
| 1589 | # if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ |
| 1590 | || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \ |
| 1591 | || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \ |
| 1592 | || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ |
| 1593 | || defined(__mips64__) || defined(__mips64)) /* mips64 */ \ |
| 1594 | || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ |
| 1595 | # define XXH_REROLL_XXH64 1 |
| 1596 | # else |
| 1597 | # define XXH_REROLL_XXH64 0 |
| 1598 | # endif |
| 1599 | #endif /* !defined(XXH_REROLL_XXH64) */ |
| 1600 | |
| 1601 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| 1602 | /* |
| 1603 | * Manual byteshift. Best for old compilers which don't inline memcpy. |
| 1604 | * We actually directly use XXH_readLE64 and XXH_readBE64. |
| 1605 | */ |
| 1606 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1607 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1608 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| 1609 | static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; } |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1610 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1611 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1612 | |
| 1613 | /* |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1614 | * __pack instructions are safer, but compiler specific, hence potentially |
| 1615 | * problematic for some compilers. |
| 1616 | * |
| 1617 | * Currently only defined for GCC and ICC. |
| 1618 | */ |
| 1619 | #ifdef XXH_OLD_NAMES |
| 1620 | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
| 1621 | #endif |
| 1622 | static xxh_u64 XXH_read64(const void* ptr) |
| 1623 | { |
| 1624 | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; |
| 1625 | return ((const xxh_unalign64*)ptr)->u64; |
| 1626 | } |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1627 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1628 | #else |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1629 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1630 | /* |
| 1631 | * Portable and safe solution. Generally efficient. |
| 1632 | * see: https://stackoverflow.com/a/32095106/646947 |
| 1633 | */ |
| 1634 | static xxh_u64 XXH_read64(const void* memPtr) |
| 1635 | { |
| 1636 | xxh_u64 val; |
| 1637 | memcpy(&val, memPtr, sizeof(val)); |
| 1638 | return val; |
| 1639 | } |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1640 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1641 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1642 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1643 | #if defined(_MSC_VER) /* Visual Studio */ |
| 1644 | # define XXH_swap64 _byteswap_uint64 |
| 1645 | #elif XXH_GCC_VERSION >= 403 |
| 1646 | # define XXH_swap64 __builtin_bswap64 |
| 1647 | #else |
| 1648 | static xxh_u64 XXH_swap64 (xxh_u64 x) |
| 1649 | { |
| 1650 | return ((x << 56) & 0xff00000000000000ULL) | |
| 1651 | ((x << 40) & 0x00ff000000000000ULL) | |
| 1652 | ((x << 24) & 0x0000ff0000000000ULL) | |
| 1653 | ((x << 8) & 0x000000ff00000000ULL) | |
| 1654 | ((x >> 8) & 0x00000000ff000000ULL) | |
| 1655 | ((x >> 24) & 0x0000000000ff0000ULL) | |
| 1656 | ((x >> 40) & 0x000000000000ff00ULL) | |
| 1657 | ((x >> 56) & 0x00000000000000ffULL); |
| 1658 | } |
| 1659 | #endif |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 1660 | |
Dragan Dosen | de37443 | 2020-12-22 12:00:37 +0100 | [diff] [blame] | 1661 | |
| 1662 | /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
| 1663 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| 1664 | |
| 1665 | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
| 1666 | { |
| 1667 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| 1668 | return bytePtr[0] |
| 1669 | | ((xxh_u64)bytePtr[1] << 8) |
| 1670 | | ((xxh_u64)bytePtr[2] << 16) |
| 1671 | | ((xxh_u64)bytePtr[3] << 24) |
| 1672 | | ((xxh_u64)bytePtr[4] << 32) |
| 1673 | | ((xxh_u64)bytePtr[5] << 40) |
| 1674 | | ((xxh_u64)bytePtr[6] << 48) |
| 1675 | | ((xxh_u64)bytePtr[7] << 56); |
| 1676 | } |
| 1677 | |
| 1678 | XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
| 1679 | { |
| 1680 | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| 1681 | return bytePtr[7] |
| 1682 | | ((xxh_u64)bytePtr[6] << 8) |
| 1683 | | ((xxh_u64)bytePtr[5] << 16) |
| 1684 | | ((xxh_u64)bytePtr[4] << 24) |
| 1685 | | ((xxh_u64)bytePtr[3] << 32) |
| 1686 | | ((xxh_u64)bytePtr[2] << 40) |
| 1687 | | ((xxh_u64)bytePtr[1] << 48) |
| 1688 | | ((xxh_u64)bytePtr[0] << 56); |
| 1689 | } |
| 1690 | |
| 1691 | #else |
| 1692 | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
| 1693 | { |
| 1694 | return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| 1695 | } |
| 1696 | |
| 1697 | static xxh_u64 XXH_readBE64(const void* ptr) |
| 1698 | { |
| 1699 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| 1700 | } |
| 1701 | #endif |
| 1702 | |
| 1703 | XXH_FORCE_INLINE xxh_u64 |
| 1704 | XXH_readLE64_align(const void* ptr, XXH_alignment align) |
| 1705 | { |
| 1706 | if (align==XXH_unaligned) |
| 1707 | return XXH_readLE64(ptr); |
| 1708 | else |
| 1709 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
| 1710 | } |
| 1711 | |
| 1712 | |
| 1713 | /******* xxh64 *******/ |
| 1714 | |
| 1715 | static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
| 1716 | static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
| 1717 | static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
| 1718 | static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
| 1719 | static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
| 1720 | |
| 1721 | #ifdef XXH_OLD_NAMES |
| 1722 | # define PRIME64_1 XXH_PRIME64_1 |
| 1723 | # define PRIME64_2 XXH_PRIME64_2 |
| 1724 | # define PRIME64_3 XXH_PRIME64_3 |
| 1725 | # define PRIME64_4 XXH_PRIME64_4 |
| 1726 | # define PRIME64_5 XXH_PRIME64_5 |
| 1727 | #endif |
| 1728 | |
| 1729 | static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
| 1730 | { |
| 1731 | acc += input * XXH_PRIME64_2; |
| 1732 | acc = XXH_rotl64(acc, 31); |
| 1733 | acc *= XXH_PRIME64_1; |
| 1734 | return acc; |
| 1735 | } |
| 1736 | |
| 1737 | static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
| 1738 | { |
| 1739 | val = XXH64_round(0, val); |
| 1740 | acc ^= val; |
| 1741 | acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
| 1742 | return acc; |
| 1743 | } |
| 1744 | |
| 1745 | static xxh_u64 XXH64_avalanche(xxh_u64 h64) |
| 1746 | { |
| 1747 | h64 ^= h64 >> 33; |
| 1748 | h64 *= XXH_PRIME64_2; |
| 1749 | h64 ^= h64 >> 29; |
| 1750 | h64 *= XXH_PRIME64_3; |
| 1751 | h64 ^= h64 >> 32; |
| 1752 | return h64; |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
| 1757 | |
| 1758 | static xxh_u64 |
| 1759 | XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) |
| 1760 | { |
| 1761 | #define XXH_PROCESS1_64 do { \ |
| 1762 | h64 ^= (*ptr++) * XXH_PRIME64_5; \ |
| 1763 | h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \ |
| 1764 | } while (0) |
| 1765 | |
| 1766 | #define XXH_PROCESS4_64 do { \ |
| 1767 | h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \ |
| 1768 | ptr += 4; \ |
| 1769 | h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \ |
| 1770 | } while (0) |
| 1771 | |
| 1772 | #define XXH_PROCESS8_64 do { \ |
| 1773 | xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ |
| 1774 | ptr += 8; \ |
| 1775 | h64 ^= k1; \ |
| 1776 | h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \ |
| 1777 | } while (0) |
| 1778 | |
| 1779 | /* Rerolled version for 32-bit targets is faster and much smaller. */ |
| 1780 | if (XXH_REROLL || XXH_REROLL_XXH64) { |
| 1781 | len &= 31; |
| 1782 | while (len >= 8) { |
| 1783 | XXH_PROCESS8_64; |
| 1784 | len -= 8; |
| 1785 | } |
| 1786 | if (len >= 4) { |
| 1787 | XXH_PROCESS4_64; |
| 1788 | len -= 4; |
| 1789 | } |
| 1790 | while (len > 0) { |
| 1791 | XXH_PROCESS1_64; |
| 1792 | --len; |
| 1793 | } |
| 1794 | return XXH64_avalanche(h64); |
| 1795 | } else { |
| 1796 | switch(len & 31) { |
| 1797 | case 24: XXH_PROCESS8_64; |
| 1798 | /* fallthrough */ |
| 1799 | case 16: XXH_PROCESS8_64; |
| 1800 | /* fallthrough */ |
| 1801 | case 8: XXH_PROCESS8_64; |
| 1802 | return XXH64_avalanche(h64); |
| 1803 | |
| 1804 | case 28: XXH_PROCESS8_64; |
| 1805 | /* fallthrough */ |
| 1806 | case 20: XXH_PROCESS8_64; |
| 1807 | /* fallthrough */ |
| 1808 | case 12: XXH_PROCESS8_64; |
| 1809 | /* fallthrough */ |
| 1810 | case 4: XXH_PROCESS4_64; |
| 1811 | return XXH64_avalanche(h64); |
| 1812 | |
| 1813 | case 25: XXH_PROCESS8_64; |
| 1814 | /* fallthrough */ |
| 1815 | case 17: XXH_PROCESS8_64; |
| 1816 | /* fallthrough */ |
| 1817 | case 9: XXH_PROCESS8_64; |
| 1818 | XXH_PROCESS1_64; |
| 1819 | return XXH64_avalanche(h64); |
| 1820 | |
| 1821 | case 29: XXH_PROCESS8_64; |
| 1822 | /* fallthrough */ |
| 1823 | case 21: XXH_PROCESS8_64; |
| 1824 | /* fallthrough */ |
| 1825 | case 13: XXH_PROCESS8_64; |
| 1826 | /* fallthrough */ |
| 1827 | case 5: XXH_PROCESS4_64; |
| 1828 | XXH_PROCESS1_64; |
| 1829 | return XXH64_avalanche(h64); |
| 1830 | |
| 1831 | case 26: XXH_PROCESS8_64; |
| 1832 | /* fallthrough */ |
| 1833 | case 18: XXH_PROCESS8_64; |
| 1834 | /* fallthrough */ |
| 1835 | case 10: XXH_PROCESS8_64; |
| 1836 | XXH_PROCESS1_64; |
| 1837 | XXH_PROCESS1_64; |
| 1838 | return XXH64_avalanche(h64); |
| 1839 | |
| 1840 | case 30: XXH_PROCESS8_64; |
| 1841 | /* fallthrough */ |
| 1842 | case 22: XXH_PROCESS8_64; |
| 1843 | /* fallthrough */ |
| 1844 | case 14: XXH_PROCESS8_64; |
| 1845 | /* fallthrough */ |
| 1846 | case 6: XXH_PROCESS4_64; |
| 1847 | XXH_PROCESS1_64; |
| 1848 | XXH_PROCESS1_64; |
| 1849 | return XXH64_avalanche(h64); |
| 1850 | |
| 1851 | case 27: XXH_PROCESS8_64; |
| 1852 | /* fallthrough */ |
| 1853 | case 19: XXH_PROCESS8_64; |
| 1854 | /* fallthrough */ |
| 1855 | case 11: XXH_PROCESS8_64; |
| 1856 | XXH_PROCESS1_64; |
| 1857 | XXH_PROCESS1_64; |
| 1858 | XXH_PROCESS1_64; |
| 1859 | return XXH64_avalanche(h64); |
| 1860 | |
| 1861 | case 31: XXH_PROCESS8_64; |
| 1862 | /* fallthrough */ |
| 1863 | case 23: XXH_PROCESS8_64; |
| 1864 | /* fallthrough */ |
| 1865 | case 15: XXH_PROCESS8_64; |
| 1866 | /* fallthrough */ |
| 1867 | case 7: XXH_PROCESS4_64; |
| 1868 | /* fallthrough */ |
| 1869 | case 3: XXH_PROCESS1_64; |
| 1870 | /* fallthrough */ |
| 1871 | case 2: XXH_PROCESS1_64; |
| 1872 | /* fallthrough */ |
| 1873 | case 1: XXH_PROCESS1_64; |
| 1874 | /* fallthrough */ |
| 1875 | case 0: return XXH64_avalanche(h64); |
| 1876 | } |
| 1877 | } |
| 1878 | /* impossible to reach */ |
| 1879 | XXH_ASSERT(0); |
| 1880 | return 0; /* unreachable, but some compilers complain without it */ |
| 1881 | } |
| 1882 | |
| 1883 | #ifdef XXH_OLD_NAMES |
| 1884 | # define PROCESS1_64 XXH_PROCESS1_64 |
| 1885 | # define PROCESS4_64 XXH_PROCESS4_64 |
| 1886 | # define PROCESS8_64 XXH_PROCESS8_64 |
| 1887 | #else |
| 1888 | # undef XXH_PROCESS1_64 |
| 1889 | # undef XXH_PROCESS4_64 |
| 1890 | # undef XXH_PROCESS8_64 |
| 1891 | #endif |
| 1892 | |
| 1893 | XXH_FORCE_INLINE xxh_u64 |
| 1894 | XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
| 1895 | { |
| 1896 | const xxh_u8* bEnd = input + len; |
| 1897 | xxh_u64 h64; |
| 1898 | |
| 1899 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 1900 | if (input==NULL) { |
| 1901 | len=0; |
| 1902 | bEnd=input=(const xxh_u8*)(size_t)32; |
| 1903 | } |
| 1904 | #endif |
| 1905 | |
| 1906 | if (len>=32) { |
| 1907 | const xxh_u8* const limit = bEnd - 32; |
| 1908 | xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| 1909 | xxh_u64 v2 = seed + XXH_PRIME64_2; |
| 1910 | xxh_u64 v3 = seed + 0; |
| 1911 | xxh_u64 v4 = seed - XXH_PRIME64_1; |
| 1912 | |
| 1913 | do { |
| 1914 | v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
| 1915 | v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
| 1916 | v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
| 1917 | v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
| 1918 | } while (input<=limit); |
| 1919 | |
| 1920 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| 1921 | h64 = XXH64_mergeRound(h64, v1); |
| 1922 | h64 = XXH64_mergeRound(h64, v2); |
| 1923 | h64 = XXH64_mergeRound(h64, v3); |
| 1924 | h64 = XXH64_mergeRound(h64, v4); |
| 1925 | |
| 1926 | } else { |
| 1927 | h64 = seed + XXH_PRIME64_5; |
| 1928 | } |
| 1929 | |
| 1930 | h64 += (xxh_u64) len; |
| 1931 | |
| 1932 | return XXH64_finalize(h64, input, len, align); |
| 1933 | } |
| 1934 | |
| 1935 | |
| 1936 | XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) |
| 1937 | { |
| 1938 | #if 0 |
| 1939 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| 1940 | XXH64_state_t state; |
| 1941 | XXH64_reset(&state, seed); |
| 1942 | XXH64_update(&state, (const xxh_u8*)input, len); |
| 1943 | return XXH64_digest(&state); |
| 1944 | |
| 1945 | #else |
| 1946 | |
| 1947 | if (XXH_FORCE_ALIGN_CHECK) { |
| 1948 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
| 1949 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
| 1950 | } } |
| 1951 | |
| 1952 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
| 1953 | |
| 1954 | #endif |
| 1955 | } |
| 1956 | |
| 1957 | /******* Hash Streaming *******/ |
| 1958 | |
| 1959 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
| 1960 | { |
| 1961 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| 1962 | } |
| 1963 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| 1964 | { |
| 1965 | XXH_free(statePtr); |
| 1966 | return XXH_OK; |
| 1967 | } |
| 1968 | |
| 1969 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
| 1970 | { |
| 1971 | memcpy(dstState, srcState, sizeof(*dstState)); |
| 1972 | } |
| 1973 | |
| 1974 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) |
| 1975 | { |
| 1976 | XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| 1977 | memset(&state, 0, sizeof(state)); |
| 1978 | state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| 1979 | state.v2 = seed + XXH_PRIME64_2; |
| 1980 | state.v3 = seed + 0; |
| 1981 | state.v4 = seed - XXH_PRIME64_1; |
| 1982 | /* do not write into reserved64, might be removed in a future version */ |
| 1983 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); |
| 1984 | return XXH_OK; |
| 1985 | } |
| 1986 | |
| 1987 | XXH_PUBLIC_API XXH_errorcode |
| 1988 | XXH64_update (XXH64_state_t* state, const void* input, size_t len) |
| 1989 | { |
| 1990 | if (input==NULL) |
| 1991 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 1992 | return XXH_OK; |
| 1993 | #else |
| 1994 | return XXH_ERROR; |
| 1995 | #endif |
| 1996 | |
| 1997 | { const xxh_u8* p = (const xxh_u8*)input; |
| 1998 | const xxh_u8* const bEnd = p + len; |
| 1999 | |
| 2000 | state->total_len += len; |
| 2001 | |
| 2002 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| 2003 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
| 2004 | state->memsize += (xxh_u32)len; |
| 2005 | return XXH_OK; |
| 2006 | } |
| 2007 | |
| 2008 | if (state->memsize) { /* tmp buffer is full */ |
| 2009 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
| 2010 | state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0)); |
| 2011 | state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1)); |
| 2012 | state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2)); |
| 2013 | state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3)); |
| 2014 | p += 32-state->memsize; |
| 2015 | state->memsize = 0; |
| 2016 | } |
| 2017 | |
| 2018 | if (p+32 <= bEnd) { |
| 2019 | const xxh_u8* const limit = bEnd - 32; |
| 2020 | xxh_u64 v1 = state->v1; |
| 2021 | xxh_u64 v2 = state->v2; |
| 2022 | xxh_u64 v3 = state->v3; |
| 2023 | xxh_u64 v4 = state->v4; |
| 2024 | |
| 2025 | do { |
| 2026 | v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8; |
| 2027 | v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8; |
| 2028 | v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8; |
| 2029 | v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8; |
| 2030 | } while (p<=limit); |
| 2031 | |
| 2032 | state->v1 = v1; |
| 2033 | state->v2 = v2; |
| 2034 | state->v3 = v3; |
| 2035 | state->v4 = v4; |
| 2036 | } |
| 2037 | |
| 2038 | if (p < bEnd) { |
| 2039 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
