| /* |
| * General purpose functions. |
| * |
| * Copyright 2000-2010 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <netdb.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/socket.h> |
| #include <sys/un.h> |
| #include <netinet/in.h> |
| #include <arpa/inet.h> |
| |
| #include <common/config.h> |
| #include <common/standard.h> |
| #include <eb32tree.h> |
| |
| /* enough to store 10 integers of : |
| * 2^64-1 = 18446744073709551615 or |
| * -2^63 = -9223372036854775808 |
| * |
| * The HTML version needs room for adding the 25 characters |
| * '<span class="rls"></span>' around digits at positions 3N+1 in order |
| * to add spacing at up to 6 positions : 18 446 744 073 709 551 615 |
| */ |
| char itoa_str[10][171]; |
| |
| /* |
| * unsigned long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ulltoa(unsigned long long n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *res; |
| |
| switch(n) { |
| case 1ULL ... 9ULL: |
| i = 0; |
| break; |
| |
| case 10ULL ... 99ULL: |
| i = 1; |
| break; |
| |
| case 100ULL ... 999ULL: |
| i = 2; |
| break; |
| |
| case 1000ULL ... 9999ULL: |
| i = 3; |
| break; |
| |
| case 10000ULL ... 99999ULL: |
| i = 4; |
| break; |
| |
| case 100000ULL ... 999999ULL: |
| i = 5; |
| break; |
| |
| case 1000000ULL ... 9999999ULL: |
| i = 6; |
| break; |
| |
| case 10000000ULL ... 99999999ULL: |
| i = 7; |
| break; |
| |
| case 100000000ULL ... 999999999ULL: |
| i = 8; |
| break; |
| |
| case 1000000000ULL ... 9999999999ULL: |
| i = 9; |
| break; |
| |
| case 10000000000ULL ... 99999999999ULL: |
| i = 10; |
| break; |
| |
| case 100000000000ULL ... 999999999999ULL: |
| i = 11; |
| break; |
| |
| case 1000000000000ULL ... 9999999999999ULL: |
| i = 12; |
| break; |
| |
| case 10000000000000ULL ... 99999999999999ULL: |
| i = 13; |
| break; |
| |
| case 100000000000000ULL ... 999999999999999ULL: |
| i = 14; |
| break; |
| |
| case 1000000000000000ULL ... 9999999999999999ULL: |
| i = 15; |
| break; |
| |
| case 10000000000000000ULL ... 99999999999999999ULL: |
| i = 16; |
| break; |
| |
| case 100000000000000000ULL ... 999999999999999999ULL: |
| i = 17; |
| break; |
| |
| case 1000000000000000000ULL ... 9999999999999999999ULL: |
| i = 18; |
| break; |
| |
| case 10000000000000000000ULL ... ULLONG_MAX: |
| i = 19; |
| break; |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| res = dst + i + 1; |
| *res = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10ULL + '0'; |
| n /= 10ULL; |
| } |
| return res; |
| } |
| |
| /* |
| * unsigned long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ultoa_o(unsigned long n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *res; |
| |
| switch (n) { |
| case 0U ... 9UL: |
| i = 0; |
| break; |
| |
| case 10U ... 99UL: |
| i = 1; |
| break; |
| |
| case 100U ... 999UL: |
| i = 2; |
| break; |
| |
| case 1000U ... 9999UL: |
| i = 3; |
| break; |
| |
| case 10000U ... 99999UL: |
| i = 4; |
| break; |
| |
| case 100000U ... 999999UL: |
| i = 5; |
| break; |
| |
| case 1000000U ... 9999999UL: |
| i = 6; |
| break; |
| |
| case 10000000U ... 99999999UL: |
| i = 7; |
| break; |
| |
| case 100000000U ... 999999999UL: |
| i = 8; |
| break; |
| #if __WORDSIZE == 32 |
| |
| case 1000000000ULL ... ULONG_MAX: |
| i = 9; |
| break; |
| |
| #elif __WORDSIZE == 64 |
| |
| case 1000000000ULL ... 9999999999UL: |
| i = 9; |
| break; |
| |
| case 10000000000ULL ... 99999999999UL: |
| i = 10; |
| break; |
| |
| case 100000000000ULL ... 999999999999UL: |
| i = 11; |
| break; |
| |
| case 1000000000000ULL ... 9999999999999UL: |
| i = 12; |
| break; |
| |
| case 10000000000000ULL ... 99999999999999UL: |
| i = 13; |
| break; |
| |
| case 100000000000000ULL ... 999999999999999UL: |
| i = 14; |
| break; |
| |
| case 1000000000000000ULL ... 9999999999999999UL: |
| i = 15; |
| break; |
| |
| case 10000000000000000ULL ... 99999999999999999UL: |
| i = 16; |
| break; |
| |
| case 100000000000000000ULL ... 999999999999999999UL: |
| i = 17; |
| break; |
| |
| case 1000000000000000000ULL ... 9999999999999999999UL: |
| i = 18; |
| break; |
| |
| case 10000000000000000000ULL ... ULONG_MAX: |
| i = 19; |
| break; |
| |
| #endif |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| res = dst + i + 1; |
| *res = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10U + '0'; |
| n /= 10U; |
| } |
| return res; |
| } |
| |
| /* |
| * signed long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ltoa_o(long int n, char *dst, size_t size) |
| { |
| char *pos = dst; |
| |
| if (n < 0) { |
| if (size < 3) |
| return NULL; // min size is '-' + digit + '\0' but another test in ultoa |
| *pos = '-'; |
| pos++; |
| dst = ultoa_o(-n, pos, size - 1); |
| } else { |
| dst = ultoa_o(n, dst, size); |
| } |
| return dst; |
| } |
| |
| /* |
| * signed long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *lltoa(long long n, char *dst, size_t size) |
| { |
| char *pos = dst; |
| |
| if (n < 0) { |
| if (size < 3) |
| return NULL; // min size is '-' + digit + '\0' but another test in ulltoa |
| *pos = '-'; |
| pos++; |
| dst = ulltoa(-n, pos, size - 1); |
| } else { |
| dst = ulltoa(n, dst, size); |
| } |
| return dst; |
| } |
| |
