blob: 984df2e647a9847351ddde65d63711889e2ce35f [file] [log] [blame]
Willy Tarreauc2186022009-10-26 19:48:54 +01001/*
2 * Elastic Binary Trees - macros to manipulate Indirect String data nodes.
3 * Version 5.0
4 * (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/* These functions and macros rely on Multi-Byte nodes */
22
23#include <string.h>
24#include "ebtree.h"
25#include "ebpttree.h"
26
27/* These functions and macros rely on Pointer nodes and use the <key> entry as
28 * a pointer to an indirect key. Most operations are performed using ebpt_*.
29 */
30
31/* The following functions are not inlined by default. They are declared
32 * in ebistree.c, which simply relies on their inline version.
33 */
34REGPRM2 struct ebpt_node *ebis_lookup(struct eb_root *root, const char *x);
35REGPRM2 struct ebpt_node *ebis_insert(struct eb_root *root, struct ebpt_node *new);
36
37/* Find the first occurence of a zero-terminated string <x> in the tree <root>.
38 * It's the caller's reponsibility to use this function only on trees which
39 * only contain zero-terminated strings. If none can be found, return NULL.
40 */
41static forceinline struct ebpt_node *__ebis_lookup(struct eb_root *root, const void *x)
42{
43 struct ebpt_node *node;
44 eb_troot_t *troot;
45 unsigned int bit;
46
47 troot = root->b[EB_LEFT];
48 if (unlikely(troot == NULL))
49 return NULL;
50
51 bit = 0;
52 while (1) {
53 if ((eb_gettag(troot) == EB_LEAF)) {
54 node = container_of(eb_untag(troot, EB_LEAF),
55 struct ebpt_node, node.branches);
56 if (strcmp(node->key, x) == 0)
57 return node;
58 else
59 return NULL;
60 }
61 node = container_of(eb_untag(troot, EB_NODE),
62 struct ebpt_node, node.branches);
63
64 if (node->node.bit < 0) {
65 /* We have a dup tree now. Either it's for the same
66 * value, and we walk down left, or it's a different
67 * one and we don't have our key.
68 */
69 if (strcmp(node->key, x) != 0)
70 return NULL;
71
72 troot = node->node.branches.b[EB_LEFT];
73 while (eb_gettag(troot) != EB_LEAF)
74 troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
75 node = container_of(eb_untag(troot, EB_LEAF),
76 struct ebpt_node, node.branches);
77 return node;
78 }
79
80 /* OK, normal data node, let's walk down */
81 bit = string_equal_bits(x, node->key, bit);
82 if (bit < node->node.bit)
83 return NULL; /* no more common bits */
84
85 troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >>
86 (~node->node.bit & 7)) & 1];
87 }
88}
89
90/* Insert ebpt_node <new> into subtree starting at node root <root>. Only
91 * new->key needs be set with the zero-terminated string key. The ebpt_node is
92 * returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
93 * caller is responsible for properly terminating the key with a zero.
94 */
95static forceinline struct ebpt_node *
96__ebis_insert(struct eb_root *root, struct ebpt_node *new)
97{
98 struct ebpt_node *old;
99 unsigned int side;
100 eb_troot_t *troot;
101 eb_troot_t *root_right = root;
102 int diff;
103 int bit;
104
105 side = EB_LEFT;
106 troot = root->b[EB_LEFT];
107 root_right = root->b[EB_RGHT];
108 if (unlikely(troot == NULL)) {
109 /* Tree is empty, insert the leaf part below the left branch */
110 root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
111 new->node.leaf_p = eb_dotag(root, EB_LEFT);
112 new->node.node_p = NULL; /* node part unused */
113 return new;
114 }
115
116 /* The tree descent is fairly easy :
117 * - first, check if we have reached a leaf node
118 * - second, check if we have gone too far
119 * - third, reiterate
120 * Everywhere, we use <new> for the node node we are inserting, <root>
121 * for the node we attach it to, and <old> for the node we are
122 * displacing below <new>. <troot> will always point to the future node
123 * (tagged with its type). <side> carries the side the node <new> is
124 * attached to below its parent, which is also where previous node
125 * was attached.