| 2040 | state->memsize = (unsigned)(bEnd-p); |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | return XXH_OK; |
| 2045 | } |
| 2046 | |
| 2047 | |
| 2048 | XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state) |
| 2049 | { |
| 2050 | xxh_u64 h64; |
| 2051 | |
| 2052 | if (state->total_len >= 32) { |
| 2053 | xxh_u64 const v1 = state->v1; |
| 2054 | xxh_u64 const v2 = state->v2; |
| 2055 | xxh_u64 const v3 = state->v3; |
| 2056 | xxh_u64 const v4 = state->v4; |
| 2057 | |
| 2058 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| 2059 | h64 = XXH64_mergeRound(h64, v1); |
| 2060 | h64 = XXH64_mergeRound(h64, v2); |
| 2061 | h64 = XXH64_mergeRound(h64, v3); |
| 2062 | h64 = XXH64_mergeRound(h64, v4); |
| 2063 | } else { |
| 2064 | h64 = state->v3 /*seed*/ + XXH_PRIME64_5; |
| 2065 | } |
| 2066 | |
| 2067 | h64 += (xxh_u64) state->total_len; |
| 2068 | |
| 2069 | return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
| 2070 | } |
| 2071 | |
| 2072 | |
| 2073 | /******* Canonical representation *******/ |
| 2074 | |
| 2075 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
| 2076 | { |
| 2077 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| 2078 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| 2079 | memcpy(dst, &hash, sizeof(*dst)); |
| 2080 | } |
| 2081 | |
| 2082 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
| 2083 | { |
| 2084 | return XXH_readBE64(src); |
| 2085 | } |
| 2086 | |
| 2087 | |
| 2088 | |
| 2089 | /* ********************************************************************* |
| 2090 | * XXH3 |
| 2091 | * New generation hash designed for speed on small keys and vectorization |
| 2092 | ************************************************************************ */ |
| 2093 | |
| 2094 | /* === Compiler specifics === */ |
| 2095 | |
| 2096 | #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
| 2097 | # define XXH_RESTRICT restrict |
| 2098 | #else |
| 2099 | /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
| 2100 | # define XXH_RESTRICT /* disable */ |
| 2101 | #endif |
| 2102 | |
| 2103 | #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
| 2104 | || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
| 2105 | || defined(__clang__) |
| 2106 | # define XXH_likely(x) __builtin_expect(x, 1) |
| 2107 | # define XXH_unlikely(x) __builtin_expect(x, 0) |
| 2108 | #else |
| 2109 | # define XXH_likely(x) (x) |
| 2110 | # define XXH_unlikely(x) (x) |
| 2111 | #endif |
| 2112 | |
| 2113 | #if defined(__GNUC__) |
| 2114 | # if defined(__AVX2__) |
| 2115 | # include <immintrin.h> |
| 2116 | # elif defined(__SSE2__) |
| 2117 | # include <emmintrin.h> |
| 2118 | # elif defined(__ARM_NEON__) || defined(__ARM_NEON) |
| 2119 | # define inline __inline__ /* circumvent a clang bug */ |
| 2120 | # include <arm_neon.h> |
| 2121 | # undef inline |
| 2122 | # endif |
| 2123 | #elif defined(_MSC_VER) |
| 2124 | # include <intrin.h> |
| 2125 | #endif |
| 2126 | |
| 2127 | /* |
| 2128 | * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
| 2129 | * remaining a true 64-bit/128-bit hash function. |
| 2130 | * |
| 2131 | * This is done by prioritizing a subset of 64-bit operations that can be |
| 2132 | * emulated without too many steps on the average 32-bit machine. |
| 2133 | * |
| 2134 | * For example, these two lines seem similar, and run equally fast on 64-bit: |
| 2135 | * |
| 2136 | * xxh_u64 x; |
| 2137 | * x ^= (x >> 47); // good |
| 2138 | * x ^= (x >> 13); // bad |
| 2139 | * |
| 2140 | * However, to a 32-bit machine, there is a major difference. |
| 2141 | * |
| 2142 | * x ^= (x >> 47) looks like this: |
| 2143 | * |
| 2144 | * x.lo ^= (x.hi >> (47 - 32)); |
| 2145 | * |
| 2146 | * while x ^= (x >> 13) looks like this: |
| 2147 | * |
| 2148 | * // note: funnel shifts are not usually cheap. |
| 2149 | * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
| 2150 | * x.hi ^= (x.hi >> 13); |
| 2151 | * |
| 2152 | * The first one is significantly faster than the second, simply because the |
| 2153 | * shift is larger than 32. This means: |
| 2154 | * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
| 2155 | * 32 bits in the shift. |
| 2156 | * - The shift result will always fit in the lower 32 bits, and therefore, |
| 2157 | * we can ignore the upper 32 bits in the xor. |
| 2158 | * |
| 2159 | * Thanks to this optimization, XXH3 only requires these features to be efficient: |
| 2160 | * |
| 2161 | * - Usable unaligned access |
| 2162 | * - A 32-bit or 64-bit ALU |
| 2163 | * - If 32-bit, a decent ADC instruction |
| 2164 | * - A 32 or 64-bit multiply with a 64-bit result |
| 2165 | * - For the 128-bit variant, a decent byteswap helps short inputs. |
| 2166 | * |
| 2167 | * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
| 2168 | * platforms which can run XXH32 can run XXH3 efficiently. |
| 2169 | * |
| 2170 | * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
| 2171 | * notable exception. |
| 2172 | * |
| 2173 | * First of all, Thumb-1 lacks support for the UMULL instruction which |
| 2174 | * performs the important long multiply. This means numerous __aeabi_lmul |
| 2175 | * calls. |
| 2176 | * |
| 2177 | * Second of all, the 8 functional registers are just not enough. |
| 2178 | * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
| 2179 | * Lo registers, and this shuffling results in thousands more MOVs than A32. |
| 2180 | * |
| 2181 | * A32 and T32 don't have this limitation. They can access all 14 registers, |
| 2182 | * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
| 2183 | * shifts is helpful, too. |
| 2184 | * |
| 2185 | * Therefore, we do a quick sanity check. |
| 2186 | * |
| 2187 | * If compiling Thumb-1 for a target which supports ARM instructions, we will |
| 2188 | * emit a warning, as it is not a "sane" platform to compile for. |
| 2189 | * |
| 2190 | * Usually, if this happens, it is because of an accident and you probably need |
| 2191 | * to specify -march, as you likely meant to compile for a newer architecture. |
| 2192 | * |
| 2193 | * Credit: large sections of the vectorial and asm source code paths |
| 2194 | * have been contributed by @easyaspi314 |
| 2195 | */ |
| 2196 | #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
| 2197 | # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
| 2198 | #endif |
| 2199 | |
| 2200 | /* ========================================== |
| 2201 | * Vectorization detection |
| 2202 | * ========================================== */ |
| 2203 | #define XXH_SCALAR 0 /* Portable scalar version */ |
| 2204 | #define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ |
| 2205 | #define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ |
| 2206 | #define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */ |
| 2207 | #define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */ |
| 2208 | #define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */ |
| 2209 | |
| 2210 | #ifndef XXH_VECTOR /* can be defined on command line */ |
| 2211 | # if defined(__AVX512F__) |
| 2212 | # define XXH_VECTOR XXH_AVX512 |
| 2213 | # elif defined(__AVX2__) |
| 2214 | # define XXH_VECTOR XXH_AVX2 |
| 2215 | # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
| 2216 | # define XXH_VECTOR XXH_SSE2 |
| 2217 | # elif defined(__GNUC__) /* msvc support maybe later */ \ |
| 2218 | && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ |
| 2219 | && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ |
| 2220 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) |
| 2221 | # define XXH_VECTOR XXH_NEON |
| 2222 | # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
| 2223 | || (defined(__s390x__) && defined(__VEC__)) \ |
| 2224 | && defined(__GNUC__) /* TODO: IBM XL */ |
| 2225 | # define XXH_VECTOR XXH_VSX |
| 2226 | # else |
| 2227 | # define XXH_VECTOR XXH_SCALAR |
| 2228 | # endif |
| 2229 | #endif |
| 2230 | |
| 2231 | /* |
| 2232 | * Controls the alignment of the accumulator, |
| 2233 | * for compatibility with aligned vector loads, which are usually faster. |
| 2234 | */ |
| 2235 | #ifndef XXH_ACC_ALIGN |
| 2236 | # if defined(XXH_X86DISPATCH) |
| 2237 | # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
| 2238 | # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
| 2239 | # define XXH_ACC_ALIGN 8 |
| 2240 | # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
| 2241 | # define XXH_ACC_ALIGN 16 |
| 2242 | # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
| 2243 | # define XXH_ACC_ALIGN 32 |
| 2244 | # elif XXH_VECTOR == XXH_NEON /* neon */ |
| 2245 | # define XXH_ACC_ALIGN 16 |
| 2246 | # elif XXH_VECTOR == XXH_VSX /* vsx */ |
| 2247 | # define XXH_ACC_ALIGN 16 |
| 2248 | # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
| 2249 | # define XXH_ACC_ALIGN 64 |
| 2250 | # endif |
| 2251 | #endif |
| 2252 | |
| 2253 | #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
| 2254 | || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
| 2255 | # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
| 2256 | #else |
| 2257 | # define XXH_SEC_ALIGN 8 |
| 2258 | #endif |
| 2259 | |
| 2260 | /* |
| 2261 | * UGLY HACK: |
| 2262 | * GCC usually generates the best code with -O3 for xxHash. |
| 2263 | * |
| 2264 | * However, when targeting AVX2, it is overzealous in its unrolling resulting |
| 2265 | * in code roughly 3/4 the speed of Clang. |
| 2266 | * |
| 2267 | * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
| 2268 | * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
| 2269 | * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
| 2270 | * |
| 2271 | * That is why when compiling the AVX2 version, it is recommended to use either |
| 2272 | * -O2 -mavx2 -march=haswell |
| 2273 | * or |
| 2274 | * -O2 -mavx2 -mno-avx256-split-unaligned-load |
| 2275 | * for decent performance, or to use Clang instead. |
| 2276 | * |
| 2277 | * Fortunately, we can control the first one with a pragma that forces GCC into |
| 2278 | * -O2, but the other one we can't control without "failed to inline always |
| 2279 | * inline function due to target mismatch" warnings. |
| 2280 | */ |
| 2281 | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| 2282 | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| 2283 | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
| 2284 | # pragma GCC push_options |
| 2285 | # pragma GCC optimize("-O2") |
| 2286 | #endif |
| 2287 | |
| 2288 | |
| 2289 | #if XXH_VECTOR == XXH_NEON |
| 2290 | /* |
| 2291 | * NEON's setup for vmlal_u32 is a little more complicated than it is on |
| 2292 | * SSE2, AVX2, and VSX. |
| 2293 | * |
| 2294 | * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
| 2295 | * |
| 2296 | * To do the same operation, the 128-bit 'Q' register needs to be split into |
| 2297 | * two 64-bit 'D' registers, performing this operation:: |
| 2298 | * |
| 2299 | * [ a | b ] |
| 2300 | * | '---------. .--------' | |
| 2301 | * | x | |
| 2302 | * | .---------' '--------. | |
| 2303 | * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
| 2304 | * |
| 2305 | * Due to significant changes in aarch64, the fastest method for aarch64 is |
| 2306 | * completely different than the fastest method for ARMv7-A. |
| 2307 | * |
| 2308 | * ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
| 2309 | * D11 will modify the high half of Q5. This is similar to how modifying AH |
| 2310 | * will only affect bits 8-15 of AX on x86. |
| 2311 | * |
| 2312 | * VZIP takes two registers, and puts even lanes in one register and odd lanes |
| 2313 | * in the other. |
| 2314 | * |
| 2315 | * On ARMv7-A, this strangely modifies both parameters in place instead of |
| 2316 | * taking the usual 3-operand form. |
| 2317 | * |
| 2318 | * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
| 2319 | * lower and upper halves of the Q register to end up with the high and low |
| 2320 | * halves where we want - all in one instruction. |
| 2321 | * |
| 2322 | * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
| 2323 | * |
| 2324 | * Unfortunately we need inline assembly for this: Instructions modifying two |
| 2325 | * registers at once is not possible in GCC or Clang's IR, and they have to |
| 2326 | * create a copy. |
| 2327 | * |
| 2328 | * aarch64 requires a different approach. |
| 2329 | * |
| 2330 | * In order to make it easier to write a decent compiler for aarch64, many |
| 2331 | * quirks were removed, such as conditional execution. |
| 2332 | * |
| 2333 | * NEON was also affected by this. |
| 2334 | * |
| 2335 | * aarch64 cannot access the high bits of a Q-form register, and writes to a |
| 2336 | * D-form register zero the high bits, similar to how writes to W-form scalar |
| 2337 | * registers (or DWORD registers on x86_64) work. |
| 2338 | * |
| 2339 | * The formerly free vget_high intrinsics now require a vext (with a few |
| 2340 | * exceptions) |
| 2341 | * |
| 2342 | * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
| 2343 | * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
| 2344 | * operand. |
| 2345 | * |
| 2346 | * The equivalent of the VZIP.32 on the lower and upper halves would be this |
| 2347 | * mess: |
| 2348 | * |
| 2349 | * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
| 2350 | * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
| 2351 | * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
| 2352 | * |
| 2353 | * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
| 2354 | * |
| 2355 | * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
| 2356 | * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
| 2357 | * |
| 2358 | * This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
| 2359 | */ |
| 2360 | |
| 2361 | /* |
| 2362 | * Function-like macro: |
| 2363 | * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
| 2364 | * { |
| 2365 | * outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
| 2366 | * outHi = (uint32x2_t)(in >> 32); |
| 2367 | * in = UNDEFINED; |
| 2368 | * } |
| 2369 | */ |
| 2370 | # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
| 2371 | && defined(__GNUC__) \ |
| 2372 | && !defined(__aarch64__) && !defined(__arm64__) |
| 2373 | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
| 2374 | do { \ |
| 2375 | /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
| 2376 | /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
| 2377 | /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
| 2378 | __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
| 2379 | (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
| 2380 | (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
| 2381 | } while (0) |
| 2382 | # else |
| 2383 | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
| 2384 | do { \ |
| 2385 | (outLo) = vmovn_u64 (in); \ |
| 2386 | (outHi) = vshrn_n_u64 ((in), 32); \ |
| 2387 | } while (0) |
| 2388 | # endif |
| 2389 | #endif /* XXH_VECTOR == XXH_NEON */ |
| 2390 | |
| 2391 | /* |
| 2392 | * VSX and Z Vector helpers. |
| 2393 | * |
| 2394 | * This is very messy, and any pull requests to clean this up are welcome. |
| 2395 | * |
| 2396 | * There are a lot of problems with supporting VSX and s390x, due to |
| 2397 | * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
| 2398 | */ |
| 2399 | #if XXH_VECTOR == XXH_VSX |
| 2400 | # if defined(__s390x__) |
| 2401 | # include <s390intrin.h> |
| 2402 | # else |
| 2403 | /* gcc's altivec.h can have the unwanted consequence to unconditionally |
| 2404 | * #define bool, vector, and pixel keywords, |
| 2405 | * with bad consequences for programs already using these keywords for other purposes. |
| 2406 | * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. |
| 2407 | * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, |
| 2408 | * but it seems that, in some cases, it isn't. |
| 2409 | * Force the build macro to be defined, so that keywords are not altered. |
| 2410 | */ |
| 2411 | # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) |
| 2412 | # define __APPLE_ALTIVEC__ |
| 2413 | # endif |
| 2414 | # include <altivec.h> |
| 2415 | # endif |
| 2416 | |
| 2417 | typedef __vector unsigned long long xxh_u64x2; |
| 2418 | typedef __vector unsigned char xxh_u8x16; |
| 2419 | typedef __vector unsigned xxh_u32x4; |
| 2420 | |
| 2421 | # ifndef XXH_VSX_BE |
| 2422 | # if defined(__BIG_ENDIAN__) \ |
