| /* |
| * Memory management functions. |
| * |
| * Copyright 2000-2007 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| #include <errno.h> |
| |
| #include <haproxy/api.h> |
| #include <types/applet.h> |
| #include <types/cli.h> |
| #include <types/global.h> |
| #include <types/stats.h> |
| |
| #include <common/cfgparse.h> |
| #include <common/debug.h> |
| #include <common/hathreads.h> |
| #include <common/memory.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| |
| #include <types/activity.h> |
| |
| #include <proto/applet.h> |
| #include <proto/cli.h> |
| #include <proto/channel.h> |
| #include <proto/log.h> |
| #include <proto/stream_interface.h> |
| #include <proto/stats.h> |
| |
| /* These are the most common pools, expected to be initialized first. These |
| * ones are allocated from an array, allowing to map them to an index. |
| */ |
| struct pool_head pool_base_start[MAX_BASE_POOLS] = { }; |
| unsigned int pool_base_count = 0; |
| |
| /* These ones are initialized per-thread on startup by init_pools() */ |
| struct pool_cache_head pool_cache[MAX_THREADS][MAX_BASE_POOLS]; |
| static struct list pool_lru_head[MAX_THREADS]; /* oldest objects */ |
| THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */ |
| THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */ |
| |
| static struct list pools = LIST_HEAD_INIT(pools); |
| int mem_poison_byte = -1; |
| |
| #ifdef DEBUG_FAIL_ALLOC |
| static int mem_fail_rate = 0; |
| static int mem_should_fail(const struct pool_head *); |
| #endif |
| |
| /* Try to find an existing shared pool with the same characteristics and |
| * returns it, otherwise creates this one. NULL is returned if no memory |
| * is available for a new creation. Two flags are supported : |
| * - MEM_F_SHARED to indicate that the pool may be shared with other users |
| * - MEM_F_EXACT to indicate that the size must not be rounded up |
| */ |
| struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags) |
| { |
| struct pool_head *pool; |
| struct pool_head *entry; |
| struct list *start; |
| unsigned int align; |
| int thr, idx; |
| |
| /* We need to store a (void *) at the end of the chunks. Since we know |
| * that the malloc() function will never return such a small size, |
| * let's round the size up to something slightly bigger, in order to |
| * ease merging of entries. Note that the rounding is a power of two. |
| * This extra (void *) is not accounted for in the size computation |
| * so that the visible parts outside are not affected. |
| * |
| * Note: for the LRU cache, we need to store 2 doubly-linked lists. |
| */ |
| |
| if (!(flags & MEM_F_EXACT)) { |
| align = 4 * sizeof(void *); // 2 lists = 4 pointers min |
| size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA; |
| } |
| |
| /* TODO: thread: we do not lock pool list for now because all pools are |
| * created during HAProxy startup (so before threads creation) */ |
| start = &pools; |
| pool = NULL; |
| |
| list_for_each_entry(entry, &pools, list) { |
| if (entry->size == size) { |
| /* either we can share this place and we take it, or |
| * we look for a sharable one or for the next position |
| * before which we will insert a new one. |
| */ |
| if (flags & entry->flags & MEM_F_SHARED) { |
| /* we can share this one */ |
| pool = entry; |
| DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name); |
| break; |
| } |
| } |
| else if (entry->size > size) { |
| /* insert before this one */ |
| start = &entry->list; |
| break; |
| } |
| } |
| |
| if (!pool) { |
| if (pool_base_count < MAX_BASE_POOLS) |
| pool = &pool_base_start[pool_base_count++]; |
| |
| if (!pool) { |
| /* look for a freed entry */ |
| for (entry = pool_base_start; entry != pool_base_start + MAX_BASE_POOLS; entry++) { |
| if (!entry->size) { |
| pool = entry; |
| break; |
| } |
| } |
| } |
| |
| if (!pool) |
| pool = calloc(1, sizeof(*pool)); |
| |
| if (!pool) |
| return NULL; |
| if (name) |
| strlcpy2(pool->name, name, sizeof(pool->name)); |
| pool->size = size; |
| pool->flags = flags; |
| LIST_ADDQ(start, &pool->list); |
| |
| /* update per-thread pool cache if necessary */ |
| idx = pool_get_index(pool); |
| if (idx >= 0) { |
| for (thr = 0; thr < MAX_THREADS; thr++) |
| pool_cache[thr][idx].size = size; |
| } |
| HA_SPIN_INIT(&pool->lock); |
| } |
| pool->users++; |
| return pool; |
| } |
| |
| #ifdef CONFIG_HAP_LOCKLESS_POOLS |
| /* Allocates new entries for pool <pool> until there are at least <avail> + 1 |
| * available, then returns the last one for immediate use, so that at least |
| * <avail> are left available in the pool upon return. NULL is returned if the |
| * last entry could not be allocated. It's important to note that at least one |
| * allocation is always performed even if there are enough entries in the pool. |
| * A call to the garbage collector is performed at most once in case malloc() |
| * returns an error, before returning NULL. |
| */ |
| void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) |
| { |
| void *ptr = NULL, **free_list; |
| int failed = 0; |
| int size = pool->size; |
| int limit = pool->limit; |
| int allocated = pool->allocated, allocated_orig = allocated; |
| |
| /* stop point */ |
| avail += pool->used; |
| |
| while (1) { |
| if (limit && allocated >= limit) { |
| _HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); |
| activity[tid].pool_fail++; |
| return NULL; |
| } |
| |
| pool_avg_bump(&pool->needed_avg, pool->allocated); |
| |
| ptr = malloc(size + POOL_EXTRA); |
| if (!ptr) { |
| _HA_ATOMIC_ADD(&pool->failed, 1); |
| if (failed) { |
| activity[tid].pool_fail++; |
| return NULL; |
| } |
| failed++; |
| pool_gc(pool); |
| continue; |
| } |
| if (++allocated > avail) |
| break; |
| |
| free_list = pool->free_list; |
| do { |
| *POOL_LINK(pool, ptr) = free_list; |
| __ha_barrier_store(); |
| } while (_HA_ATOMIC_CAS(&pool->free_list, &free_list, ptr) == 0); |
| } |
| __ha_barrier_atomic_store(); |
| |
| _HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); |
| _HA_ATOMIC_ADD(&pool->used, 1); |
| |
| #ifdef DEBUG_MEMORY_POOLS |
| /* keep track of where the element was allocated from */ |
| *POOL_LINK(pool, ptr) = (void *)pool; |
| #endif |
| return ptr; |
| } |
| void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) |
| { |
| void *ptr; |
| |
| ptr = __pool_refill_alloc(pool, avail); |
| return ptr; |
| } |
| /* |
| * This function frees whatever can be freed in pool <pool>. |
| */ |
| void pool_flush(struct pool_head *pool) |
| { |
| struct pool_free_list cmp, new; |
| void **next, *temp; |
| int removed = 0; |
| |
| if (!pool) |
| return; |
| HA_SPIN_LOCK(POOL_LOCK, &pool->lock); |
| do { |
| cmp.free_list = pool->free_list; |
| cmp.seq = pool->seq; |
| new.free_list = NULL; |
| new.seq = cmp.seq + 1; |
| } while (!_HA_ATOMIC_DWCAS(&pool->free_list, &cmp, &new)); |
| __ha_barrier_atomic_store(); |
| HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); |
| next = cmp.free_list; |
| while (next) { |
| temp = next; |
| next = *POOL_LINK(pool, temp); |
| removed++; |
| free(temp); |
| } |
| pool->free_list = next; |
| _HA_ATOMIC_SUB(&pool->allocated, removed); |
| /* here, we should have pool->allocate == pool->used */ |
| } |
| |
| /* |
| * This function frees whatever can be freed in all pools, but respecting |
| * the minimum thresholds imposed by owners. It makes sure to be alone to |
| * run by using thread_isolate(). <pool_ctx> is unused. |
| */ |
| void pool_gc(struct pool_head *pool_ctx) |
| { |
| struct pool_head *entry; |
| int isolated = thread_isolated(); |
| |
| if (!isolated) |
| thread_isolate(); |
| |
| list_for_each_entry(entry, &pools, list) { |