126 */
127
128 bit = 0;
129 while (1) {
130 if (unlikely(eb_gettag(troot) == EB_LEAF)) {
131 eb_troot_t *new_left, *new_rght;
132 eb_troot_t *new_leaf, *old_leaf;
133
134 old = container_of(eb_untag(troot, EB_LEAF),
135 struct ebpt_node, node.branches);
136
137 new_left = eb_dotag(&new->node.branches, EB_LEFT);
138 new_rght = eb_dotag(&new->node.branches, EB_RGHT);
139 new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
140 old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
141
142 new->node.node_p = old->node.leaf_p;
143
144 /* Right here, we have 3 possibilities :
145 * - the tree does not contain the key, and we have
146 * new->key < old->key. We insert new above old, on
147 * the left ;
148 *
149 * - the tree does not contain the key, and we have
150 * new->key > old->key. We insert new above old, on
151 * the right ;
152 *
153 * - the tree does contain the key, which implies it
154 * is alone. We add the new key next to it as a
155 * first duplicate.
156 *
157 * The last two cases can easily be partially merged.
158 */
159 bit = string_equal_bits(new->key, old->key, bit);
160 diff = cmp_bits(new->key, old->key, bit);
161
162 if (diff < 0) {
163 new->node.leaf_p = new_left;
164 old->node.leaf_p = new_rght;
165 new->node.branches.b[EB_LEFT] = new_leaf;
166 new->node.branches.b[EB_RGHT] = old_leaf;
167 } else {
168 /* we may refuse to duplicate this key if the tree is
169 * tagged as containing only unique keys.
170 */
171 if (diff == 0 && eb_gettag(root_right))
172 return old;
173
174 /* new->key >= old->key, new goes the right */
175 old->node.leaf_p = new_left;
176 new->node.leaf_p = new_rght;
177 new->node.branches.b[EB_LEFT] = old_leaf;
178 new->node.branches.b[EB_RGHT] = new_leaf;
179
180 if (diff == 0) {
181 new->node.bit = -1;
182 root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
183 return new;
184 }
185 }
186 break;
187 }
188
189 /* OK we're walking down this link */
190 old = container_of(eb_untag(troot, EB_NODE),
191 struct ebpt_node, node.branches);
192
193 /* Stop going down when we don't have common bits anymore. We
194 * also stop in front of a duplicates tree because it means we
195 * have to insert above. Note: we can compare more bits than
196 * the current node's because as long as they are identical, we
197 * know we descend along the correct side.
198 */
199 if (old->node.bit < 0) {
200 /* we're above a duplicate tree, we must compare till the end */
201 bit = string_equal_bits(new->key, old->key, bit);
202 goto dup_tree;
203 }
204 else if (bit < old->node.bit) {
205 bit = string_equal_bits(new->key, old->key, bit);
206 }
207
208 if (bit < old->node.bit) { /* we don't have all bits in common */
209 /* The tree did not contain the key, so we insert <new> before the node
210 * <old>, and set ->bit to designate the lowest bit position in <new>
211 * which applies to ->branches.b[].
212 */
213 eb_troot_t *new_left, *new_rght;
214 eb_troot_t *new_leaf, *old_node;
215 dup_tree:
216 new_left = eb_dotag(&new->node.branches, EB_LEFT);
217 new_rght = eb_dotag(&new->node.branches, EB_RGHT);
218 new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
219 old_node = eb_dotag(&old->node.branches, EB_NODE);
220
221 new->node.node_p = old->node.node_p;
222
223 diff = cmp_bits(new->key, old->key, bit);
224 if (diff < 0) {
225 new->node.leaf_p = new_left;
226 old->node.node_p = new_rght;
227 new->node.branches.b[EB_LEFT] = new_leaf;
228 new->node.branches.b[EB_RGHT] = old_node;
229 }
230 else if (diff > 0) {
231 old->node.node_p = new_left;
232 new->node.leaf_p = new_rght;
233 new->node.branches.b[EB_LEFT] = old_node;
234 new->node.branches.b[EB_RGHT] = new_leaf;
235 }
236 else {
237 struct eb_node *ret;
238 ret = eb_insert_dup(&old->node, &new->node);
239 return container_of(ret, struct ebpt_node, node);
240 }
241 break;
242 }
243
244 /* walk down */
245 root = &old->node.branches;
246 side = (((unsigned char *)new->key)[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1;
247 troot = root->b[side];
248 }
249
250 /* Ok, now we are inserting <new> between <root> and <old>. <old>'s
251 * parent is already set to <new>, and the <root>'s branch is still in
252 * <side>. Update the root's leaf till we have it. Note that we can also
253 * find the side by checking the side of new->node.node_p.
254 */
255
256 /* We need the common higher bits between new->key and old->key.
257 * This number of bits is already in <bit>.
258 */
259 new->node.bit = bit;
260 root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
261 return new;
262}
263