| /* |
| * write a ascii representation of a unsigned into dst, |
| * return a pointer to the last character |
| * Pad the ascii representation with '0', using size. |
| */ |
| char *utoa_pad(unsigned int n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *ret; |
| |
| switch(n) { |
| case 0U ... 9U: |
| i = 0; |
| break; |
| |
| case 10U ... 99U: |
| i = 1; |
| break; |
| |
| case 100U ... 999U: |
| i = 2; |
| break; |
| |
| case 1000U ... 9999U: |
| i = 3; |
| break; |
| |
| case 10000U ... 99999U: |
| i = 4; |
| break; |
| |
| case 100000U ... 999999U: |
| i = 5; |
| break; |
| |
| case 1000000U ... 9999999U: |
| i = 6; |
| break; |
| |
| case 10000000U ... 99999999U: |
| i = 7; |
| break; |
| |
| case 100000000U ... 999999999U: |
| i = 8; |
| break; |
| |
| case 1000000000U ... 4294967295U: |
| i = 9; |
| break; |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| if (i < size) |
| i = size - 2; // padding - '\0' |
| |
| ret = dst + i + 1; |
| *ret = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10U + '0'; |
| n /= 10U; |
| } |
| return ret; |
| } |
| |
| /* |
| * copies at most <size-1> chars from <src> to <dst>. Last char is always |
| * set to 0, unless <size> is 0. The number of chars copied is returned |
| * (excluding the terminating zero). |
| * This code has been optimized for size and speed : on x86, it's 45 bytes |
| * long, uses only registers, and consumes only 4 cycles per char. |
| */ |
| int strlcpy2(char *dst, const char *src, int size) |
| { |
| char *orig = dst; |
| if (size) { |
| while (--size && (*dst = *src)) { |
| src++; dst++; |
| } |
| *dst = 0; |
| } |
| return dst - orig; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal. |
| */ |
| char *ultoa_r(unsigned long n, char *buffer, int size) |
| { |
| char *pos; |
| |
| pos = buffer + size - 1; |
| *pos-- = '\0'; |
| |
| do { |
| *pos-- = '0' + n % 10; |
| n /= 10; |
| } while (n && pos >= buffer); |
| return pos + 1; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal, formatted for |
| * HTML output with tags to create visual grouping by 3 digits. The |
| * output needs to support at least 171 characters. |
| */ |
| const char *ulltoh_r(unsigned long long n, char *buffer, int size) |
| { |
| char *start; |
| int digit = 0; |
| |
| start = buffer + size; |
| *--start = '\0'; |
| |
| do { |
| if (digit == 3 && start >= buffer + 7) |
| memcpy(start -= 7, "</span>", 7); |
| |
| if (start >= buffer + 1) { |
| *--start = '0' + n % 10; |
| n /= 10; |
| } |
| |
| if (digit == 3 && start >= buffer + 18) |
| memcpy(start -= 18, "<span class=\"rls\">", 18); |
| |
| if (digit++ == 3) |
| digit = 1; |
| } while (n && start > buffer); |
| return start; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing the ascii |
| * representation for number 'n' in decimal, unless n is 0 in which case it |
| * returns the alternate string (or an empty string if the alternate string is |
| * NULL). It use is intended for limits reported in reports, where it's |
| * desirable not to display anything if there is no limit. Warning! it shares |
| * the same vector as ultoa_r(). |
| */ |
| const char *limit_r(unsigned long n, char *buffer, int size, const char *alt) |
| { |
| return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : ""); |
| } |
| |
| /* |
| * converts <str> to a struct sockaddr_un* which is locally allocated. |
| * The format is "/path", where "/path" is a path to a UNIX domain socket. |
| * NULL is returned if the socket path is invalid (too long). |
| */ |
| struct sockaddr_un *str2sun(const char *str) |
| { |
| static struct sockaddr_un su; |
| int strsz; /* length included null */ |
| |
| memset(&su, 0, sizeof(su)); |
| strsz = strlen(str) + 1; |
| if (strsz > sizeof(su.sun_path)) { |
| return NULL; |
| } else { |
| su.sun_family = AF_UNIX; |
| memcpy(su.sun_path, str, strsz); |
| } |
| return &su; |
| } |
| |
| /* |
| * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero. |
| * |
| * It looks like this one would be a good candidate for inlining, but this is |
| * not interesting because it around 35 bytes long and often called multiple |
| * times within the same function. |
| */ |
| int ishex(char s) |
| { |
| s -= '0'; |
| if ((unsigned char)s <= 9) |
| return 1; |
| s -= 'A' - '0'; |
| if ((unsigned char)s <= 5) |
| return 1; |
| s -= 'a' - 'A'; |
| if ((unsigned char)s <= 5) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Return integer equivalent of character <c> for a hex digit (0-9, a-f, A-F), |
| * otherwise -1. This compact form helps gcc produce efficient code. |
| */ |
| int hex2i(int c) |
| { |
| if ((unsigned char)(c -= '0') > 9) { |
| if ((unsigned char)(c -= 'A' - '0') > 5 && |
| (unsigned char)(c -= 'a' - 'A') > 5) |
| c = -11; |
| c += 10; |
| } |
| return c; |
| } |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an |
| * invalid character is found, a pointer to it is returned. If everything is |
| * fine, NULL is returned. |
| */ |
| const char *invalid_char(const char *name) |
| { |
| if (!*name) |
| return name; |
| |
| while (*name) { |
| if (!isalnum((int)(unsigned char)*name) && *name != '.' && *name != ':' && |
| *name != '_' && *name != '-') |