| while ((int)((volatile int)entry->allocated - (volatile int)entry->used) > (int)entry->minavail) { |
| struct pool_free_list cmp, new; |
| |
| cmp.seq = entry->seq; |
| __ha_barrier_load(); |
| cmp.free_list = entry->free_list; |
| __ha_barrier_load(); |
| if (cmp.free_list == NULL) |
| break; |
| new.free_list = *POOL_LINK(entry, cmp.free_list); |
| new.seq = cmp.seq + 1; |
| if (HA_ATOMIC_DWCAS(&entry->free_list, &cmp, &new) == 0) |
| continue; |
| free(cmp.free_list); |
| _HA_ATOMIC_SUB(&entry->allocated, 1); |
| } |
| } |
| |
| if (!isolated) |
| thread_release(); |
| } |
| |
| /* frees an object to the local cache, possibly pushing oldest objects to the |
| * global pool. Must not be called directly. |
| */ |
| void __pool_put_to_cache(struct pool_head *pool, void *ptr, ssize_t idx) |
| { |
| struct pool_cache_item *item = (struct pool_cache_item *)ptr; |
| struct pool_cache_head *ph = &pool_cache[tid][idx]; |
| |
| LIST_ADD(&ph->list, &item->by_pool); |
| LIST_ADD(&pool_lru_head[tid], &item->by_lru); |
| ph->count++; |
| pool_cache_count++; |
| pool_cache_bytes += ph->size; |
| |
| if (pool_cache_bytes <= CONFIG_HAP_POOL_CACHE_SIZE) |
| return; |
| |
| do { |
| item = LIST_PREV(&pool_lru_head[tid], struct pool_cache_item *, by_lru); |
| /* note: by definition we remove oldest objects so they also are the |
| * oldest in their own pools, thus their next is the pool's head. |
| */ |
| ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list); |
| LIST_DEL(&item->by_pool); |
| LIST_DEL(&item->by_lru); |
| ph->count--; |
| pool_cache_count--; |
| pool_cache_bytes -= ph->size; |
| __pool_free(pool_base_start + (ph - pool_cache[tid]), item); |
| } while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8); |
| } |
| |
| #else /* CONFIG_HAP_LOCKLESS_POOLS */ |
| |
| /* Allocates new entries for pool <pool> until there are at least <avail> + 1 |
| * available, then returns the last one for immediate use, so that at least |
| * <avail> are left available in the pool upon return. NULL is returned if the |
| * last entry could not be allocated. It's important to note that at least one |
| * allocation is always performed even if there are enough entries in the pool. |
| * A call to the garbage collector is performed at most once in case malloc() |
| * returns an error, before returning NULL. |
| */ |
| void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) |
| { |
| void *ptr = NULL; |
| int failed = 0; |
| |
| #ifdef DEBUG_FAIL_ALLOC |
| if (mem_should_fail(pool)) |
| return NULL; |
| #endif |
| /* stop point */ |
| avail += pool->used; |
| |
| while (1) { |
| if (pool->limit && pool->allocated >= pool->limit) { |
| activity[tid].pool_fail++; |
| return NULL; |
| } |
| |
| pool_avg_bump(&pool->needed_avg, pool->allocated); |
| HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); |
| ptr = pool_alloc_area(pool->size + POOL_EXTRA); |
| #ifdef DEBUG_MEMORY_POOLS |
| /* keep track of where the element was allocated from. This |
| * is done out of the lock so that the system really allocates |
| * the data without harming other threads waiting on the lock. |
| */ |
| if (ptr) |
| *POOL_LINK(pool, ptr) = (void *)pool; |
| #endif |
| HA_SPIN_LOCK(POOL_LOCK, &pool->lock); |
| if (!ptr) { |
| pool->failed++; |
| if (failed) { |
| activity[tid].pool_fail++; |
| return NULL; |
| } |
| failed++; |
| pool_gc(pool); |
| continue; |
| } |
| if (++pool->allocated > avail) |
| break; |
| |
| *POOL_LINK(pool, ptr) = (void *)pool->free_list; |
| pool->free_list = ptr; |
| } |
| pool->used++; |
| return ptr; |
| } |
| void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) |
| { |
| void *ptr; |
| |
| HA_SPIN_LOCK(POOL_LOCK, &pool->lock); |
| ptr = __pool_refill_alloc(pool, avail); |
| HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); |
| return ptr; |
| } |
| /* |
| * This function frees whatever can be freed in pool <pool>. |
| */ |
| void pool_flush(struct pool_head *pool) |
| { |
| void *temp; |
| |
| if (!pool) |
| return; |
| |
| while (1) { |
| HA_SPIN_LOCK(POOL_LOCK, &pool->lock); |
| temp = pool->free_list; |
| if (!temp) { |
| HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); |
| break; |
| } |
| pool->free_list = *POOL_LINK(pool, temp); |
| pool->allocated--; |
| HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); |
| pool_free_area(temp, pool->size + POOL_EXTRA); |
| } |
| /* here, we should have pool->allocated == pool->used */ |
| } |
| |
| /* |
| * This function frees whatever can be freed in all pools, but respecting |
| * the minimum thresholds imposed by owners. It makes sure to be alone to |
| * run by using thread_isolate(). <pool_ctx> is unused. |
| */ |
| void pool_gc(struct pool_head *pool_ctx) |
| { |
| struct pool_head *entry; |
| int isolated = thread_isolated(); |
| |
| if (!isolated) |
| thread_isolate(); |
| |
| list_for_each_entry(entry, &pools, list) { |
| void *temp; |
| //qfprintf(stderr, "Flushing pool %s\n", entry->name); |
| while (entry->free_list && |
| (int)(entry->allocated - entry->used) > (int)entry->minavail) { |
| temp = entry->free_list; |
| entry->free_list = *POOL_LINK(entry, temp); |
| entry->allocated--; |
| pool_free_area(temp, entry->size + POOL_EXTRA); |
| } |
| } |
| |
| if (!isolated) |
| thread_release(); |
| } |
| #endif |
| |
| /* |
| * This function destroys a pool by freeing it completely, unless it's still |
| * in use. This should be called only under extreme circumstances. It always |
| * returns NULL if the resulting pool is empty, easing the clearing of the old |
| * pointer, otherwise it returns the pool. |
| * . |
| */ |
| void *pool_destroy(struct pool_head *pool) |
| { |
| if (pool) { |
| pool_flush(pool); |
| if (pool->used) |
| return pool; |
| pool->users--; |
| if (!pool->users) { |
| LIST_DEL(&pool->list); |
| #ifndef CONFIG_HAP_LOCKLESS_POOLS |
| HA_SPIN_DESTROY(&pool->lock); |
| #endif |
| if ((pool - pool_base_start) < MAX_BASE_POOLS) |
| memset(pool, 0, sizeof(*pool)); |
| else |
| free(pool); |
| } |
| } |
| return NULL; |
| } |
| |
| /* This destroys all pools on exit. It is *not* thread safe. */ |
| void pool_destroy_all() |
| { |
| struct pool_head *entry, *back; |
| |
| list_for_each_entry_safe(entry, back, &pools, list) |
| pool_destroy(entry); |
| } |
| |
| /* This function dumps memory usage information into the trash buffer. */ |
| void dump_pools_to_trash() |
| { |
| struct pool_head *entry; |
| unsigned long allocated, used; |
| int nbpools; |
| |
| allocated = used = nbpools = 0; |
| chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n"); |
| list_for_each_entry(entry, &pools, list) { |
| #ifndef CONFIG_HAP_LOCKLESS_POOLS |
| HA_SPIN_LOCK(POOL_LOCK, &entry->lock); |
| #endif |
| chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used, needed_avg %u, %u failures, %u users, @%p=%02d%s\n", |
| entry->name, entry->size, entry->allocated, |
| entry->size * entry->allocated, entry->used, |
| pool_avg(entry->needed_avg), entry->failed, |
| entry->users, entry, (int)pool_get_index(entry), |
| (entry->flags & MEM_F_SHARED) ? " [SHARED]" : ""); |
| |
| allocated += entry->allocated * entry->size; |
| used += entry->used * entry->size; |
| nbpools++; |
| #ifndef CONFIG_HAP_LOCKLESS_POOLS |
| HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock); |
| #endif |
| } |
| chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used.\n", |
| nbpools, allocated, used); |
| } |
| |
| /* Dump statistics on pools usage. */ |
| void dump_pools(void) |
| { |
| dump_pools_to_trash(); |
| qfprintf(stderr, "%s", trash.area); |
| } |
| |
| /* This function returns the total number of failed pool allocations */ |
| int pool_total_failures() |
| { |
| struct pool_head *entry; |
| int failed = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| failed += entry->failed; |
| return failed; |
| } |
| |
| /* This function returns the total amount of memory allocated in pools (in bytes) */ |
| unsigned long pool_total_allocated() |
| { |
| struct pool_head *entry; |
| unsigned long allocated = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| allocated += entry->allocated * entry->size; |
| return allocated; |
| } |
| |
| /* This function returns the total amount of memory used in pools (in bytes) */ |
| unsigned long pool_total_used() |
| { |
| struct pool_head *entry; |
| unsigned long used = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| used += entry->used * entry->size; |
| return used; |
| } |
| |
| /* This function dumps memory usage information onto the stream interface's |
| * read buffer. It returns 0 as long as it does not complete, non-zero upon |
| * completion. No state is used. |
| */ |
| static int cli_io_handler_dump_pools(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| |
| dump_pools_to_trash(); |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| si_rx_room_blk(si); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* callback used to create early pool <name> of size <size> and store the |
| * resulting pointer into <ptr>. If the allocation fails, it quits with after |
| * emitting an error message. |
| */ |
| void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size) |
| { |
| *ptr = create_pool(name, size, MEM_F_SHARED); |
| if (!*ptr) { |
| ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n", |
| name, size, strerror(errno)); |
| exit(1); |
| } |
| } |
| |
| /* Initializes all per-thread arrays on startup */ |
| static void init_pools() |
| { |
| int thr, idx; |
| |
| for (thr = 0; thr < MAX_THREADS; thr++) { |
| for (idx = 0; idx < MAX_BASE_POOLS; idx++) { |
| LIST_INIT(&pool_cache[thr][idx].list); |
| pool_cache[thr][idx].size = 0; |
| } |
| LIST_INIT(&pool_lru_head[thr]); |
| } |
| } |
| |
| INITCALL0(STG_PREPARE, init_pools); |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |
| |
| #ifdef DEBUG_FAIL_ALLOC |
| #define MEM_FAIL_MAX_CHAR 32 |
| #define MEM_FAIL_MAX_STR 128 |
| static int mem_fail_cur_idx; |
| static char mem_fail_str[MEM_FAIL_MAX_CHAR * MEM_FAIL_MAX_STR]; |
| __decl_hathreads(static HA_SPINLOCK_T mem_fail_lock); |
| |
| int mem_should_fail(const struct pool_head *pool) |
| { |
| int ret = 0; |
| int n; |
| |
| if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) { |
| int randnb = ha_random() % 100; |
| |
| if (mem_fail_rate > randnb) |
| ret = 1; |
| else |
| ret = 0; |
| } |
| HA_SPIN_LOCK(POOL_LOCK, &mem_fail_lock); |
| n = snprintf(&mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR], |
| MEM_FAIL_MAX_CHAR - 2, |
| "%d %.18s %d %d", mem_fail_cur_idx, pool->name, ret, tid); |
| while (n < MEM_FAIL_MAX_CHAR - 1) |
| mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n++] = ' '; |
| if (mem_fail_cur_idx < MEM_FAIL_MAX_STR - 1) |
| mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n] = '\n'; |
| else |
| mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n] = 0; |
| mem_fail_cur_idx++; |
| if (mem_fail_cur_idx == MEM_FAIL_MAX_STR) |
| mem_fail_cur_idx = 0; |
| HA_SPIN_UNLOCK(POOL_LOCK, &mem_fail_lock); |
| return ret; |
| |
| } |
| |
| /* config parser for global "tune.fail-alloc" */ |
| static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| mem_fail_rate = atoi(args[1]); |
| if (mem_fail_rate < 0 || mem_fail_rate > 100) { |
| memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| #endif |
| |
| /* register global config keywords */ |
| static struct cfg_kw_list mem_cfg_kws = {ILH, { |
| #ifdef DEBUG_FAIL_ALLOC |
| { CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc }, |
| #endif |
| { 0, NULL, NULL } |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |