Dragan Dosen | 7389dd0 | 2017-10-24 08:48:25 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Based on the git SHA1 Implementation. |
| 3 | * |
| 4 | * Copyright (C) 2009-2015, Linus Torvalds and others. |
| 5 | * |
| 6 | * SHA1 routine optimized to do word accesses rather than byte accesses, |
| 7 | * and to avoid unnecessary copies into the context array. |
| 8 | * |
| 9 | * This was initially based on the Mozilla SHA1 implementation, although |
| 10 | * none of the original Mozilla code remains. |
| 11 | * |
| 12 | * This library is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU Lesser General Public |
| 14 | * License as published by the Free Software Foundation, version 2.1 |
| 15 | * exclusively. |
| 16 | * |
| 17 | * This library is distributed in the hope that it will be useful, |
| 18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 20 | * Lesser General Public License for more details. |
| 21 | * |
| 22 | * You should have received a copy of the GNU Lesser General Public |
| 23 | * License along with this library; if not, write to the Free Software |
| 24 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 25 | */ |
| 26 | |
| 27 | /* this is only to get definitions for memcpy(), ntohl() and htonl() */ |
| 28 | #include <string.h> |
Willy Tarreau | a1bd1fa | 2019-03-29 17:26:33 +0100 | [diff] [blame] | 29 | #include <inttypes.h> |
Dragan Dosen | 7389dd0 | 2017-10-24 08:48:25 +0200 | [diff] [blame] | 30 | #include <arpa/inet.h> |
| 31 | |
| 32 | #include <import/sha1.h> |
| 33 | |
| 34 | /* |
| 35 | * Performance might be improved if the CPU architecture is OK with |
| 36 | * unaligned 32-bit loads and a fast ntohl() is available. |
| 37 | * Otherwise fall back to byte loads and shifts which is portable, |
| 38 | * and is faster on architectures with memory alignment issues. |
| 39 | */ |
| 40 | |
| 41 | #if defined(__i386__) || defined(__x86_64__) || \ |
| 42 | defined(__ppc__) || defined(__ppc64__) || \ |
| 43 | defined(__powerpc__) || defined(__powerpc64__) || \ |
| 44 | defined(__s390__) || defined(__s390x__) |
| 45 | |
| 46 | #define get_be32(p) ntohl(*(unsigned int *)(p)) |
| 47 | #define put_be32(p, v) do { *(unsigned int *)(p) = htonl(v); } while (0) |
| 48 | |
| 49 | #else |
| 50 | |
| 51 | static inline uint32_t get_be32(const void *ptr) |
| 52 | { |
| 53 | const unsigned char *p = ptr; |
| 54 | return (uint32_t)p[0] << 24 | |
| 55 | (uint32_t)p[1] << 16 | |
| 56 | (uint32_t)p[2] << 8 | |
| 57 | (uint32_t)p[3] << 0; |
| 58 | } |
| 59 | |
| 60 | static inline void put_be32(void *ptr, uint32_t value) |
| 61 | { |
| 62 | unsigned char *p = ptr; |
| 63 | p[0] = value >> 24; |
| 64 | p[1] = value >> 16; |
| 65 | p[2] = value >> 8; |
| 66 | p[3] = value >> 0; |
| 67 | } |
| 68 | |
| 69 | #endif |
| 70 | |
| 71 | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
| 72 | |
| 73 | /* |
| 74 | * Force usage of rol or ror by selecting the one with the smaller constant. |
| 75 | * It _can_ generate slightly smaller code (a constant of 1 is special), but |
| 76 | * perhaps more importantly it's possibly faster on any uarch that does a |
| 77 | * rotate with a loop. |
| 78 | */ |
| 79 | |
| 80 | #define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; }) |
| 81 | #define SHA_ROL(x,n) SHA_ASM("rol", x, n) |
| 82 | #define SHA_ROR(x,n) SHA_ASM("ror", x, n) |
| 83 | |
| 84 | #else |
| 85 | |
| 86 | #define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r))) |
| 87 | #define SHA_ROL(X,n) SHA_ROT(X,n,32-(n)) |
| 88 | #define SHA_ROR(X,n) SHA_ROT(X,32-(n),n) |
| 89 | |
| 90 | #endif |
| 91 | |
| 92 | /* |
| 93 | * If you have 32 registers or more, the compiler can (and should) |
| 94 | * try to change the array[] accesses into registers. However, on |
| 95 | * machines with less than ~25 registers, that won't really work, |
| 96 | * and at least gcc will make an unholy mess of it. |
| 97 | * |
| 98 | * So to avoid that mess which just slows things down, we force |
| 99 | * the stores to memory to actually happen (we might be better off |
| 100 | * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as |
| 101 | * suggested by Artur Skawina - that will also make gcc unable to |
| 102 | * try to do the silly "optimize away loads" part because it won't |
| 103 | * see what the value will be). |
| 104 | * |
| 105 | * Ben Herrenschmidt reports that on PPC, the C version comes close |
| 106 | * to the optimized asm with this (ie on PPC you don't want that |
| 107 | * 'volatile', since there are lots of registers). |
| 108 | * |
| 109 | * On ARM we get the best code generation by forcing a full memory barrier |
| 110 | * between each SHA_ROUND, otherwise gcc happily get wild with spilling and |
| 111 | * the stack frame size simply explode and performance goes down the drain. |
| 112 | */ |
| 113 | |
| 114 | #if defined(__i386__) || defined(__x86_64__) |
| 115 | #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val)) |
| 116 | #elif defined(__GNUC__) && defined(__arm__) |
| 117 | #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) |
| 118 | #else |
| 119 | #define setW(x, val) (W(x) = (val)) |
| 120 | #endif |
| 121 | |
| 122 | /* This "rolls" over the 512-bit array */ |
| 123 | #define W(x) (array[(x)&15]) |
| 124 | |
| 125 | /* |
| 126 | * Where do we get the source from? The first 16 iterations get it from |
| 127 | * the input data, the next mix it from the 512-bit array. |
| 128 | */ |
| 129 | #define SHA_SRC(t) get_be32((unsigned char *) block + (t)*4) |
| 130 | #define SHA_MIX(t) SHA_ROL(W((t)+13) ^ W((t)+8) ^ W((t)+2) ^ W(t), 1); |
| 131 | |
| 132 | #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ |
| 133 | unsigned int TEMP = input(t); setW(t, TEMP); \ |
| 134 | E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \ |
| 135 | B = SHA_ROR(B, 2); } while (0) |
| 136 | |
| 137 | #define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| 138 | #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) |
| 139 | #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) |
| 140 | #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) |
| 141 | #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) |
| 142 | |
| 143 | static void blk_SHA1_Block(blk_SHA_CTX *ctx, const void *block) |
| 144 | { |
| 145 | unsigned int A,B,C,D,E; |
| 146 | unsigned int array[16]; |
| 147 | |
| 148 | A = ctx->H[0]; |
| 149 | B = ctx->H[1]; |
| 150 | C = ctx->H[2]; |
| 151 | D = ctx->H[3]; |
| 152 | E = ctx->H[4]; |
| 153 | |
| 154 | /* Round 1 - iterations 0-16 take their input from 'block' */ |
| 155 | T_0_15( 0, A, B, C, D, E); |
| 156 | T_0_15( 1, E, A, B, C, D); |
| 157 | T_0_15( 2, D, E, A, B, C); |
| 158 | T_0_15( 3, C, D, E, A, B); |
| 159 | T_0_15( 4, B, C, D, E, A); |
| 160 | T_0_15( 5, A, B, C, D, E); |
| 161 | T_0_15( 6, E, A, B, C, D); |
| 162 | T_0_15( 7, D, E, A, B, C); |
| 163 | T_0_15( 8, C, D, E, A, B); |
| 164 | T_0_15( 9, B, C, D, E, A); |
| 165 | T_0_15(10, A, B, C, D, E); |
| 166 | T_0_15(11, E, A, B, C, D); |
| 167 | T_0_15(12, D, E, A, B, C); |
| 168 | T_0_15(13, C, D, E, A, B); |
| 169 | T_0_15(14, B, C, D, E, A); |
| 170 | T_0_15(15, A, B, C, D, E); |
| 171 | |
| 172 | /* Round 1 - tail. Input from 512-bit mixing array */ |
| 173 | T_16_19(16, E, A, B, C, D); |
| 174 | T_16_19(17, D, E, A, B, C); |
| 175 | T_16_19(18, C, D, E, A, B); |
| 176 | T_16_19(19, B, C, D, E, A); |
| 177 | |
| 178 | /* Round 2 */ |
| 179 | T_20_39(20, A, B, C, D, E); |
| 180 | T_20_39(21, E, A, B, C, D); |
| 181 | T_20_39(22, D, E, A, B, C); |
| 182 | T_20_39(23, C, D, E, A, B); |
| 183 | T_20_39(24, B, C, D, E, A); |
| 184 | T_20_39(25, A, B, C, D, E); |
| 185 | T_20_39(26, E, A, B, C, D); |
| 186 | T_20_39(27, D, E, A, B, C); |
| 187 | T_20_39(28, C, D, E, A, B); |
| 188 | T_20_39(29, B, C, D, E, A); |
| 189 | T_20_39(30, A, B, C, D, E); |
| 190 | T_20_39(31, E, A, B, C, D); |
| 191 | T_20_39(32, D, E, A, B, C); |
| 192 | T_20_39(33, C, D, E, A, B); |
| 193 | T_20_39(34, B, C, D, E, A); |
| 194 | T_20_39(35, A, B, C, D, E); |
| 195 | T_20_39(36, E, A, B, C, D); |
| 196 | T_20_39(37, D, E, A, B, C); |
| 197 | T_20_39(38, C, D, E, A, B); |
| 198 | T_20_39(39, B, C, D, E, A); |
| 199 | |
| 200 | /* Round 3 */ |
| 201 | T_40_59(40, A, B, C, D, E); |
| 202 | T_40_59(41, E, A, B, C, D); |
| 203 | T_40_59(42, D, E, A, B, C); |
| 204 | T_40_59(43, C, D, E, A, B); |
| 205 | T_40_59(44, B, C, D, E, A); |
| 206 | T_40_59(45, A, B, C, D, E); |
| 207 | T_40_59(46, E, A, B, C, D); |
| 208 | T_40_59(47, D, E, A, B, C); |
| 209 | T_40_59(48, C, D, E, A, B); |
| 210 | T_40_59(49, B, C, D, E, A); |
| 211 | T_40_59(50, A, B, C, D, E); |
| 212 | T_40_59(51, E, A, B, C, D); |
| 213 | T_40_59(52, D, E, A, B, C); |
| 214 | T_40_59(53, C, D, E, A, B); |
| 215 | T_40_59(54, B, C, D, E, A); |
| 216 | T_40_59(55, A, B, C, D, E); |
| 217 | T_40_59(56, E, A, B, C, D); |
| 218 | T_40_59(57, D, E, A, B, C); |
| 219 | T_40_59(58, C, D, E, A, B); |
| 220 | T_40_59(59, B, C, D, E, A); |
| 221 | |
| 222 | /* Round 4 */ |
| 223 | T_60_79(60, A, B, C, D, E); |
| 224 | T_60_79(61, E, A, B, C, D); |
| 225 | T_60_79(62, D, E, A, B, C); |
| 226 | T_60_79(63, C, D, E, A, B); |
| 227 | T_60_79(64, B, C, D, E, A); |
| 228 | T_60_79(65, A, B, C, D, E); |
| 229 | T_60_79(66, E, A, B, C, D); |
| 230 | T_60_79(67, D, E, A, B, C); |
| 231 | T_60_79(68, C, D, E, A, B); |
| 232 | T_60_79(69, B, C, D, E, A); |
| 233 | T_60_79(70, A, B, C, D, E); |
| 234 | T_60_79(71, E, A, B, C, D); |
| 235 | T_60_79(72, D, E, A, B, C); |
| 236 | T_60_79(73, C, D, E, A, B); |
| 237 | T_60_79(74, B, C, D, E, A); |
| 238 | T_60_79(75, A, B, C, D, E); |
| 239 | T_60_79(76, E, A, B, C, D); |
| 240 | T_60_79(77, D, E, A, B, C); |
| 241 | T_60_79(78, C, D, E, A, B); |
| 242 | T_60_79(79, B, C, D, E, A); |
| 243 | |
| 244 | ctx->H[0] += A; |
| 245 | ctx->H[1] += B; |
| 246 | ctx->H[2] += C; |
| 247 | ctx->H[3] += D; |
| 248 | ctx->H[4] += E; |
| 249 | } |
| 250 | |
| 251 | void blk_SHA1_Init(blk_SHA_CTX *ctx) |
| 252 | { |
| 253 | ctx->size = 0; |
| 254 | |
| 255 | /* Initialize H with the magic constants (see FIPS180 for constants) */ |
| 256 | ctx->H[0] = 0x67452301; |
| 257 | ctx->H[1] = 0xefcdab89; |
| 258 | ctx->H[2] = 0x98badcfe; |
| 259 | ctx->H[3] = 0x10325476; |
| 260 | ctx->H[4] = 0xc3d2e1f0; |
| 261 | } |
| 262 | |
| 263 | void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len) |
| 264 | { |
| 265 | unsigned int lenW = ctx->size & 63; |
| 266 | |
| 267 | ctx->size += len; |
| 268 | |
| 269 | /* Read the data into W and process blocks as they get full */ |
| 270 | if (lenW) { |
| 271 | unsigned int left = 64 - lenW; |
| 272 | if (len < left) |
| 273 | left = len; |
| 274 | memcpy(lenW + (char *)ctx->W, data, left); |
| 275 | lenW = (lenW + left) & 63; |
| 276 | len -= left; |
| 277 | data = ((const char *)data + left); |
| 278 | if (lenW) |
| 279 | return; |
| 280 | blk_SHA1_Block(ctx, ctx->W); |
| 281 | } |
| 282 | while (len >= 64) { |
| 283 | blk_SHA1_Block(ctx, data); |
| 284 | data = ((const char *)data + 64); |
| 285 | len -= 64; |
| 286 | } |
| 287 | if (len) |
| 288 | memcpy(ctx->W, data, len); |
| 289 | } |
| 290 | |
| 291 | void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx) |
| 292 | { |
| 293 | static const unsigned char pad[64] = { 0x80 }; |
| 294 | unsigned int padlen[2]; |
| 295 | int i; |
| 296 | |
| 297 | /* Pad with a binary 1 (ie 0x80), then zeroes, then length */ |
| 298 | padlen[0] = htonl((uint32_t)(ctx->size >> 29)); |
| 299 | padlen[1] = htonl((uint32_t)(ctx->size << 3)); |
| 300 | |
| 301 | i = ctx->size & 63; |
| 302 | blk_SHA1_Update(ctx, pad, 1 + (63 & (55 - i))); |
| 303 | blk_SHA1_Update(ctx, padlen, 8); |
| 304 | |
| 305 | /* Output hash */ |
| 306 | for (i = 0; i < 5; i++) |
| 307 | put_be32(hashout + i * 4, ctx->H[i]); |
| 308 | } |