| return name; |
| name++; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Checks <domainname> for invalid characters. Valid chars are [A-Za-z0-9_.-]. |
| * If an invalid character is found, a pointer to it is returned. |
| * If everything is fine, NULL is returned. |
| */ |
| const char *invalid_domainchar(const char *name) { |
| |
| if (!*name) |
| return name; |
| |
| while (*name) { |
| if (!isalnum((int)(unsigned char)*name) && *name != '.' && |
| *name != '_' && *name != '-') |
| return name; |
| |
| name++; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * converts <str> to a struct sockaddr_storage* which is locally allocated. The |
| * string is assumed to contain only an address, no port. The address can be a |
| * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to |
| * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved. |
| * The return address will only have the address family and the address set, |
| * all other fields remain zero. The string is not supposed to be modified. |
| * The IPv6 '::' address is IN6ADDR_ANY. |
| */ |
| struct sockaddr_storage *str2ip(const char *str) |
| { |
| static struct sockaddr_storage sa; |
| struct hostent *he; |
| |
| memset(&sa, 0, sizeof(sa)); |
| |
| /* Any IPv6 address */ |
| if (str[0] == ':' && str[1] == ':' && !str[2]) { |
| sa.ss_family = AF_INET6; |
| return &sa; |
| } |
| |
| /* Any IPv4 address */ |
| if (!str[0] || (str[0] == '*' && !str[1])) { |
| sa.ss_family = AF_INET; |
| return &sa; |
| } |
| |
| /* check for IPv6 first */ |
| if (inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)&sa)->sin6_addr)) { |
| sa.ss_family = AF_INET6; |
| return &sa; |
| } |
| |
| /* then check for IPv4 */ |
| if (inet_pton(AF_INET, str, &((struct sockaddr_in *)&sa)->sin_addr)) { |
| sa.ss_family = AF_INET; |
| return &sa; |
| } |
| |
| /* try to resolve an IPv4/IPv6 hostname */ |
| he = gethostbyname(str); |
| if (he) { |
| sa.ss_family = he->h_addrtype; |
| switch (sa.ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)&sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list); |
| return &sa; |
| case AF_INET6: |
| ((struct sockaddr_in6 *)&sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list); |
| return &sa; |
| } |
| } |
| #ifdef USE_GETADDRINFO |
| else { |
| struct addrinfo hints, *result; |
| |
| memset(&result, 0, sizeof(result)); |
| memset(&hints, 0, sizeof(hints)); |
| hints.ai_family = AF_UNSPEC; |
| hints.ai_socktype = SOCK_DGRAM; |
| hints.ai_flags = AI_PASSIVE; |
| hints.ai_protocol = 0; |
| |
| if (getaddrinfo(str, NULL, &hints, &result) == 0) { |
| sa.ss_family = result->ai_family; |
| switch (result->ai_family) { |
| case AF_INET: |
| memcpy((struct sockaddr_in *)&sa, result->ai_addr, result->ai_addrlen); |
| return &sa; |
| case AF_INET6: |
| memcpy((struct sockaddr_in6 *)&sa, result->ai_addr, result->ai_addrlen); |
| return &sa; |
| } |
| } |
| |
| freeaddrinfo(result); |
| } |
| #endif |
| /* unsupported address family */ |
| |
| return NULL; |
| } |
| |
| /* |
| * converts <str> to a locally allocated struct sockaddr_storage *. |
| * The format is "addr[:[port]]", where "addr" can be a dotted IPv4 address, an |
| * IPv6 address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6 |
| * address wants to ignore port, it must be terminated by a trailing colon (':'). |
| * The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on |
| * IPv6, use ":::port". NULL is returned if the host part cannot be resolved. |
| */ |
| struct sockaddr_storage *str2sa(const char *str) |
| { |
| struct sockaddr_storage *ret = NULL; |
| char *str2; |
| char *c; |
| int port; |
| |
| str2 = strdup(str); |
| if (str2 == NULL) |
| goto out; |
| |
| if ((c = strrchr(str2, ':')) != NULL) { /* Port */ |
| *c++ = '\0'; |
| port = atol(c); |
| } |
| else |
| port = 0; |
| |
| ret = str2ip(str2); |
| if (!ret) |
| goto out; |
| |
| set_host_port(ret, port); |
| out: |
| free(str2); |
| return ret; |
| } |
| |
| /* |
| * converts <str> to a locally allocated struct sockaddr_storage *, and a |
| * port range consisting in two integers. The low and high end are always set |
| * even if the port is unspecified, in which case (0,0) is returned. The low |
| * port is set in the sockaddr. Thus, it is enough to check the size of the |
| * returned range to know if an array must be allocated or not. The format is |
| * "addr[:[port[-port]]]", where "addr" can be a dotted IPv4 address, an IPv6 |
| * address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6 |
| * address wants to ignore port, it must be terminated by a trailing colon (':'). |
| * The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on |
| * IPv6, use ":::port". NULL is returned if the host part cannot be resolved. |
| */ |
| struct sockaddr_storage *str2sa_range(const char *str, int *low, int *high) |
| { |
| struct sockaddr_storage *ret = NULL; |
| char *str2; |
| char *c; |
| int portl, porth; |
| |
| str2 = strdup(str); |
| if (str2 == NULL) |
| goto out; |
| |
| if ((c = strrchr(str2,':')) != NULL) { /* Port */ |
| char *sep; |
| *c++ = '\0'; |
| sep = strchr(c, '-'); |
| if (sep) |
| *sep++ = '\0'; |
| else |