| 2423 | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| 2424 | # define XXH_VSX_BE 1 |
| 2425 | # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
| 2426 | # warning "-maltivec=be is not recommended. Please use native endianness." |
| 2427 | # define XXH_VSX_BE 1 |
| 2428 | # else |
| 2429 | # define XXH_VSX_BE 0 |
| 2430 | # endif |
| 2431 | # endif /* !defined(XXH_VSX_BE) */ |
| 2432 | |
| 2433 | # if XXH_VSX_BE |
| 2434 | /* A wrapper for POWER9's vec_revb. */ |
| 2435 | # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
| 2436 | # define XXH_vec_revb vec_revb |
| 2437 | # else |
| 2438 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
| 2439 | { |
| 2440 | xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
| 2441 | 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
| 2442 | return vec_perm(val, val, vByteSwap); |
| 2443 | } |
| 2444 | # endif |
| 2445 | # endif /* XXH_VSX_BE */ |
| 2446 | |
| 2447 | /* |
| 2448 | * Performs an unaligned load and byte swaps it on big endian. |
| 2449 | */ |
| 2450 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
| 2451 | { |
| 2452 | xxh_u64x2 ret; |
| 2453 | memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
| 2454 | # if XXH_VSX_BE |
| 2455 | ret = XXH_vec_revb(ret); |
| 2456 | # endif |
| 2457 | return ret; |
| 2458 | } |
| 2459 | |
| 2460 | /* |
| 2461 | * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
| 2462 | * |
| 2463 | * These intrinsics weren't added until GCC 8, despite existing for a while, |
| 2464 | * and they are endian dependent. Also, their meaning swap depending on version. |
| 2465 | * */ |
| 2466 | # if defined(__s390x__) |
| 2467 | /* s390x is always big endian, no issue on this platform */ |
| 2468 | # define XXH_vec_mulo vec_mulo |
| 2469 | # define XXH_vec_mule vec_mule |
| 2470 | # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
| 2471 | /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
| 2472 | # define XXH_vec_mulo __builtin_altivec_vmulouw |
| 2473 | # define XXH_vec_mule __builtin_altivec_vmuleuw |
| 2474 | # else |
| 2475 | /* gcc needs inline assembly */ |
| 2476 | /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
| 2477 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
| 2478 | { |
| 2479 | xxh_u64x2 result; |
| 2480 | __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| 2481 | return result; |
| 2482 | } |
| 2483 | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
| 2484 | { |
| 2485 | xxh_u64x2 result; |
| 2486 | __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| 2487 | return result; |
| 2488 | } |
| 2489 | # endif /* XXH_vec_mulo, XXH_vec_mule */ |
| 2490 | #endif /* XXH_VECTOR == XXH_VSX */ |
| 2491 | |
| 2492 | |
| 2493 | /* prefetch |
| 2494 | * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
| 2495 | #if defined(XXH_NO_PREFETCH) |
| 2496 | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| 2497 | #else |
| 2498 | # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ |
| 2499 | # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
| 2500 | # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
| 2501 | # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
| 2502 | # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
| 2503 | # else |
| 2504 | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| 2505 | # endif |
| 2506 | #endif /* XXH_NO_PREFETCH */ |
| 2507 | |
| 2508 | |
| 2509 | /* ========================================== |
| 2510 | * XXH3 default settings |
| 2511 | * ========================================== */ |
| 2512 | |
| 2513 | #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
| 2514 | |
| 2515 | #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
| 2516 | # error "default keyset is not large enough" |
| 2517 | #endif |
| 2518 | |
| 2519 | /* Pseudorandom secret taken directly from FARSH */ |
| 2520 | XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
| 2521 | 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
| 2522 | 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
| 2523 | 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
| 2524 | 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
| 2525 | 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
| 2526 | 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
| 2527 | 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
| 2528 | 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
| 2529 | 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
| 2530 | 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
| 2531 | 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
| 2532 | 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
| 2533 | }; |
| 2534 | |
| 2535 | |
| 2536 | #ifdef XXH_OLD_NAMES |
| 2537 | # define kSecret XXH3_kSecret |
| 2538 | #endif |
| 2539 | |
| 2540 | /* |
| 2541 | * Calculates a 32-bit to 64-bit long multiply. |
| 2542 | * |
| 2543 | * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't |
| 2544 | * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
| 2545 | * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we |
| 2546 | * use that instead of the normal method. |
| 2547 | * |
| 2548 | * If you are compiling for platforms like Thumb-1 and don't have a better option, |
| 2549 | * you may also want to write your own long multiply routine here. |
| 2550 | * |
| 2551 | * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
| 2552 | * { |
| 2553 | * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
| 2554 | * } |
| 2555 | */ |
| 2556 | #if defined(_MSC_VER) && defined(_M_IX86) |
| 2557 | # include <intrin.h> |
| 2558 | # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
| 2559 | #else |
| 2560 | /* |
| 2561 | * Downcast + upcast is usually better than masking on older compilers like |
| 2562 | * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
| 2563 | * |
| 2564 | * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
| 2565 | * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
| 2566 | */ |
| 2567 | # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
| 2568 | #endif |
| 2569 | |
| 2570 | /* |
| 2571 | * Calculates a 64->128-bit long multiply. |
| 2572 | * |
| 2573 | * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. |
| 2574 | */ |
| 2575 | static XXH128_hash_t |
| 2576 | XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
| 2577 | { |
| 2578 | /* |
| 2579 | * GCC/Clang __uint128_t method. |
| 2580 | * |
| 2581 | * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
| 2582 | * This is usually the best way as it usually uses a native long 64-bit |
| 2583 | * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
| 2584 | * |
| 2585 | * Usually. |
| 2586 | * |
| 2587 | * Despite being a 32-bit platform, Clang (and emscripten) define this type |
| 2588 | * despite not having the arithmetic for it. This results in a laggy |
| 2589 | * compiler builtin call which calculates a full 128-bit multiply. |
| 2590 | * In that case it is best to use the portable one. |
| 2591 | * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
| 2592 | */ |
| 2593 | #if defined(__GNUC__) && !defined(__wasm__) \ |
| 2594 | && defined(__SIZEOF_INT128__) \ |
| 2595 | || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
| 2596 | |
| 2597 | __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
| 2598 | XXH128_hash_t r128; |
| 2599 | r128.low64 = (xxh_u64)(product); |
| 2600 | r128.high64 = (xxh_u64)(product >> 64); |
| 2601 | return r128; |
| 2602 | |
| 2603 | /* |
| 2604 | * MSVC for x64's _umul128 method. |
| 2605 | * |
| 2606 | * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
| 2607 | * |
| 2608 | * This compiles to single operand MUL on x64. |
| 2609 | */ |
| 2610 | #elif defined(_M_X64) || defined(_M_IA64) |
| 2611 | |
| 2612 | #ifndef _MSC_VER |
| 2613 | # pragma intrinsic(_umul128) |
| 2614 | #endif |
| 2615 | xxh_u64 product_high; |
| 2616 | xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
| 2617 | XXH128_hash_t r128; |
| 2618 | r128.low64 = product_low; |
| 2619 | r128.high64 = product_high; |
| 2620 | return r128; |
| 2621 | |
| 2622 | #else |
| 2623 | /* |
| 2624 | * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
| 2625 | * |
| 2626 | * This is a fast and simple grade school multiply, which is shown below |
| 2627 | * with base 10 arithmetic instead of base 0x100000000. |
| 2628 | * |
| 2629 | * 9 3 // D2 lhs = 93 |
| 2630 | * x 7 5 // D2 rhs = 75 |
| 2631 | * ---------- |
| 2632 | * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
| 2633 | * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
| 2634 | * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
| 2635 | * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
| 2636 | * --------- |
| 2637 | * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
| 2638 | * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
| 2639 | * --------- |
| 2640 | * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
| 2641 | * |
| 2642 | * The reasons for adding the products like this are: |
| 2643 | * 1. It avoids manual carry tracking. Just like how |
| 2644 | * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
| 2645 | * This avoids a lot of complexity. |
| 2646 | * |
| 2647 | * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
| 2648 | * instruction available in ARM's Digital Signal Processing extension |
| 2649 | * in 32-bit ARMv6 and later, which is shown below: |
| 2650 | * |
| 2651 | * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
| 2652 | * { |
| 2653 | * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
| 2654 | * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
| 2655 | * *RdHi = (xxh_u32)(product >> 32); |
| 2656 | * } |
| 2657 | * |
| 2658 | * This instruction was designed for efficient long multiplication, and |
| 2659 | * allows this to be calculated in only 4 instructions at speeds |
| 2660 | * comparable to some 64-bit ALUs. |
| 2661 | * |
| 2662 | * 3. It isn't terrible on other platforms. Usually this will be a couple |
| 2663 | * of 32-bit ADD/ADCs. |
| 2664 | */ |
| 2665 | |
| 2666 | /* First calculate all of the cross products. */ |
| 2667 | xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
| 2668 | xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
| 2669 | xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
| 2670 | xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
| 2671 | |
| 2672 | /* Now add the products together. These will never overflow. */ |
| 2673 | xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
| 2674 | xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
| 2675 | xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
| 2676 | |
| 2677 | XXH128_hash_t r128; |
| 2678 | r128.low64 = lower; |
| 2679 | r128.high64 = upper; |
| 2680 | return r128; |
| 2681 | #endif |
| 2682 | } |
| 2683 | |
| 2684 | /* |
| 2685 | * Does a 64-bit to 128-bit multiply, then XOR folds it. |
| 2686 | * |
| 2687 | * The reason for the separate function is to prevent passing too many structs |
| 2688 | * around by value. This will hopefully inline the multiply, but we don't force it. |
| 2689 | */ |
| 2690 | static xxh_u64 |
| 2691 | XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
| 2692 | { |
| 2693 | XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
| 2694 | return product.low64 ^ product.high64; |
| 2695 | } |
| 2696 | |
| 2697 | /* Seems to produce slightly better code on GCC for some reason. */ |
| 2698 | XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
| 2699 | { |
| 2700 | XXH_ASSERT(0 <= shift && shift < 64); |
| 2701 | return v64 ^ (v64 >> shift); |
| 2702 | } |
| 2703 | |
| 2704 | /* |
| 2705 | * This is a fast avalanche stage, |
| 2706 | * suitable when input bits are already partially mixed |
| 2707 | */ |
| 2708 | static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
| 2709 | { |
| 2710 | h64 = XXH_xorshift64(h64, 37); |
| 2711 | h64 *= 0x165667919E3779F9ULL; |
| 2712 | h64 = XXH_xorshift64(h64, 32); |
| 2713 | return h64; |
| 2714 | } |
| 2715 | |
| 2716 | /* |
| 2717 | * This is a stronger avalanche, |
| 2718 | * inspired by Pelle Evensen's rrmxmx |
| 2719 | * preferable when input has not been previously mixed |
| 2720 | */ |
| 2721 | static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
| 2722 | { |
| 2723 | /* this mix is inspired by Pelle Evensen's rrmxmx */ |
| 2724 | h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
| 2725 | h64 *= 0x9FB21C651E98DF25ULL; |
| 2726 | h64 ^= (h64 >> 35) + len ; |
| 2727 | h64 *= 0x9FB21C651E98DF25ULL; |
| 2728 | return XXH_xorshift64(h64, 28); |
| 2729 | } |
| 2730 | |
| 2731 | |
| 2732 | /* ========================================== |
| 2733 | * Short keys |
| 2734 | * ========================================== |
| 2735 | * One of the shortcomings of XXH32 and XXH64 was that their performance was |
| 2736 | * sub-optimal on short lengths. It used an iterative algorithm which strongly |
| 2737 | * favored lengths that were a multiple of 4 or 8. |
| 2738 | * |
| 2739 | * Instead of iterating over individual inputs, we use a set of single shot |
| 2740 | * functions which piece together a range of lengths and operate in constant time. |
| 2741 | * |
| 2742 | * Additionally, the number of multiplies has been significantly reduced. This |
| 2743 | * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
| 2744 | * |
| 2745 | * Depending on the platform, this may or may not be faster than XXH32, but it |
| 2746 | * is almost guaranteed to be faster than XXH64. |
| 2747 | */ |
| 2748 | |
| 2749 | /* |
| 2750 | * At very short lengths, there isn't enough input to fully hide secrets, or use |
| 2751 | * the entire secret. |
| 2752 | * |
| 2753 | * There is also only a limited amount of mixing we can do before significantly |
| 2754 | * impacting performance. |
| 2755 | * |
| 2756 | * Therefore, we use different sections of the secret and always mix two secret |
| 2757 | * samples with an XOR. This should have no effect on performance on the |
| 2758 | * seedless or withSeed variants because everything _should_ be constant folded |
| 2759 | * by modern compilers. |
| 2760 | * |
| 2761 | * The XOR mixing hides individual parts of the secret and increases entropy. |
| 2762 | * |
| 2763 | * This adds an extra layer of strength for custom secrets. |
| 2764 | */ |
| 2765 | XXH_FORCE_INLINE XXH64_hash_t |
| 2766 | XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 2767 | { |
| 2768 | XXH_ASSERT(input != NULL); |
| 2769 | XXH_ASSERT(1 <= len && len <= 3); |
| 2770 | XXH_ASSERT(secret != NULL); |
| 2771 | /* |
| 2772 | * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
| 2773 | * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
| 2774 | * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
| 2775 | */ |
| 2776 | { xxh_u8 const c1 = input[0]; |
| 2777 | xxh_u8 const c2 = input[len >> 1]; |
| 2778 | xxh_u8 const c3 = input[len - 1]; |
| 2779 | xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
| 2780 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| 2781 | xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| 2782 | xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
| 2783 | return XXH64_avalanche(keyed); |
| 2784 | } |
| 2785 | } |
| 2786 | |
| 2787 | XXH_FORCE_INLINE XXH64_hash_t |
| 2788 | XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 2789 | { |
| 2790 | XXH_ASSERT(input != NULL); |
| 2791 | XXH_ASSERT(secret != NULL); |
| 2792 | XXH_ASSERT(4 <= len && len < 8); |
| 2793 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| 2794 | { xxh_u32 const input1 = XXH_readLE32(input); |
| 2795 | xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
| 2796 | xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
| 2797 | xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
| 2798 | xxh_u64 const keyed = input64 ^ bitflip; |
| 2799 | return XXH3_rrmxmx(keyed, len); |
| 2800 | } |
| 2801 | } |
| 2802 | |
| 2803 | XXH_FORCE_INLINE XXH64_hash_t |
| 2804 | XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 2805 | { |
| 2806 | XXH_ASSERT(input != NULL); |
| 2807 | XXH_ASSERT(secret != NULL); |
| 2808 | XXH_ASSERT(8 <= len && len <= 16); |
| 2809 | { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
| 2810 | xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
| 2811 | xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
| 2812 | xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
| 2813 | xxh_u64 const acc = len |
| 2814 | + XXH_swap64(input_lo) + input_hi |
| 2815 | + XXH3_mul128_fold64(input_lo, input_hi); |
| 2816 | return XXH3_avalanche(acc); |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | XXH_FORCE_INLINE XXH64_hash_t |
| 2821 | XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 2822 | { |
| 2823 | XXH_ASSERT(len <= 16); |
| 2824 | { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
| 2825 | if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
| 2826 | if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
| 2827 | return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
| 2828 | } |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
| 2833 | * multiplication by zero, affecting hashes of lengths 17 to 240. |
| 2834 | * |
| 2835 | * However, they are very unlikely. |
| 2836 | * |
| 2837 | * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
| 2838 | * unseeded non-cryptographic hashes, it does not attempt to defend itself |
| 2839 | * against specially crafted inputs, only random inputs. |
| 2840 | * |
| 2841 | * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
| 2842 | * cancelling out the secret is taken an arbitrary number of times (addressed |
| 2843 | * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
| 2844 | * and/or proper seeding: |
| 2845 | * |
| 2846 | * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
| 2847 | * function that is only called up to 16 times per hash with up to 240 bytes of |
| 2848 | * input. |
| 2849 | * |
| 2850 | * This is not too bad for a non-cryptographic hash function, especially with |
| 2851 | * only 64 bit outputs. |
| 2852 | * |
| 2853 | * The 128-bit variant (which trades some speed for strength) is NOT affected |
| 2854 | * by this, although it is always a good idea to use a proper seed if you care |
| 2855 | * about strength. |
| 2856 | */ |
| 2857 | XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
| 2858 | const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
| 2859 | { |
| 2860 | #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| 2861 | && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
| 2862 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
| 2863 | /* |
| 2864 | * UGLY HACK: |
| 2865 | * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
| 2866 | * slower code. |
| 2867 | * |
| 2868 | * By forcing seed64 into a register, we disrupt the cost model and |
| 2869 | * cause it to scalarize. See `XXH32_round()` |
| 2870 | * |
| 2871 | * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
| 2872 | * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
| 2873 | * GCC 9.2, despite both emitting scalar code. |
| 2874 | * |
| 2875 | * GCC generates much better scalar code than Clang for the rest of XXH3, |
| 2876 | * which is why finding a more optimal codepath is an interest. |
| 2877 | */ |
| 2878 | __asm__ ("" : "+r" (seed64)); |
| 2879 | #endif |
| 2880 | { xxh_u64 const input_lo = XXH_readLE64(input); |
| 2881 | xxh_u64 const input_hi = XXH_readLE64(input+8); |
| 2882 | return XXH3_mul128_fold64( |
| 2883 | input_lo ^ (XXH_readLE64(secret) + seed64), |
| 2884 | input_hi ^ (XXH_readLE64(secret+8) - seed64) |
| 2885 | ); |
| 2886 | } |
| 2887 | } |
| 2888 | |
| 2889 | /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
| 2890 | XXH_FORCE_INLINE XXH64_hash_t |
| 2891 | XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| 2892 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 2893 | XXH64_hash_t seed) |
| 2894 | { |
| 2895 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| 2896 | XXH_ASSERT(16 < len && len <= 128); |
| 2897 | |
| 2898 | { xxh_u64 acc = len * XXH_PRIME64_1; |
| 2899 | if (len > 32) { |
| 2900 | if (len > 64) { |
| 2901 | if (len > 96) { |
| 2902 | acc += XXH3_mix16B(input+48, secret+96, seed); |
| 2903 | acc += XXH3_mix16B(input+len-64, secret+112, seed); |
| 2904 | } |
| 2905 | acc += XXH3_mix16B(input+32, secret+64, seed); |
| 2906 | acc += XXH3_mix16B(input+len-48, secret+80, seed); |
| 2907 | } |
| 2908 | acc += XXH3_mix16B(input+16, secret+32, seed); |
| 2909 | acc += XXH3_mix16B(input+len-32, secret+48, seed); |
| 2910 | } |
| 2911 | acc += XXH3_mix16B(input+0, secret+0, seed); |
| 2912 | acc += XXH3_mix16B(input+len-16, secret+16, seed); |
| 2913 | |
| 2914 | return XXH3_avalanche(acc); |
| 2915 | } |
| 2916 | } |
| 2917 | |
| 2918 | #define XXH3_MIDSIZE_MAX 240 |
| 2919 | |
| 2920 | XXH_NO_INLINE XXH64_hash_t |
| 2921 | XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| 2922 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 2923 | XXH64_hash_t seed) |
| 2924 | { |
| 2925 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| 2926 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| 2927 | |
| 2928 | #define XXH3_MIDSIZE_STARTOFFSET 3 |
| 2929 | #define XXH3_MIDSIZE_LASTOFFSET 17 |
| 2930 | |
| 2931 | { xxh_u64 acc = len * XXH_PRIME64_1; |
| 2932 | int const nbRounds = (int)len / 16; |
| 2933 | int i; |
| 2934 | for (i=0; i<8; i++) { |
| 2935 | acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
| 2936 | } |
| 2937 | acc = XXH3_avalanche(acc); |
| 2938 | XXH_ASSERT(nbRounds >= 8); |
| 2939 | #if defined(__clang__) /* Clang */ \ |
| 2940 | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| 2941 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| 2942 | /* |
| 2943 | * UGLY HACK: |
| 2944 | * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
| 2945 | * In everywhere else, it uses scalar code. |
| 2946 | * |
| 2947 | * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
| 2948 | * would still be slower than UMAAL (see XXH_mult64to128). |
| 2949 | * |
| 2950 | * Unfortunately, Clang doesn't handle the long multiplies properly and |
| 2951 | * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
| 2952 | * scalarized into an ugly mess of VMOV.32 instructions. |
| 2953 | * |
| 2954 | * This mess is difficult to avoid without turning autovectorization |
| 2955 | * off completely, but they are usually relatively minor and/or not |
| 2956 | * worth it to fix. |
| 2957 | * |
| 2958 | * This loop is the easiest to fix, as unlike XXH32, this pragma |
| 2959 | * _actually works_ because it is a loop vectorization instead of an |
| 2960 | * SLP vectorization. |
| 2961 | */ |
| 2962 | #pragma clang loop vectorize(disable) |
| 2963 | #endif |
| 2964 | for (i=8 ; i < nbRounds; i++) { |
| 2965 | acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
| 2966 | } |
| 2967 | /* last bytes */ |
| 2968 | acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
| 2969 | return XXH3_avalanche(acc); |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | |
| 2974 | /* ======= Long Keys ======= */ |
| 2975 | |
| 2976 | #define XXH_STRIPE_LEN 64 |
| 2977 | #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
| 2978 | #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
| 2979 | |
| 2980 | #ifdef XXH_OLD_NAMES |
| 2981 | # define STRIPE_LEN XXH_STRIPE_LEN |
| 2982 | # define ACC_NB XXH_ACC_NB |
| 2983 | #endif |
| 2984 | |
| 2985 | XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
| 2986 | { |
| 2987 | if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
| 2988 | memcpy(dst, &v64, sizeof(v64)); |
| 2989 | } |
| 2990 | |
| 2991 | /* Several intrinsic functions below are supposed to accept __int64 as argument, |
| 2992 | * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
| 2993 | * However, several environments do not define __int64 type, |
| 2994 | * requiring a workaround. |
| 2995 | */ |
| 2996 | #if !defined (__VMS) \ |
| 2997 | && (defined (__cplusplus) \ |
| 2998 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 2999 | typedef int64_t xxh_i64; |
| 3000 | #else |
| 3001 | /* the following type must have a width of 64-bit */ |
| 3002 | typedef long long xxh_i64; |
| 3003 | #endif |
| 3004 | |
| 3005 | /* |
| 3006 | * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
| 3007 | * |
| 3008 | * It is a hardened version of UMAC, based off of FARSH's implementation. |
| 3009 | * |
| 3010 | * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
| 3011 | * implementations, and it is ridiculously fast. |
| 3012 | * |
| 3013 | * We harden it by mixing the original input to the accumulators as well as the product. |
| 3014 | * |
| 3015 | * This means that in the (relatively likely) case of a multiply by zero, the |
| 3016 | * original input is preserved. |
| 3017 | * |
| 3018 | * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
| 3019 | * cross-pollination, as otherwise the upper and lower halves would be |
| 3020 | * essentially independent. |
| 3021 | * |
| 3022 | * This doesn't matter on 64-bit hashes since they all get merged together in |
| 3023 | * the end, so we skip the extra step. |
| 3024 | * |
| 3025 | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| 3026 | */ |
| 3027 | |
| 3028 | #if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH) |
| 3029 | |
| 3030 | #ifndef XXH_TARGET_AVX512 |
| 3031 | # define XXH_TARGET_AVX512 /* disable attribute target */ |
| 3032 | #endif |
| 3033 | |
| 3034 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| 3035 | XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
| 3036 | const void* XXH_RESTRICT input, |
| 3037 | const void* XXH_RESTRICT secret) |
| 3038 | { |
| 3039 | XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc; |
| 3040 | XXH_ASSERT((((size_t)acc) & 63) == 0); |
| 3041 | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| 3042 | |
| 3043 | { |
| 3044 | /* data_vec = input[0]; */ |
| 3045 | __m512i const data_vec = _mm512_loadu_si512 (input); |
| 3046 | /* key_vec = secret[0]; */ |
| 3047 | __m512i const key_vec = _mm512_loadu_si512 (secret); |
| 3048 | /* data_key = data_vec ^ key_vec; */ |
| 3049 | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
| 3050 | /* data_key_lo = data_key >> 32; */ |
| 3051 | __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
| 3052 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| 3053 | __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
| 3054 | /* xacc[0] += swap(data_vec); */ |
| 3055 | __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
| 3056 | __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
| 3057 | /* xacc[0] += product; */ |
| 3058 | *xacc = _mm512_add_epi64(product, sum); |
| 3059 | } |
| 3060 | } |
| 3061 | |
| 3062 | /* |
| 3063 | * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
| 3064 | * |
| 3065 | * Multiplication isn't perfect, as explained by Google in HighwayHash: |
| 3066 | * |
| 3067 | * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
| 3068 | * // varying degrees. In descending order of goodness, bytes |
| 3069 | * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
| 3070 | * // As expected, the upper and lower bytes are much worse. |
| 3071 | * |
| 3072 | * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
| 3073 | * |
| 3074 | * Since our algorithm uses a pseudorandom secret to add some variance into the |
| 3075 | * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
| 3076 | * |
| 3077 | * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
| 3078 | * extraction. |
| 3079 | * |
| 3080 | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| 3081 | */ |
| 3082 | |
| 3083 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| 3084 | XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3085 | { |
| 3086 | XXH_ASSERT((((size_t)acc) & 63) == 0); |
| 3087 | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| 3088 | { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc; |
| 3089 | const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
| 3090 | |
| 3091 | /* xacc[0] ^= (xacc[0] >> 47) */ |
| 3092 | __m512i const acc_vec = *xacc; |
| 3093 | __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
| 3094 | __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); |
| 3095 | /* xacc[0] ^= secret; */ |
| 3096 | __m512i const key_vec = _mm512_loadu_si512 (secret); |
| 3097 | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
| 3098 | |
| 3099 | /* xacc[0] *= XXH_PRIME32_1; */ |
| 3100 | __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
| 3101 | __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
| 3102 | __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
| 3103 | *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
| 3104 | } |
| 3105 | } |
| 3106 | |
| 3107 | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| 3108 | XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| 3109 | { |
| 3110 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
| 3111 | XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
| 3112 | XXH_ASSERT(((size_t)customSecret & 63) == 0); |
| 3113 | (void)(&XXH_writeLE64); |
| 3114 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
| 3115 | __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64); |
| 3116 | |
| 3117 | XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret; |
| 3118 | XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret; |
| 3119 | int i; |
| 3120 | for (i=0; i < nbRounds; ++i) { |
| 3121 | /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', |
| 3122 | * this will warn "discards ‘const’ qualifier". */ |
| 3123 | union { |
| 3124 | XXH_ALIGN(64) const __m512i* cp; |
| 3125 | XXH_ALIGN(64) void* p; |
| 3126 | } remote_const_void; |
| 3127 | remote_const_void.cp = src + i; |
| 3128 | dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); |
| 3129 | } } |
| 3130 | } |
| 3131 | |
| 3132 | #endif |
| 3133 | |
| 3134 | #if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH) |
| 3135 | |
| 3136 | #ifndef XXH_TARGET_AVX2 |
| 3137 | # define XXH_TARGET_AVX2 /* disable attribute target */ |
| 3138 | #endif |
| 3139 | |
| 3140 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| 3141 | XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
| 3142 | const void* XXH_RESTRICT input, |
| 3143 | const void* XXH_RESTRICT secret) |
| 3144 | { |
| 3145 | XXH_ASSERT((((size_t)acc) & 31) == 0); |
| 3146 | { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc; |
| 3147 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3148 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| 3149 | const __m256i* const xinput = (const __m256i *) input; |
| 3150 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3151 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| 3152 | const __m256i* const xsecret = (const __m256i *) secret; |
| 3153 | |
| 3154 | size_t i; |
| 3155 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| 3156 | /* data_vec = xinput[i]; */ |
| 3157 | __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
| 3158 | /* key_vec = xsecret[i]; */ |
| 3159 | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| 3160 | /* data_key = data_vec ^ key_vec; */ |
| 3161 | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| 3162 | /* data_key_lo = data_key >> 32; */ |
| 3163 | __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| 3164 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| 3165 | __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
| 3166 | /* xacc[i] += swap(data_vec); */ |
| 3167 | __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
| 3168 | __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
| 3169 | /* xacc[i] += product; */ |
| 3170 | xacc[i] = _mm256_add_epi64(product, sum); |
| 3171 | } } |
| 3172 | } |
| 3173 | |
| 3174 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| 3175 | XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3176 | { |
| 3177 | XXH_ASSERT((((size_t)acc) & 31) == 0); |
| 3178 | { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; |
| 3179 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3180 | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| 3181 | const __m256i* const xsecret = (const __m256i *) secret; |
| 3182 | const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
| 3183 | |
| 3184 | size_t i; |
| 3185 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| 3186 | /* xacc[i] ^= (xacc[i] >> 47) */ |
| 3187 | __m256i const acc_vec = xacc[i]; |
| 3188 | __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
| 3189 | __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
| 3190 | /* xacc[i] ^= xsecret; */ |
| 3191 | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| 3192 | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| 3193 | |
| 3194 | /* xacc[i] *= XXH_PRIME32_1; */ |
| 3195 | __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| 3196 | __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
| 3197 | __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
| 3198 | xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
| 3199 | } |
| 3200 | } |
| 3201 | } |
| 3202 | |
| 3203 | XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| 3204 | { |
| 3205 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
| 3206 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
| 3207 | XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
| 3208 | (void)(&XXH_writeLE64); |
| 3209 | XXH_PREFETCH(customSecret); |
| 3210 | { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64); |
| 3211 | |
| 3212 | XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret; |
| 3213 | XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret; |
| 3214 | |
| 3215 | # if defined(__GNUC__) || defined(__clang__) |
| 3216 | /* |
| 3217 | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| 3218 | * - do not extract the secret from sse registers in the internal loop |
| 3219 | * - use less common registers, and avoid pushing these reg into stack |
| 3220 | * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with |
| 3221 | * customSecret, and on aarch64, this prevented LDP from merging two |
| 3222 | * loads together for free. Putting the loads together before the stores |
| 3223 | * properly generates LDP. |
| 3224 | */ |
| 3225 | __asm__("" : "+r" (dest)); |
| 3226 | # endif |
| 3227 | |
| 3228 | /* GCC -O2 need unroll loop manually */ |
| 3229 | dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); |
| 3230 | dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); |
| 3231 | dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); |
| 3232 | dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); |
| 3233 | dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); |
| 3234 | dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); |
| 3235 | } |
| 3236 | } |
| 3237 | |
| 3238 | #endif |
| 3239 | |
| 3240 | #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
| 3241 | |
| 3242 | #ifndef XXH_TARGET_SSE2 |
| 3243 | # define XXH_TARGET_SSE2 /* disable attribute target */ |
| 3244 | #endif |
| 3245 | |
| 3246 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| 3247 | XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
| 3248 | const void* XXH_RESTRICT input, |
| 3249 | const void* XXH_RESTRICT secret) |
| 3250 | { |
| 3251 | /* SSE2 is just a half-scale version of the AVX2 version. */ |
| 3252 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
| 3253 | { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; |
| 3254 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3255 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| 3256 | const __m128i* const xinput = (const __m128i *) input; |
| 3257 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3258 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| 3259 | const __m128i* const xsecret = (const __m128i *) secret; |
| 3260 | |
| 3261 | size_t i; |
| 3262 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| 3263 | /* data_vec = xinput[i]; */ |
| 3264 | __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
| 3265 | /* key_vec = xsecret[i]; */ |
| 3266 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| 3267 | /* data_key = data_vec ^ key_vec; */ |
| 3268 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| 3269 | /* data_key_lo = data_key >> 32; */ |
| 3270 | __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| 3271 | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| 3272 | __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
| 3273 | /* xacc[i] += swap(data_vec); */ |
| 3274 | __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
| 3275 | __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
| 3276 | /* xacc[i] += product; */ |
| 3277 | xacc[i] = _mm_add_epi64(product, sum); |
| 3278 | } } |
| 3279 | } |
| 3280 | |
| 3281 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| 3282 | XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3283 | { |
| 3284 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
| 3285 | { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; |
| 3286 | /* Unaligned. This is mainly for pointer arithmetic, and because |
| 3287 | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| 3288 | const __m128i* const xsecret = (const __m128i *) secret; |
| 3289 | const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
| 3290 | |
| 3291 | size_t i; |
| 3292 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| 3293 | /* xacc[i] ^= (xacc[i] >> 47) */ |
| 3294 | __m128i const acc_vec = xacc[i]; |
| 3295 | __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
| 3296 | __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
| 3297 | /* xacc[i] ^= xsecret[i]; */ |
| 3298 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| 3299 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| 3300 | |
| 3301 | /* xacc[i] *= XXH_PRIME32_1; */ |
| 3302 | __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| 3303 | __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
| 3304 | __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
| 3305 | xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
| 3306 | } |
| 3307 | } |
| 3308 | } |
| 3309 | |
| 3310 | XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| 3311 | { |
| 3312 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| 3313 | (void)(&XXH_writeLE64); |
| 3314 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
| 3315 | |
| 3316 | # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
| 3317 | // MSVC 32bit mode does not support _mm_set_epi64x before 2015 |
| 3318 | XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 }; |
| 3319 | __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
| 3320 | # else |
| 3321 | __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64); |
| 3322 | # endif |
| 3323 | int i; |
| 3324 | |
| 3325 | XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret; |
| 3326 | XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret; |
| 3327 | # if defined(__GNUC__) || defined(__clang__) |
| 3328 | /* |
| 3329 | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| 3330 | * - do not extract the secret from sse registers in the internal loop |
| 3331 | * - use less common registers, and avoid pushing these reg into stack |
| 3332 | */ |
| 3333 | __asm__("" : "+r" (dest)); |
| 3334 | # endif |
| 3335 | |
| 3336 | for (i=0; i < nbRounds; ++i) { |
| 3337 | dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed); |
| 3338 | } } |
| 3339 | } |
| 3340 | |
| 3341 | #endif |
| 3342 | |
| 3343 | #if (XXH_VECTOR == XXH_NEON) |
| 3344 | |
| 3345 | XXH_FORCE_INLINE void |
| 3346 | XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
| 3347 | const void* XXH_RESTRICT input, |
| 3348 | const void* XXH_RESTRICT secret) |
| 3349 | { |
| 3350 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
| 3351 | { |
| 3352 | XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; |
| 3353 | /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
| 3354 | uint8_t const* const xinput = (const uint8_t *) input; |
| 3355 | uint8_t const* const xsecret = (const uint8_t *) secret; |
| 3356 | |
| 3357 | size_t i; |
| 3358 | for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { |
| 3359 | /* data_vec = xinput[i]; */ |
| 3360 | uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); |
| 3361 | /* key_vec = xsecret[i]; */ |
| 3362 | uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
| 3363 | uint64x2_t data_key; |
| 3364 | uint32x2_t data_key_lo, data_key_hi; |
| 3365 | /* xacc[i] += swap(data_vec); */ |
| 3366 | uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); |
| 3367 | uint64x2_t const swapped = vextq_u64(data64, data64, 1); |
| 3368 | xacc[i] = vaddq_u64 (xacc[i], swapped); |
| 3369 | /* data_key = data_vec ^ key_vec; */ |
| 3370 | data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); |
| 3371 | /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); |
| 3372 | * data_key_hi = (uint32x2_t) (data_key >> 32); |
| 3373 | * data_key = UNDEFINED; */ |
| 3374 | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
| 3375 | /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ |
| 3376 | xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); |
| 3377 | |
| 3378 | } |
| 3379 | } |
| 3380 | } |
| 3381 | |
| 3382 | XXH_FORCE_INLINE void |
| 3383 | XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3384 | { |
| 3385 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
| 3386 | |
| 3387 | { uint64x2_t* xacc = (uint64x2_t*) acc; |
| 3388 | uint8_t const* xsecret = (uint8_t const*) secret; |
| 3389 | uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); |
| 3390 | |
| 3391 | size_t i; |
| 3392 | for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { |
| 3393 | /* xacc[i] ^= (xacc[i] >> 47); */ |
| 3394 | uint64x2_t acc_vec = xacc[i]; |
| 3395 | uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); |
| 3396 | uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); |
| 3397 | |
| 3398 | /* xacc[i] ^= xsecret[i]; */ |
| 3399 | uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
| 3400 | uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); |
| 3401 | |
| 3402 | /* xacc[i] *= XXH_PRIME32_1 */ |
| 3403 | uint32x2_t data_key_lo, data_key_hi; |
| 3404 | /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); |
| 3405 | * data_key_hi = (uint32x2_t) (xacc[i] >> 32); |
| 3406 | * xacc[i] = UNDEFINED; */ |
| 3407 | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
| 3408 | { /* |
| 3409 | * prod_hi = (data_key >> 32) * XXH_PRIME32_1; |
| 3410 | * |
| 3411 | * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will |
| 3412 | * incorrectly "optimize" this: |
| 3413 | * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); |
| 3414 | * shifted = vshll_n_u32(tmp, 32); |
| 3415 | * to this: |
| 3416 | * tmp = "vmulq_u64"(a, b); // no such thing! |
| 3417 | * shifted = vshlq_n_u64(tmp, 32); |
| 3418 | * |
| 3419 | * However, unlike SSE, Clang lacks a 64-bit multiply routine |
| 3420 | * for NEON, and it scalarizes two 64-bit multiplies instead. |
| 3421 | * |
| 3422 | * vmull_u32 has the same timing as vmul_u32, and it avoids |
| 3423 | * this bug completely. |
| 3424 | * See https://bugs.llvm.org/show_bug.cgi?id=39967 |
| 3425 | */ |
| 3426 | uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); |
| 3427 | /* xacc[i] = prod_hi << 32; */ |
| 3428 | xacc[i] = vshlq_n_u64(prod_hi, 32); |
| 3429 | /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ |
| 3430 | xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); |
| 3431 | } |
| 3432 | } } |
| 3433 | } |
| 3434 | |
| 3435 | #endif |
| 3436 | |
| 3437 | #if (XXH_VECTOR == XXH_VSX) |
| 3438 | |
| 3439 | XXH_FORCE_INLINE void |
| 3440 | XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
| 3441 | const void* XXH_RESTRICT input, |
| 3442 | const void* XXH_RESTRICT secret) |
| 3443 | { |
| 3444 | xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */ |
| 3445 | xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ |
| 3446 | xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ |
| 3447 | xxh_u64x2 const v32 = { 32, 32 }; |
| 3448 | size_t i; |
| 3449 | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| 3450 | /* data_vec = xinput[i]; */ |
| 3451 | xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); |
| 3452 | /* key_vec = xsecret[i]; */ |
| 3453 | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
| 3454 | xxh_u64x2 const data_key = data_vec ^ key_vec; |
| 3455 | /* shuffled = (data_key << 32) | (data_key >> 32); */ |
| 3456 | xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
| 3457 | /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
| 3458 | xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
| 3459 | xacc[i] += product; |
| 3460 | |
| 3461 | /* swap high and low halves */ |
| 3462 | #ifdef __s390x__ |
| 3463 | xacc[i] += vec_permi(data_vec, data_vec, 2); |
| 3464 | #else |
| 3465 | xacc[i] += vec_xxpermdi(data_vec, data_vec, 2); |
| 3466 | #endif |
| 3467 | } |
| 3468 | } |
| 3469 | |
| 3470 | XXH_FORCE_INLINE void |
| 3471 | XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3472 | { |
| 3473 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
| 3474 | |
| 3475 | { xxh_u64x2* const xacc = (xxh_u64x2*) acc; |
| 3476 | const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; |
| 3477 | /* constants */ |
| 3478 | xxh_u64x2 const v32 = { 32, 32 }; |
| 3479 | xxh_u64x2 const v47 = { 47, 47 }; |
| 3480 | xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
| 3481 | size_t i; |
| 3482 | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| 3483 | /* xacc[i] ^= (xacc[i] >> 47); */ |
| 3484 | xxh_u64x2 const acc_vec = xacc[i]; |
| 3485 | xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
| 3486 | |
| 3487 | /* xacc[i] ^= xsecret[i]; */ |
| 3488 | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
| 3489 | xxh_u64x2 const data_key = data_vec ^ key_vec; |
| 3490 | |
| 3491 | /* xacc[i] *= XXH_PRIME32_1 */ |
| 3492 | /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
| 3493 | xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
| 3494 | /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
| 3495 | xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
| 3496 | xacc[i] = prod_odd + (prod_even << v32); |
| 3497 | } } |
| 3498 | } |
| 3499 | |
| 3500 | #endif |
| 3501 | |
| 3502 | /* scalar variants - universal */ |
| 3503 | |
| 3504 | XXH_FORCE_INLINE void |
| 3505 | XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
| 3506 | const void* XXH_RESTRICT input, |
| 3507 | const void* XXH_RESTRICT secret) |
| 3508 | { |
| 3509 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
| 3510 | const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ |
| 3511 | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
| 3512 | size_t i; |
| 3513 | XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
| 3514 | for (i=0; i < XXH_ACC_NB; i++) { |
| 3515 | xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); |
| 3516 | xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); |
| 3517 | xacc[i ^ 1] += data_val; /* swap adjacent lanes */ |
| 3518 | xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); |
| 3519 | } |
| 3520 | } |
| 3521 | |
| 3522 | XXH_FORCE_INLINE void |
| 3523 | XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| 3524 | { |
| 3525 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
| 3526 | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
| 3527 | size_t i; |
| 3528 | XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
| 3529 | for (i=0; i < XXH_ACC_NB; i++) { |
| 3530 | xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); |
| 3531 | xxh_u64 acc64 = xacc[i]; |
| 3532 | acc64 = XXH_xorshift64(acc64, 47); |
| 3533 | acc64 ^= key64; |
| 3534 | acc64 *= XXH_PRIME32_1; |
| 3535 | xacc[i] = acc64; |
| 3536 | } |
| 3537 | } |
| 3538 | |
| 3539 | XXH_FORCE_INLINE void |
| 3540 | XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| 3541 | { |
| 3542 | /* |
| 3543 | * We need a separate pointer for the hack below, |
| 3544 | * which requires a non-const pointer. |
| 3545 | * Any decent compiler will optimize this out otherwise. |
| 3546 | */ |
| 3547 | const xxh_u8* kSecretPtr = XXH3_kSecret; |
| 3548 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| 3549 | |
| 3550 | #if defined(__clang__) && defined(__aarch64__) |
| 3551 | /* |
| 3552 | * UGLY HACK: |
| 3553 | * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are |
| 3554 | * placed sequentially, in order, at the top of the unrolled loop. |
| 3555 | * |
| 3556 | * While MOVK is great for generating constants (2 cycles for a 64-bit |
| 3557 | * constant compared to 4 cycles for LDR), long MOVK chains stall the |
| 3558 | * integer pipelines: |
| 3559 | * I L S |
| 3560 | * MOVK |
| 3561 | * MOVK |
| 3562 | * MOVK |
| 3563 | * MOVK |
| 3564 | * ADD |
| 3565 | * SUB STR |
| 3566 | * STR |
| 3567 | * By forcing loads from memory (as the asm line causes Clang to assume |
| 3568 | * that XXH3_kSecretPtr has been changed), the pipelines are used more |
| 3569 | * efficiently: |
| 3570 | * I L S |
| 3571 | * LDR |
| 3572 | * ADD LDR |
| 3573 | * SUB STR |
| 3574 | * STR |
| 3575 | * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
| 3576 | * without hack: 2654.4 MB/s |
| 3577 | * with hack: 3202.9 MB/s |
| 3578 | */ |
| 3579 | __asm__("" : "+r" (kSecretPtr)); |
| 3580 | #endif |
| 3581 | /* |
| 3582 | * Note: in debug mode, this overrides the asm optimization |
| 3583 | * and Clang will emit MOVK chains again. |
| 3584 | */ |
| 3585 | XXH_ASSERT(kSecretPtr == XXH3_kSecret); |
| 3586 | |
| 3587 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
| 3588 | int i; |
| 3589 | for (i=0; i < nbRounds; i++) { |
| 3590 | /* |
| 3591 | * The asm hack causes Clang to assume that kSecretPtr aliases with |
| 3592 | * customSecret, and on aarch64, this prevented LDP from merging two |
| 3593 | * loads together for free. Putting the loads together before the stores |
| 3594 | * properly generates LDP. |
| 3595 | */ |
| 3596 | xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
| 3597 | xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
| 3598 | XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
| 3599 | XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
| 3600 | } } |
| 3601 | } |
| 3602 | |
| 3603 | |
| 3604 | typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); |
| 3605 | typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
| 3606 | typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
| 3607 | |
| 3608 | |
| 3609 | #if (XXH_VECTOR == XXH_AVX512) |
| 3610 | |
| 3611 | #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
| 3612 | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
| 3613 | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
| 3614 | |
| 3615 | #elif (XXH_VECTOR == XXH_AVX2) |
| 3616 | |
| 3617 | #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
| 3618 | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
| 3619 | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
| 3620 | |
| 3621 | #elif (XXH_VECTOR == XXH_SSE2) |
| 3622 | |
| 3623 | #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
| 3624 | #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
| 3625 | #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
| 3626 | |
| 3627 | #elif (XXH_VECTOR == XXH_NEON) |
| 3628 | |
| 3629 | #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
| 3630 | #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
| 3631 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| 3632 | |
| 3633 | #elif (XXH_VECTOR == XXH_VSX) |
| 3634 | |
| 3635 | #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
| 3636 | #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
| 3637 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| 3638 | |
| 3639 | #else /* scalar */ |
| 3640 | |
| 3641 | #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
| 3642 | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
| 3643 | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| 3644 | |
| 3645 | #endif |
| 3646 | |
| 3647 | |
| 3648 | |
| 3649 | #ifndef XXH_PREFETCH_DIST |
| 3650 | # ifdef __clang__ |
| 3651 | # define XXH_PREFETCH_DIST 320 |
| 3652 | # else |
| 3653 | # if (XXH_VECTOR == XXH_AVX512) |
| 3654 | # define XXH_PREFETCH_DIST 512 |
| 3655 | # else |
| 3656 | # define XXH_PREFETCH_DIST 384 |
| 3657 | # endif |
| 3658 | # endif /* __clang__ */ |
| 3659 | #endif /* XXH_PREFETCH_DIST */ |
| 3660 | |
| 3661 | /* |
| 3662 | * XXH3_accumulate() |
| 3663 | * Loops over XXH3_accumulate_512(). |
| 3664 | * Assumption: nbStripes will not overflow the secret size |
| 3665 | */ |
| 3666 | XXH_FORCE_INLINE void |
| 3667 | XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, |
| 3668 | const xxh_u8* XXH_RESTRICT input, |
| 3669 | const xxh_u8* XXH_RESTRICT secret, |
| 3670 | size_t nbStripes, |
| 3671 | XXH3_f_accumulate_512 f_acc512) |
| 3672 | { |
| 3673 | size_t n; |
| 3674 | for (n = 0; n < nbStripes; n++ ) { |
| 3675 | const xxh_u8* const in = input + n*XXH_STRIPE_LEN; |
| 3676 | XXH_PREFETCH(in + XXH_PREFETCH_DIST); |
| 3677 | f_acc512(acc, |
| 3678 | in, |
| 3679 | secret + n*XXH_SECRET_CONSUME_RATE); |
| 3680 | } |
| 3681 | } |
| 3682 | |
| 3683 | XXH_FORCE_INLINE void |
| 3684 | XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
| 3685 | const xxh_u8* XXH_RESTRICT input, size_t len, |
| 3686 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 3687 | XXH3_f_accumulate_512 f_acc512, |
| 3688 | XXH3_f_scrambleAcc f_scramble) |
| 3689 | { |
| 3690 | size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
| 3691 | size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
| 3692 | size_t const nb_blocks = (len - 1) / block_len; |
| 3693 | |
| 3694 | size_t n; |
| 3695 | |
| 3696 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| 3697 | |
| 3698 | for (n = 0; n < nb_blocks; n++) { |
| 3699 | XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); |
| 3700 | f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
| 3701 | } |
| 3702 | |
| 3703 | /* last partial block */ |
| 3704 | XXH_ASSERT(len > XXH_STRIPE_LEN); |
| 3705 | { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
| 3706 | XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
| 3707 | XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); |
| 3708 | |
| 3709 | /* last stripe */ |
| 3710 | { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
| 3711 | #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
| 3712 | f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
| 3713 | } } |
| 3714 | } |
| 3715 | |
| 3716 | XXH_FORCE_INLINE xxh_u64 |
| 3717 | XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
| 3718 | { |
| 3719 | return XXH3_mul128_fold64( |
| 3720 | acc[0] ^ XXH_readLE64(secret), |
| 3721 | acc[1] ^ XXH_readLE64(secret+8) ); |
| 3722 | } |
| 3723 | |
| 3724 | static XXH64_hash_t |
| 3725 | XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
| 3726 | { |
| 3727 | xxh_u64 result64 = start; |
| 3728 | size_t i = 0; |
| 3729 | |
| 3730 | for (i = 0; i < 4; i++) { |
| 3731 | result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
| 3732 | #if defined(__clang__) /* Clang */ \ |
| 3733 | && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
| 3734 | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| 3735 | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| 3736 | /* |
| 3737 | * UGLY HACK: |
| 3738 | * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
| 3739 | * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
| 3740 | * XXH3_64bits, len == 256, Snapdragon 835: |
| 3741 | * without hack: 2063.7 MB/s |
| 3742 | * with hack: 2560.7 MB/s |
| 3743 | */ |
| 3744 | __asm__("" : "+r" (result64)); |
| 3745 | #endif |
| 3746 | } |
| 3747 | |
| 3748 | return XXH3_avalanche(result64); |
| 3749 | } |
| 3750 | |
| 3751 | #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
| 3752 | XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
| 3753 | |
| 3754 | XXH_FORCE_INLINE XXH64_hash_t |
| 3755 | XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
| 3756 | const void* XXH_RESTRICT secret, size_t secretSize, |
| 3757 | XXH3_f_accumulate_512 f_acc512, |
| 3758 | XXH3_f_scrambleAcc f_scramble) |
| 3759 | { |
| 3760 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| 3761 | |
| 3762 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); |
| 3763 | |
| 3764 | /* converge into final hash */ |
| 3765 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| 3766 | /* do not align on 8, so that the secret is different from the accumulator */ |
| 3767 | #define XXH_SECRET_MERGEACCS_START 11 |
| 3768 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| 3769 | return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
| 3770 | } |
| 3771 | |
| 3772 | /* |
| 3773 | * It's important for performance that XXH3_hashLong is not inlined. |
| 3774 | */ |
| 3775 | XXH_NO_INLINE XXH64_hash_t |
| 3776 | XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
| 3777 | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| 3778 | { |
| 3779 | (void)seed64; |
| 3780 | return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); |
| 3781 | } |
| 3782 | |
| 3783 | /* |
| 3784 | * It's important for performance that XXH3_hashLong is not inlined. |
| 3785 | * Since the function is not inlined, the compiler may not be able to understand that, |
| 3786 | * in some scenarios, its `secret` argument is actually a compile time constant. |
| 3787 | * This variant enforces that the compiler can detect that, |
| 3788 | * and uses this opportunity to streamline the generated code for better performance. |
| 3789 | */ |
| 3790 | XXH_NO_INLINE XXH64_hash_t |
| 3791 | XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
| 3792 | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| 3793 | { |
| 3794 | (void)seed64; (void)secret; (void)secretLen; |
| 3795 | return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); |
| 3796 | } |
| 3797 | |
| 3798 | /* |
| 3799 | * XXH3_hashLong_64b_withSeed(): |
| 3800 | * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
| 3801 | * and then use this key for long mode hashing. |
| 3802 | * |
| 3803 | * This operation is decently fast but nonetheless costs a little bit of time. |
| 3804 | * Try to avoid it whenever possible (typically when seed==0). |
| 3805 | * |
| 3806 | * It's important for performance that XXH3_hashLong is not inlined. Not sure |
| 3807 | * why (uop cache maybe?), but the difference is large and easily measurable. |
| 3808 | */ |
| 3809 | XXH_FORCE_INLINE XXH64_hash_t |
| 3810 | XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
| 3811 | XXH64_hash_t seed, |
| 3812 | XXH3_f_accumulate_512 f_acc512, |
| 3813 | XXH3_f_scrambleAcc f_scramble, |
| 3814 | XXH3_f_initCustomSecret f_initSec) |
| 3815 | { |
| 3816 | if (seed == 0) |
| 3817 | return XXH3_hashLong_64b_internal(input, len, |
| 3818 | XXH3_kSecret, sizeof(XXH3_kSecret), |
| 3819 | f_acc512, f_scramble); |
| 3820 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| 3821 | f_initSec(secret, seed); |
| 3822 | return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
| 3823 | f_acc512, f_scramble); |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | /* |
| 3828 | * It's important for performance that XXH3_hashLong is not inlined. |
| 3829 | */ |
| 3830 | XXH_NO_INLINE XXH64_hash_t |
| 3831 | XXH3_hashLong_64b_withSeed(const void* input, size_t len, |
| 3832 | XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) |
| 3833 | { |
| 3834 | (void)secret; (void)secretLen; |
| 3835 | return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
| 3836 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| 3837 | } |
| 3838 | |
| 3839 | |
| 3840 | typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
| 3841 | XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
| 3842 | |
| 3843 | XXH_FORCE_INLINE XXH64_hash_t |
| 3844 | XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
| 3845 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
| 3846 | XXH3_hashLong64_f f_hashLong) |
| 3847 | { |
| 3848 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| 3849 | /* |
| 3850 | * If an action is to be taken if `secretLen` condition is not respected, |
| 3851 | * it should be done here. |
| 3852 | * For now, it's a contract pre-condition. |
| 3853 | * Adding a check and a branch here would cost performance at every hash. |
| 3854 | * Also, note that function signature doesn't offer room to return an error. |
| 3855 | */ |
| 3856 | if (len <= 16) |
| 3857 | return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
| 3858 | if (len <= 128) |
| 3859 | return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| 3860 | if (len <= XXH3_MIDSIZE_MAX) |
| 3861 | return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| 3862 | return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
| 3863 | } |
| 3864 | |
| 3865 | |
| 3866 | /* === Public entry point === */ |
| 3867 | |
| 3868 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) |
| 3869 | { |
| 3870 | return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
| 3871 | } |
| 3872 | |
| 3873 | XXH_PUBLIC_API XXH64_hash_t |
| 3874 | XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
| 3875 | { |
| 3876 | return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
| 3877 | } |
| 3878 | |
| 3879 | XXH_PUBLIC_API XXH64_hash_t |
| 3880 | XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
| 3881 | { |
| 3882 | return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
| 3883 | } |
| 3884 | |
| 3885 | |
| 3886 | /* === XXH3 streaming === */ |
| 3887 | |
| 3888 | /* |
| 3889 | * Malloc's a pointer that is always aligned to align. |
| 3890 | * |
| 3891 | * This must be freed with `XXH_alignedFree()`. |
| 3892 | * |
| 3893 | * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
| 3894 | * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
| 3895 | * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
| 3896 | * |
| 3897 | * This underalignment previously caused a rather obvious crash which went |
| 3898 | * completely unnoticed due to XXH3_createState() not actually being tested. |
| 3899 | * Credit to RedSpah for noticing this bug. |
| 3900 | * |
| 3901 | * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
| 3902 | * are avoided: To maintain portability, we would have to write a fallback |
| 3903 | * like this anyways, and besides, testing for the existence of library |
| 3904 | * functions without relying on external build tools is impossible. |
| 3905 | * |
| 3906 | * The method is simple: Overallocate, manually align, and store the offset |
| 3907 | * to the original behind the returned pointer. |
| 3908 | * |
| 3909 | * Align must be a power of 2 and 8 <= align <= 128. |
| 3910 | */ |
| 3911 | static void* XXH_alignedMalloc(size_t s, size_t align) |
| 3912 | { |
| 3913 | XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
| 3914 | XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
| 3915 | XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
| 3916 | { /* Overallocate to make room for manual realignment and an offset byte */ |
| 3917 | xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
| 3918 | if (base != NULL) { |
| 3919 | /* |
| 3920 | * Get the offset needed to align this pointer. |
| 3921 | * |
| 3922 | * Even if the returned pointer is aligned, there will always be |
| 3923 | * at least one byte to store the offset to the original pointer. |
| 3924 | */ |
| 3925 | size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
| 3926 | /* Add the offset for the now-aligned pointer */ |
| 3927 | xxh_u8* ptr = base + offset; |
| 3928 | |
| 3929 | XXH_ASSERT((size_t)ptr % align == 0); |
| 3930 | |
| 3931 | /* Store the offset immediately before the returned pointer. */ |
| 3932 | ptr[-1] = (xxh_u8)offset; |
| 3933 | return ptr; |
| 3934 | } |
| 3935 | return NULL; |
| 3936 | } |
| 3937 | } |
| 3938 | /* |
| 3939 | * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
| 3940 | * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
| 3941 | */ |
| 3942 | static void XXH_alignedFree(void* p) |
| 3943 | { |
| 3944 | if (p != NULL) { |
| 3945 | xxh_u8* ptr = (xxh_u8*)p; |
| 3946 | /* Get the offset byte we added in XXH_malloc. */ |
| 3947 | xxh_u8 offset = ptr[-1]; |
| 3948 | /* Free the original malloc'd pointer */ |
| 3949 | xxh_u8* base = ptr - offset; |
| 3950 | XXH_free(base); |
| 3951 | } |
| 3952 | } |
| 3953 | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
| 3954 | { |
| 3955 | XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
| 3956 | if (state==NULL) return NULL; |
| 3957 | XXH3_INITSTATE(state); |
| 3958 | return state; |
| 3959 | } |
| 3960 | |
| 3961 | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
| 3962 | { |
| 3963 | XXH_alignedFree(statePtr); |
| 3964 | return XXH_OK; |
| 3965 | } |
| 3966 | |
| 3967 | XXH_PUBLIC_API void |
| 3968 | XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) |
| 3969 | { |
| 3970 | memcpy(dst_state, src_state, sizeof(*dst_state)); |
| 3971 | } |
| 3972 | |
| 3973 | static void |
| 3974 | XXH3_64bits_reset_internal(XXH3_state_t* statePtr, |
| 3975 | XXH64_hash_t seed, |
| 3976 | const void* secret, size_t secretSize) |
| 3977 | { |
| 3978 | size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
| 3979 | size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
| 3980 | XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
| 3981 | XXH_ASSERT(statePtr != NULL); |
| 3982 | /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
| 3983 | memset((char*)statePtr + initStart, 0, initLength); |
| 3984 | statePtr->acc[0] = XXH_PRIME32_3; |
| 3985 | statePtr->acc[1] = XXH_PRIME64_1; |
| 3986 | statePtr->acc[2] = XXH_PRIME64_2; |
| 3987 | statePtr->acc[3] = XXH_PRIME64_3; |
| 3988 | statePtr->acc[4] = XXH_PRIME64_4; |
| 3989 | statePtr->acc[5] = XXH_PRIME32_2; |
| 3990 | statePtr->acc[6] = XXH_PRIME64_5; |
| 3991 | statePtr->acc[7] = XXH_PRIME32_1; |
| 3992 | statePtr->seed = seed; |
| 3993 | statePtr->extSecret = (const unsigned char*)secret; |
| 3994 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| 3995 | statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
| 3996 | statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
| 3997 | } |
| 3998 | |
| 3999 | XXH_PUBLIC_API XXH_errorcode |
| 4000 | XXH3_64bits_reset(XXH3_state_t* statePtr) |
| 4001 | { |
| 4002 | if (statePtr == NULL) return XXH_ERROR; |
| 4003 | XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| 4004 | return XXH_OK; |
| 4005 | } |
| 4006 | |
| 4007 | XXH_PUBLIC_API XXH_errorcode |
| 4008 | XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
| 4009 | { |
| 4010 | if (statePtr == NULL) return XXH_ERROR; |
| 4011 | XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize); |
| 4012 | if (secret == NULL) return XXH_ERROR; |
| 4013 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| 4014 | return XXH_OK; |
| 4015 | } |
| 4016 | |
| 4017 | XXH_PUBLIC_API XXH_errorcode |
| 4018 | XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
| 4019 | { |
| 4020 | if (statePtr == NULL) return XXH_ERROR; |
| 4021 | if (seed==0) return XXH3_64bits_reset(statePtr); |
| 4022 | if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); |
| 4023 | XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
| 4024 | return XXH_OK; |
| 4025 | } |
| 4026 | |
| 4027 | /* Note : when XXH3_consumeStripes() is invoked, |
| 4028 | * there must be a guarantee that at least one more byte must be consumed from input |
| 4029 | * so that the function can blindly consume all stripes using the "normal" secret segment */ |
| 4030 | XXH_FORCE_INLINE void |
| 4031 | XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
| 4032 | size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
| 4033 | const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
| 4034 | const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
| 4035 | XXH3_f_accumulate_512 f_acc512, |
| 4036 | XXH3_f_scrambleAcc f_scramble) |
| 4037 | { |
| 4038 | XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ |
| 4039 | XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); |
| 4040 | if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { |
| 4041 | /* need a scrambling operation */ |
| 4042 | size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; |
| 4043 | size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; |
| 4044 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); |
| 4045 | f_scramble(acc, secret + secretLimit); |
| 4046 | XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); |
| 4047 | *nbStripesSoFarPtr = nbStripesAfterBlock; |
| 4048 | } else { |
| 4049 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); |
| 4050 | *nbStripesSoFarPtr += nbStripes; |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | /* |
| 4055 | * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
| 4056 | */ |
| 4057 | XXH_FORCE_INLINE XXH_errorcode |
| 4058 | XXH3_update(XXH3_state_t* state, |
| 4059 | const xxh_u8* input, size_t len, |
| 4060 | XXH3_f_accumulate_512 f_acc512, |
| 4061 | XXH3_f_scrambleAcc f_scramble) |
| 4062 | { |
| 4063 | if (input==NULL) |
| 4064 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 4065 | return XXH_OK; |
| 4066 | #else |
| 4067 | return XXH_ERROR; |
| 4068 | #endif |
| 4069 | |
| 4070 | { const xxh_u8* const bEnd = input + len; |
| 4071 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| 4072 | |
| 4073 | state->totalLen += len; |
| 4074 | |
| 4075 | if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */ |
| 4076 | XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
| 4077 | state->bufferedSize += (XXH32_hash_t)len; |
| 4078 | return XXH_OK; |
| 4079 | } |
| 4080 | /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
| 4081 | |
| 4082 | #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
| 4083 | XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
| 4084 | |
| 4085 | /* |
| 4086 | * Internal buffer is partially filled (always, except at beginning) |
| 4087 | * Complete it, then consume it. |
| 4088 | */ |
| 4089 | if (state->bufferedSize) { |
| 4090 | size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
| 4091 | XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
| 4092 | input += loadSize; |
| 4093 | XXH3_consumeStripes(state->acc, |
| 4094 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
| 4095 | state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
| 4096 | secret, state->secretLimit, |
| 4097 | f_acc512, f_scramble); |
| 4098 | state->bufferedSize = 0; |
| 4099 | } |
| 4100 | XXH_ASSERT(input < bEnd); |
| 4101 | |
| 4102 | /* Consume input by a multiple of internal buffer size */ |
| 4103 | if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) { |
| 4104 | const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; |
| 4105 | do { |
| 4106 | XXH3_consumeStripes(state->acc, |
| 4107 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
| 4108 | input, XXH3_INTERNALBUFFER_STRIPES, |
| 4109 | secret, state->secretLimit, |
| 4110 | f_acc512, f_scramble); |
| 4111 | input += XXH3_INTERNALBUFFER_SIZE; |
| 4112 | } while (input<limit); |
| 4113 | /* for last partial stripe */ |
| 4114 | memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
| 4115 | } |
| 4116 | XXH_ASSERT(input < bEnd); |
| 4117 | |
| 4118 | /* Some remaining input (always) : buffer it */ |
| 4119 | XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
| 4120 | state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
| 4121 | } |
| 4122 | |
| 4123 | return XXH_OK; |
| 4124 | } |
| 4125 | |
| 4126 | XXH_PUBLIC_API XXH_errorcode |
| 4127 | XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) |
| 4128 | { |
| 4129 | return XXH3_update(state, (const xxh_u8*)input, len, |
| 4130 | XXH3_accumulate_512, XXH3_scrambleAcc); |
| 4131 | } |
| 4132 | |
| 4133 | |
| 4134 | XXH_FORCE_INLINE void |
| 4135 | XXH3_digest_long (XXH64_hash_t* acc, |
| 4136 | const XXH3_state_t* state, |
| 4137 | const unsigned char* secret) |
| 4138 | { |
| 4139 | /* |
| 4140 | * Digest on a local copy. This way, the state remains unaltered, and it can |
| 4141 | * continue ingesting more input afterwards. |
| 4142 | */ |
| 4143 | memcpy(acc, state->acc, sizeof(state->acc)); |
| 4144 | if (state->bufferedSize >= XXH_STRIPE_LEN) { |
| 4145 | size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
| 4146 | size_t nbStripesSoFar = state->nbStripesSoFar; |
| 4147 | XXH3_consumeStripes(acc, |
| 4148 | &nbStripesSoFar, state->nbStripesPerBlock, |
| 4149 | state->buffer, nbStripes, |
| 4150 | secret, state->secretLimit, |
| 4151 | XXH3_accumulate_512, XXH3_scrambleAcc); |
| 4152 | /* last stripe */ |
| 4153 | XXH3_accumulate_512(acc, |
| 4154 | state->buffer + state->bufferedSize - XXH_STRIPE_LEN, |
| 4155 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
| 4156 | } else { /* bufferedSize < XXH_STRIPE_LEN */ |
| 4157 | xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
| 4158 | size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
| 4159 | XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
| 4160 | memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
| 4161 | memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
| 4162 | XXH3_accumulate_512(acc, |
| 4163 | lastStripe, |
| 4164 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
| 4165 | } |
| 4166 | } |
| 4167 | |
| 4168 | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) |
| 4169 | { |
| 4170 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| 4171 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| 4172 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| 4173 | XXH3_digest_long(acc, state, secret); |
| 4174 | return XXH3_mergeAccs(acc, |
| 4175 | secret + XXH_SECRET_MERGEACCS_START, |
| 4176 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| 4177 | } |
| 4178 | /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
| 4179 | if (state->seed) |
| 4180 | return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| 4181 | return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| 4182 | secret, state->secretLimit + XXH_STRIPE_LEN); |
| 4183 | } |
| 4184 | |
| 4185 | |
| 4186 | #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
| 4187 | |
| 4188 | XXH_PUBLIC_API void |
| 4189 | XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize) |
| 4190 | { |
| 4191 | XXH_ASSERT(secretBuffer != NULL); |
| 4192 | if (customSeedSize == 0) { |
| 4193 | memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| 4194 | return; |
| 4195 | } |
| 4196 | XXH_ASSERT(customSeed != NULL); |
| 4197 | |
| 4198 | { size_t const segmentSize = sizeof(XXH128_hash_t); |
| 4199 | size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize; |
| 4200 | XXH128_canonical_t scrambler; |
| 4201 | XXH64_hash_t seeds[12]; |
| 4202 | size_t segnb; |
| 4203 | XXH_ASSERT(nbSegments == 12); |
| 4204 | XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */ |
| 4205 | XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
| 4206 | |
| 4207 | /* |
| 4208 | * Copy customSeed to seeds[], truncating or repeating as necessary. |
| 4209 | */ |
| 4210 | { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds)); |
| 4211 | size_t filled = toFill; |
| 4212 | memcpy(seeds, customSeed, toFill); |
| 4213 | while (filled < sizeof(seeds)) { |
| 4214 | toFill = XXH_MIN(filled, sizeof(seeds) - filled); |
| 4215 | memcpy((char*)seeds + filled, seeds, toFill); |
| 4216 | filled += toFill; |
| 4217 | } } |
| 4218 | |
| 4219 | /* generate secret */ |
| 4220 | memcpy(secretBuffer, &scrambler, sizeof(scrambler)); |
| 4221 | for (segnb=1; segnb < nbSegments; segnb++) { |
| 4222 | size_t const segmentStart = segnb * segmentSize; |
| 4223 | XXH128_canonical_t segment; |
| 4224 | XXH128_canonicalFromHash(&segment, |
| 4225 | XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) ); |
| 4226 | memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment)); |
| 4227 | } } |
| 4228 | } |
| 4229 | |
| 4230 | |
| 4231 | /* ========================================== |
| 4232 | * XXH3 128 bits (a.k.a XXH128) |
| 4233 | * ========================================== |
| 4234 | * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
| 4235 | * even without counting the significantly larger output size. |
| 4236 | * |
| 4237 | * For example, extra steps are taken to avoid the seed-dependent collisions |
| 4238 | * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
| 4239 | * |
| 4240 | * This strength naturally comes at the cost of some speed, especially on short |
| 4241 | * lengths. Note that longer hashes are about as fast as the 64-bit version |
| 4242 | * due to it using only a slight modification of the 64-bit loop. |
| 4243 | * |
| 4244 | * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
| 4245 | * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
| 4246 | */ |
| 4247 | |
| 4248 | XXH_FORCE_INLINE XXH128_hash_t |
| 4249 | XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 4250 | { |
| 4251 | /* A doubled version of 1to3_64b with different constants. */ |
| 4252 | XXH_ASSERT(input != NULL); |
| 4253 | XXH_ASSERT(1 <= len && len <= 3); |
| 4254 | XXH_ASSERT(secret != NULL); |
| 4255 | /* |
| 4256 | * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
| 4257 | * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
| 4258 | * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
| 4259 | */ |
| 4260 | { xxh_u8 const c1 = input[0]; |
| 4261 | xxh_u8 const c2 = input[len >> 1]; |
| 4262 | xxh_u8 const c3 = input[len - 1]; |
| 4263 | xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
| 4264 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| 4265 | xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
| 4266 | xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| 4267 | xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
| 4268 | xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
| 4269 | xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
| 4270 | XXH128_hash_t h128; |
| 4271 | h128.low64 = XXH64_avalanche(keyed_lo); |
| 4272 | h128.high64 = XXH64_avalanche(keyed_hi); |
| 4273 | return h128; |
| 4274 | } |
| 4275 | } |
| 4276 | |
| 4277 | XXH_FORCE_INLINE XXH128_hash_t |
| 4278 | XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 4279 | { |
| 4280 | XXH_ASSERT(input != NULL); |
| 4281 | XXH_ASSERT(secret != NULL); |
| 4282 | XXH_ASSERT(4 <= len && len <= 8); |
| 4283 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| 4284 | { xxh_u32 const input_lo = XXH_readLE32(input); |
| 4285 | xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
| 4286 | xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
| 4287 | xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
| 4288 | xxh_u64 const keyed = input_64 ^ bitflip; |
| 4289 | |
| 4290 | /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
| 4291 | XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
| 4292 | |
| 4293 | m128.high64 += (m128.low64 << 1); |
| 4294 | m128.low64 ^= (m128.high64 >> 3); |
| 4295 | |
| 4296 | m128.low64 = XXH_xorshift64(m128.low64, 35); |
| 4297 | m128.low64 *= 0x9FB21C651E98DF25ULL; |
| 4298 | m128.low64 = XXH_xorshift64(m128.low64, 28); |
| 4299 | m128.high64 = XXH3_avalanche(m128.high64); |
| 4300 | return m128; |
| 4301 | } |
| 4302 | } |
| 4303 | |
| 4304 | XXH_FORCE_INLINE XXH128_hash_t |
| 4305 | XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 4306 | { |
| 4307 | XXH_ASSERT(input != NULL); |
| 4308 | XXH_ASSERT(secret != NULL); |
| 4309 | XXH_ASSERT(9 <= len && len <= 16); |
| 4310 | { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
| 4311 | xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
| 4312 | xxh_u64 const input_lo = XXH_readLE64(input); |
| 4313 | xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
| 4314 | XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
| 4315 | /* |
| 4316 | * Put len in the middle of m128 to ensure that the length gets mixed to |
| 4317 | * both the low and high bits in the 128x64 multiply below. |
| 4318 | */ |
| 4319 | m128.low64 += (xxh_u64)(len - 1) << 54; |
| 4320 | input_hi ^= bitfliph; |
| 4321 | /* |
| 4322 | * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
| 4323 | * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
| 4324 | * the high 64 bits of m128. |
| 4325 | * |
| 4326 | * The best approach to this operation is different on 32-bit and 64-bit. |
| 4327 | */ |
| 4328 | if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
| 4329 | /* |
| 4330 | * 32-bit optimized version, which is more readable. |
| 4331 | * |
| 4332 | * On 32-bit, it removes an ADC and delays a dependency between the two |
| 4333 | * halves of m128.high64, but it generates an extra mask on 64-bit. |
| 4334 | */ |
| 4335 | m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
| 4336 | } else { |
| 4337 | /* |
| 4338 | * 64-bit optimized (albeit more confusing) version. |
| 4339 | * |
| 4340 | * Uses some properties of addition and multiplication to remove the mask: |
| 4341 | * |
| 4342 | * Let: |
| 4343 | * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
| 4344 | * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
| 4345 | * c = XXH_PRIME32_2 |
| 4346 | * |
| 4347 | * a + (b * c) |
| 4348 | * Inverse Property: x + y - x == y |
| 4349 | * a + (b * (1 + c - 1)) |
| 4350 | * Distributive Property: x * (y + z) == (x * y) + (x * z) |
| 4351 | * a + (b * 1) + (b * (c - 1)) |
| 4352 | * Identity Property: x * 1 == x |
| 4353 | * a + b + (b * (c - 1)) |
| 4354 | * |
| 4355 | * Substitute a, b, and c: |
| 4356 | * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| 4357 | * |
| 4358 | * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
| 4359 | * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| 4360 | */ |
| 4361 | m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
| 4362 | } |
| 4363 | /* m128 ^= XXH_swap64(m128 >> 64); */ |
| 4364 | m128.low64 ^= XXH_swap64(m128.high64); |
| 4365 | |
| 4366 | { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
| 4367 | XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
| 4368 | h128.high64 += m128.high64 * XXH_PRIME64_2; |
| 4369 | |
| 4370 | h128.low64 = XXH3_avalanche(h128.low64); |
| 4371 | h128.high64 = XXH3_avalanche(h128.high64); |
| 4372 | return h128; |
| 4373 | } } |
| 4374 | } |
| 4375 | |
| 4376 | /* |
| 4377 | * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
| 4378 | */ |
| 4379 | XXH_FORCE_INLINE XXH128_hash_t |
| 4380 | XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| 4381 | { |
| 4382 | XXH_ASSERT(len <= 16); |
| 4383 | { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
| 4384 | if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
| 4385 | if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
| 4386 | { XXH128_hash_t h128; |
| 4387 | xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
| 4388 | xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
| 4389 | h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
| 4390 | h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
| 4391 | return h128; |
| 4392 | } } |
| 4393 | } |
| 4394 | |
| 4395 | /* |
| 4396 | * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
| 4397 | */ |
| 4398 | XXH_FORCE_INLINE XXH128_hash_t |
| 4399 | XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
| 4400 | const xxh_u8* secret, XXH64_hash_t seed) |
| 4401 | { |
| 4402 | acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
| 4403 | acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
| 4404 | acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
| 4405 | acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
| 4406 | return acc; |
| 4407 | } |
| 4408 | |
| 4409 | |
| 4410 | XXH_FORCE_INLINE XXH128_hash_t |
| 4411 | XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| 4412 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 4413 | XXH64_hash_t seed) |
| 4414 | { |
| 4415 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| 4416 | XXH_ASSERT(16 < len && len <= 128); |
| 4417 | |
| 4418 | { XXH128_hash_t acc; |
| 4419 | acc.low64 = len * XXH_PRIME64_1; |
| 4420 | acc.high64 = 0; |
| 4421 | if (len > 32) { |
| 4422 | if (len > 64) { |
| 4423 | if (len > 96) { |
| 4424 | acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
| 4425 | } |
| 4426 | acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
| 4427 | } |
| 4428 | acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
| 4429 | } |
| 4430 | acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
| 4431 | { XXH128_hash_t h128; |
| 4432 | h128.low64 = acc.low64 + acc.high64; |
| 4433 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| 4434 | + (acc.high64 * XXH_PRIME64_4) |
| 4435 | + ((len - seed) * XXH_PRIME64_2); |
| 4436 | h128.low64 = XXH3_avalanche(h128.low64); |
| 4437 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| 4438 | return h128; |
| 4439 | } |
| 4440 | } |
| 4441 | } |
| 4442 | |
| 4443 | XXH_NO_INLINE XXH128_hash_t |
| 4444 | XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| 4445 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 4446 | XXH64_hash_t seed) |
| 4447 | { |
| 4448 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| 4449 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| 4450 | |
| 4451 | { XXH128_hash_t acc; |
| 4452 | int const nbRounds = (int)len / 32; |
| 4453 | int i; |
| 4454 | acc.low64 = len * XXH_PRIME64_1; |
| 4455 | acc.high64 = 0; |
| 4456 | for (i=0; i<4; i++) { |
| 4457 | acc = XXH128_mix32B(acc, |
| 4458 | input + (32 * i), |
| 4459 | input + (32 * i) + 16, |
| 4460 | secret + (32 * i), |
| 4461 | seed); |
| 4462 | } |
| 4463 | acc.low64 = XXH3_avalanche(acc.low64); |
| 4464 | acc.high64 = XXH3_avalanche(acc.high64); |
| 4465 | XXH_ASSERT(nbRounds >= 4); |
| 4466 | for (i=4 ; i < nbRounds; i++) { |
| 4467 | acc = XXH128_mix32B(acc, |
| 4468 | input + (32 * i), |
| 4469 | input + (32 * i) + 16, |
| 4470 | secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), |
| 4471 | seed); |
| 4472 | } |
| 4473 | /* last bytes */ |
| 4474 | acc = XXH128_mix32B(acc, |
| 4475 | input + len - 16, |
| 4476 | input + len - 32, |
| 4477 | secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
| 4478 | 0ULL - seed); |
| 4479 | |
| 4480 | { XXH128_hash_t h128; |
| 4481 | h128.low64 = acc.low64 + acc.high64; |
| 4482 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| 4483 | + (acc.high64 * XXH_PRIME64_4) |
| 4484 | + ((len - seed) * XXH_PRIME64_2); |
| 4485 | h128.low64 = XXH3_avalanche(h128.low64); |
| 4486 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| 4487 | return h128; |
| 4488 | } |
| 4489 | } |
| 4490 | } |
| 4491 | |
| 4492 | XXH_FORCE_INLINE XXH128_hash_t |
| 4493 | XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
| 4494 | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| 4495 | XXH3_f_accumulate_512 f_acc512, |
| 4496 | XXH3_f_scrambleAcc f_scramble) |
| 4497 | { |
| 4498 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| 4499 | |
| 4500 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); |
| 4501 | |
| 4502 | /* converge into final hash */ |
| 4503 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| 4504 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| 4505 | { XXH128_hash_t h128; |
| 4506 | h128.low64 = XXH3_mergeAccs(acc, |
| 4507 | secret + XXH_SECRET_MERGEACCS_START, |
| 4508 | (xxh_u64)len * XXH_PRIME64_1); |
| 4509 | h128.high64 = XXH3_mergeAccs(acc, |
| 4510 | secret + secretSize |
| 4511 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| 4512 | ~((xxh_u64)len * XXH_PRIME64_2)); |
| 4513 | return h128; |
| 4514 | } |
| 4515 | } |
| 4516 | |
| 4517 | /* |
| 4518 | * It's important for performance that XXH3_hashLong is not inlined. |
| 4519 | */ |
| 4520 | XXH_NO_INLINE XXH128_hash_t |
| 4521 | XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
| 4522 | XXH64_hash_t seed64, |
| 4523 | const void* XXH_RESTRICT secret, size_t secretLen) |
| 4524 | { |
| 4525 | (void)seed64; (void)secret; (void)secretLen; |
| 4526 | return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
| 4527 | XXH3_accumulate_512, XXH3_scrambleAcc); |
| 4528 | } |
| 4529 | |
| 4530 | /* |
| 4531 | * It's important for performance that XXH3_hashLong is not inlined. |
| 4532 | */ |
| 4533 | XXH_NO_INLINE XXH128_hash_t |
| 4534 | XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
| 4535 | XXH64_hash_t seed64, |
| 4536 | const void* XXH_RESTRICT secret, size_t secretLen) |
| 4537 | { |
| 4538 | (void)seed64; |
| 4539 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
| 4540 | XXH3_accumulate_512, XXH3_scrambleAcc); |
| 4541 | } |
| 4542 | |
| 4543 | XXH_FORCE_INLINE XXH128_hash_t |
| 4544 | XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
| 4545 | XXH64_hash_t seed64, |
| 4546 | XXH3_f_accumulate_512 f_acc512, |
| 4547 | XXH3_f_scrambleAcc f_scramble, |
| 4548 | XXH3_f_initCustomSecret f_initSec) |
| 4549 | { |
| 4550 | if (seed64 == 0) |
| 4551 | return XXH3_hashLong_128b_internal(input, len, |
| 4552 | XXH3_kSecret, sizeof(XXH3_kSecret), |
| 4553 | f_acc512, f_scramble); |
| 4554 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| 4555 | f_initSec(secret, seed64); |
| 4556 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
| 4557 | f_acc512, f_scramble); |
| 4558 | } |
| 4559 | } |
| 4560 | |
| 4561 | /* |
| 4562 | * It's important for performance that XXH3_hashLong is not inlined. |
| 4563 | */ |
| 4564 | XXH_NO_INLINE XXH128_hash_t |
| 4565 | XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
| 4566 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
| 4567 | { |
| 4568 | (void)secret; (void)secretLen; |
| 4569 | return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
| 4570 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| 4571 | } |
| 4572 | |
| 4573 | typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
| 4574 | XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
| 4575 | |
| 4576 | XXH_FORCE_INLINE XXH128_hash_t |
| 4577 | XXH3_128bits_internal(const void* input, size_t len, |
| 4578 | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
| 4579 | XXH3_hashLong128_f f_hl128) |
| 4580 | { |
| 4581 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| 4582 | /* |
| 4583 | * If an action is to be taken if `secret` conditions are not respected, |
| 4584 | * it should be done here. |
| 4585 | * For now, it's a contract pre-condition. |
| 4586 | * Adding a check and a branch here would cost performance at every hash. |
| 4587 | */ |
| 4588 | if (len <= 16) |
| 4589 | return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
| 4590 | if (len <= 128) |
| 4591 | return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| 4592 | if (len <= XXH3_MIDSIZE_MAX) |
| 4593 | return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| 4594 | return f_hl128(input, len, seed64, secret, secretLen); |
| 4595 | } |
| 4596 | |
| 4597 | |
| 4598 | /* === Public XXH128 API === */ |
| 4599 | |
| 4600 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) |
| 4601 | { |
| 4602 | return XXH3_128bits_internal(input, len, 0, |
| 4603 | XXH3_kSecret, sizeof(XXH3_kSecret), |
| 4604 | XXH3_hashLong_128b_default); |
| 4605 | } |
| 4606 | |
| 4607 | XXH_PUBLIC_API XXH128_hash_t |
| 4608 | XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
| 4609 | { |
| 4610 | return XXH3_128bits_internal(input, len, 0, |
| 4611 | (const xxh_u8*)secret, secretSize, |
| 4612 | XXH3_hashLong_128b_withSecret); |
| 4613 | } |
| 4614 | |
| 4615 | XXH_PUBLIC_API XXH128_hash_t |
| 4616 | XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
| 4617 | { |
| 4618 | return XXH3_128bits_internal(input, len, seed, |
| 4619 | XXH3_kSecret, sizeof(XXH3_kSecret), |
| 4620 | XXH3_hashLong_128b_withSeed); |
| 4621 | } |
| 4622 | |
| 4623 | XXH_PUBLIC_API XXH128_hash_t |
| 4624 | XXH128(const void* input, size_t len, XXH64_hash_t seed) |
| 4625 | { |
| 4626 | return XXH3_128bits_withSeed(input, len, seed); |
| 4627 | } |
| 4628 | |
| 4629 | |
| 4630 | /* === XXH3 128-bit streaming === */ |
| 4631 | |
| 4632 | /* |
| 4633 | * All the functions are actually the same as for 64-bit streaming variant. |
| 4634 | * The only difference is the finalizatiom routine. |
| 4635 | */ |
| 4636 | |
| 4637 | static void |
| 4638 | XXH3_128bits_reset_internal(XXH3_state_t* statePtr, |
| 4639 | XXH64_hash_t seed, |
| 4640 | const void* secret, size_t secretSize) |
| 4641 | { |
| 4642 | XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); |
| 4643 | } |
| 4644 | |
| 4645 | XXH_PUBLIC_API XXH_errorcode |
| 4646 | XXH3_128bits_reset(XXH3_state_t* statePtr) |
| 4647 | { |
| 4648 | if (statePtr == NULL) return XXH_ERROR; |
| 4649 | XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| 4650 | return XXH_OK; |
| 4651 | } |
| 4652 | |
| 4653 | XXH_PUBLIC_API XXH_errorcode |
| 4654 | XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
| 4655 | { |
| 4656 | if (statePtr == NULL) return XXH_ERROR; |
| 4657 | XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize); |
| 4658 | if (secret == NULL) return XXH_ERROR; |
| 4659 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| 4660 | return XXH_OK; |
| 4661 | } |
| 4662 | |
| 4663 | XXH_PUBLIC_API XXH_errorcode |
| 4664 | XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
| 4665 | { |
| 4666 | if (statePtr == NULL) return XXH_ERROR; |
| 4667 | if (seed==0) return XXH3_128bits_reset(statePtr); |
| 4668 | if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); |
| 4669 | XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
| 4670 | return XXH_OK; |
| 4671 | } |
| 4672 | |
| 4673 | XXH_PUBLIC_API XXH_errorcode |
| 4674 | XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) |
| 4675 | { |
| 4676 | return XXH3_update(state, (const xxh_u8*)input, len, |
| 4677 | XXH3_accumulate_512, XXH3_scrambleAcc); |
| 4678 | } |
| 4679 | |
| 4680 | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) |
| 4681 | { |
| 4682 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| 4683 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| 4684 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| 4685 | XXH3_digest_long(acc, state, secret); |
| 4686 | XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| 4687 | { XXH128_hash_t h128; |
| 4688 | h128.low64 = XXH3_mergeAccs(acc, |
| 4689 | secret + XXH_SECRET_MERGEACCS_START, |
| 4690 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| 4691 | h128.high64 = XXH3_mergeAccs(acc, |
| 4692 | secret + state->secretLimit + XXH_STRIPE_LEN |
| 4693 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| 4694 | ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
| 4695 | return h128; |
| 4696 | } |
| 4697 | } |
| 4698 | /* len <= XXH3_MIDSIZE_MAX : short code */ |
| 4699 | if (state->seed) |
| 4700 | return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| 4701 | return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| 4702 | secret, state->secretLimit + XXH_STRIPE_LEN); |
| 4703 | } |
| 4704 | |
| 4705 | /* 128-bit utility functions */ |
| 4706 | |
| 4707 | #include <string.h> /* memcmp, memcpy */ |
| 4708 | |
| 4709 | /* return : 1 is equal, 0 if different */ |
| 4710 | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
| 4711 | { |
| 4712 | /* note : XXH128_hash_t is compact, it has no padding byte */ |
| 4713 | return !(memcmp(&h1, &h2, sizeof(h1))); |
| 4714 | } |
| 4715 | |
| 4716 | /* This prototype is compatible with stdlib's qsort(). |
| 4717 | * return : >0 if *h128_1 > *h128_2 |
| 4718 | * <0 if *h128_1 < *h128_2 |
| 4719 | * =0 if *h128_1 == *h128_2 */ |
| 4720 | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) |
| 4721 | { |
| 4722 | XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
| 4723 | XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
| 4724 | int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
| 4725 | /* note : bets that, in most cases, hash values are different */ |
| 4726 | if (hcmp) return hcmp; |
| 4727 | return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
| 4728 | } |
| 4729 | |
| 4730 | |
| 4731 | /*====== Canonical representation ======*/ |
| 4732 | XXH_PUBLIC_API void |
| 4733 | XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) |
| 4734 | { |
| 4735 | XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
| 4736 | if (XXH_CPU_LITTLE_ENDIAN) { |
| 4737 | hash.high64 = XXH_swap64(hash.high64); |
| 4738 | hash.low64 = XXH_swap64(hash.low64); |
| 4739 | } |
| 4740 | memcpy(dst, &hash.high64, sizeof(hash.high64)); |
| 4741 | memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
| 4742 | } |
| 4743 | |
| 4744 | XXH_PUBLIC_API XXH128_hash_t |
| 4745 | XXH128_hashFromCanonical(const XXH128_canonical_t* src) |
| 4746 | { |
| 4747 | XXH128_hash_t h; |
| 4748 | h.high64 = XXH_readBE64(src); |
| 4749 | h.low64 = XXH_readBE64(src->digest + 8); |
| 4750 | return h; |
| 4751 | } |
| 4752 | |
| 4753 | /* Pop our optimization override from above */ |
| 4754 | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| 4755 | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| 4756 | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
| 4757 | # pragma GCC pop_options |
| 4758 | #endif |
| 4759 | |
| 4760 | #endif /* XXH_NO_LONG_LONG */ |
| 4761 | |
| 4762 | |
| 4763 | #endif /* XXH_IMPLEMENTATION */ |
Willy Tarreau | b5684e0 | 2015-04-27 11:59:40 +0200 | [diff] [blame] | 4764 | |
| 4765 | |
| 4766 | #if defined (__cplusplus) |
| 4767 | } |
| 4768 | #endif |