| sep = c; |
| portl = atol(c); |
| porth = atol(sep); |
| } |
| else { |
| portl = 0; |
| porth = 0; |
| } |
| |
| ret = str2ip(str2); |
| if (!ret) |
| goto out; |
| |
| set_host_port(ret, portl); |
| |
| *low = portl; |
| *high = porth; |
| out: |
| free(str2); |
| return ret; |
| } |
| |
| /* converts <str> to a struct in_addr containing a network mask. It can be |
| * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1 |
| * if the conversion succeeds otherwise non-zero. |
| */ |
| int str2mask(const char *str, struct in_addr *mask) |
| { |
| if (strchr(str, '.') != NULL) { /* dotted notation */ |
| if (!inet_pton(AF_INET, str, mask)) |
| return 0; |
| } |
| else { /* mask length */ |
| char *err; |
| unsigned long len = strtol(str, &err, 10); |
| |
| if (!*str || (err && *err) || (unsigned)len > 32) |
| return 0; |
| if (len) |
| mask->s_addr = htonl(~0UL << (32 - len)); |
| else |
| mask->s_addr = 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * converts <str> to two struct in_addr* which must be pre-allocated. |
| * The format is "addr[/mask]", where "addr" cannot be empty, and mask |
| * is optionnal and either in the dotted or CIDR notation. |
| * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. |
| */ |
| int str2net(const char *str, struct in_addr *addr, struct in_addr *mask) |
| { |
| __label__ out_free, out_err; |
| char *c, *s; |
| int ret_val; |
| |
| s = strdup(str); |
| if (!s) |
| return 0; |
| |
| memset(mask, 0, sizeof(*mask)); |
| memset(addr, 0, sizeof(*addr)); |
| |
| if ((c = strrchr(s, '/')) != NULL) { |
| *c++ = '\0'; |
| /* c points to the mask */ |
| if (!str2mask(c, mask)) |
| goto out_err; |
| } |
| else { |
| mask->s_addr = ~0U; |
| } |
| if (!inet_pton(AF_INET, s, addr)) { |
| struct hostent *he; |
| |
| if ((he = gethostbyname(s)) == NULL) { |
| goto out_err; |
| } |
| else |
| *addr = *(struct in_addr *) *(he->h_addr_list); |
| } |
| |
| ret_val = 1; |
| out_free: |
| free(s); |
| return ret_val; |
| out_err: |
| ret_val = 0; |
| goto out_free; |
| } |
| |
| |
| /* |
| * converts <str> to two struct in6_addr* which must be pre-allocated. |
| * The format is "addr[/mask]", where "addr" cannot be empty, and mask |
| * is an optionnal number of bits (128 being the default). |
| * Returns 1 if OK, 0 if error. |
| */ |
| int str62net(const char *str, struct in6_addr *addr, unsigned char *mask) |
| { |
| char *c, *s; |
| int ret_val = 0; |
| char *err; |
| unsigned long len = 128; |
| |
| s = strdup(str); |
| if (!s) |
| return 0; |
| |
| memset(mask, 0, sizeof(*mask)); |
| memset(addr, 0, sizeof(*addr)); |
| |
| if ((c = strrchr(s, '/')) != NULL) { |
| *c++ = '\0'; /* c points to the mask */ |
| if (!*c) |
| goto out_free; |
| |
| len = strtoul(c, &err, 10); |
| if ((err && *err) || (unsigned)len > 128) |
| goto out_free; |
| } |
| *mask = len; /* OK we have a valid mask in <len> */ |
| |
| if (!inet_pton(AF_INET6, s, addr)) |
| goto out_free; |
| |
| ret_val = 1; |
| out_free: |
| free(s); |
| return ret_val; |
| } |
| |
| |
| /* |
| * Parse IPv4 address found in url. |
| */ |
| int url2ipv4(const char *addr, struct in_addr *dst) |
| { |
| int saw_digit, octets, ch; |
| u_char tmp[4], *tp; |
| const char *cp = addr; |
| |
| saw_digit = 0; |
| octets = 0; |
| *(tp = tmp) = 0; |
| |
| while (*addr) { |
| unsigned char digit = (ch = *addr++) - '0'; |
| if (digit > 9 && ch != '.') |
| break; |
| if (digit <= 9) { |
| u_int new = *tp * 10 + digit; |
| if (new > 255) |
| return 0; |
| *tp = new; |
| if (!saw_digit) { |
| if (++octets > 4) |
| return 0; |
| saw_digit = 1; |
| } |
| } else if (ch == '.' && saw_digit) { |
| if (octets == 4) |
| return 0; |
| *++tp = 0; |
| saw_digit = 0; |
| } else |
| return 0; |
| } |
| |
| if (octets < 4) |
| return 0; |
| |
| memcpy(&dst->s_addr, tmp, 4); |
| return addr-cp-1; |
| } |
| |
| /* |
| * Resolve destination server from URL. Convert <str> to a sockaddr_storage*. |
| */ |
| int url2sa(const char *url, int ulen, struct sockaddr_storage *addr) |
| { |
| const char *curr = url, *cp = url; |
| int ret, url_code = 0; |
| unsigned int http_code = 0; |
| |
| /* Cleanup the room */ |
| |
| /* FIXME: assume IPv4 only for now */ |
| ((struct sockaddr_in *)addr)->sin_family = AF_INET; |
| ((struct sockaddr_in *)addr)->sin_addr.s_addr = 0; |
| ((struct sockaddr_in *)addr)->sin_port = 0; |
| |
| /* Firstly, try to find :// pattern */ |
| while (curr < url+ulen && url_code != 0x3a2f2f) { |
| url_code = ((url_code & 0xffff) << 8); |
| url_code += (unsigned char)*curr++; |
| } |
| |
| /* Secondly, if :// pattern is found, verify parsed stuff |
| * before pattern is matching our http pattern. |
| * If so parse ip address and port in uri. |
| * |
| * WARNING: Current code doesn't support dynamic async dns resolver. |
| */ |
| if (url_code == 0x3a2f2f) { |
| while (cp < curr - 3) |
| http_code = (http_code << 8) + *cp++; |
| http_code |= 0x20202020; /* Turn everything to lower case */ |
| |
| /* HTTP url matching */ |
| if (http_code == 0x68747470) { |
| /* We are looking for IP address. If you want to parse and |
| * resolve hostname found in url, you can use str2sa(), but |
| * be warned this can slow down global daemon performances |
| * while handling lagging dns responses. |
| */ |
| ret = url2ipv4(curr, &((struct sockaddr_in *)&addr)->sin_addr); |
| if (!ret) |
| return -1; |
| curr += ret; |
| ((struct sockaddr_in *)addr)->sin_port = (*curr == ':') ? str2uic(++curr) : 80; |
| ((struct sockaddr_in *)addr)->sin_port = htons(((struct sockaddr_in *)&addr)->sin_port); |
| } |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /* Tries to convert a sockaddr_storage address to text form. Upon success, the |
| * address family is returned so that it's easy for the caller to adapt to the |
| * output format. Zero is returned if the address family is not supported. -1 |
| * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are |
| * supported. |
| */ |
| int addr_to_str(struct sockaddr_storage *addr, char *str, int size) |
| { |
| |
| void *ptr; |
| |
| if (size < 5) |
| return 0; |
| *str = '\0'; |
| |
| switch (addr->ss_family) { |
| case AF_INET: |
| ptr = &((struct sockaddr_in *)addr)->sin_addr; |
| break; |
| case AF_INET6: |
| ptr = &((struct sockaddr_in6 *)addr)->sin6_addr; |
| break; |
| case AF_UNIX: |
| memcpy(str, "unix", 5); |
| return addr->ss_family; |
| default: |
| return 0; |
| } |
| |
| if (inet_ntop(addr->ss_family, ptr, str, size)) |
| return addr->ss_family; |
| |
| /* failed */ |
| return -1; |
| } |
| |
| /* will try to encode the string <string> replacing all characters tagged in |
| * <map> with the hexadecimal representation of their ASCII-code (2 digits) |
| * prefixed by <escape>, and will store the result between <start> (included) |
| * and <stop> (excluded), and will always terminate the string with a '\0' |
| * before <stop>. The position of the '\0' is returned if the conversion |
| * completes. If bytes are missing between <start> and <stop>, then the |
| * conversion will be incomplete and truncated. If <stop> <= <start>, the '\0' |
| * cannot even be stored so we return <start> without writing the 0. |
| * The input string must also be zero-terminated. |
| */ |
| const char hextab[16] = "0123456789ABCDEF"; |
| char *encode_string(char *start, char *stop, |
| const char escape, const fd_set *map, |
| const char *string) |
| { |
| if (start < stop) { |
| stop--; /* reserve one byte for the final '\0' */ |
| while (start < stop && *string != '\0') { |
| if (!FD_ISSET((unsigned char)(*string), map)) |
| *start++ = *string; |
| else { |
| if (start + 3 >= stop) |
| break; |
| *start++ = escape; |
| *start++ = hextab[(*string >> 4) & 15]; |
| *start++ = hextab[*string & 15]; |
| } |
| string++; |
| } |
| *start = '\0'; |
| } |
| return start; |
| } |
| |
| /* Decode an URL-encoded string in-place. The resulting string might |
| * be shorter. If some forbidden characters are found, the conversion is |
| * aborted, the string is truncated before the issue and non-zero is returned, |
| * otherwise the operation returns non-zero indicating success. |
| */ |
| int url_decode(char *string) |
| { |
| char *in, *out; |
| int ret = 0; |
| |
| in = string; |
| out = string; |
| while (*in) { |
| switch (*in) { |
| case '+' : |
| *out++ = ' '; |
| break; |
| case '%' : |
| if (!ishex(in[1]) || !ishex(in[2])) |
| goto end; |
| *out++ = (hex2i(in[1]) << 4) + hex2i(in[2]); |
| in += 2; |
| break; |
| default: |
| *out++ = *in; |
| break; |
| } |
| in++; |
| } |
| ret = 1; /* success */ |
| end: |
| *out = 0; |
| return ret; |
| } |
| |
| unsigned int str2ui(const char *s) |
| { |
| return __str2ui(s); |
| } |
| |
| unsigned int str2uic(const char *s) |
| { |
| return __str2uic(s); |
| } |
| |
| unsigned int strl2ui(const char *s, int len) |
| { |
| return __strl2ui(s, len); |
| } |
| |
| unsigned int strl2uic(const char *s, int len) |
| { |
| return __strl2uic(s, len); |
| } |
| |
| unsigned int read_uint(const char **s, const char *end) |
| { |
| return __read_uint(s, end); |
| } |
| |
| /* This one is 7 times faster than strtol() on athlon with checks. |
| * It returns the value of the number composed of all valid digits read, |
| * and can process negative numbers too. |
| */ |
| int strl2ic(const char *s, int len) |
| { |
| int i = 0; |
| int j, k; |
| |
| if (len > 0) { |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k - j; |
| } |
| } |
| } |
| return i; |
| } |
| |
| |
| /* This function reads exactly <len> chars from <s> and converts them to a |
| * signed integer which it stores into <ret>. It accurately detects any error |
| * (truncated string, invalid chars, overflows). It is meant to be used in |
| * applications designed for hostile environments. It returns zero when the |
| * number has successfully been converted, non-zero otherwise. When an error |
| * is returned, the <ret> value is left untouched. It is yet 5 to 40 times |
| * faster than strtol(). |
| */ |
| int strl2irc(const char *s, int len, int *ret) |
| { |
| int i = 0; |
| int j; |
| |
| if (!len) |
| return 1; |
| |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i > INT_MAX / 10) return 1; /* check for multiply overflow */ |
| i = i * 10; |
| if (i + j < i) return 1; /* check for addition overflow */ |
| i = i + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i < INT_MIN / 10) return 1; /* check for multiply overflow */ |
| i = i * 10; |
| if (i - j > i) return 1; /* check for subtract overflow */ |
| i = i - j; |
| } |
| } |
| *ret = i; |
| return 0; |
| } |
| |
| |
| /* This function reads exactly <len> chars from <s> and converts them to a |
| * signed integer which it stores into <ret>. It accurately detects any error |
| * (truncated string, invalid chars, overflows). It is meant to be used in |
| * applications designed for hostile environments. It returns zero when the |
| * number has successfully been converted, non-zero otherwise. When an error |
| * is returned, the <ret> value is left untouched. It is about 3 times slower |
| * than str2irc(). |
| */ |
| |
| int strl2llrc(const char *s, int len, long long *ret) |
| { |
| long long i = 0; |
| int j; |
| |
| if (!len) |
| return 1; |
| |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */ |
| i = i * 10LL; |
| if (i + j < i) return 1; /* check for addition overflow */ |
| i = i + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */ |
| i = i * 10LL; |
| if (i - j > i) return 1; /* check for subtract overflow */ |
| i = i - j; |
| } |
| } |
| *ret = i; |
| return 0; |
| } |
| |
| /* This function parses a time value optionally followed by a unit suffix among |
| * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit |
| * expected by the caller. The computation does its best to avoid overflows. |
| * The value is returned in <ret> if everything is fine, and a NULL is returned |
| * by the function. In case of error, a pointer to the error is returned and |
| * <ret> is left untouched. Values are automatically rounded up when needed. |
| */ |
| const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags) |
| { |
| unsigned imult, idiv; |
| unsigned omult, odiv; |
| unsigned value; |
| |
| omult = odiv = 1; |
| |
| switch (unit_flags & TIME_UNIT_MASK) { |
| case TIME_UNIT_US: omult = 1000000; break; |
| case TIME_UNIT_MS: omult = 1000; break; |
| case TIME_UNIT_S: break; |
| case TIME_UNIT_MIN: odiv = 60; break; |
| case TIME_UNIT_HOUR: odiv = 3600; break; |
| case TIME_UNIT_DAY: odiv = 86400; break; |
| default: break; |
| } |
| |
| value = 0; |
| |
| while (1) { |
| unsigned int j; |
| |
| j = *text - '0'; |
| if (j > 9) |
| break; |
| text++; |
| value *= 10; |
| value += j; |
| } |
| |
| imult = idiv = 1; |
| switch (*text) { |
| case '\0': /* no unit = default unit */ |
| imult = omult = idiv = odiv = 1; |
| break; |
| case 's': /* second = unscaled unit */ |
| break; |
| case 'u': /* microsecond : "us" */ |
| if (text[1] == 's') { |
| idiv = 1000000; |
| text++; |
| } |
| break; |
| case 'm': /* millisecond : "ms" or minute: "m" */ |
| if (text[1] == 's') { |
| idiv = 1000; |
| text++; |
| } else |
| imult = 60; |
| break; |
| case 'h': /* hour : "h" */ |
| imult = 3600; |
| break; |
| case 'd': /* day : "d" */ |
| imult = 86400; |
| break; |
| default: |
| return text; |
| break; |
| } |
| |
| if (omult % idiv == 0) { omult /= idiv; idiv = 1; } |
| if (idiv % omult == 0) { idiv /= omult; omult = 1; } |
| if (imult % odiv == 0) { imult /= odiv; odiv = 1; } |
| if (odiv % imult == 0) { odiv /= imult; imult = 1; } |
| |
| value = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv); |
| *ret = value; |
| return NULL; |
| } |
| |
| /* this function converts the string starting at <text> to an unsigned int |
| * stored in <ret>. If an error is detected, the pointer to the unexpected |
| * character is returned. If the conversio is succesful, NULL is returned. |
| */ |
| const char *parse_size_err(const char *text, unsigned *ret) { |
| unsigned value = 0; |
| |
| while (1) { |
| unsigned int j; |
| |
| j = *text - '0'; |
| if (j > 9) |
| break; |
| if (value > ~0U / 10) |
| return text; |
| value *= 10; |
| if (value > (value + j)) |
| return text; |
| value += j; |
| text++; |
| } |
| |
| switch (*text) { |
| case '\0': |
| break; |
| case 'K': |
| case 'k': |
| if (value > ~0U >> 10) |
| return text; |
| value = value << 10; |
| break; |
| case 'M': |
| case 'm': |
| if (value > ~0U >> 20) |
| return text; |
| value = value << 20; |
| break; |
| case 'G': |
| case 'g': |
| if (value > ~0U >> 30) |
| return text; |
| value = value << 30; |
| break; |
| default: |
| return text; |
| } |
| |
| *ret = value; |
| return NULL; |
| } |
| |
| /* copies at most <n> characters from <src> and always terminates with '\0' */ |
| char *my_strndup(const char *src, int n) |
| { |
| int len = 0; |
| char *ret; |
| |
| while (len < n && src[len]) |
| len++; |
| |
| ret = (char *)malloc(len + 1); |
| if (!ret) |
| return ret; |
| memcpy(ret, src, len); |
| ret[len] = '\0'; |
| return ret; |
| } |
| |
| /* This function returns the first unused key greater than or equal to <key> in |
| * ID tree <root>. Zero is returned if no place is found. |
| */ |
| unsigned int get_next_id(struct eb_root *root, unsigned int key) |
| { |
| struct eb32_node *used; |
| |
| do { |
| used = eb32_lookup_ge(root, key); |
| if (!used || used->key > key) |
| return key; /* key is available */ |
| key++; |
| } while (key); |
| return key; |
| } |
| |
| /* This function compares a sample word possibly followed by blanks to another |
| * clean word. The compare is case-insensitive. 1 is returned if both are equal, |
| * otherwise zero. This intends to be used when checking HTTP headers for some |
| * values. Note that it validates a word followed only by blanks but does not |
| * validate a word followed by blanks then other chars. |
| */ |
| int word_match(const char *sample, int slen, const char *word, int wlen) |
| { |
| if (slen < wlen) |
| return 0; |
| |
| while (wlen) { |
| char c = *sample ^ *word; |
| if (c && c != ('A' ^ 'a')) |
| return 0; |
| sample++; |
| word++; |
| slen--; |
| wlen--; |
| } |
| |
| while (slen) { |
| if (*sample != ' ' && *sample != '\t') |
| return 0; |
| sample++; |
| slen--; |
| } |
| return 1; |
| } |
| |
| /* Converts any text-formatted IPv4 address to a host-order IPv4 address. It |
| * is particularly fast because it avoids expensive operations such as |
| * multiplies, which are optimized away at the end. It requires a properly |
| * formated address though (3 points). |
| */ |
| unsigned int inetaddr_host(const char *text) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| const char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* |
| * Idem except the first unparsed character has to be passed in <stop>. |
| */ |
| unsigned int inetaddr_host_lim(const char *text, const char *stop) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| const char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9 && p < stop) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || p == stop || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* |
| * Idem except the pointer to first unparsed byte is returned into <ret> which |
| * must not be NULL. |
| */ |
| unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9 && p < stop) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || p == stop || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| *ret = p; |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* Convert a fixed-length string to an IP address. Returns 0 in case of error, |
| * or the number of chars read in case of success. Maybe this could be replaced |
| * by one of the functions above. Also, apparently this function does not support |
| * hosts above 255 and requires exactly 4 octets. |
| */ |
| int buf2ip(const char *buf, size_t len, struct in_addr *dst) |
| { |
| const char *addr; |
| int saw_digit, octets, ch; |
| u_char tmp[4], *tp; |
| const char *cp = buf; |
| |
| saw_digit = 0; |
| octets = 0; |
| *(tp = tmp) = 0; |
| |
| for (addr = buf; addr - buf < len; addr++) { |
| unsigned char digit = (ch = *addr) - '0'; |
| |
| if (digit > 9 && ch != '.') |
| break; |
| |
| if (digit <= 9) { |
| u_int new = *tp * 10 + digit; |
| |
| if (new > 255) |
| return 0; |
| |
| *tp = new; |
| |
| if (!saw_digit) { |
| if (++octets > 4) |
| return 0; |
| saw_digit = 1; |
| } |
| } else if (ch == '.' && saw_digit) { |
| if (octets == 4) |
| return 0; |
| |
| *++tp = 0; |
| saw_digit = 0; |
| } else |
| return 0; |
| } |
| |
| if (octets < 4) |
| return 0; |
| |
| memcpy(&dst->s_addr, tmp, 4); |
| return addr - cp; |
| } |
| |
| /* To be used to quote config arg positions. Returns the short string at <ptr> |
| * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line" |
| * if ptr is NULL or empty. The string is locally allocated. |
| */ |
| const char *quote_arg(const char *ptr) |
| { |
| static char val[32]; |
| int i; |
| |
| if (!ptr || !*ptr) |
| return "end of line"; |
| val[0] = '\''; |
| for (i = 1; i < sizeof(val) - 1 && *ptr; i++) |
| val[i] = *ptr++; |
| val[i++] = '\''; |
| val[i] = '\0'; |
| return val; |
| } |
| |
| /* returns an operator among STD_OP_* for string <str> or < 0 if unknown */ |
| int get_std_op(const char *str) |
| { |
| int ret = -1; |
| |
| if (*str == 'e' && str[1] == 'q') |
| ret = STD_OP_EQ; |
| else if (*str == 'n' && str[1] == 'e') |
| ret = STD_OP_NE; |
| else if (*str == 'l') { |
| if (str[1] == 'e') ret = STD_OP_LE; |
| else if (str[1] == 't') ret = STD_OP_LT; |
| } |
| else if (*str == 'g') { |
| if (str[1] == 'e') ret = STD_OP_GE; |
| else if (str[1] == 't') ret = STD_OP_GT; |
| } |
| |
| if (ret == -1 || str[2] != '\0') |
| return -1; |
| return ret; |
| } |
| |
| /* hash a 32-bit integer to another 32-bit integer */ |
| unsigned int full_hash(unsigned int a) |
| { |
| return __full_hash(a); |
| } |
| |
| /* Return non-zero if IPv4 address is part of the network, |
| * otherwise zero. |
| */ |
| int in_net_ipv4(struct in_addr *addr, struct in_addr *mask, struct in_addr *net) |
| { |
| return((addr->s_addr & mask->s_addr) == (net->s_addr & mask->s_addr)); |
| } |
| |
| /* Return non-zero if IPv6 address is part of the network, |
| * otherwise zero. |
| */ |
| int in_net_ipv6(struct in6_addr *addr, struct in6_addr *mask, struct in6_addr *net) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++) |
| if (((((int *)addr)[i] & ((int *)mask)[i])) != |
| (((int *)net)[i] & ((int *)mask)[i])) |
| return 0; |
| return 1; |
| } |
| |
| /* RFC 4291 prefix */ |
| const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0xFF, 0xFF }; |
| |
| /* Map IPv4 adress on IPv6 address, as specified in RFC 3513. */ |
| void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr) |
| { |
| memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)); |
| memcpy(sin6_addr->s6_addr+12, &sin_addr->s_addr, 4); |
| } |
| |
| /* Map IPv6 adress on IPv4 address, as specified in RFC 3513. |
| * Return true if conversion is possible and false otherwise. |
| */ |
| int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr) |
| { |
| if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) { |
| memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]), |
| sizeof(struct in_addr)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| char *human_time(int t, short hz_div) { |
| static char rv[sizeof("24855d23h")+1]; // longest of "23h59m" and "59m59s" |
| char *p = rv; |
| int cnt=2; // print two numbers |
| |
| if (unlikely(t < 0 || hz_div <= 0)) { |
| sprintf(p, "?"); |
| return rv; |
| } |
| |
| if (unlikely(hz_div > 1)) |
| t /= hz_div; |
| |
| if (t >= DAY) { |
| p += sprintf(p, "%dd", t / DAY); |
| cnt--; |
| } |
| |
| if (cnt && t % DAY / HOUR) { |
| p += sprintf(p, "%dh", t % DAY / HOUR); |
| cnt--; |
| } |
| |
| if (cnt && t % HOUR / MINUTE) { |
| p += sprintf(p, "%dm", t % HOUR / MINUTE); |
| cnt--; |
| } |
| |
| if ((cnt && t % MINUTE) || !t) // also display '0s' |
| p += sprintf(p, "%ds", t % MINUTE / SEC); |
| |
| return rv; |
| } |
| |
| const char *monthname[12] = { |
| "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| }; |
| |
| /* date2str_log: write a date in the format : |
| * sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d", |
| * tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| * tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000); |
| * |
| * without using sprintf. return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *date2str_log(char *dst, struct tm *tm, struct timeval *date, size_t size) |
| { |
| |
| if (size < 25) /* the size is fixed: 24 chars + \0 */ |
| return NULL; |
| |
| dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day |
| *dst++ = '/'; |
| memcpy(dst, monthname[tm->tm_mon], 3); // month |
| dst += 3; |
| *dst++ = '/'; |
| dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes |
| *dst++ = '.'; |
| utoa_pad((unsigned int)(date->tv_usec/1000), dst, 4); // millisecondes |
| dst += 3; // only the 3 first digits |
| *dst = '\0'; |
| |
| return dst; |
| } |
| |
| /* gmt2str_log: write a date in the format : |
| * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf |
| * return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *gmt2str_log(char *dst, struct tm *tm, size_t size) |
| { |
| if (size < 27) /* the size is fixed: 24 chars + \0 */ |
| return NULL; |
| |
| dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day |
| *dst++ = '/'; |
| memcpy(dst, monthname[tm->tm_mon], 3); // month |
| dst += 3; |
| *dst++ = '/'; |
| dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes |
| *dst++ = ':'; |
| dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes |
| *dst++ = ' '; |
| *dst++ = '+'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst = '\0'; |
| |
| return dst; |
| } |
| |
| /* Dynamically allocates a string of the proper length to hold the formatted |
| * output. NULL is returned on error. The caller is responsible for freeing the |
| * memory area using free(). The resulting string is returned in <out> if the |
| * pointer is not NULL. A previous version of <out> might be used to build the |
| * new string, and it will be freed before returning if it is not NULL, which |
| * makes it possible to build complex strings from iterative calls without |
| * having to care about freeing intermediate values, as in the example below : |
| * |
| * memprintf(&err, "invalid argument: '%s'", arg); |
| * ... |
| * memprintf(&err, "parser said : <%s>\n", *err); |
| * ... |
| * free(*err); |
| * |
| * This means that <err> must be initialized to NULL before first invocation. |
| * The return value also holds the allocated string, which eases error checking |
| * and immediate consumption. If the output pointer is not used, NULL must be |
| * passed instead and it will be ignored. |
| * |
| * It is also convenient to use it without any free except the last one : |
| * err = NULL; |
| * if (!fct1(err)) report(*err); |
| * if (!fct2(err)) report(*err); |
| * if (!fct3(err)) report(*err); |
| * free(*err); |
| */ |
| char *memprintf(char **out, const char *format, ...) |
| { |
| va_list args; |
| char *ret = NULL; |
| int allocated = 0; |
| int needed = 0; |
| |
| do { |
| /* vsnprintf() will return the required length even when the |
| * target buffer is NULL. We do this in a loop just in case |
| * intermediate evaluations get wrong. |
| */ |
| va_start(args, format); |
| needed = vsnprintf(ret, allocated, format, args) + 1; |
| va_end(args); |
| |
| if (needed <= allocated) |
| break; |
| |
| allocated = needed; |
| ret = realloc(ret, allocated); |
| } while (ret); |
| |
| if (needed < 0) { |
| /* an error was encountered */ |
| free(ret); |
| ret = NULL; |
| } |
| |
| if (out) { |
| free(*out); |
| *out = ret; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |