blob: c065fda21b038b9d85aa1366ccb17bcc19bdeed4 [file] [log] [blame]
/*
* HTTP protocol analyzer
*
* Copyright 2000-2008 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <time.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <common/appsession.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <common/uri_auth.h>
#include <common/version.h>
#include <types/capture.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/backend.h>
#include <proto/buffers.h>
#include <proto/dumpstats.h>
#include <proto/fd.h>
#include <proto/log.h>
#include <proto/hdr_idx.h>
#include <proto/proto_tcp.h>
#include <proto/proto_http.h>
#include <proto/queue.h>
#include <proto/senddata.h>
#include <proto/session.h>
#include <proto/task.h>
#ifdef CONFIG_HAP_TCPSPLICE
#include <libtcpsplice.h>
#endif
#define DEBUG_PARSE_NO_SPEEDUP
#undef DEBUG_PARSE_NO_SPEEDUP
/* This is used to perform a quick jump as an alternative to a break/continue
* instruction. The first argument is the label for normal operation, and the
* second one is the break/continue instruction in the no_speedup mode.
*/
#ifdef DEBUG_PARSE_NO_SPEEDUP
#define QUICK_JUMP(x,y) y
#else
#define QUICK_JUMP(x,y) goto x
#endif
/* This is used by remote monitoring */
const char HTTP_200[] =
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>200 OK</h1>\nHAProxy: service ready.\n</body></html>\n";
const struct chunk http_200_chunk = {
.str = (char *)&HTTP_200,
.len = sizeof(HTTP_200)-1
};
const char *HTTP_301 =
"HTTP/1.0 301 Moved Permantenly\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
const char *HTTP_302 =
"HTTP/1.0 302 Found\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 302 except that the browser MUST retry with the GET method */
const char *HTTP_303 =
"HTTP/1.0 303 See Other\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
const char *HTTP_401_fmt =
"HTTP/1.0 401 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"WWW-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const int http_err_codes[HTTP_ERR_SIZE] = {
[HTTP_ERR_400] = 400,
[HTTP_ERR_403] = 403,
[HTTP_ERR_408] = 408,
[HTTP_ERR_500] = 500,
[HTTP_ERR_502] = 502,
[HTTP_ERR_503] = 503,
[HTTP_ERR_504] = 504,
};
static const char *http_err_msgs[HTTP_ERR_SIZE] = {
[HTTP_ERR_400] =
"HTTP/1.0 400 Bad request\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n",
[HTTP_ERR_403] =
"HTTP/1.0 403 Forbidden\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n",
[HTTP_ERR_408] =
"HTTP/1.0 408 Request Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n",
[HTTP_ERR_500] =
"HTTP/1.0 500 Server Error\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>500 Server Error</h1>\nAn internal server error occured.\n</body></html>\n",
[HTTP_ERR_502] =
"HTTP/1.0 502 Bad Gateway\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n",
[HTTP_ERR_503] =
"HTTP/1.0 503 Service Unavailable\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n",
[HTTP_ERR_504] =
"HTTP/1.0 504 Gateway Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n",
};
/* We must put the messages here since GCC cannot initialize consts depending
* on strlen().
*/
struct chunk http_err_chunks[HTTP_ERR_SIZE];
#define FD_SETS_ARE_BITFIELDS
#ifdef FD_SETS_ARE_BITFIELDS
/*
* This map is used with all the FD_* macros to check whether a particular bit
* is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
* which should be encoded. When FD_ISSET() returns non-zero, it means that the
* byte should be encoded. Be careful to always pass bytes from 0 to 255
* exclusively to the macros.
*/
fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
#else
#error "Check if your OS uses bitfields for fd_sets"
#endif
void init_proto_http()
{
int i;
char *tmp;
int msg;
for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
if (!http_err_msgs[msg]) {
Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
abort();
}
http_err_chunks[msg].str = (char *)http_err_msgs[msg];
http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
}
/* initialize the log header encoding map : '{|}"#' should be encoded with
* '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
* URL encoding only requires '"', '#' to be encoded as well as non-
* printable characters above.
*/
memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
memset(url_encode_map, 0, sizeof(url_encode_map));
for (i = 0; i < 32; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
for (i = 127; i < 256; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
tmp = "\"#{|}";
while (*tmp) {
FD_SET(*tmp, hdr_encode_map);
tmp++;
}
tmp = "\"#";
while (*tmp) {
FD_SET(*tmp, url_encode_map);
tmp++;
}
/* memory allocations */
pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED);
pool2_capture = create_pool("capture", CAPTURE_LEN, MEM_F_SHARED);
}
/*
* We have 26 list of methods (1 per first letter), each of which can have
* up to 3 entries (2 valid, 1 null).
*/
struct http_method_desc {
http_meth_t meth;
int len;
const char text[8];
};
const struct http_method_desc http_methods[26][3] = {
['C' - 'A'] = {
[0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
},
['D' - 'A'] = {
[0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" },
},
['G' - 'A'] = {
[0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" },
},
['H' - 'A'] = {
[0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" },
},
['P' - 'A'] = {
[0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" },
[1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" },
},
['T' - 'A'] = {
[0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" },
},
/* rest is empty like this :
* [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" },
*/
};
/* It is about twice as fast on recent architectures to lookup a byte in a
* table than to perform a boolean AND or OR between two tests. Refer to
* RFC2616 for those chars.
*/
const char http_is_spht[256] = {
[' '] = 1, ['\t'] = 1,
};
const char http_is_crlf[256] = {
['\r'] = 1, ['\n'] = 1,
};
const char http_is_lws[256] = {
[' '] = 1, ['\t'] = 1,
['\r'] = 1, ['\n'] = 1,
};
const char http_is_sep[256] = {
['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1,
['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1,
['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1,
['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1,
[' '] = 1, ['\t'] = 1, ['\\'] = 1,
};
const char http_is_ctl[256] = {
[0 ... 31] = 1,
[127] = 1,
};
/*
* A token is any ASCII char that is neither a separator nor a CTL char.
* Do not overwrite values in assignment since gcc-2.95 will not handle
* them correctly. Instead, define every non-CTL char's status.
*/
const char http_is_token[256] = {
[' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1,
['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1,
['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1,
[','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0,
['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1,
['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1,
['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0,
['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0,
['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1,
['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1,
['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1,
['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1,
['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1,
['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1,
['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0,
['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1,
['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1,
['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1,
['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1,
['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1,
['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1,
['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1,
['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0,
['|'] = 1, ['}'] = 0, ['~'] = 1,
};
/*
* An http ver_token is any ASCII which can be found in an HTTP version,
* which includes 'H', 'T', 'P', '/', '.' and any digit.
*/
const char http_is_ver_token[256] = {
['.'] = 1, ['/'] = 1,
['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1,
['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1,
['H'] = 1, ['P'] = 1, ['T'] = 1,
};
#ifdef DEBUG_FULL
static char *cli_stnames[4] = { "DAT", "SHR", "SHW", "CLS" };
#endif
static void http_sess_log(struct session *s);
/*
* Adds a header and its CRLF at the tail of buffer <b>, just before the last
* CRLF. Text length is measured first, so it cannot be NULL.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail(struct buffer *b, struct http_msg *msg,
struct hdr_idx *hdr_idx, const char *text)
{
int bytes, len;
len = strlen(text);
bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len);
if (!bytes)
return -1;
msg->eoh += bytes;
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Adds a header and its CRLF at the tail of buffer <b>, just before the last
* CRLF. <len> bytes are copied, not counting the CRLF. If <text> is NULL, then
* the buffer is only opened and the space reserved, but nothing is copied.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail2(struct buffer *b, struct http_msg *msg,
struct hdr_idx *hdr_idx, const char *text, int len)
{
int bytes;
bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len);
if (!bytes)
return -1;
msg->eoh += bytes;
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Checks if <hdr> is exactly <name> for <len> chars, and ends with a colon.
* If so, returns the position of the first non-space character relative to
* <hdr>, or <end>-<hdr> if not found before. If no value is found, it tries
* to return a pointer to the place after the first space. Returns 0 if the
* header name does not match. Checks are case-insensitive.
*/
int http_header_match2(const char *hdr, const char *end,
const char *name, int len)
{
const char *val;
if (hdr + len >= end)
return 0;
if (hdr[len] != ':')
return 0;
if (strncasecmp(hdr, name, len) != 0)
return 0;
val = hdr + len + 1;
while (val < end && HTTP_IS_SPHT(*val))
val++;
if ((val >= end) && (len + 2 <= end - hdr))
return len + 2; /* we may replace starting from second space */
return val - hdr;
}
/* Find the end of the header value contained between <s> and <e>.
* See RFC2616, par 2.2 for more information. Note that it requires
* a valid header to return a valid result.
*/
const char *find_hdr_value_end(const char *s, const char *e)
{
int quoted, qdpair;
quoted = qdpair = 0;
for (; s < e; s++) {
if (qdpair) qdpair = 0;
else if (quoted && *s == '\\') qdpair = 1;
else if (quoted && *s == '"') quoted = 0;
else if (*s == '"') quoted = 1;
else if (*s == ',') return s;
}
return s;
}
/* Find the first or next occurrence of header <name> in message buffer <sol>
* using headers index <idx>, and return it in the <ctx> structure. This
* structure holds everything necessary to use the header and find next
* occurrence. If its <idx> member is 0, the header is searched from the
* beginning. Otherwise, the next occurrence is returned. The function returns
* 1 when it finds a value, and 0 when there is no more.
*/
int http_find_header2(const char *name, int len,
const char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
__label__ return_hdr, next_hdr;
const char *eol, *sov;
int cur_idx;
if (ctx->idx) {
/* We have previously returned a value, let's search
* another one on the same line.
*/
cur_idx = ctx->idx;
sol = ctx->line;
sov = sol + ctx->val + ctx->vlen;
eol = sol + idx->v[cur_idx].len;
if (sov >= eol)
/* no more values in this header */
goto next_hdr;
/* values remaining for this header, skip the comma */
sov++;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
goto return_hdr;
}
/* first request for this header */
sol += hdr_idx_first_pos(idx);
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
if (len == 0) {
/* No argument was passed, we want any header.
* To achieve this, we simply build a fake request. */
while (sol + len < eol && sol[len] != ':')
len++;
name = sol;
}
if ((len < eol - sol) &&
(sol[len] == ':') &&
(strncasecmp(sol, name, len) == 0)) {
sov = sol + len + 1;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
return_hdr:
ctx->line = sol;
ctx->idx = cur_idx;
ctx->val = sov - sol;
eol = find_hdr_value_end(sov, eol);
ctx->vlen = eol - sov;
return 1;
}
next_hdr:
sol = eol + idx->v[cur_idx].cr + 1;
cur_idx = idx->v[cur_idx].next;
}
return 0;
}
int http_find_header(const char *name,
const char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
return http_find_header2(name, strlen(name), sol, idx, ctx);
}
/* This function shuts down the buffers on the server side, and sets indicators
* accordingly. The server's fd is supposed to already be closed. Note that if
* <status> is 0, or if the message pointer is NULL, then no message is returned.
*/
void srv_close_with_err(struct session *t, int err, int finst,
int status, const struct chunk *msg)
{
t->rep->flags |= BF_MAY_FORWARD;
buffer_shutw(t->req);
buffer_shutr(t->rep);
if (status > 0 && msg) {
t->txn.status = status;
if (t->fe->mode == PR_MODE_HTTP)
client_return(t, msg);
}
if (!(t->flags & SN_ERR_MASK))
t->flags |= err;
if (!(t->flags & SN_FINST_MASK))
t->flags |= finst;
}
/* This function returns the appropriate error location for the given session
* and message.
*/
struct chunk *error_message(struct session *s, int msgnum)
{
if (s->be->errmsg[msgnum].str)
return &s->be->errmsg[msgnum];
else if (s->fe->errmsg[msgnum].str)
return &s->fe->errmsg[msgnum];
else
return &http_err_chunks[msgnum];
}
/*
* returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text
* string), HTTP_METH_OTHER for unknown methods, or the identified method.
*/
static http_meth_t find_http_meth(const char *str, const int len)
{
unsigned char m;
const struct http_method_desc *h;
m = ((unsigned)*str - 'A');
if (m < 26) {
for (h = http_methods[m]; h->len > 0; h++) {
if (unlikely(h->len != len))
continue;
if (likely(memcmp(str, h->text, h->len) == 0))
return h->meth;
};
return HTTP_METH_OTHER;
}
return HTTP_METH_NONE;
}
/* Parse the URI from the given transaction (which is assumed to be in request
* phase) and look for the "/" beginning the PATH. If not found, return NULL.
* It is returned otherwise.
*/
static char *
http_get_path(struct http_txn *txn)
{
char *ptr, *end;
ptr = txn->req.sol + txn->req.sl.rq.u;
end = ptr + txn->req.sl.rq.u_l;
if (ptr >= end)
return NULL;
/* RFC2616, par. 5.1.2 :
* Request-URI = "*" | absuri | abspath | authority
*/
if (*ptr == '*')
return NULL;
if (isalpha((unsigned char)*ptr)) {
/* this is a scheme as described by RFC3986, par. 3.1 */
ptr++;
while (ptr < end &&
(isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.'))
ptr++;
/* skip '://' */
if (ptr == end || *ptr++ != ':')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
}
/* skip [user[:passwd]@]host[:[port]] */
while (ptr < end && *ptr != '/')
ptr++;
if (ptr == end)
return NULL;
/* OK, we got the '/' ! */
return ptr;
}
/* Processes the client, server, request and response jobs of a session task,
* then puts it back to the wait queue in a clean state, or cleans up its
* resources if it must be deleted. Returns in <next> the date the task wants
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
* nothing too many times, the request and response buffers flags are monitored
* and each function is called only if at least another function has changed at
* least one flag. If one of the functions called returns non-zero, then it
* will be called once again after all other functions. This permits explicit
* external loops which may be useful for complex state machines.
*/
#define PROCESS_CLI 0x1
#define PROCESS_SRV 0x2
#define PROCESS_REQ 0x4
#define PROCESS_RTR 0x8
#define PROCESS_ALL (PROCESS_CLI|PROCESS_SRV|PROCESS_REQ|PROCESS_RTR)
void process_session(struct task *t, int *next)
{
struct session *s = t->context;
unsigned resync = PROCESS_ALL;
unsigned int rqf;
unsigned int rpf;
/* check timeout expiration only once and adjust buffer flags
* accordingly.
*/
if (unlikely(tick_is_expired(t->expire, now_ms))) {
if (tick_is_expired(s->req->rex, now_ms))
s->req->flags |= BF_READ_TIMEOUT;
//if (tick_is_expired(s->req->wex, now_ms))
// s->req->flags |= BF_WRITE_TIMEOUT;
//
//if (tick_is_expired(s->rep->rex, now_ms))
// s->rep->flags |= BF_READ_TIMEOUT;
if (tick_is_expired(s->rep->wex, now_ms))
s->rep->flags |= BF_WRITE_TIMEOUT;
}
//if (fdtab[s->cli_fd].state == FD_STERROR) {
// fprintf(stderr, "s=%p fd=%d req=%p rep=%p cs=%d ss=%d, term=%08x\n",
// s, s->cli_fd, s->req, s->rep, s->cli_state,
// s->si[1].state, s->term_trace);
// sleep(1);
//}
do {
if (resync & PROCESS_REQ) {
resync &= ~PROCESS_REQ;
rqf = s->req->flags;
rpf = s->rep->flags;
/* the analysers must block it themselves */
s->req->flags |= BF_MAY_FORWARD;
if (s->req->analysers) {
if (process_request(s))
resync |= PROCESS_REQ;
if (rqf != s->req->flags || rpf != s->rep->flags)
resync |= PROCESS_ALL & ~PROCESS_REQ;
}
}
if (resync & PROCESS_RTR) {
resync &= ~PROCESS_RTR;
rqf = s->req->flags;
rpf = s->rep->flags;
/* the analysers must block it themselves */
s->rep->flags |= BF_MAY_FORWARD;
if (s->rep->analysers) {
if (process_response(s))
resync |= PROCESS_RTR;
if (rqf != s->req->flags || rpf != s->rep->flags)
resync |= PROCESS_ALL & ~PROCESS_RTR;
}
}
if (resync & PROCESS_CLI) {
rqf = s->req->flags;
rpf = s->rep->flags;
resync &= ~PROCESS_CLI;
if (process_cli(s))
resync |= PROCESS_CLI;
if (rqf != s->req->flags || rpf != s->rep->flags)
resync |= PROCESS_ALL & ~PROCESS_CLI;
}
if (resync & PROCESS_SRV) {
rqf = s->req->flags;
rpf = s->rep->flags;
resync &= ~PROCESS_SRV;
if (s->req->cons->state != SI_ST_CLO) {
if (s->req->cons->state < SI_ST_EST && s->req->flags & BF_MAY_FORWARD)
process_srv_conn(s);
if (s->req->cons->state == SI_ST_EST) {
if (process_srv_data(s))
resync |= PROCESS_SRV;
}
if (unlikely((s->req->cons->state == SI_ST_CLO) &&
(global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
int len;
len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n",
s->uniq_id, s->be->id, (unsigned short)s->cli_fd, (unsigned short)s->req->cons->fd);
write(1, trash, len);
}
}
if (rqf != s->req->flags || rpf != s->rep->flags)
resync |= PROCESS_ALL & ~PROCESS_SRV;
}
} while (resync);
if (likely(s->cli_state != CL_STCLOSE ||
(s->req->cons->state != SI_ST_CLO && s->req->cons->state != SI_ST_INI))) {
if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED))
session_process_counters(s);
s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE;
s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE;
/* Trick: if a request is being waiting for the server to respond,
* and if we know the server can timeout, we don't want the timeout
* to expire on the client side first, but we're still interested
* in passing data from the client to the server (eg: POST). Thus,
* we can cancel the client's request timeout if the server's
* request timeout is set and the server has not yet sent a response.
*/
if ((s->rep->flags & (BF_MAY_FORWARD|BF_SHUTR)) == 0 &&
(tick_isset(s->req->wex) || tick_isset(s->rep->rex)))
s->req->rex = TICK_ETERNITY;
t->expire = tick_first(tick_first(s->req->rex, s->req->wex),
tick_first(s->rep->rex, s->rep->wex));
if (s->req->analysers)
t->expire = tick_first(t->expire, s->req->analyse_exp);
/* restore t to its place in the task list */
task_queue(t);
#ifdef DEBUG_DEV
/* this may only happen when no timeout is set or in case of an FSM bug */
if (!t->expire)
ABORT_NOW();
#endif
*next = t->expire;
return; /* nothing more to do */
}
s->fe->feconn--;
if (s->flags & SN_BE_ASSIGNED)
s->be->beconn--;
actconn--;
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
int len;
len = sprintf(trash, "%08x:%s.closed[%04x:%04x] (term_trace=0x%08x)\n",
s->uniq_id, s->be->id,
(unsigned short)s->cli_fd, (unsigned short)s->req->cons->fd,
s->term_trace);
write(1, trash, len);
}
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
session_process_counters(s);
/* let's do a final log if we need it */
if (s->logs.logwait &&
!(s->flags & SN_MONITOR) &&
(!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) {
if (s->fe->to_log & LW_REQ)
http_sess_log(s);
else
tcp_sess_log(s);
}
/* the task MUST not be in the run queue anymore */
task_delete(t);
session_free(s);
task_free(t);
*next = TICK_ETERNITY;
}
extern const char sess_term_cond[8];
extern const char sess_fin_state[8];
extern const char *monthname[12];
const char sess_cookie[4] = "NIDV"; /* No cookie, Invalid cookie, cookie for a Down server, Valid cookie */
const char sess_set_cookie[8] = "N1I3PD5R"; /* No set-cookie, unknown, Set-Cookie Inserted, unknown,
Set-cookie seen and left unchanged (passive), Set-cookie Deleted,
unknown, Set-cookie Rewritten */
struct pool_head *pool2_requri;
struct pool_head *pool2_capture;
/*
* send a log for the session when we have enough info about it.
* Will not log if the frontend has no log defined.
*/
static void http_sess_log(struct session *s)
{
char pn[INET6_ADDRSTRLEN + strlen(":65535")];
struct proxy *fe = s->fe;
struct proxy *be = s->be;
struct proxy *prx_log;
struct http_txn *txn = &s->txn;
int tolog;
char *uri, *h;
char *svid;
struct tm tm;
static char tmpline[MAX_SYSLOG_LEN];
int t_request;
int hdr;
if (fe->logfac1 < 0 && fe->logfac2 < 0)
return;
prx_log = fe;
if (s->cli_addr.ss_family == AF_INET)
inet_ntop(AF_INET,
(const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn));
else
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr,
pn, sizeof(pn));
get_localtime(s->logs.accept_date.tv_sec, &tm);
/* FIXME: let's limit ourselves to frontend logging for now. */
tolog = fe->to_log;
h = tmpline;
if (fe->to_log & LW_REQHDR &&
txn->req.cap &&
(h < tmpline + sizeof(tmpline) - 10)) {
*(h++) = ' ';
*(h++) = '{';
for (hdr = 0; hdr < fe->nb_req_cap; hdr++) {
if (hdr)
*(h++) = '|';
if (txn->req.cap[hdr] != NULL)
h = encode_string(h, tmpline + sizeof(tmpline) - 7,
'#', hdr_encode_map, txn->req.cap[hdr]);
}
*(h++) = '}';
}
if (fe->to_log & LW_RSPHDR &&
txn->rsp.cap &&
(h < tmpline + sizeof(tmpline) - 7)) {
*(h++) = ' ';
*(h++) = '{';
for (hdr = 0; hdr < fe->nb_rsp_cap; hdr++) {
if (hdr)
*(h++) = '|';
if (txn->rsp.cap[hdr] != NULL)
h = encode_string(h, tmpline + sizeof(tmpline) - 4,
'#', hdr_encode_map, txn->rsp.cap[hdr]);
}
*(h++) = '}';
}
if (h < tmpline + sizeof(tmpline) - 4) {
*(h++) = ' ';
*(h++) = '"';
uri = txn->uri ? txn->uri : "<BADREQ>";
h = encode_string(h, tmpline + sizeof(tmpline) - 1,
'#', url_encode_map, uri);
*(h++) = '"';
}
*h = '\0';
svid = (tolog & LW_SVID) ?
(s->data_source != DATA_SRC_STATS) ?
(s->srv != NULL) ? s->srv->id : "<NOSRV>" : "<STATS>" : "-";
t_request = -1;
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
send_log(prx_log, LOG_INFO,
"%s:%d [%02d/%s/%04d:%02d:%02d:%02d.%03d]"
" %s %s/%s %d/%d/%d/%d/%s%d %d %s%lld"
" %s %s %c%c%c%c %d/%d/%d/%d/%s%u %d/%d%s\n",
pn,
(s->cli_addr.ss_family == AF_INET) ?
ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) :
ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port),
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec, s->logs.accept_date.tv_usec/1000,
fe->id, be->id, svid,
t_request,
(s->logs.t_queue >= 0) ? s->logs.t_queue - t_request : -1,
(s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1,
(s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1,
(tolog & LW_BYTES) ? "" : "+", s->logs.t_close,
txn->status,
(tolog & LW_BYTES) ? "" : "+", s->logs.bytes_out,
txn->cli_cookie ? txn->cli_cookie : "-",
txn->srv_cookie ? txn->srv_cookie : "-",
sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT],
sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT],
(be->options & PR_O_COOK_ANY) ? sess_cookie[(txn->flags & TX_CK_MASK) >> TX_CK_SHIFT] : '-',
(be->options & PR_O_COOK_ANY) ? sess_set_cookie[(txn->flags & TX_SCK_MASK) >> TX_SCK_SHIFT] : '-',
actconn, fe->feconn, be->beconn, s->srv ? s->srv->cur_sess : 0,
(s->flags & SN_REDISP)?"+":"",
(s->conn_retries>0)?(be->conn_retries - s->conn_retries):be->conn_retries,
s->logs.srv_queue_size, s->logs.prx_queue_size, tmpline);
s->logs.logwait = 0;
}
/*
* Capture headers from message starting at <som> according to header list
* <cap_hdr>, and fill the <idx> structure appropriately.
*/
void capture_headers(char *som, struct hdr_idx *idx,
char **cap, struct cap_hdr *cap_hdr)
{
char *eol, *sol, *col, *sov;
int cur_idx;
struct cap_hdr *h;
int len;
sol = som + hdr_idx_first_pos(idx);
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
col = sol;
while (col < eol && *col != ':')
col++;
sov = col + 1;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
for (h = cap_hdr; h; h = h->next) {
if ((h->namelen == col - sol) &&
(strncasecmp(sol, h->name, h->namelen) == 0)) {
if (cap[h->index] == NULL)
cap[h->index] =
pool_alloc2(h->pool);
if (cap[h->index] == NULL) {
Alert("HTTP capture : out of memory.\n");
continue;
}
len = eol - sov;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], sov, len);
cap[h->index][len]=0;
}
}
sol = eol + idx->v[cur_idx].cr + 1;
cur_idx = idx->v[cur_idx].next;
}
}
/* either we find an LF at <ptr> or we jump to <bad>.
*/
#define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0)
/* plays with variables <ptr>, <end> and <state>. Jumps to <good> if OK,
* otherwise to <http_msg_ood> with <state> set to <st>.
*/
#define EAT_AND_JUMP_OR_RETURN(good, st) do { \
ptr++; \
if (likely(ptr < end)) \
goto good; \
else { \
state = (st); \
goto http_msg_ood; \
} \
} while (0)
/*
* This function parses a status line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP,
* HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the response.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_stsline(struct http_msg *msg, const char *msg_buf,
unsigned int state, const char *ptr, const char *end,
char **ret_ptr, unsigned int *ret_state)
{
__label__
http_msg_rpver,
http_msg_rpver_sp,
http_msg_rpcode,
http_msg_rpcode_sp,
http_msg_rpreason,
http_msg_rpline_eol,
http_msg_ood, /* out of data */
http_msg_invalid;
switch (state) {
http_msg_rpver:
case HTTP_MSG_RPVER:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.v_l = (ptr - msg_buf) - msg->som;
EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
}
goto http_msg_invalid;
http_msg_rpver_sp:
case HTTP_MSG_RPVER_SP:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.c = ptr - msg_buf;
goto http_msg_rpcode;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
/* so it's a CR/LF, this is invalid */
goto http_msg_invalid;
http_msg_rpcode:
case HTTP_MSG_RPCODE:
if (likely(!HTTP_IS_LWS(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c;
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
}
/* so it's a CR/LF, so there is no reason phrase */
msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c;
http_msg_rsp_reason:
/* FIXME: should we support HTTP responses without any reason phrase ? */
msg->sl.st.r = ptr - msg_buf;
msg->sl.st.r_l = 0;
goto http_msg_rpline_eol;
http_msg_rpcode_sp:
case HTTP_MSG_RPCODE_SP:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.r = ptr - msg_buf;
goto http_msg_rpreason;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
/* so it's a CR/LF, so there is no reason phrase */
goto http_msg_rsp_reason;
http_msg_rpreason:
case HTTP_MSG_RPREASON:
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON);
msg->sl.st.r_l = (ptr - msg_buf) - msg->sl.st.r;
http_msg_rpline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the response would not be
* complete. We can then record the response length and return
* to the caller which will be able to register it.
*/
msg->sl.st.l = ptr - msg->sol;
return ptr;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = (char *)ptr;
return NULL;
http_msg_invalid:
/* invalid message */
if (ret_state)
*ret_state = HTTP_MSG_ERROR;
return NULL;
}
/*
* This function parses a request line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP,
* HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the request.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_reqline(struct http_msg *msg, const char *msg_buf,
unsigned int state, const char *ptr, const char *end,
char **ret_ptr, unsigned int *ret_state)
{
__label__
http_msg_rqmeth,
http_msg_rqmeth_sp,
http_msg_rquri,
http_msg_rquri_sp,
http_msg_rqver,
http_msg_rqline_eol,
http_msg_ood, /* out of data */
http_msg_invalid;
switch (state) {
http_msg_rqmeth:
case HTTP_MSG_RQMETH:
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.m_l = (ptr - msg_buf) - msg->som;
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
}
if (likely(HTTP_IS_CRLF(*ptr))) {
/* HTTP 0.9 request */
msg->sl.rq.m_l = (ptr - msg_buf) - msg->som;
http_msg_req09_uri:
msg->sl.rq.u = ptr - msg_buf;
http_msg_req09_uri_e:
msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u;
http_msg_req09_ver:
msg->sl.rq.v = ptr - msg_buf;
msg->sl.rq.v_l = 0;
goto http_msg_rqline_eol;
}
goto http_msg_invalid;
http_msg_rqmeth_sp:
case HTTP_MSG_RQMETH_SP:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.u = ptr - msg_buf;
goto http_msg_rquri;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri;
http_msg_rquri:
case HTTP_MSG_RQURI:
if (likely(!HTTP_IS_LWS(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u;
EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
}
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri_e;
http_msg_rquri_sp:
case HTTP_MSG_RQURI_SP:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.v = ptr - msg_buf;
goto http_msg_rqver;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_ver;
http_msg_rqver:
case HTTP_MSG_RQVER:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER);
if (likely(HTTP_IS_CRLF(*ptr))) {
msg->sl.rq.v_l = (ptr - msg_buf) - msg->sl.rq.v;
http_msg_rqline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the request would not be
* complete. We can then record the request length and return
* to the caller which will be able to register it.
*/
msg->sl.rq.l = ptr - msg->sol;
return ptr;
}
/* neither an HTTP_VER token nor a CRLF */
goto http_msg_invalid;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = (char *)ptr;
return NULL;
http_msg_invalid:
/* invalid message */
if (ret_state)
*ret_state = HTTP_MSG_ERROR;
return NULL;
}
/*
* This function parses an HTTP message, either a request or a response,
* depending on the initial msg->msg_state. It can be preempted everywhere
* when data are missing and recalled at the exact same location with no
* information loss. The header index is re-initialized when switching from
* MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other
* fields.
*/
void http_msg_analyzer(struct buffer *buf, struct http_msg *msg, struct hdr_idx *idx)
{
__label__
http_msg_rqbefore,
http_msg_rqbefore_cr,
http_msg_rqmeth,
http_msg_rqline_end,
http_msg_hdr_first,
http_msg_hdr_name,
http_msg_hdr_l1_sp,
http_msg_hdr_l1_lf,
http_msg_hdr_l1_lws,
http_msg_hdr_val,
http_msg_hdr_l2_lf,
http_msg_hdr_l2_lws,
http_msg_complete_header,
http_msg_last_lf,
http_msg_ood, /* out of data */
http_msg_invalid;
unsigned int state; /* updated only when leaving the FSM */
register char *ptr, *end; /* request pointers, to avoid dereferences */
state = msg->msg_state;
ptr = buf->lr;
end = buf->r;
if (unlikely(ptr >= end))
goto http_msg_ood;
switch (state) {
/*
* First, states that are specific to the response only.
* We check them first so that request and headers are
* closer to each other (accessed more often).
*/
http_msg_rpbefore:
case HTTP_MSG_RPBEFORE:
if (likely(HTTP_IS_TOKEN(*ptr))) {
if (likely(ptr == buf->data)) {
msg->sol = ptr;
msg->som = 0;
} else {
#if PARSE_PRESERVE_EMPTY_LINES
/* only skip empty leading lines, don't remove them */
msg->sol = ptr;
msg->som = ptr - buf->data;
#else
/* Remove empty leading lines, as recommended by
* RFC2616. This takes a lot of time because we
* must move all the buffer backwards, but this
* is rarely needed. The method above will be
* cleaner when we'll be able to start sending
* the request from any place in the buffer.
*/
buf->lr = ptr;
buffer_replace2(buf, buf->data, buf->lr, NULL, 0);
msg->som = 0;
msg->sol = buf->data;
ptr = buf->data;
end = buf->r;
#endif
}
hdr_idx_init(idx);
state = HTTP_MSG_RPVER;
goto http_msg_rpver;
}
if (unlikely(!HTTP_IS_CRLF(*ptr)))
goto http_msg_invalid;
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR);
/* stop here */
http_msg_rpbefore_cr:
case HTTP_MSG_RPBEFORE_CR:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
/* stop here */
http_msg_rpver:
case HTTP_MSG_RPVER:
case HTTP_MSG_RPVER_SP:
case HTTP_MSG_RPCODE:
case HTTP_MSG_RPCODE_SP:
case HTTP_MSG_RPREASON:
ptr = (char *)http_parse_stsline(msg, buf->data, state, ptr, end,
&buf->lr, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full response and we know that we have either a CR
* or an LF at <ptr>.
*/
//fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.st.l, *ptr);
hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r');
msg->sol = ptr;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END);
goto http_msg_rpline_end;
http_msg_rpline_end:
case HTTP_MSG_RPLINE_END:
/* msg->sol must point to the first of CR or LF. */
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Second, states that are specific to the request only
*/
http_msg_rqbefore:
case HTTP_MSG_RQBEFORE:
if (likely(HTTP_IS_TOKEN(*ptr))) {
if (likely(ptr == buf->data)) {
msg->sol = ptr;
msg->som = 0;
} else {
#if PARSE_PRESERVE_EMPTY_LINES
/* only skip empty leading lines, don't remove them */
msg->sol = ptr;
msg->som = ptr - buf->data;
#else
/* Remove empty leading lines, as recommended by
* RFC2616. This takes a lot of time because we
* must move all the buffer backwards, but this
* is rarely needed. The method above will be
* cleaner when we'll be able to start sending
* the request from any place in the buffer.
*/
buf->lr = ptr;
buffer_replace2(buf, buf->data, buf->lr, NULL, 0);
msg->som = 0;
msg->sol = buf->data;
ptr = buf->data;
end = buf->r;
#endif
}
/* we will need this when keep-alive will be supported
hdr_idx_init(idx);
*/
state = HTTP_MSG_RQMETH;
goto http_msg_rqmeth;
}
if (unlikely(!HTTP_IS_CRLF(*ptr)))
goto http_msg_invalid;
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR);
/* stop here */
http_msg_rqbefore_cr:
case HTTP_MSG_RQBEFORE_CR:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
/* stop here */
http_msg_rqmeth:
case HTTP_MSG_RQMETH:
case HTTP_MSG_RQMETH_SP:
case HTTP_MSG_RQURI:
case HTTP_MSG_RQURI_SP:
case HTTP_MSG_RQVER:
ptr = (char *)http_parse_reqline(msg, buf->data, state, ptr, end,
&buf->lr, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
//fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.rq.l, *ptr);
hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r');
msg->sol = ptr;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END);
goto http_msg_rqline_end;
http_msg_rqline_end:
case HTTP_MSG_RQLINE_END:
/* check for HTTP/0.9 request : no version information available.
* msg->sol must point to the first of CR or LF.
*/
if (unlikely(msg->sl.rq.v_l == 0))
goto http_msg_last_lf;
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Common states below
*/
http_msg_hdr_first:
case HTTP_MSG_HDR_FIRST:
msg->sol = ptr;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
http_msg_hdr_name:
case HTTP_MSG_HDR_NAME:
/* assumes msg->sol points to the first char */
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME);
if (likely(*ptr == ':')) {
msg->col = ptr - buf->data;
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
}
goto http_msg_invalid;
http_msg_hdr_l1_sp:
case HTTP_MSG_HDR_L1_SP:
/* assumes msg->sol points to the first char and msg->col to the colon */
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
/* header value can be basically anything except CR/LF */
msg->sov = ptr - buf->data;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_val;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF);
goto http_msg_hdr_l1_lf;
http_msg_hdr_l1_lf:
case HTTP_MSG_HDR_L1_LF:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS);
http_msg_hdr_l1_lws:
case HTTP_MSG_HDR_L1_LWS:
if (likely(HTTP_IS_SPHT(*ptr))) {
/* replace HT,CR,LF with spaces */
for (; buf->data+msg->sov < ptr; msg->sov++)
buf->data[msg->sov] = ' ';
goto http_msg_hdr_l1_sp;
}
/* we had a header consisting only in spaces ! */
msg->eol = buf->data + msg->sov;
goto http_msg_complete_header;
http_msg_hdr_val:
case HTTP_MSG_HDR_VAL:
/* assumes msg->sol points to the first char, msg->col to the
* colon, and msg->sov points to the first character of the
* value.
*/
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL);
msg->eol = ptr;
/* Note: we could also copy eol into ->eoh so that we have the
* real header end in case it ends with lots of LWS, but is this
* really needed ?
*/
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF);
goto http_msg_hdr_l2_lf;
http_msg_hdr_l2_lf:
case HTTP_MSG_HDR_L2_LF:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS);
http_msg_hdr_l2_lws:
case HTTP_MSG_HDR_L2_LWS:
if (unlikely(HTTP_IS_SPHT(*ptr))) {
/* LWS: replace HT,CR,LF with spaces */
for (; msg->eol < ptr; msg->eol++)
*msg->eol = ' ';
goto http_msg_hdr_val;
}
http_msg_complete_header:
/*
* It was a new header, so the last one is finished.
* Assumes msg->sol points to the first char, msg->col to the
* colon, msg->sov points to the first character of the value
* and msg->eol to the first CR or LF so we know how the line
* ends. We insert last header into the index.
*/
/*
fprintf(stderr,"registering %-2d bytes : ", msg->eol - msg->sol);
write(2, msg->sol, msg->eol-msg->sol);
fprintf(stderr,"\n");
*/
if (unlikely(hdr_idx_add(msg->eol - msg->sol, *msg->eol == '\r',
idx, idx->tail) < 0))
goto http_msg_invalid;
msg->sol = ptr;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
http_msg_last_lf:
case HTTP_MSG_LAST_LF:
/* Assumes msg->sol points to the first of either CR or LF */
EXPECT_LF_HERE(ptr, http_msg_invalid);
ptr++;
buf->lr = ptr;
msg->eoh = msg->sol - buf->data;
msg->msg_state = HTTP_MSG_BODY;
return;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of data */
msg->msg_state = state;
buf->lr = ptr;
return;
http_msg_invalid:
/* invalid message */
msg->msg_state = HTTP_MSG_ERROR;
return;
}
/* This function performs all the processing enabled for the current request.
* It normally returns zero, but may return 1 if it absolutely needs to be
* called again after other functions. It relies on buffers flags, and updates
* t->req->analysers. It might make sense to explode it into several other
* functions. Its behaviour is rather simple :
* - all enabled analysers are called in turn from the lower to the higher
* bit.
* - if an analyser does not have enough data, it must return without calling
* other ones. It should also probably reset the BF_MAY_FORWARD bit to ensure
* that unprocessed data will not be forwarded. But that probably depends on
* the protocol. Generally it is not reset in case of errors.
* - if an analyser has enough data, it just has to pass on to the next
* analyser without touching BF_MAY_FORWARD (it is enabled prior to
* analysis).
* - if an analyser thinks it has no added value anymore staying here, it must
* reset its bit from the analysers flags in order not to be called anymore.
*
* In the future, analysers should be able to indicate that they want to be
* called after XXX bytes have been received (or transfered), and the min of
* all's wishes will be used to ring back (unless a special condition occurs).
*
*
*/
int process_request(struct session *t)
{
struct buffer *req = t->req;
struct buffer *rep = t->rep;
DPRINTF(stderr,"[%u] %s: c=%s set(r,w)=%d,%d exp(r,w)=%u,%u req=%08x rep=%08x analysers=%02x\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_RD) : 0,
t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_WR) : 0,
req->rex, rep->wex, req->flags, rep->flags, req->analysers);
/* The tcp-inspect analyser is always called alone */
if (req->analysers & AN_REQ_INSPECT) {
struct tcp_rule *rule;
int partial;
/* We will abort if we encounter a read error. In theory, we
* should not abort if we get a close, it might be valid,
* although very unlikely. FIXME: we'll abort for now, this
* will be easier to change later.
*/
if (req->flags & BF_READ_ERROR) {
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
/* Abort if client read timeout has expired */
else if (req->flags & BF_READ_TIMEOUT) {
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
/* We don't know whether we have enough data, so must proceed
* this way :
* - iterate through all rules in their declaration order
* - if one rule returns MISS, it means the inspect delay is
* not over yet, then return immediately, otherwise consider
* it as a non-match.
* - if one rule returns OK, then return OK
* - if one rule returns KO, then return KO
*/
if (req->flags & (BF_READ_NULL | BF_SHUTR) || tick_is_expired(req->analyse_exp, now_ms))
partial = 0;
else
partial = ACL_PARTIAL;
list_for_each_entry(rule, &t->fe->tcp_req.inspect_rules, list) {
int ret = ACL_PAT_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, t->fe, t, NULL, ACL_DIR_REQ | partial);
if (ret == ACL_PAT_MISS) {
req->flags &= ~BF_MAY_FORWARD;
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, t->fe->tcp_req.inspect_delay);
return 0;
}
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* we have a matching rule. */
if (rule->action == TCP_ACT_REJECT) {
buffer_abort(req);
buffer_abort(rep);
//FIXME: this delete this
//fd_delete(t->cli_fd);
//t->cli_state = CL_STCLOSE;
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
/* otherwise accept */
break;
}
}
/* if we get there, it means we have no rule which matches, or
* we have an explicit accept, so we apply the default accept.
*/
req->analysers &= ~AN_REQ_INSPECT;
req->analyse_exp = TICK_ETERNITY;
}
if (req->analysers & AN_REQ_HTTP_HDR) {
/*
* Now parse the partial (or complete) lines.
* We will check the request syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* req->data + req->som = beginning of request
* req->data + req->eoh = end of processed headers / start of current one
* req->data + req->eol = end of current header or line (LF or CRLF)
* req->lr = first non-visited byte
* req->r = end of data
*/
int cur_idx;
struct http_txn *txn = &t->txn;
struct http_msg *msg = &txn->req;
struct proxy *cur_proxy;
if (likely(req->lr < req->r))
http_msg_analyzer(req, msg, &txn->hdr_idx);
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
(msg->msg_state == HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) {
char *eol, *sol;
sol = req->data + msg->som;
eol = sol + msg->sl.rq.l;
debug_hdr("clireq", t, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("clihdr", t, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is HTTP_MSG_BODY. Invalid
* requests are checked first.
*
*/
if (unlikely(msg->msg_state != HTTP_MSG_BODY)) {
/*
* First, let's catch bad requests.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR))
goto return_bad_req;
/* 1: Since we are in header mode, if there's no space
* left for headers, we won't be able to free more
* later, so the session will never terminate. We
* must terminate it now.
*/
if (unlikely(req->flags & BF_FULL)) {
/* FIXME: check if URI is set and return Status
* 414 Request URI too long instead.
*/
goto return_bad_req;
}
/* 2: have we encountered a close ? */
else if (req->flags & (BF_READ_NULL | BF_SHUTR)) {
txn->status = 400;
client_retnclose(t, error_message(t, HTTP_ERR_400));
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
/* 3: has the read timeout expired ? */
else if (req->flags & BF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
/* read timeout : give up with an error message. */
txn->status = 408;
client_retnclose(t, error_message(t, HTTP_ERR_408));
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
/* 4: have we encountered a read error ? */
else if (req->flags & BF_READ_ERROR) {
/* we cannot return any message on error */
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
}
req->flags &= ~BF_MAY_FORWARD;
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, t->fe->timeout.httpreq);
/* we're not ready yet */
return 0;
}
/****************************************************************
* More interesting part now : we know that we have a complete *
* request which at least looks like HTTP. We have an indicator *
* of each header's length, so we can parse them quickly. *
****************************************************************/
req->analysers &= ~AN_REQ_HTTP_HDR;
req->analyse_exp = TICK_ETERNITY;
/* ensure we keep this pointer to the beginning of the message */
msg->sol = req->data + msg->som;
/*
* 1: identify the method
*/
txn->meth = find_http_meth(&req->data[msg->som], msg->sl.rq.m_l);
/* we can make use of server redirect on GET and HEAD */
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
t->flags |= SN_REDIRECTABLE;
/*
* 2: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend.
*/
if (unlikely((t->fe->monitor_uri_len != 0) &&
(t->fe->monitor_uri_len == msg->sl.rq.u_l) &&
!memcmp(&req->data[msg->sl.rq.u],
t->fe->monitor_uri,
t->fe->monitor_uri_len))) {
/*
* We have found the monitor URI
*/
struct acl_cond *cond;
cur_proxy = t->fe;
t->flags |= SN_MONITOR;
/* Check if we want to fail this monitor request or not */
list_for_each_entry(cond, &cur_proxy->mon_fail_cond, list) {
int ret = acl_exec_cond(cond, cur_proxy, t, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
/* we fail this request, let's return 503 service unavail */
txn->status = 503;
client_retnclose(t, error_message(t, HTTP_ERR_503));
goto return_prx_cond;
}
}
/* nothing to fail, let's reply normaly */
txn->status = 200;
client_retnclose(t, &http_200_chunk);
goto return_prx_cond;
}
/*
* 3: Maybe we have to copy the original REQURI for the logs ?
* Note: we cannot log anymore if the request has been
* classified as invalid.
*/
if (unlikely(t->logs.logwait & LW_REQ)) {
/* we have a complete HTTP request that we must log */
if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) {
int urilen = msg->sl.rq.l;
if (urilen >= REQURI_LEN)
urilen = REQURI_LEN - 1;
memcpy(txn->uri, &req->data[msg->som], urilen);
txn->uri[urilen] = 0;
if (!(t->logs.logwait &= ~LW_REQ))
http_sess_log(t);
} else {
Alert("HTTP logging : out of memory.\n");
}
}
/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
if (unlikely(msg->sl.rq.v_l == 0)) {
int delta;
char *cur_end;
msg->sol = req->data + msg->som;
cur_end = msg->sol + msg->sl.rq.l;
delta = 0;
if (msg->sl.rq.u_l == 0) {
/* if no URI was set, add "/" */
delta = buffer_replace2(req, cur_end, cur_end, " /", 2);
cur_end += delta;
msg->eoh += delta;
}
/* add HTTP version */
delta = buffer_replace2(req, cur_end, cur_end, " HTTP/1.0\r\n", 11);
msg->eoh += delta;
cur_end += delta;
cur_end = (char *)http_parse_reqline(msg, req->data,
HTTP_MSG_RQMETH,
msg->sol, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
goto return_bad_req;
/* we have a full HTTP/1.0 request now and we know that
* we have either a CR or an LF at <ptr>.
*/
hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
}
/* 5: we may need to capture headers */
if (unlikely((t->logs.logwait & LW_REQHDR) && t->fe->req_cap))
capture_headers(req->data + msg->som, &txn->hdr_idx,
txn->req.cap, t->fe->req_cap);
/*
* 6: we will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* We can now check whether we want to switch to another
* backend, in which case we will re-check the backend's
* filters and various options. In order to support 3-level
* switching, here's how we should proceed :
*
* a) run be.
* if (switch) then switch ->be to the new backend.
* b) run be if (be != fe).
* There cannot be any switch from there, so ->be cannot be
* changed anymore.
*
* => filters always apply to ->be, then ->be may change.
*
* The response path will be able to apply either ->be, or
* ->be then ->fe filters in order to match the reverse of
* the forward sequence.
*/
do {
struct acl_cond *cond;
struct redirect_rule *rule;
struct proxy *rule_set = t->be;
cur_proxy = t->be;
/* first check whether we have some ACLs set to redirect this request */
list_for_each_entry(rule, &cur_proxy->redirect_rules, list) {
int ret = acl_exec_cond(rule->cond, cur_proxy, t, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
struct chunk rdr = { trash, 0 };
const char *msg_fmt;
/* build redirect message */
switch(rule->code) {
case 303:
rdr.len = strlen(HTTP_303);
msg_fmt = HTTP_303;
break;
case 301:
rdr.len = strlen(HTTP_301);
msg_fmt = HTTP_301;
break;
case 302:
default:
rdr.len = strlen(HTTP_302);
msg_fmt = HTTP_302;
break;
}
if (unlikely(rdr.len > sizeof(trash)))
goto return_bad_req;
memcpy(rdr.str, msg_fmt, rdr.len);
switch(rule->type) {
case REDIRECT_TYPE_PREFIX: {
const char *path;
int pathlen;
path = http_get_path(txn);
/* build message using path */
if (path) {
pathlen = txn->req.sl.rq.u_l + (txn->req.sol+txn->req.sl.rq.u) - path;
} else {
path = "/";
pathlen = 1;
}
if (rdr.len + rule->rdr_len + pathlen > sizeof(trash) - 4)
goto return_bad_req;
/* add prefix */
memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len);
rdr.len += rule->rdr_len;
/* add path */
memcpy(rdr.str + rdr.len, path, pathlen);
rdr.len += pathlen;
break;
}
case REDIRECT_TYPE_LOCATION:
default:
if (rdr.len + rule->rdr_len > sizeof(trash) - 4)
goto return_bad_req;
/* add location */
memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len);
rdr.len += rule->rdr_len;
break;
}
/* add end of headers */
memcpy(rdr.str + rdr.len, "\r\n\r\n", 4);
rdr.len += 4;
txn->status = rule->code;
/* let's log the request time */
t->logs.tv_request = now;
client_retnclose(t, &rdr);
goto return_prx_cond;
}
}
/* first check whether we have some ACLs set to block this request */
list_for_each_entry(cond, &cur_proxy->block_cond, list) {
int ret = acl_exec_cond(cond, cur_proxy, t, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
txn->status = 403;
/* let's log the request time */
t->logs.tv_request = now;
client_retnclose(t, error_message(t, HTTP_ERR_403));
goto return_prx_cond;
}
}
/* try headers filters */
if (rule_set->req_exp != NULL) {
if (apply_filters_to_request(t, req, rule_set->req_exp) < 0)
goto return_bad_req;
}
if (!(t->flags & SN_BE_ASSIGNED) && (t->be != cur_proxy)) {
/* to ensure correct connection accounting on
* the backend, we count the connection for the
* one managing the queue.
*/
t->be->beconn++;
if (t->be->beconn > t->be->beconn_max)
t->be->beconn_max = t->be->beconn;
t->be->cum_beconn++;
t->flags |= SN_BE_ASSIGNED;
}
/* has the request been denied ? */
if (txn->flags & TX_CLDENY) {
/* no need to go further */
txn->status = 403;
/* let's log the request time */
t->logs.tv_request = now;
client_retnclose(t, error_message(t, HTTP_ERR_403));
goto return_prx_cond;
}
/* We might have to check for "Connection:" */
if (((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) &&
!(t->flags & SN_CONN_CLOSED)) {
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, delta, val;
struct hdr_idx_elem *cur_hdr;
cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
val = http_header_match2(cur_ptr, cur_end, "Connection", 10);
if (val) {
/* 3 possibilities :
* - we have already set Connection: close,
* so we remove this line.
* - we have not yet set Connection: close,
* but this line indicates close. We leave
* it untouched and set the flag.
* - we have not yet set Connection: close,
* and this line indicates non-close. We
* replace it.
*/
if (t->flags & SN_CONN_CLOSED) {
delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
txn->req.eoh += delta;
cur_next += delta;
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
} else {
if (strncasecmp(cur_ptr + val, "close", 5) != 0) {
delta = buffer_replace2(req, cur_ptr + val, cur_end,
"close", 5);
cur_next += delta;
cur_hdr->len += delta;
txn->req.eoh += delta;
}
t->flags |= SN_CONN_CLOSED;
}
}
old_idx = cur_idx;
}
}
/* add request headers from the rule sets in the same order */
for (cur_idx = 0; cur_idx < rule_set->nb_reqadd; cur_idx++) {
if (unlikely(http_header_add_tail(req,
&txn->req,
&txn->hdr_idx,
rule_set->req_add[cur_idx])) < 0)
goto return_bad_req;
}
/* check if stats URI was requested, and if an auth is needed */
if (rule_set->uri_auth != NULL &&
(txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)) {
/* we have to check the URI and auth for this request.
* FIXME!!! that one is rather dangerous, we want to
* make it follow standard rules (eg: clear req->analysers).
*/
if (stats_check_uri_auth(t, rule_set))
return 1;
}
/* now check whether we have some switching rules for this request */
if (!(t->flags & SN_BE_ASSIGNED)) {
struct switching_rule *rule;
list_for_each_entry(rule, &cur_proxy->switching_rules, list) {
int ret;
ret = acl_exec_cond(rule->cond, cur_proxy, t, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
t->be = rule->be.backend;
t->be->beconn++;
if (t->be->beconn > t->be->beconn_max)
t->be->beconn_max = t->be->beconn;
t->be->cum_beconn++;
/* assign new parameters to the session from the new backend */
t->rep->rto = t->req->wto = t->be->timeout.server;
t->req->cto = t->be->timeout.connect;
t->conn_retries = t->be->conn_retries;
t->flags |= SN_BE_ASSIGNED;
break;
}
}
}
if (!(t->flags & SN_BE_ASSIGNED) && cur_proxy->defbe.be) {
/* No backend was set, but there was a default
* backend set in the frontend, so we use it and
* loop again.
*/
t->be = cur_proxy->defbe.be;
t->be->beconn++;
if (t->be->beconn > t->be->beconn_max)
t->be->beconn_max = t->be->beconn;
t->be->cum_beconn++;
/* assign new parameters to the session from the new backend */
t->rep->rto = t->req->wto = t->be->timeout.server;
t->req->cto = t->be->timeout.connect;
t->conn_retries = t->be->conn_retries;
t->flags |= SN_BE_ASSIGNED;
}
} while (t->be != cur_proxy); /* we loop only if t->be has changed */
if (!(t->flags & SN_BE_ASSIGNED)) {
/* To ensure correct connection accounting on
* the backend, we count the connection for the
* one managing the queue.
*/
t->be->beconn++;
if (t->be->beconn > t->be->beconn_max)
t->be->beconn_max = t->be->beconn;
t->be->cum_beconn++;
t->flags |= SN_BE_ASSIGNED;
}
/*
* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want with the remaining request. Also, now we
* may have separate values for ->fe, ->be.
*/
/*
* If HTTP PROXY is set we simply get remote server address
* parsing incoming request.
*/
if ((t->be->options & PR_O_HTTP_PROXY) && !(t->flags & SN_ADDR_SET)) {
url2sa(req->data + msg->sl.rq.u, msg->sl.rq.u_l, &t->srv_addr);
}
/*
* 7: the appsession cookie was looked up very early in 1.2,
* so let's do the same now.
*/
/* It needs to look into the URI */
if (t->be->appsession_name) {
get_srv_from_appsession(t, &req->data[msg->som], msg->sl.rq.l);
}
/*
* 8: Now we can work with the cookies.
* Note that doing so might move headers in the request, but
* the fields will stay coherent and the URI will not move.
* This should only be performed in the backend.
*/
if ((t->be->cookie_name || t->be->appsession_name || t->be->capture_name)
&& !(txn->flags & (TX_CLDENY|TX_CLTARPIT)))
manage_client_side_cookies(t, req);
/*
* 9: add X-Forwarded-For if either the frontend or the backend
* asks for it.
*/
if ((t->fe->options | t->be->options) & PR_O_FWDFOR) {
if (t->cli_addr.ss_family == AF_INET) {
/* Add an X-Forwarded-For header unless the source IP is
* in the 'except' network range.
*/
if ((!t->fe->except_mask.s_addr ||
(((struct sockaddr_in *)&t->cli_addr)->sin_addr.s_addr & t->fe->except_mask.s_addr)
!= t->fe->except_net.s_addr) &&
(!t->be->except_mask.s_addr ||
(((struct sockaddr_in *)&t->cli_addr)->sin_addr.s_addr & t->be->except_mask.s_addr)
!= t->be->except_net.s_addr)) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&t->cli_addr)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (t->be->fwdfor_hdr_len) {
len = t->be->fwdfor_hdr_len;
memcpy(trash, t->be->fwdfor_hdr_name, len);
} else {
len = t->fe->fwdfor_hdr_len;
memcpy(trash, t->fe->fwdfor_hdr_name, len);
}
len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(http_header_add_tail2(req, &txn->req,
&txn->hdr_idx, trash, len)) < 0)
goto return_bad_req;
}
}
else if (t->cli_addr.ss_family == AF_INET6) {
/* FIXME: for the sake of completeness, we should also support
* 'except' here, although it is mostly useless in this case.
*/
int len;
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&t->cli_addr))->sin6_addr,
pn, sizeof(pn));
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (t->be->fwdfor_hdr_len) {
len = t->be->fwdfor_hdr_len;
memcpy(trash, t->be->fwdfor_hdr_name, len);
} else {
len = t->fe->fwdfor_hdr_len;
memcpy(trash, t->fe->fwdfor_hdr_name, len);
}
len += sprintf(trash + len, ": %s", pn);
if (unlikely(http_header_add_tail2(req, &txn->req,
&txn->hdr_idx, trash, len)) < 0)
goto return_bad_req;
}
}
/*
* 10: add "Connection: close" if needed and not yet set.
* Note that we do not need to add it in case of HTTP/1.0.
*/
if (!(t->flags & SN_CONN_CLOSED) &&
((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) {
if ((unlikely(msg->sl.rq.v_l != 8) ||
unlikely(req->data[msg->som + msg->sl.rq.v + 7] != '0')) &&
unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx,
"Connection: close", 17)) < 0)
goto return_bad_req;
t->flags |= SN_CONN_CLOSED;
}
/* Before we switch to data, was assignment set in manage_client_side_cookie?
* If not assigned, perhaps we are balancing on url_param, but this is a
* POST; and the parameters are in the body, maybe scan there to find our server.
* (unless headers overflowed the buffer?)
*/
if (!(t->flags & (SN_ASSIGNED|SN_DIRECT)) &&
t->txn.meth == HTTP_METH_POST && t->be->url_param_name != NULL &&
t->be->url_param_post_limit != 0 && !(req->flags & BF_FULL) &&
memchr(msg->sol + msg->sl.rq.u, '?', msg->sl.rq.u_l) == NULL) {
/* are there enough bytes here? total == l || r || rlim ?
* len is unsigned, but eoh is int,
* how many bytes of body have we received?
* eoh is the first empty line of the header
*/
/* already established CRLF or LF at eoh, move to start of message, find message length in buffer */
unsigned long len = req->l - (msg->sol[msg->eoh] == '\r' ? msg->eoh + 2 : msg->eoh + 1);
/* If we have HTTP/1.1 and Expect: 100-continue, then abort.
* We can't assume responsibility for the server's decision,
* on this URI and header set. See rfc2616: 14.20, 8.2.3,
* We also can't change our mind later, about which server to choose, so round robin.
*/
if ((likely(msg->sl.rq.v_l == 8) && req->data[msg->som + msg->sl.rq.v + 7] == '1')) {
struct hdr_ctx ctx;
ctx.idx = 0;
/* Expect is allowed in 1.1, look for it */
http_find_header2("Expect", 6, msg->sol, &txn->hdr_idx, &ctx);
if (ctx.idx != 0 &&
unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0))
/* We can't reliablly stall and wait for data, because of
* .NET clients that don't conform to rfc2616; so, no need for
* the next block to check length expectations.
* We could send 100 status back to the client, but then we need to
* re-write headers, and send the message. And this isn't the right
* place for that action.
* TODO: support Expect elsewhere and delete this block.
*/
goto end_check_maybe_wait_for_body;
}
if (likely(len > t->be->url_param_post_limit)) {
/* nothing to do, we got enough */
} else {
/* limit implies we are supposed to need this many bytes
* to find the parameter. Let's see how many bytes we can wait for.
*/
long long hint = len;
struct hdr_ctx ctx;
ctx.idx = 0;
http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx);
if (ctx.idx && ctx.vlen >= 7 && strncasecmp(ctx.line+ctx.val, "chunked", 7) == 0) {
req->flags &= ~BF_MAY_FORWARD;
req->analysers |= AN_REQ_HTTP_BODY;
}
else {
ctx.idx = 0;
http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx);
/* now if we have a length, we'll take the hint */
if (ctx.idx) {
/* We have Content-Length */
if (strl2llrc(ctx.line+ctx.val,ctx.vlen, &hint))
hint = 0; /* parse failure, untrusted client */
else {
if (hint > 0)
msg->hdr_content_len = hint;
else
hint = 0; /* bad client, sent negative length */
}
}
/* but limited to what we care about, maybe we don't expect any entity data (hint == 0) */
if (t->be->url_param_post_limit < hint)
hint = t->be->url_param_post_limit;
/* now do we really need to buffer more data? */
if (len < hint) {
req->flags &= ~BF_MAY_FORWARD;
req->analysers |= AN_REQ_HTTP_BODY;
}
/* else... There are no body bytes to wait for */
}
}
}
end_check_maybe_wait_for_body:
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
buffer_set_rlim(req, BUFSIZE); /* no more rewrite needed */
t->logs.tv_request = now;
/* When a connection is tarpitted, we use the tarpit timeout,
* which may be the same as the connect timeout if unspecified.
* If unset, then set it to zero because we really want it to
* eventually expire. We build the tarpit as an analyser.
*/
if (txn->flags & TX_CLTARPIT) {
buffer_flush(t->req);
/* flush the request so that we can drop the connection early
* if the client closes first.
*/
req->flags &= ~BF_MAY_FORWARD;
req->analysers |= AN_REQ_HTTP_TARPIT;
req->analyse_exp = tick_add_ifset(now_ms, t->be->timeout.tarpit);
if (!req->analyse_exp)
req->analyse_exp = now_ms;
}
/* OK let's go on with the BODY now */
goto end_of_headers;
return_bad_req: /* let's centralize all bad requests */
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
req->analysers = 0;
client_retnclose(t, error_message(t, HTTP_ERR_400));
t->fe->failed_req++;
return_prx_cond:
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 0;
end_of_headers:
; // to keep gcc happy
}
if (req->analysers & AN_REQ_HTTP_TARPIT) {
struct http_txn *txn = &t->txn;
/* This connection is being tarpitted. The CLIENT side has
* already set the connect expiration date to the right
* timeout. We just have to check that the client is still
* there and that the timeout has not expired.
*/
if ((req->flags & (BF_READ_NULL|BF_READ_ERROR)) == 0 &&
!tick_is_expired(req->analyse_exp, now_ms))
return 0;
/* We will set the queue timer to the time spent, just for
* logging purposes. We fake a 500 server error, so that the
* attacker will not suspect his connection has been tarpitted.
* It will not cause trouble to the logs because we can exclude
* the tarpitted connections by filtering on the 'PT' status flags.
*/
trace_term(t, TT_HTTP_SRV_2);
t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
txn->status = 500;
if (req->flags != BF_READ_ERROR)
client_retnclose(t, error_message(t, HTTP_ERR_500));
req->analysers = 0;
req->analyse_exp = TICK_ETERNITY;
t->fe->failed_req++;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_T;
return 0;
}
if (req->analysers & AN_REQ_HTTP_BODY) {
/* We have to parse the HTTP request body to find any required data.
* "balance url_param check_post" should have been the only way to get
* into this. We were brought here after HTTP header analysis, so all
* related structures are ready.
*/
struct http_msg *msg = &t->txn.req;
unsigned long body = msg->sol[msg->eoh] == '\r' ? msg->eoh + 2 : msg->eoh + 1;
long long limit = t->be->url_param_post_limit;
struct hdr_ctx ctx;
ctx.idx = 0;
/* now if we have a length, we'll take the hint */
http_find_header2("Transfer-Encoding", 17, msg->sol, &t->txn.hdr_idx, &ctx);
if (ctx.idx && ctx.vlen >= 7 && strncasecmp(ctx.line+ctx.val, "chunked", 7) == 0) {
unsigned int chunk = 0;
while (body < req->l && !HTTP_IS_CRLF(msg->sol[body])) {
char c = msg->sol[body];
if (ishex(c)) {
unsigned int hex = toupper(c) - '0';
if (hex > 9)
hex -= 'A' - '9' - 1;
chunk = (chunk << 4) | hex;
} else
break;
body++;
}
if (body + 2 >= req->l) /* we want CRLF too */
goto http_body_end; /* end of buffer? data missing! */
if (memcmp(msg->sol+body, "\r\n", 2) != 0)
goto http_body_end; /* chunked encoding len ends with CRLF, and we don't have it yet */
body += 2; // skip CRLF
/* if we support more then one chunk here, we have to do it again when assigning server
* 1. how much entity data do we have? new var
* 2. should save entity_start, entity_cursor, elen & rlen in req; so we don't repeat scanning here
* 3. test if elen > limit, or set new limit to elen if 0 (end of entity found)
*/
if (chunk < limit)
limit = chunk; /* only reading one chunk */
} else {
if (msg->hdr_content_len < limit)
limit = msg->hdr_content_len;
}
http_body_end:
/* we leave once we know we have nothing left to do. This means that we have
* enough bytes, or that we know we'll not get any more (buffer full, read
* buffer closed).
*/
if (req->l - body >= limit || /* enough bytes! */
req->flags & (BF_FULL | BF_READ_ERROR | BF_SHUTR | BF_READ_NULL | BF_READ_TIMEOUT) ||
tick_is_expired(req->analyse_exp, now_ms)) {
/* The situation will not evolve, so let's give up on the analysis. */
t->logs.tv_request = now; /* update the request timer to reflect full request */
req->analysers &= ~AN_REQ_HTTP_BODY;
req->analyse_exp = TICK_ETERNITY;
}
else {
/* Not enough data. We'll re-use the http-request
* timeout here. Ideally, we should set the timeout
* relative to the accept() date. We just set the
* request timeout once at the beginning of the
* request.
*/
req->flags &= ~BF_MAY_FORWARD;
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, t->fe->timeout.httpreq);
return 0;
}
}
/* Note: eventhough nobody should set an unknown flag, clearing them right now will
* probably reduce one day's debugging session.
*/
#ifdef DEBUG_DEV
if (req->analysers & ~(AN_REQ_INSPECT | AN_REQ_HTTP_HDR | AN_REQ_HTTP_TARPIT | AN_REQ_HTTP_BODY)) {
fprintf(stderr, "FIXME !!!! unknown analysers flags %s:%d = 0x%08X\n",
__FILE__, __LINE__, req->analysers);
ABORT_NOW();
}
#endif
req->analysers &= AN_REQ_INSPECT | AN_REQ_HTTP_HDR | AN_REQ_HTTP_TARPIT | AN_REQ_HTTP_BODY;
return 0;
}
/* This function performs all the processing enabled for the current response.
* It normally returns zero, but may return 1 if it absolutely needs to be
* called again after other functions. It relies on buffers flags, and updates
* t->rep->analysers. It might make sense to explode it into several other
* functions. It works like process_request (see indications above).
*/
int process_response(struct session *t)
{
struct http_txn *txn = &t->txn;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x analysers=%02x\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
req->rex, rep->wex, req->flags, rep->flags, rep->analysers);
if (rep->analysers & AN_RTR_HTTP_HDR) { /* receiving server headers */
/*
* Now parse the partial (or complete) lines.
* We will check the response syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* rep->data + rep->som = beginning of response
* rep->data + rep->eoh = end of processed headers / start of current one
* rep->data + rep->eol = end of current header or line (LF or CRLF)
* rep->lr = first non-visited byte
* rep->r = end of data
*/
int cur_idx;
struct http_msg *msg = &txn->rsp;
struct proxy *cur_proxy;
if (likely(rep->lr < rep->r))
http_msg_analyzer(rep, msg, &txn->hdr_idx);
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
(msg->msg_state == HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) {
char *eol, *sol;
sol = rep->data + msg->som;
eol = sol + msg->sl.rq.l;
debug_hdr("srvrep", t, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("srvhdr", t, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid response.
* If not so, we check the FD and buffer states before leaving.
* A full response is indicated by the fact that we have seen
* the double LF/CRLF, so the state is HTTP_MSG_BODY. Invalid
* responses are checked first.
*
* Depending on whether the client is still there or not, we
* may send an error response back or not. Note that normally
* we should only check for HTTP status there, and check I/O
* errors somewhere else.
*/
if (unlikely(msg->msg_state != HTTP_MSG_BODY)) {
/* Invalid response */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
hdr_response_bad:
//buffer_shutr(rep);
//buffer_shutw(req);
//fd_delete(req->cons->fd);
//req->cons->state = SI_ST_CLO;
buffer_shutr_now(rep);
buffer_shutw_now(req);
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_resp++;
//sess_change_server(t, NULL);
}
t->be->failed_resp++;
rep->analysers = 0;
txn->status = 502;
client_return(t, error_message(t, HTTP_ERR_502));
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
//if (t->srv && may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
return 0;
}
/* write error to client, read error or close from server */
if (rep->flags & (BF_WRITE_ERROR|BF_SHUTW|BF_READ_ERROR|BF_SHUTR|BF_READ_NULL)) {
buffer_shutr_now(rep);
buffer_shutw_now(req);
//fd_delete(req->cons->fd);
//req->cons->state = SI_ST_CLO;
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_resp++;
//sess_change_server(t, NULL);
}
t->be->failed_resp++;
rep->analysers = 0;
txn->status = 502;
client_return(t, error_message(t, HTTP_ERR_502));
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
//if (t->srv && may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
return 0;
}
/* too large response does not fit in buffer. */
else if (rep->flags & BF_FULL) {
goto hdr_response_bad;
}
/* read timeout : return a 504 to the client. */
else if (rep->flags & BF_READ_TIMEOUT) {
buffer_shutr_now(rep);
buffer_shutw_now(req);
//fd_delete(req->cons->fd);
//req->cons->state = SI_ST_CLO;
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_resp++;
//sess_change_server(t, NULL);
}
t->be->failed_resp++;
rep->analysers = 0;
txn->status = 504;
client_return(t, error_message(t, HTTP_ERR_504));
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
//if (t->srv && may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
return 0;
}
rep->flags &= ~BF_MAY_FORWARD;
return 0;
}
/*****************************************************************
* More interesting part now : we know that we have a complete *
* response which at least looks like HTTP. We have an indicator *
* of each header's length, so we can parse them quickly. *
****************************************************************/
rep->analysers &= ~AN_RTR_HTTP_HDR;
/* ensure we keep this pointer to the beginning of the message */
msg->sol = rep->data + msg->som;
/*
* 1: get the status code and check for cacheability.
*/
t->logs.logwait &= ~LW_RESP;
txn->status = strl2ui(rep->data + msg->sl.st.c, msg->sl.st.c_l);
switch (txn->status) {
case 200:
case 203:
case 206:
case 300:
case 301:
case 410:
/* RFC2616 @13.4:
* "A response received with a status code of
* 200, 203, 206, 300, 301 or 410 MAY be stored
* by a cache (...) unless a cache-control
* directive prohibits caching."
*
* RFC2616 @9.5: POST method :
* "Responses to this method are not cacheable,
* unless the response includes appropriate
* Cache-Control or Expires header fields."
*/
if (likely(txn->meth != HTTP_METH_POST) &&
(t->be->options & (PR_O_CHK_CACHE|PR_O_COOK_NOC)))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
break;
default:
break;
}
/*
* 2: we may need to capture headers
*/
if (unlikely((t->logs.logwait & LW_RSPHDR) && t->fe->rsp_cap))
capture_headers(rep->data + msg->som, &txn->hdr_idx,
txn->rsp.cap, t->fe->rsp_cap);
/*
* 3: we will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* Filters are tried with ->be first, then with ->fe if it is
* different from ->be.
*/
t->flags &= ~SN_CONN_CLOSED; /* prepare for inspection */
cur_proxy = t->be;
while (1) {
struct proxy *rule_set = cur_proxy;
/* try headers filters */
if (rule_set->rsp_exp != NULL) {
if (apply_filters_to_response(t, rep, rule_set->rsp_exp) < 0) {
return_bad_resp:
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_resp++;
//sess_change_server(t, NULL);
}
cur_proxy->failed_resp++;
return_srv_prx_502:
buffer_shutr_now(rep);
buffer_shutw_now(req);
//fd_delete(req->cons->fd);
//req->cons->state = SI_ST_CLO;
rep->analysers = 0;
txn->status = 502;
client_return(t, error_message(t, HTTP_ERR_502));
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
//if (t->srv && may_dequeue_tasks(t->srv, cur_proxy))
// process_srv_queue(t->srv);
return 0;
}
}
/* has the response been denied ? */
if (txn->flags & TX_SVDENY) {
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_secu++;
//sess_change_server(t, NULL);
}
cur_proxy->denied_resp++;
goto return_srv_prx_502;
}
/* We might have to check for "Connection:" */
if (((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) &&
!(t->flags & SN_CONN_CLOSED)) {
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, delta, val;
struct hdr_idx_elem *cur_hdr;
cur_next = rep->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
val = http_header_match2(cur_ptr, cur_end, "Connection", 10);
if (val) {
/* 3 possibilities :
* - we have already set Connection: close,
* so we remove this line.
* - we have not yet set Connection: close,
* but this line indicates close. We leave
* it untouched and set the flag.
* - we have not yet set Connection: close,
* and this line indicates non-close. We
* replace it.
*/
if (t->flags & SN_CONN_CLOSED) {
delta = buffer_replace2(rep, cur_ptr, cur_next, NULL, 0);
txn->rsp.eoh += delta;
cur_next += delta;
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
} else {
if (strncasecmp(cur_ptr + val, "close", 5) != 0) {
delta = buffer_replace2(rep, cur_ptr + val, cur_end,
"close", 5);
cur_next += delta;
cur_hdr->len += delta;
txn->rsp.eoh += delta;
}
t->flags |= SN_CONN_CLOSED;
}
}
old_idx = cur_idx;
}
}
/* add response headers from the rule sets in the same order */
for (cur_idx = 0; cur_idx < rule_set->nb_rspadd; cur_idx++) {
if (unlikely(http_header_add_tail(rep, &txn->rsp, &txn->hdr_idx,
rule_set->rsp_add[cur_idx])) < 0)
goto return_bad_resp;
}
/* check whether we're already working on the frontend */
if (cur_proxy == t->fe)
break;
cur_proxy = t->fe;
}
/*
* 4: check for server cookie.
*/
if (t->be->cookie_name || t->be->appsession_name || t->be->capture_name
|| (t->be->options & PR_O_CHK_CACHE))
manage_server_side_cookies(t, rep);
/*
* 5: check for cache-control or pragma headers if required.
*/
if ((t->be->options & (PR_O_COOK_NOC | PR_O_CHK_CACHE)) != 0)
check_response_for_cacheability(t, rep);
/*
* 6: add server cookie in the response if needed
*/
if ((t->srv) && !(t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_INS) &&
(!(t->be->options & PR_O_COOK_POST) || (txn->meth == HTTP_METH_POST))) {
int len;
/* the server is known, it's not the one the client requested, we have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
len = sprintf(trash, "Set-Cookie: %s=%s; path=/",
t->be->cookie_name,
t->srv->cookie ? t->srv->cookie : "; Expires=Thu, 01-Jan-1970 00:00:01 GMT");
if (t->be->cookie_domain)
len += sprintf(trash+len, "; domain=%s", t->be->cookie_domain);
if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx,
trash, len)) < 0)
goto return_bad_resp;
txn->flags |= TX_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if ((t->be->options & PR_O_COOK_NOC) && (txn->flags & TX_CACHEABLE)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx,
"Cache-control: private", 22)) < 0)
goto return_bad_resp;
}
}
/*
* 7: check if result will be cacheable with a cookie.
* We'll block the response if security checks have caught
* nasty things such as a cacheable cookie.
*/
if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) ==
(TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) &&
(t->be->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
if (t->srv) {
//t->srv->cur_sess--;
t->srv->failed_secu++;
//sess_change_server(t, NULL);
}
t->be->denied_resp++;
Alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
t->be->id, t->srv?t->srv->id:"<dispatch>");
send_log(t->be, LOG_ALERT,
"Blocking cacheable cookie in response from instance %s, server %s.\n",
t->be->id, t->srv?t->srv->id:"<dispatch>");
goto return_srv_prx_502;
}
/*
* 8: add "Connection: close" if needed and not yet set.
* Note that we do not need to add it in case of HTTP/1.0.
*/
if (!(t->flags & SN_CONN_CLOSED) &&
((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) {
if ((unlikely(msg->sl.st.v_l != 8) ||
unlikely(req->data[msg->som + 7] != '0')) &&
unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx,
"Connection: close", 17)) < 0)
goto return_bad_resp;
t->flags |= SN_CONN_CLOSED;
}
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
buffer_set_rlim(rep, BUFSIZE); /* no more rewrite needed */
t->logs.t_data = tv_ms_elapsed(&t->logs.tv_accept, &now);
#ifdef CONFIG_HAP_TCPSPLICE
if ((t->fe->options & t->be->options) & PR_O_TCPSPLICE) {
/* TCP splicing supported by both FE and BE */
tcp_splice_splicefd(t->cli_fd, req->cons->fd, 0);
}
#endif
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. We have
* to temporarily assign bytes_out to log what we currently have.
*/
if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_data; /* to get a valid end date */
t->logs.bytes_out = txn->rsp.eoh;
if (t->fe->to_log & LW_REQ)
http_sess_log(t);
else
tcp_sess_log(t);
t->logs.bytes_out = 0;
}
/* Note: we must not try to cheat by jumping directly to DATA,
* otherwise we would not let the client side wake up.
*/
return 0;
}
/* Note: eventhough nobody should set an unknown flag, clearing them right now will
* probably reduce one day's debugging session.
*/
#ifdef DEBUG_DEV
if (rep->analysers & ~(AN_RTR_HTTP_HDR)) {
fprintf(stderr, "FIXME !!!! unknown analysers flags %s:%d = 0x%08X\n",
__FILE__, __LINE__, rep->analysers);
ABORT_NOW();
}
#endif
rep->analysers &= AN_RTR_HTTP_HDR;
return 0;
}
/*
* Manages the client FSM and its socket. It normally returns zero, but may
* return 1 if it absolutely wants to be called again.
*
* Note: process_cli is the ONLY function allowed to set cli_state to anything
* but CL_STCLOSE.
*/
int process_cli(struct session *t)
{
struct buffer *req = t->req;
struct buffer *rep = t->rep;
DPRINTF(stderr,"[%u] %s: fd=%d[%d] c=%s set(r,w)=%d,%d exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
now_ms, __FUNCTION__,
t->cli_fd, t->cli_fd >= 0 ? fdtab[t->cli_fd].state : 0, /* fd,state*/
cli_stnames[t->cli_state],
t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_RD) : 0,
t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_WR) : 0,
req->rex, rep->wex,
req->flags, rep->flags,
req->l, rep->l);
update_state:
/* FIXME: we still have to check for CL_STSHUTR because client_retnclose
* still set this state (and will do until unix sockets are converted).
*/
if (t->cli_state == CL_STDATA || t->cli_state == CL_STSHUTR) {
/* we can skip most of the tests at once if some conditions are not met */
if (!((fdtab[t->cli_fd].state == FD_STERROR) ||
(req->flags & (BF_READ_TIMEOUT|BF_READ_ERROR|BF_SHUTR_NOW)) ||
(rep->flags & (BF_WRITE_TIMEOUT|BF_WRITE_ERROR|BF_SHUTW_NOW)) ||
(!(req->flags & BF_SHUTR) && req->flags & (BF_READ_NULL|BF_SHUTW)) ||
(!(rep->flags & BF_SHUTW) &&
(rep->flags & (BF_EMPTY|BF_MAY_FORWARD|BF_SHUTR)) == (BF_EMPTY|BF_MAY_FORWARD|BF_SHUTR))))
goto update_timeouts;
/* read or write error */
if (fdtab[t->cli_fd].state == FD_STERROR) {
buffer_shutr(req);
req->flags |= BF_READ_ERROR;
buffer_shutw(rep);
rep->flags |= BF_WRITE_ERROR;
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_1);
if (!req->analysers) {
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (req->cons->err_type <= SI_ET_QUEUE_ABRT)
t->flags |= SN_FINST_Q;
else if (req->cons->err_type <= SI_ET_CONN_OTHER)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
}
goto update_state;
}
/* last read, or end of server write */
else if (!(req->flags & BF_SHUTR) && /* not already done */
req->flags & (BF_READ_NULL|BF_SHUTR_NOW|BF_SHUTW)) {
buffer_shutr(req);
if (!(rep->flags & BF_SHUTW)) {
EV_FD_CLR(t->cli_fd, DIR_RD);
trace_term(t, TT_HTTP_CLI_2);
} else {
/* output was already closed */
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_3);
}
goto update_state;
}
/* last server read and buffer empty : we only check them when we're
* allowed to forward the data.
*/
else if (!(rep->flags & BF_SHUTW) && /* not already done */
((rep->flags & BF_SHUTW_NOW) ||
(rep->flags & BF_EMPTY && rep->flags & BF_MAY_FORWARD &&
rep->flags & BF_SHUTR && !(t->flags & SN_SELF_GEN)))) {
buffer_shutw(rep);
if (!(req->flags & BF_SHUTR)) {
EV_FD_CLR(t->cli_fd, DIR_WR);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching to shutw */
/* FIXME: is this still true ? */
EV_FD_SET(t->cli_fd, DIR_RD);
req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
trace_term(t, TT_HTTP_CLI_4);
} else {
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_5);
}
goto update_state;
}
/* read timeout */
else if ((req->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT) {
buffer_shutr(req);
if (!(rep->flags & BF_SHUTW)) {
EV_FD_CLR(t->cli_fd, DIR_RD);
trace_term(t, TT_HTTP_CLI_6);
} else {
/* output was already closed */
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_7);
}
if (!req->analysers) {
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (req->cons->err_type <= SI_ET_QUEUE_ABRT)
t->flags |= SN_FINST_Q;
else if (req->cons->err_type <= SI_ET_CONN_OTHER)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
}
goto update_state;
}
/* write timeout */
else if ((rep->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT) {
buffer_shutw(rep);
if (!(req->flags & BF_SHUTR)) {
EV_FD_CLR(t->cli_fd, DIR_WR);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching to shutw */
/* FIXME: is this still true ? */
EV_FD_SET(t->cli_fd, DIR_RD);
req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
trace_term(t, TT_HTTP_CLI_8);
} else {
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_9);
}
if (!req->analysers) {
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (req->cons->err_type <= SI_ET_QUEUE_ABRT)
t->flags |= SN_FINST_Q;
else if (req->cons->err_type <= SI_ET_CONN_OTHER)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
}
goto update_state;
}
update_timeouts:
/* manage read timeout */
if (!(req->flags & BF_SHUTR)) {
if (req->flags & BF_FULL) {
/* no room to read more data */
if (EV_FD_COND_C(t->cli_fd, DIR_RD)) {
/* stop reading until we get some space */
req->rex = TICK_ETERNITY;
}
} else {
EV_FD_COND_S(t->cli_fd, DIR_RD);
req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
}
}
/* manage write timeout */
if (!(rep->flags & BF_SHUTW)) {
/* first, we may have to produce data (eg: stats).
* right now, this is limited to the SHUTR state.
*/
if (req->flags & BF_SHUTR && t->flags & SN_SELF_GEN) {
produce_content(t);
if (rep->flags & BF_EMPTY) {
buffer_shutw(rep);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
trace_term(t, TT_HTTP_CLI_10);
goto update_state;
}
}
/* we don't enable client write if the buffer is empty, nor if the server has to analyze it */
if ((rep->flags & (BF_EMPTY|BF_MAY_FORWARD)) != BF_MAY_FORWARD) {
if (EV_FD_COND_C(t->cli_fd, DIR_WR)) {
/* stop writing */
rep->wex = TICK_ETERNITY;
}
} else {
/* buffer not empty */
EV_FD_COND_S(t->cli_fd, DIR_WR);
if (!tick_isset(rep->wex)) {
/* restart writing */
rep->wex = tick_add_ifset(now_ms, t->fe->timeout.client);
if (!(req->flags & BF_SHUTR) && tick_isset(rep->wex) && tick_isset(req->rex)) {
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it, except if it was already infinite. */
req->rex = rep->wex;
}
}
}
}
return 0; /* other cases change nothing */
}
else if (t->cli_state == CL_STCLOSE) { /* CL_STCLOSE: nothing to do */
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->be->id, (unsigned short)t->cli_fd, (unsigned short)req->cons->fd);
write(1, trash, len);
}
return 0;
}
#ifdef DEBUG_DEV
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, t->cli_state);
ABORT_NOW();
#endif
return 0;
}
/* Return 1 if the pending connection has failed and should be retried,
* otherwise zero. We may only come here in SI_ST_CON state, which means that
* the socket's file descriptor is known.
*/
int tcp_connection_status(struct session *t)
{
struct buffer *req = t->req;
struct buffer *rep = t->rep;
int conn_err = 0;
DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
rep->rex, req->wex,
req->flags, rep->flags,
req->l, rep->l);
if ((req->flags & BF_SHUTW_NOW) ||
(rep->flags & BF_SHUTW) ||
((req->flags & BF_SHUTR) && /* FIXME: this should not prevent a connection from establishing */
((req->flags & BF_EMPTY && !(req->flags & BF_WRITE_STATUS)) ||
t->be->options & PR_O_ABRT_CLOSE))) { /* give up */
trace_term(t, TT_HTTP_SRV_5);
req->wex = TICK_ETERNITY;
fd_delete(req->cons->fd);
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
}
/* note that this must not return any error because it would be able to
* overwrite the client_retnclose() output.
*/
//srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_C, 0, NULL);
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutw(req);
buffer_shutr(rep);
req->cons->state = SI_ST_CLO;
if (!req->cons->err_type)
req->cons->err_type = SI_ET_CONN_ABRT;
req->cons->err_loc = t->srv;
return 0;
}
/* check for timeouts and asynchronous connect errors */
if (fdtab[req->cons->fd].state == FD_STERROR) {
conn_err = SI_ET_CONN_ERR;
if (!req->cons->err_type)
req->cons->err_type = SI_ET_CONN_ERR;
}
else if (!(req->flags & BF_WRITE_STATUS)) {
/* nothing happened, maybe we timed out */
if (tick_is_expired(req->wex, now_ms)) {
conn_err = SI_ET_CONN_TO;
if (!req->cons->err_type)
req->cons->err_type = SI_ET_CONN_TO;
}
else
return 0; /* let's wait a bit more */
}
if (conn_err) {
fd_delete(req->cons->fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
req->cons->err_loc = t->srv;
}
/* ensure that we have enough retries left */
if (srv_count_retry_down(t, conn_err))
return 0;
if (conn_err == SI_ET_CONN_ERR) {
/* we encountered an immediate connection error, and we
* will have to retry connecting to the same server, most
* likely leading to the same result. To avoid this, we
* fake a connection timeout to retry after a turn-around
* time of 1 second. We will wait in the previous if block.
*/
req->cons->state = SI_ST_TAR;
req->wex = tick_add(now_ms, MS_TO_TICKS(1000));
return 0;
}
if (t->srv && t->conn_retries == 0 && t->be->options & PR_O_REDISP) {
/* We're on our last chance, and the REDISP option was specified.
* We will ignore cookie and force to balance or use the dispatcher.
*/
/* let's try to offer this slot to anybody */
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
/* it's left to the dispatcher to choose a server */
t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
t->prev_srv = t->srv;
} else {
/* we just want to retry */
if (t->srv)
t->srv->retries++;
t->be->retries++;
/* Now we will try to either reconnect to the same server or
* connect to another server. If the connection gets queued
* because all servers are saturated, then we will go back to
* the idle state where the buffer's consumer is marked as
* unknown.
*/
if (srv_retryable_connect(t)) {
/* success or unrecoverable error */
t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
return 0;
}
}
/* We'll rely on the caller to try to get a connection again */
return 1;
}
else {
/* no error and write OK : connection succeeded */
t->logs.t_connect = tv_ms_elapsed(&t->logs.tv_accept, &now);
req->cons->state = SI_ST_EST;
req->cons->err_type = SI_ET_NONE;
req->cons->err_loc = NULL;
if (req->flags & BF_EMPTY) {
EV_FD_CLR(req->cons->fd, DIR_WR);
req->wex = TICK_ETERNITY;
} else {
EV_FD_SET(req->cons->fd, DIR_WR);
req->wex = tick_add_ifset(now_ms, t->be->timeout.server);
if (tick_isset(req->wex)) {
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
rep->rex = req->wex;
}
}
if (t->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
if (!(rep->flags & BF_HIJACK)) {
EV_FD_SET(req->cons->fd, DIR_RD);
rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
}
buffer_set_rlim(rep, BUFSIZE); /* no rewrite needed */
/* if the user wants to log as soon as possible, without counting
bytes from the server, then this is the right moment. */
if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_connect; /* to get a valid end date */
tcp_sess_log(t);
}
#ifdef CONFIG_HAP_TCPSPLICE
if ((t->fe->options & t->be->options) & PR_O_TCPSPLICE) {
/* TCP splicing supported by both FE and BE */
tcp_splice_splicefd(t->cli_fd, req->cons->fd, 0);
}
#endif
}
else {
rep->analysers |= AN_RTR_HTTP_HDR;
buffer_set_rlim(rep, BUFSIZE - MAXREWRITE); /* rewrite needed */
t->txn.rsp.msg_state = HTTP_MSG_RPBEFORE;
/* reset hdr_idx which was already initialized by the request.
* right now, the http parser does it.
* hdr_idx_init(&t->txn.hdr_idx);
*/
}
if (!rep->analysers)
t->rep->flags |= BF_MAY_FORWARD;
req->wex = TICK_ETERNITY;
return 0;
}
}
/*
* This function tries to assign a server to a stream_sock interface.
* It may be called only for t->req->cons->state = one of { SI_ST_INI,
* SI_ST_TAR, SI_ST_QUE }. It returns one of those states, SI_ST_ASS
* in case of success, or SI_ST_CLO in case of failure. It returns 1 if
* it returns SI_ST_ASS, otherwise zero.
*/
int stream_sock_assign_server(struct session *t)
{
DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
t->rep->rex, t->req->wex,
t->req->flags, t->rep->flags,
t->req->l, t->rep->l);
if (t->req->cons->state == SI_ST_TAR) {
/* connection might be aborted */
if ((t->req->flags & BF_SHUTW_NOW) ||
(t->rep->flags & BF_SHUTW) ||
((t->req->flags & BF_SHUTR) && /* FIXME: this should not prevent a connection from establishing */
(t->req->flags & BF_EMPTY || t->be->options & PR_O_ABRT_CLOSE))) { /* give up */
trace_term(t, TT_HTTP_SRV_1);
t->req->wex = TICK_ETERNITY;
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_CONN_ABRT;
t->req->cons->state = SI_ST_CLO;
return 0;
}
if (!tick_is_expired(t->req->wex, now_ms))
return 0; /* still in turn-around */
t->req->cons->state = SI_ST_INI;
}
else if (t->req->cons->state == SI_ST_QUE) {
if (t->pend_pos) {
/* request still in queue... */
if (tick_is_expired(t->req->wex, now_ms)) {
/* ... and timeout expired */
trace_term(t, TT_HTTP_SRV_3);
t->req->wex = TICK_ETERNITY;
t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
if (t->srv)
t->srv->failed_conns++;
t->be->failed_conns++;
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
t->req->flags |= BF_WRITE_TIMEOUT;
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_QUEUE_TO;
t->req->cons->state = SI_ST_CLO;
return 0;
}
/* connection remains in queue, check if we have to abort it */
if ((t->req->flags & BF_SHUTW_NOW) ||
(t->rep->flags & BF_SHUTW) ||
((t->req->flags & BF_SHUTR) && /* FIXME: this should not prevent a connection from establishing */
(t->req->flags & BF_EMPTY || t->be->options & PR_O_ABRT_CLOSE))) {
/* give up */
trace_term(t, TT_HTTP_SRV_1);
t->req->wex = TICK_ETERNITY;
t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_QUEUE_ABRT;
t->req->cons->state = SI_ST_CLO;
}
return 0;
}
/* The connection is not in the queue anymore */
t->req->cons->state = SI_ST_INI;
}
/* we may get here from above */
if (t->req->cons->state == SI_ST_INI) {
/* no connection in progress, we have to get a new one */
/* first, check if the connection has been aborted */
if ((t->req->flags & BF_SHUTW_NOW) ||
(t->rep->flags & BF_SHUTW) ||
((t->req->flags & BF_SHUTR) &&
(t->req->flags & BF_EMPTY || t->be->options & PR_O_ABRT_CLOSE))) { /* give up */
trace_term(t, TT_HTTP_SRV_1);
t->req->wex = TICK_ETERNITY;
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_CONN_ABRT;
t->req->cons->state = SI_ST_CLO;
return 0;
}
/* try to get a server assigned */
if (srv_redispatch_connect(t) != 0) {
/* we did not get any server, let's check the cause */
if (t->req->cons->state == SI_ST_QUE) {
/* the connection was queued, that's OK */
return 0;
}
trace_term(t, TT_HTTP_SRV_2);
t->req->wex = TICK_ETERNITY;
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
t->req->flags |= BF_WRITE_ERROR;
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_CONN_OTHER;
t->req->cons->state = SI_ST_CLO;
return 0;
}
t->req->cons->state = SI_ST_ASS;
/* Once the server is assigned, we have to return because
* the caller might be interested in checking several
* things before connecting.
*/
return 1;
}
return 0;
}
/*
* This function tries to establish a connection to an assigned server. It also
* performs connection retries. It may only be called with t->req->cons->state
* in { SI_ST_ASS, SI_ST_CON }. It may also set the state to SI_ST_INI,
* SI_ST_EST, or SI_ST_CLO.
*/
int stream_sock_connect_server(struct session *t)
{
if (t->req->cons->state == SI_ST_ASS) {
/* server assigned to request, we have to try to connect now */
if (!srv_retryable_connect(t)) {
/* we need to redispatch */
t->req->cons->state = SI_ST_INI;
return 0;
}
t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
if (t->req->cons->state != SI_ST_CON) {
/* it was an error */
trace_term(t, TT_HTTP_SRV_4);
t->req->wex = TICK_ETERNITY;
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutr(t->rep);
buffer_shutw(t->req);
t->req->flags |= BF_WRITE_ERROR;
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_CONN_OTHER;
t->req->cons->state = SI_ST_CLO;
return 0;
}
/* We have a socket and switched to SI_ST_CON */
}
/* we may also get here from above */
if (t->req->cons->state == SI_ST_CON) {
/* connection in progress or just completed */
if (!tcp_connection_status(t))
return 0;
}
return 0;
}
/*
* Tries to establish a connection to the server and associate it to the
* request buffer's consumer side. It is assumed that this function will not be
* be called with SI_ST_EST nor with BF_MAY_FORWARD cleared. It normally
* returns zero, but may return 1 if it absolutely wants to be called again.
*/
int process_srv_conn(struct session *t)
{
DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
t->rep->rex, t->req->wex,
t->req->flags, t->rep->flags,
t->req->l, t->rep->l);
do {
if (t->req->cons->state == SI_ST_INI ||
t->req->cons->state == SI_ST_TAR ||
t->req->cons->state == SI_ST_QUE) {
/* try to assign a server */
if (!stream_sock_assign_server(t))
return 0;
}
if (t->req->cons->state == SI_ST_ASS &&
t->srv && t->srv->rdr_len && t->flags & SN_REDIRECTABLE) {
/* Server supporting redirection and it is possible.
* Invalid requests are reported as such. It concerns all
* the largest ones.
*/
struct http_txn *txn = &t->txn;
struct chunk rdr;
char *path;
int len;
/* 1: create the response header */
rdr.len = strlen(HTTP_302);
rdr.str = trash;
memcpy(rdr.str, HTTP_302, rdr.len);
/* 2: add the server's prefix */
if (rdr.len + t->srv->rdr_len > sizeof(trash))
goto cancel_redir;
memcpy(rdr.str + rdr.len, t->srv->rdr_pfx, t->srv->rdr_len);
rdr.len += t->srv->rdr_len;
/* 3: add the request URI */
path = http_get_path(txn);
if (!path)
goto cancel_redir;
len = txn->req.sl.rq.u_l + (txn->req.sol+txn->req.sl.rq.u) - path;
if (rdr.len + len > sizeof(trash) - 4) /* 4 for CRLF-CRLF */
goto cancel_redir;
memcpy(rdr.str + rdr.len, path, len);
rdr.len += len;
memcpy(rdr.str + rdr.len, "\r\n\r\n", 4);
rdr.len += 4;
srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C, 302, &rdr);
trace_term(t, TT_HTTP_SRV_3);
/* FIXME: we should increase a counter of redirects per server and per backend. */
if (t->srv)
t->srv->cum_sess++;
t->req->cons->state = SI_ST_CLO;
return 0;
cancel_redir:
//txn->status = 400;
//t->fe->failed_req++;
//srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C,
// 400, error_message(t, HTTP_ERR_400));
trace_term(t, TT_HTTP_SRV_4);
// FIXME: should we set rep->MAY_FORWARD ?
buffer_shutw(t->req);
buffer_shutr(t->rep);
if (!t->req->cons->err_type)
t->req->cons->err_type = SI_ET_CONN_OTHER;
t->req->cons->state = SI_ST_CLO;
return 0;
}
if (t->req->cons->state == SI_ST_CON ||
t->req->cons->state == SI_ST_ASS) {
stream_sock_connect_server(t);
}
} while (t->req->cons->state != SI_ST_CLO &&
t->req->cons->state != SI_ST_CON &&
t->req->cons->state != SI_ST_EST);
return 0;
}
/*
* Manages the server FSM and its socket during the DATA phase. It must not be
* called when a file descriptor is not attached to the buffer. It must only be
* called during SI_ST_EST. It normally returns zero, but may return 1 if it
* absolutely wants to be called again.
*/
int process_srv_data(struct session *t)
{
struct buffer *req = t->req;
struct buffer *rep = t->rep;
int fd = req->cons->fd;
DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
now_ms, __FUNCTION__,
cli_stnames[t->cli_state],
rep->rex, req->wex,
req->flags, rep->flags,
req->l, rep->l);
if (req->flags & (BF_WRITE_ERROR | BF_WRITE_TIMEOUT) ||
rep->flags & (BF_READ_ERROR | BF_READ_TIMEOUT)) {
/* nothing more to be done here */
fprintf(stderr, "Hey what are you doing there? t=%p fd=%d state=%d\n",
t, t->req->cons->fd, t->req->cons->state);
return 0;
}
/* we can skip most of the tests at once if some conditions are not met */
/* FIXME: place req->BF_SHUTW_NOW here */
//if (!((fdtab[fd].state == FD_STERROR) ||
// (!(req->flags & BF_SHUTW) &&
// (req->flags & (BF_EMPTY|BF_MAY_FORWARD)) == (BF_EMPTY|BF_MAY_FORWARD)) ||
// (rep->flags & (BF_READ_TIMEOUT|BF_READ_ERROR)) ||
// (!(rep->flags & BF_SHUTR) && rep->flags & (BF_READ_NULL|BF_SHUTR_NOW|BF_SHUTW))))
// goto update_timeouts;
/* read or write error */
/* FIXME: what happens when we have to deal with HTTP ??? */
if (fdtab[fd].state == FD_STERROR) {
trace_term(t, TT_HTTP_SRV_6);
buffer_shutw(req);
req->flags |= BF_WRITE_ERROR;
buffer_shutr(rep);
rep->flags |= BF_READ_ERROR;
fd_delete(fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
//t->srv->failed_resp++;
//FIXME: si on ne traite pas l'erreur ici, le serveur est perdu et on ne la comptabilisera plus ensuite.
//il va donc falloir stocker l'info du dernier serveur en erreur pour que les couches du dessus traitent.
sess_change_server(t, NULL);
}
//t->be->failed_resp++;
//if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVCL;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
//}
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 0;
}
/* last read, or end of client write */
if (!(rep->flags & BF_SHUTR) && /* not already done */
rep->flags & (BF_READ_NULL|BF_SHUTR_NOW|BF_SHUTW)) {
buffer_shutr(rep);
if (!(req->flags & BF_SHUTW)) {
EV_FD_CLR(fd, DIR_RD);
trace_term(t, TT_HTTP_SRV_7);
} else {
/* output was already closed */
trace_term(t, TT_HTTP_SRV_8);
fd_delete(fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
}
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 0;
}
}
/* end of client read and no more data to send. We can forward
* the close when we're allowed to forward data (anytime right
* now). If we're using option forceclose, then we may also
* shutdown the outgoing write channel once the response starts
* coming from the server.
*/
// FIXME: option FORCE_CLOSE should move to upper layer.
if (!(req->flags & BF_SHUTW) && /* not already done */
(req->flags & BF_SHUTW_NOW ||
(req->flags & BF_EMPTY && req->flags & BF_MAY_FORWARD &&
(req->flags & BF_SHUTR ||
(t->be->options & PR_O_FORCE_CLO && rep->flags & BF_READ_STATUS))))) {
buffer_shutw(req);
if (!(rep->flags & BF_SHUTR)) {
trace_term(t, TT_HTTP_SRV_9);
EV_FD_CLR(fd, DIR_WR);
shutdown(fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching to shutw */
/* FIXME: is this still true ? */
EV_FD_SET(fd, DIR_RD);
rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
} else {
trace_term(t, TT_HTTP_SRV_10);
fd_delete(fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
}
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 0;
}
}
/* read timeout */
if ((rep->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == 0 &&
tick_is_expired(rep->rex, now_ms)) {
rep->flags |= BF_READ_TIMEOUT;
//if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVTO;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
//}
buffer_shutr(rep);
if (!(req->flags & BF_SHUTW)) {
trace_term(t, TT_HTTP_SRV_11);
EV_FD_CLR(fd, DIR_RD);
} else {
trace_term(t, TT_HTTP_SRV_12);
fd_delete(fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
}
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 0;
}
}
/* write timeout */
if ((req->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == 0 &&
tick_is_expired(req->wex, now_ms)) {
req->flags |= BF_WRITE_TIMEOUT;
//if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVTO;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
//}
buffer_shutw(req);
if (!(rep->flags & BF_SHUTR)) {
trace_term(t, TT_HTTP_SRV_13);
EV_FD_CLR(fd, DIR_WR);
shutdown(fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching to shutw */
/* FIXME: is this still needed ? */
EV_FD_SET(fd, DIR_RD);
rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
} else {
trace_term(t, TT_HTTP_SRV_14);
fd_delete(fd);
req->cons->state = SI_ST_CLO;
if (t->srv) {
t->srv->cur_sess--;
sess_change_server(t, NULL);
}
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 0;
}
}
update_timeouts:
/* manage read timeout */
if (!(rep->flags & BF_SHUTR)) {
if (rep->flags & (BF_FULL|BF_HIJACK)) {
if (EV_FD_COND_C(fd, DIR_RD))
rep->rex = TICK_ETERNITY;
} else {
EV_FD_COND_S(fd, DIR_RD);
rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
}
}
/* manage write timeout */
if (!(req->flags & BF_SHUTW)) {
if ((req->flags & (BF_EMPTY|BF_MAY_FORWARD)) != BF_MAY_FORWARD) {
/* stop writing */
if (EV_FD_COND_C(fd, DIR_WR))
req->wex = TICK_ETERNITY;
} else {
/* buffer not empty, there are still data to be transferred */
EV_FD_COND_S(fd, DIR_WR);
if (!tick_isset(req->wex)) {
/* restart writing */
req->wex = tick_add_ifset(now_ms, t->be->timeout.server);
if (!(rep->flags & BF_SHUTR) && tick_isset(req->wex) && tick_isset(rep->rex)) {
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it, except if it was already infinite.
*/
rep->rex = req->wex;
}
}
}
}
return 0; /* other cases change nothing */
}
///*
// * Manages the client FSM and its socket. It normally returns zero, but may
// * return 1 if it absolutely wants to be called again.
// *
// * Note: process_cli is the ONLY function allowed to set cli_state to anything
// * but CL_STCLOSE.
// */
//int process_cli(struct session *t)
//{
// struct buffer *req = t->req;
// struct buffer *rep = t->rep;
//
// DPRINTF(stderr,"[%u] %s: c=%s set(r,w)=%d,%d exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
// now_ms, __FUNCTION__,
// cli_stnames[t->cli_state],
// t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_RD) : 0,
// t->cli_fd >= 0 && fdtab[t->cli_fd].state != FD_STCLOSE ? EV_FD_ISSET(t->cli_fd, DIR_WR) : 0,
// req->rex, rep->wex,
// req->flags, rep->flags,
// req->l, rep->l);
//
// update_state:
// /* FIXME: we still have to check for CL_STSHUTR because client_retnclose
// * still set this state (and will do until unix sockets are converted).
// */
// if (t->cli_state == CL_STDATA || t->cli_state == CL_STSHUTR) {
// /* we can skip most of the tests at once if some conditions are not met */
// if (!((req->flags & (BF_READ_TIMEOUT|BF_READ_ERROR)) ||
// (rep->flags & (BF_WRITE_TIMEOUT|BF_WRITE_ERROR)) ||
// (!(req->flags & BF_SHUTR) && req->flags & (BF_READ_NULL|BF_SHUTW)) ||
// (!(rep->flags & BF_SHUTW) &&
// (rep->flags & (BF_EMPTY|BF_MAY_FORWARD|BF_SHUTR)) == (BF_EMPTY|BF_MAY_FORWARD|BF_SHUTR))))
// goto update_timeouts;
//
// /* read or write error */
// if (rep->flags & BF_WRITE_ERROR || req->flags & BF_READ_ERROR) {
// buffer_shutr(req);
// buffer_shutw(rep);
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_1);
// if (!req->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_CLICL;
// if (!(t->flags & SN_FINST_MASK)) {
// if (t->pend_pos)
// t->flags |= SN_FINST_Q;
// else if (!(req->flags & BF_CONNECTED))
// t->flags |= SN_FINST_C;
// else
// t->flags |= SN_FINST_D;
// }
// }
// goto update_state;
// }
// /* last read, or end of server write */
// else if (!(req->flags & BF_SHUTR) && /* not already done */
// req->flags & (BF_READ_NULL | BF_SHUTW)) {
// buffer_shutr(req);
// if (!(rep->flags & BF_SHUTW)) {
// EV_FD_CLR(t->cli_fd, DIR_RD);
// trace_term(t, TT_HTTP_CLI_2);
// } else {
// /* output was already closed */
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_3);
// }
// goto update_state;
// }
// /* last server read and buffer empty : we only check them when we're
// * allowed to forward the data.
// */
// else if (!(rep->flags & BF_SHUTW) && /* not already done */
// rep->flags & BF_EMPTY && rep->flags & BF_MAY_FORWARD &&
// rep->flags & BF_SHUTR && !(t->flags & SN_SELF_GEN)) {
// buffer_shutw(rep);
// if (!(req->flags & BF_SHUTR)) {
// EV_FD_CLR(t->cli_fd, DIR_WR);
// shutdown(t->cli_fd, SHUT_WR);
// /* We must ensure that the read part is still alive when switching to shutw */
// /* FIXME: is this still true ? */
// EV_FD_SET(t->cli_fd, DIR_RD);
// req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
// trace_term(t, TT_HTTP_CLI_4);
// } else {
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_5);
// }
// goto update_state;
// }
// /* read timeout */
// else if ((req->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT) {
// buffer_shutr(req);
// if (!(rep->flags & BF_SHUTW)) {
// EV_FD_CLR(t->cli_fd, DIR_RD);
// trace_term(t, TT_HTTP_CLI_6);
// } else {
// /* output was already closed */
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_7);
// }
// if (!req->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_CLITO;
// if (!(t->flags & SN_FINST_MASK)) {
// if (t->pend_pos)
// t->flags |= SN_FINST_Q;
// else if (!(req->flags & BF_CONNECTED))
// t->flags |= SN_FINST_C;
// else
// t->flags |= SN_FINST_D;
// }
// }
// goto update_state;
// }
// /* write timeout */
// else if ((rep->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT) {
// buffer_shutw(rep);
// if (!(req->flags & BF_SHUTR)) {
// EV_FD_CLR(t->cli_fd, DIR_WR);
// shutdown(t->cli_fd, SHUT_WR);
// /* We must ensure that the read part is still alive when switching to shutw */
// /* FIXME: is this still true ? */
// EV_FD_SET(t->cli_fd, DIR_RD);
// req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
// trace_term(t, TT_HTTP_CLI_8);
// } else {
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_9);
// }
// if (!req->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_CLITO;
// if (!(t->flags & SN_FINST_MASK)) {
// if (t->pend_pos)
// t->flags |= SN_FINST_Q;
// else if (!(req->flags & BF_CONNECTED))
// t->flags |= SN_FINST_C;
// else
// t->flags |= SN_FINST_D;
// }
// }
// goto update_state;
// }
//
// update_timeouts:
// /* manage read timeout */
// if (!(req->flags & BF_SHUTR)) {
// if (req->flags & BF_FULL) {
// /* no room to read more data */
// if (EV_FD_COND_C(t->cli_fd, DIR_RD)) {
// /* stop reading until we get some space */
// req->rex = TICK_ETERNITY;
// }
// } else {
// EV_FD_COND_S(t->cli_fd, DIR_RD);
// req->rex = tick_add_ifset(now_ms, t->fe->timeout.client);
// }
// }
//
// /* manage write timeout */
// if (!(rep->flags & BF_SHUTW)) {
// /* first, we may have to produce data (eg: stats).
// * right now, this is limited to the SHUTR state.
// */
// if (req->flags & BF_SHUTR && t->flags & SN_SELF_GEN) {
// produce_content(t);
// if (rep->flags & BF_EMPTY) {
// buffer_shutw(rep);
// fd_delete(t->cli_fd);
// t->cli_state = CL_STCLOSE;
// trace_term(t, TT_HTTP_CLI_10);
// goto update_state;
// }
// }
//
// /* we don't enable client write if the buffer is empty, nor if the server has to analyze it */
// if ((rep->flags & BF_EMPTY) || !(rep->flags & BF_MAY_FORWARD)) {
// if (EV_FD_COND_C(t->cli_fd, DIR_WR)) {
// /* stop writing */
// rep->wex = TICK_ETERNITY;
// }
// } else {
// /* buffer not empty */
// EV_FD_COND_S(t->cli_fd, DIR_WR);
// if (!tick_isset(rep->wex)) {
// /* restart writing */
// rep->wex = tick_add_ifset(now_ms, t->fe->timeout.client);
// if (!(req->flags & BF_SHUTR) && tick_isset(rep->wex) && tick_isset(req->rex)) {
// /* FIXME: to prevent the client from expiring read timeouts during writes,
// * we refresh it, except if it was already infinite. */
// req->rex = rep->wex;
// }
// }
// }
// }
// return 0; /* other cases change nothing */
// }
// else if (t->cli_state == CL_STCLOSE) { /* CL_STCLOSE: nothing to do */
// if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
// int len;
// len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->be->id, (unsigned short)t->cli_fd, (unsigned short)req->cons->fd);
// write(1, trash, len);
// }
// return 0;
// }
//#ifdef DEBUG_DEV
// fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, t->cli_state);
// ABORT_NOW();
//#endif
// return 0;
//}
//
//
///* Return 1 if we could get a new connection for session t, otherwise zero */
//int tcp_get_connection(struct session *t)
//{
// struct http_txn *txn = &t->txn;
// struct buffer *req = t->req;
// struct buffer *rep = t->rep;
//
// DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
// now_ms, __FUNCTION__,
// cli_stnames[t->cli_state],
// rep->rex, req->wex,
// req->flags, rep->flags,
// req->l, rep->l);
//
//
// if ((rep->flags & BF_SHUTW) ||
// ((req->flags & BF_SHUTR) &&
// (req->flags & BF_EMPTY || t->be->options & PR_O_ABRT_CLOSE))) { /* give up */
// req->wex = TICK_ETERNITY;
// if (t->pend_pos)
// t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// /* note that this must not return any error because it would be able to
// * overwrite the client_retnclose() output.
// */
// if (txn->flags & TX_CLTARPIT)
// srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_T, 0, NULL);
// else
// srv_close_with_err(t, SN_ERR_CLICL, t->pend_pos ? SN_FINST_Q : SN_FINST_C, 0, NULL);
//
// trace_term(t, TT_HTTP_SRV_1);
// return 0;
// }
//
// /* stop here if we're not allowed to connect */
// if (!(req->flags & BF_MAY_FORWARD))
// return 0;
//
// /* the client allows the server to connect */
// if (txn->flags & TX_CLTARPIT) {
// /* This connection is being tarpitted. The CLIENT side has
// * already set the connect expiration date to the right
// * timeout. We just have to check that it has not expired.
// */
// if (!(req->flags & BF_WRITE_TIMEOUT))
// return 0;
//
// /* We will set the queue timer to the time spent, just for
// * logging purposes. We fake a 500 server error, so that the
// * attacker will not suspect his connection has been tarpitted.
// * It will not cause trouble to the logs because we can exclude
// * the tarpitted connections by filtering on the 'PT' status flags.
// */
// req->wex = TICK_ETERNITY;
// t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_T,
// 500, error_message(t, HTTP_ERR_500));
// trace_term(t, TT_HTTP_SRV_2);
// return 0;
// }
//
// /* Right now, we will need to create a connection to the server.
// * We might already have tried, and got a connection pending, in
// * which case we will not do anything till it's pending. It's up
// * to any other session to release it and wake us up again.
// */
// if (t->pend_pos) {
// if (!(req->flags & BF_WRITE_TIMEOUT)) {
// return 0;
// } else {
// /* we've been waiting too long here */
// req->wex = TICK_ETERNITY;
// t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_Q,
// 503, error_message(t, HTTP_ERR_503));
// trace_term(t, TT_HTTP_SRV_3);
// if (t->srv)
// t->srv->failed_conns++;
// t->be->failed_conns++;
// return 0;
// }
// }
//
// do {
// if (srv_redispatch_connect(t) != 0)
// return 0;
//
// if (t->srv && t->srv->rdr_len && t->flags & SN_REDIRECTABLE) {
// /* Server supporting redirection and it is possible.
// * Invalid requests are reported as such. It concerns all
// * the largest ones.
// */
// struct chunk rdr;
// char *path;
// int len;
//
// /* 1: create the response header */
// rdr.len = strlen(HTTP_302);
// rdr.str = trash;
// memcpy(rdr.str, HTTP_302, rdr.len);
//
// /* 2: add the server's prefix */
// if (rdr.len + t->srv->rdr_len > sizeof(trash))
// goto cancel_redir;
//
// memcpy(rdr.str + rdr.len, t->srv->rdr_pfx, t->srv->rdr_len);
// rdr.len += t->srv->rdr_len;
//
// /* 3: add the request URI */
// path = http_get_path(txn);
// if (!path)
// goto cancel_redir;
// len = txn->req.sl.rq.u_l + (txn->req.sol+txn->req.sl.rq.u) - path;
// if (rdr.len + len > sizeof(trash) - 4) /* 4 for CRLF-CRLF */
// goto cancel_redir;
//
// memcpy(rdr.str + rdr.len, path, len);
// rdr.len += len;
// memcpy(rdr.str + rdr.len, "\r\n\r\n", 4);
// rdr.len += 4;
//
// srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C, 302, &rdr);
// trace_term(t, TT_HTTP_SRV_3);
//
// /* FIXME: we should increase a counter of redirects per server and per backend. */
// if (t->srv)
// t->srv->cum_sess++;
// return 0;
// cancel_redir:
// txn->status = 400;
// t->fe->failed_req++;
// srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C,
// 400, error_message(t, HTTP_ERR_400));
// trace_term(t, TT_HTTP_SRV_4);
// return 0;
// }
//
// /* try to (re-)connect to the server, and fail if we expire the
// * number of retries.
// */
// if (srv_retryable_connect(t)) {
// t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// if (!(req->cons.flags & BC_KNOWN))
// return 0;
// /* We got an FD */
// return 1;
// }
// } while (1);
//}
//
//
///* Return 1 if the pending connection has failed and should be retried,
// * otherwise zero.
// */
//int tcp_connection_failed(struct session *t)
//{
// struct buffer *req = t->req;
// struct buffer *rep = t->rep;
// int conn_err;
//
// DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
// now_ms, __FUNCTION__,
// cli_stnames[t->cli_state],
// rep->rex, req->wex,
// req->flags, rep->flags,
// req->l, rep->l);
//
// if ((rep->flags & BF_SHUTW) ||
// ((req->flags & BF_SHUTR) &&
// ((req->flags & BF_EMPTY && !(req->flags & BF_WRITE_STATUS)) ||
// t->be->options & PR_O_ABRT_CLOSE))) { /* give up */
// req->wex = TICK_ETERNITY;
// if (!(t->flags & SN_CONN_TAR)) {
// /* if we are in turn-around, we have already closed the FD */
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
// }
//
// /* note that this must not return any error because it would be able to
// * overwrite the client_retnclose() output.
// */
// srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_C, 0, NULL);
// trace_term(t, TT_HTTP_SRV_5);
// return 0;
// }
//
// if (!(req->flags & (BF_WRITE_STATUS | BF_WRITE_TIMEOUT)))
// return 0; /* nothing changed */
//
// if (!(req->flags & BF_WRITE_STATUS) || (req->flags & BF_WRITE_ERROR)) {
// /* timeout, asynchronous connect error or first write error */
// if (t->flags & SN_CONN_TAR) {
// /* We are doing a turn-around waiting for a new connection attempt. */
// if (!(req->flags & BF_WRITE_TIMEOUT))
// return 0;
// t->flags &= ~SN_CONN_TAR;
// }
// else {
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
//
// if (!(req->flags & BF_WRITE_STATUS))
// conn_err = SN_ERR_SRVTO; // it was a connect timeout.
// else
// conn_err = SN_ERR_SRVCL; // it was an asynchronous connect error.
//
// /* ensure that we have enough retries left */
// if (srv_count_retry_down(t, conn_err))
// return 0;
//
// if (req->flags & BF_WRITE_ERROR) {
// /* we encountered an immediate connection error, and we
// * will have to retry connecting to the same server, most
// * likely leading to the same result. To avoid this, we
// * fake a connection timeout to retry after a turn-around
// * time of 1 second. We will wait in the previous if block.
// */
// t->flags |= SN_CONN_TAR;
// req->wex = tick_add(now_ms, MS_TO_TICKS(1000));
// return 0;
// }
// }
//
// if (t->srv && t->conn_retries == 0 && t->be->options & PR_O_REDISP) {
// /* We're on our last chance, and the REDISP option was specified.
// * We will ignore cookie and force to balance or use the dispatcher.
// */
// /* let's try to offer this slot to anybody */
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
//
// /* it's left to the dispatcher to choose a server */
// t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
// t->prev_srv = t->srv;
//
// /* first, get a connection */
// if (srv_redispatch_connect(t)) {
// if (req->cons.flags & BC_KNOWN)
// return 0;
// /* we need to get a connection */
// return 1;
// }
// } else {
// if (t->srv)
// t->srv->retries++;
// t->be->retries++;
// }
//
// do {
// /* Now we will try to either reconnect to the same server or
// * connect to another server. If the connection gets queued
// * because all servers are saturated, then we will go back to
// * the idle state where the buffer's consumer is marked as
// * unknown.
// */
// if (srv_retryable_connect(t)) {
// t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now);
// if (req->cons.flags & BC_KNOWN)
// return 0;
// /* we did not get a connection */
// return 1;
// }
//
// /* we need to redispatch the connection to another server */
// if (srv_redispatch_connect(t)) {
// if (req->cons.flags & BC_KNOWN)
// return 0;
// /* we need to get a connection */
// return 1;
// }
// } while (1);
// }
// else { /* no error and write OK */
// t->logs.t_connect = tv_ms_elapsed(&t->logs.tv_accept, &now);
//
// if (req->flags & BF_EMPTY) {
// EV_FD_CLR(req->cons->fd, DIR_WR);
// req->wex = TICK_ETERNITY;
// } else {
// EV_FD_SET(req->cons->fd, DIR_WR);
// req->wex = tick_add_ifset(now_ms, t->be->timeout.server);
// if (tick_isset(req->wex)) {
// /* FIXME: to prevent the server from expiring read timeouts during writes,
// * we refresh it. */
// rep->rex = req->wex;
// }
// }
//
// if (t->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
// EV_FD_SET(req->cons->fd, DIR_RD);
// rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
// buffer_set_rlim(rep, BUFSIZE); /* no rewrite needed */
//
// /* if the user wants to log as soon as possible, without counting
// bytes from the server, then this is the right moment. */
// if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
// t->logs.t_close = t->logs.t_connect; /* to get a valid end date */
// tcp_sess_log(t);
// }
//#ifdef CONFIG_HAP_TCPSPLICE
// if ((t->fe->options & t->be->options) & PR_O_TCPSPLICE) {
// /* TCP splicing supported by both FE and BE */
// tcp_splice_splicefd(t->cli_fd, req->cons->fd, 0);
// }
//#endif
// }
// else {
// rep->analysers |= AN_RTR_HTTP_HDR;
// buffer_set_rlim(rep, BUFSIZE - MAXREWRITE); /* rewrite needed */
// t->txn.rsp.msg_state = HTTP_MSG_RPBEFORE;
// /* reset hdr_idx which was already initialized by the request.
// * right now, the http parser does it.
// * hdr_idx_init(&t->txn.hdr_idx);
// */
// }
//
// req->flags |= BF_CONNECTED;
// if (!rep->analysers)
// t->rep->flags |= BF_MAY_FORWARD;
// req->wex = TICK_ETERNITY;
// return 0;
// }
//}
//
//
///*
// * Tries to establish a connection to the server and associate it to the
// * request buffer's consumer side. It normally returns zero, but may return 1
// * if it absolutely wants to be called again.
// */
//int process_srv_conn(struct session *t)
//{
// DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
// now_ms, __FUNCTION__,
// cli_stnames[t->cli_state],
// t->rep->rex, t->req->wex,
// t->req->flags, t->rep->flags,
// t->req->l, t->rep->l);
//
// while (!(t->req->flags & BF_CONNECTED)) {
// if (!(t->req->cons.flags & BC_KNOWN)) {
// /* no connection in progress, get a new one */
// if (!tcp_get_connection(t))
// break;
// } else {
// /* connection in progress or just completed */
// if (!tcp_connection_failed(t))
// break;
// }
// }
// return 0;
//}
//
//
///*
// * Manages the server FSM and its socket during the DATA phase. It must not
// * be called when a file descriptor is not attached to the buffer. It normally
// * returns zero, but may return 1 if it absolutely wants to be called again.
// */
//int process_srv_data(struct session *t)
//{
// struct buffer *req = t->req;
// struct buffer *rep = t->rep;
//
// DPRINTF(stderr,"[%u] %s: c=%s exp(r,w)=%u,%u req=%08x rep=%08x rql=%d rpl=%d\n",
// now_ms, __FUNCTION__,
// cli_stnames[t->cli_state],
// rep->rex, req->wex,
// req->flags, rep->flags,
// req->l, rep->l);
//
// /* we can skip most of the tests at once if some conditions are not met */
// if (!((req->flags & (BF_WRITE_TIMEOUT|BF_WRITE_ERROR)) ||
// (!(req->flags & BF_SHUTW) &&
// (req->flags & (BF_EMPTY|BF_MAY_FORWARD)) == (BF_EMPTY|BF_MAY_FORWARD)) ||
// (rep->flags & (BF_READ_TIMEOUT|BF_READ_ERROR)) ||
// (!(rep->flags & BF_SHUTR) && rep->flags & (BF_READ_NULL|BF_SHUTW))))
// goto update_timeouts;
//
// /* read or write error */
// /* FIXME: what happens when we have to deal with HTTP ??? */
// if (req->flags & BF_WRITE_ERROR || rep->flags & BF_READ_ERROR) {
// buffer_shutr(rep);
// buffer_shutw(req);
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// t->srv->failed_resp++;
// sess_change_server(t, NULL);
// }
// t->be->failed_resp++;
// trace_term(t, TT_HTTP_SRV_6);
// if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVCL;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
// }
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
//
// return 0;
// }
//
// /* last read, or end of client write */
// if (!(rep->flags & BF_SHUTR) && /* not already done */
// rep->flags & (BF_READ_NULL | BF_SHUTW)) {
// buffer_shutr(rep);
// if (!(req->flags & BF_SHUTW)) {
// EV_FD_CLR(req->cons->fd, DIR_RD);
// trace_term(t, TT_HTTP_SRV_7);
// } else {
// /* output was already closed */
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
// trace_term(t, TT_HTTP_SRV_8);
//
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
// return 0;
// }
// }
// /* end of client read and no more data to send. We can forward
// * the close when we're allowed to forward data (anytime right
// * now). If we're using option forceclose, then we may also
// * shutdown the outgoing write channel once the response starts
// * coming from the server.
// */
// if (!(req->flags & BF_SHUTW) && /* not already done */
// req->flags & BF_EMPTY && req->flags & BF_MAY_FORWARD &&
// (req->flags & BF_SHUTR ||
// (t->be->options & PR_O_FORCE_CLO && rep->flags & BF_READ_STATUS))) {
// buffer_shutw(req);
// if (!(rep->flags & BF_SHUTR)) {
// EV_FD_CLR(req->cons->fd, DIR_WR);
// shutdown(req->cons->fd, SHUT_WR);
// trace_term(t, TT_HTTP_SRV_9);
// /* We must ensure that the read part is still alive when switching to shutw */
// /* FIXME: is this still true ? */
// EV_FD_SET(req->cons->fd, DIR_RD);
// rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
// } else {
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
// trace_term(t, TT_HTTP_SRV_10);
//
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
// return 0;
// }
// }
//
// /* read timeout */
// if ((rep->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT) {
// if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVTO;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
// }
// buffer_shutr(rep);
// if (!(req->flags & BF_SHUTW)) {
// EV_FD_CLR(req->cons->fd, DIR_RD);
// trace_term(t, TT_HTTP_SRV_11);
// } else {
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
// trace_term(t, TT_HTTP_SRV_12);
//
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
// return 0;
// }
// }
//
// /* write timeout */
// if ((req->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT) {
// if (!rep->analysers) {
// if (!(t->flags & SN_ERR_MASK))
// t->flags |= SN_ERR_SRVTO;
// if (!(t->flags & SN_FINST_MASK))
// t->flags |= SN_FINST_D;
// }
// buffer_shutw(req);
// if (!(rep->flags & BF_SHUTR)) {
// EV_FD_CLR(req->cons->fd, DIR_WR);
// shutdown(req->cons->fd, SHUT_WR);
// /* We must ensure that the read part is still alive when switching to shutw */
// /* FIXME: is this still needed ? */
// EV_FD_SET(req->cons->fd, DIR_RD);
// rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
// trace_term(t, TT_HTTP_SRV_13);
// } else {
// fd_delete(req->cons->fd);
// req->cons->state = SI_ST_CLO;
// if (t->srv) {
// t->srv->cur_sess--;
// sess_change_server(t, NULL);
// }
// trace_term(t, TT_HTTP_SRV_14);
//
// if (may_dequeue_tasks(t->srv, t->be))
// process_srv_queue(t->srv);
// return 0;
// }
// }
//
// update_timeouts:
// /* manage read timeout */
// if (!(rep->flags & BF_SHUTR)) {
// if (rep->flags & BF_FULL) {
// if (EV_FD_COND_C(req->cons->fd, DIR_RD))
// rep->rex = TICK_ETERNITY;
// } else {
// EV_FD_COND_S(req->cons->fd, DIR_RD);
// rep->rex = tick_add_ifset(now_ms, t->be->timeout.server);
// }
// }
//
// /* manage write timeout */
// if (!(req->flags & BF_SHUTW)) {
// if (req->flags & BF_EMPTY || !(req->flags & BF_MAY_FORWARD)) {
// /* stop writing */
// if (EV_FD_COND_C(req->cons->fd, DIR_WR))
// req->wex = TICK_ETERNITY;
// } else {
// /* buffer not empty, there are still data to be transferred */
// EV_FD_COND_S(req->cons->fd, DIR_WR);
// if (!tick_isset(req->wex)) {
// /* restart writing */
// req->wex = tick_add_ifset(now_ms, t->be->timeout.server);
// if (!(rep->flags & BF_SHUTR) && tick_isset(req->wex) && tick_isset(rep->rex)) {
// /* FIXME: to prevent the server from expiring read timeouts during writes,
// * we refresh it, except if it was already infinite.
// */
// rep->rex = req->wex;
// }
// }
// }
// }
// return 0; /* other cases change nothing */
//}
//
/*
* Produces data for the session <s> depending on its source. Expects to be
* called with client socket shut down on input. Right now, only statistics can
* be produced. It stops by itself by unsetting the SN_SELF_GEN flag from the
* session, which it uses to keep on being called when there is free space in
* the buffer, or simply by letting an empty buffer upon return. It returns 1
* when it wants to stop sending data, otherwise 0.
*/
int produce_content(struct session *s)
{
if (s->data_source == DATA_SRC_NONE) {
s->flags &= ~SN_SELF_GEN;
return 1;
}
else if (s->data_source == DATA_SRC_STATS) {
/* dump server statistics */
int ret = stats_dump_http(s, s->be->uri_auth);
if (ret >= 0)
return ret;
/* -1 indicates an error */
}
/* unknown data source or internal error */
s->txn.status = 500;
client_retnclose(s, error_message(s, HTTP_ERR_500));
trace_term(s, TT_HTTP_CNT_1);
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
s->flags &= ~SN_SELF_GEN;
return 1;
}
/* Iterate the same filter through all request headers.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_headers(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = &t->txn;
struct hdr_idx_elem *cur_hdr;
int len, delta;
last_hdr = 0;
cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_SETBE:
/* It is not possible to jump a second time.
* FIXME: should we return an HTTP/500 here so that
* the admin knows there's a problem ?
*/
if (t->be != t->fe)
break;
/* Swithing Proxy */
t->be = (struct proxy *) exp->replace;
/* right now, the backend switch is not overly complicated
* because we have associated req_cap and rsp_cap to the
* frontend, and the beconn will be updated later.
*/
t->rep->rto = t->req->wto = t->be->timeout.server;
t->req->cto = t->be->timeout.connect;
t->conn_retries = t->be->conn_retries;
last_hdr = 1;
break;
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
last_hdr = 1;
t->be->denied_req++;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
last_hdr = 1;
t->be->denied_req++;
break;
case ACT_REPLACE:
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(req, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
txn->req.eoh += delta;
break;
case ACT_REMOVE:
delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
/* FIXME: this should be a separate function */
txn->req.eoh += delta;
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
break;
}
}
if (cur_end)
*cur_end = term; /* restore the string terminator */
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the request line.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid request line.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_line(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = &t->txn;
int len, delta;
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = req->data + txn->req.som; /* should be equal to txn->sol */
cur_end = cur_ptr + txn->req.sl.rq.l;
/* Now we have the request line between cur_ptr and cur_end */
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_SETBE:
/* It is not possible to jump a second time.
* FIXME: should we return an HTTP/500 here so that
* the admin knows there's a problem ?
*/
if (t->be != t->fe)
break;
/* Swithing Proxy */
t->be = (struct proxy *) exp->replace;
/* right now, the backend switch is not too much complicated
* because we have associated req_cap and rsp_cap to the
* frontend, and the beconn will be updated later.
*/
t->rep->rto = t->req->wto = t->be->timeout.server;
t->req->cto = t->be->timeout.connect;
t->conn_retries = t->be->conn_retries;
done = 1;
break;
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
t->be->denied_req++;
done = 1;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
t->be->denied_req++;
done = 1;
break;
case ACT_REPLACE:
*cur_end = term; /* restore the string terminator */
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(req, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
txn->req.eoh += delta;
cur_end += delta;
txn->req.sol = req->data + txn->req.som; /* should be equal to txn->sol */
cur_end = (char *)http_parse_reqline(&txn->req, req->data,
HTTP_MSG_RQMETH,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l);
hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
*cur_end = term; /* restore the string terminator */
return done;
}
/*
* Apply all the req filters <exp> to all headers in buffer <req> of session <t>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable request. Since it can manage the switch to another backend, it
* updates the per-proxy DENY stats.
*/
int apply_filters_to_request(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
struct http_txn *txn = &t->txn;
/* iterate through the filters in the outer loop */
while (exp && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if ((txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_TARPIT || exp->action == ACT_PASS)) {
exp = exp->next;
continue;
}
/* Apply the filter to the request line. */
ret = apply_filter_to_req_line(t, req, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the request, it can be
* iterated through all headers.
*/
apply_filter_to_req_headers(t, req, exp);
}
exp = exp->next;
}
return 0;
}
/*
* Manage client-side cookie. It can impact performance by about 2% so it is
* desirable to call it only when needed.
*/
void manage_client_side_cookies(struct session *t, struct buffer *req)
{
struct http_txn *txn = &t->txn;
char *p1, *p2, *p3, *p4;
char *del_colon, *del_cookie, *colon;
int app_cookies;
appsess *asession_temp = NULL;
appsess local_asession;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = 0;
cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(cur_ptr, cur_end, "Cookie", 6);
if (!val) {
old_idx = cur_idx;
continue;
}
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it
*/
colon = p1 = cur_ptr + val; /* first non-space char after 'Cookie:' */
/* del_cookie == NULL => nothing to be deleted */
del_colon = del_cookie = NULL;
app_cookies = 0;
while (p1 < cur_end) {
/* skip spaces and colons, but keep an eye on these ones */
while (p1 < cur_end) {
if (*p1 == ';' || *p1 == ',')
colon = p1;
else if (!isspace((unsigned char)*p1))
break;
p1++;
}
if (p1 == cur_end)
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < cur_end && *p2 != '=')
p2++;
if (p2 == cur_end)
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == cur_end)
break;
p4 = p3;
while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';' && *p4 != ',')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it :
*
* Cookie: NAME=VALUE;
* | || || |
* | || || +--> p4
* | || |+-------> p3
* | || +--------> p2
* | |+------------> p1
* | +-------------> colon
* +--------------------> cur_ptr
*/
if (*p1 == '$') {
/* skip this one */
}
else {
/* first, let's see if we want to capture it */
if (t->fe->capture_name != NULL &&
txn->cli_cookie == NULL &&
(p4 - p1 >= t->fe->capture_namelen) &&
memcmp(p1, t->fe->capture_name, t->fe->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
} else {
if (log_len > t->fe->capture_len)
log_len = t->fe->capture_len;
memcpy(txn->cli_cookie, p1, log_len);
txn->cli_cookie[log_len] = 0;
}
}
if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) &&
(memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
struct server *srv = t->be->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID betweek p3 and delim, and the original cookie between
* delim+1 and p4. Otherwise, delim==p4 :
*
* Cookie: NAME=SRV~VALUE;
* | || || | |
* | || || | +--> p4
* | || || +--------> delim
* | || |+-----------> p3
* | || +------------> p2
* | |+----------------> p1
* | +-----------------> colon
* +------------------------> cur_ptr
*/
if (t->be->options & PR_O_COOK_PFX) {
for (delim = p3; delim < p4; delim++)
if (*delim == COOKIE_DELIM)
break;
}
else
delim = p4;
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
*/
if (delim == p3)
srv = NULL;
while (srv) {
if (srv->cookie && (srv->cklen == delim - p3) &&
!memcmp(p3, srv->cookie, delim - p3)) {
if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) {
/* we found the server and it's usable */
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_VALID;
t->flags |= SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
/* we found a server, but it's down */
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(txn->flags & TX_CK_DOWN)) {
/* no server matched this cookie */
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((t->be->options & PR_O_COOK_PFX) && (delim != p4)) {
int delta; /* negative */
delta = buffer_replace2(req, p3, delim + 1, NULL, 0);
p4 += delta;
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
txn->req.eoh += delta;
del_cookie = del_colon = NULL;
app_cookies++; /* protect the header from deletion */
}
else if (del_cookie == NULL &&
(t->be->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) {
del_cookie = p1;
del_colon = colon;
}
} else {
/* now we know that we must keep this cookie since it's
* not ours. But if we wanted to delete our cookie
* earlier, we cannot remove the complete header, but we
* can remove the previous block itself.
*/
app_cookies++;
if (del_cookie != NULL) {
int delta; /* negative */
delta = buffer_replace2(req, del_cookie, p1, NULL, 0);
p4 += delta;
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
txn->req.eoh += delta;
del_cookie = del_colon = NULL;
}
}
if ((t->be->appsession_name != NULL) &&
(memcmp(p1, t->be->appsession_name, p2 - p1) == 0)) {
/* first, let's see if the cookie is our appcookie*/
/* Cool... it's the right one */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough memory process_cli():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n");
return;
}
memcpy(asession_temp->sessid, p3, t->be->appsession_len);
asession_temp->sessid[t->be->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid);
if (asession_temp == NULL) {
if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) {
/* free previously allocated memory */
pool_free2(apools.sessid, local_asession.sessid);
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
asession_temp->request_count = 0;
appsession_hash_insert(&(t->be->htbl_proxy), asession_temp);
} else {
/* free previously allocated memory */
pool_free2(apools.sessid, local_asession.sessid);
}
if (asession_temp->serverid == NULL) {
/* TODO redispatch request */
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->be->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) {
/* we found the server and it's usable */
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_VALID;
t->flags |= SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}/* end while(srv) */
}/* end else if server == NULL */
asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession);
asession_temp->request_count++;
#if defined(DEBUG_HASH)
Alert("manage_client_side_cookies\n");
appsession_hash_dump(&(t->be->htbl_proxy));
#endif
}/* end if ((t->proxy->appsession_name != NULL) ... */
}
/* we'll have to look for another cookie ... */
p1 = p4;
} /* while (p1 < cur_end) */
/* There's no more cookie on this line.
* We may have marked the last one(s) for deletion.
* We must do this now in two ways :
* - if there is no app cookie, we simply delete the header ;
* - if there are app cookies, we must delete the end of the
* string properly, including the colon/semi-colon before
* the cookie name.
*/
if (del_cookie != NULL) {
int delta;
if (app_cookies) {
delta = buffer_replace2(req, del_colon, cur_end, NULL, 0);
cur_end = del_colon;
cur_hdr->len += delta;
} else {
delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
/* FIXME: this should be a separate function */
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
}
cur_next += delta;
txn->req.eoh += delta;
}
/* keep the link from this header to next one */
old_idx = cur_idx;
} /* end of cookie processing on this header */
}
/* Iterate the same filter through all response headers contained in <rtr>.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
*/
int apply_filter_to_resp_headers(struct session *t, struct buffer *rtr, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = &t->txn;
struct hdr_idx_elem *cur_hdr;
int len, delta;
last_hdr = 0;
cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
last_hdr = 1;
break;
case ACT_REPLACE:
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
txn->rsp.eoh += delta;
break;
case ACT_REMOVE:
delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
/* FIXME: this should be a separate function */
txn->rsp.eoh += delta;
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
break;
}
}
if (cur_end)
*cur_end = term; /* restore the string terminator */
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the status line in the response buffer <rtr>.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid status line.
*/
int apply_filter_to_sts_line(struct session *t, struct buffer *rtr, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = &t->txn;
int len, delta;
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = rtr->data + txn->rsp.som; /* should be equal to txn->sol */
cur_end = cur_ptr + txn->rsp.sl.rq.l;
/* Now we have the status line between cur_ptr and cur_end */
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
done = 1;
break;
case ACT_REPLACE:
*cur_end = term; /* restore the string terminator */
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
txn->rsp.eoh += delta;
cur_end += delta;
txn->rsp.sol = rtr->data + txn->rsp.som; /* should be equal to txn->sol */
cur_end = (char *)http_parse_stsline(&txn->rsp, rtr->data,
HTTP_MSG_RPVER,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full respnse and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->status = strl2ui(rtr->data + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l);
hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.rq.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
*cur_end = term; /* restore the string terminator */
return done;
}
/*
* Apply all the resp filters <exp> to all headers in buffer <rtr> of session <t>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable response.
*/
int apply_filters_to_response(struct session *t, struct buffer *rtr, struct hdr_exp *exp)
{
struct http_txn *txn = &t->txn;
/* iterate through the filters in the outer loop */
while (exp && !(txn->flags & TX_SVDENY)) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if ((txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_PASS)) {
exp = exp->next;
continue;
}
/* Apply the filter to the status line. */
ret = apply_filter_to_sts_line(t, rtr, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the response, it can be
* iterated through all headers.
*/
apply_filter_to_resp_headers(t, rtr, exp);
}
exp = exp->next;
}
return 0;
}
/*
* Manage server-side cookies. It can impact performance by about 2% so it is
* desirable to call it only when needed.
*/
void manage_server_side_cookies(struct session *t, struct buffer *rtr)
{
struct http_txn *txn = &t->txn;
char *p1, *p2, *p3, *p4;
appsess *asession_temp = NULL;
appsess local_asession;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, delta;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = 0;
cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(cur_ptr, cur_end, "Set-Cookie", 10);
if (!val) {
old_idx = cur_idx;
continue;
}
/* OK, right now we know we have a set-cookie at cur_ptr */
txn->flags |= TX_SCK_ANY;
/* maybe we only wanted to see if there was a set-cookie */
if (t->be->cookie_name == NULL &&
t->be->appsession_name == NULL &&
t->be->capture_name == NULL)
return;
p1 = cur_ptr + val; /* first non-space char after 'Set-Cookie:' */
while (p1 < cur_end) { /* in fact, we'll break after the first cookie */
if (p1 == cur_end || *p1 == ';') /* end of cookie */
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < cur_end && *p2 != '=' && *p2 != ';')
p2++;
if (p2 == cur_end || *p2 == ';') /* next cookie */
break;
p3 = p2 + 1; /* skip the '=' sign */
if (p3 == cur_end)
break;
p4 = p3;
while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it.
*/
/* first, let's see if we want to capture it */
if (t->be->capture_name != NULL &&
txn->srv_cookie == NULL &&
(p4 - p1 >= t->be->capture_namelen) &&
memcmp(p1, t->be->capture_name, t->be->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
}
if (log_len > t->be->capture_len)
log_len = t->be->capture_len;
memcpy(txn->srv_cookie, p1, log_len);
txn->srv_cookie[log_len] = 0;
}
/* now check if we need to process it for persistence */
if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) &&
(memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
txn->flags |= TX_SCK_SEEN;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access. */
if (((t->srv) && (t->be->options & PR_O_COOK_INS)) ||
((t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_IND))) {
/* this header must be deleted */
delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_next += delta;
txn->rsp.eoh += delta;
txn->flags |= TX_SCK_DELETED;
}
else if ((t->srv) && (t->srv->cookie) &&
(t->be->options & PR_O_COOK_RW)) {
/* replace bytes p3->p4 with the cookie name associated
* with this server since we know it.
*/
delta = buffer_replace2(rtr, p3, p4, t->srv->cookie, t->srv->cklen);
cur_hdr->len += delta;
cur_next += delta;
txn->rsp.eoh += delta;
txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED;
}
else if ((t->srv) && (t->srv->cookie) &&
(t->be->options & PR_O_COOK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimitor between them..
*/
delta = buffer_replace2(rtr, p3, p3, t->srv->cookie, t->srv->cklen + 1);
cur_hdr->len += delta;
cur_next += delta;
txn->rsp.eoh += delta;
p3[t->srv->cklen] = COOKIE_DELIM;
txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED;
}
}
/* next, let's see if the cookie is our appcookie */
else if ((t->be->appsession_name != NULL) &&
(memcmp(p1, t->be->appsession_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
size_t server_id_len = strlen(t->srv->id) + 1;
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n");
return;
}
memcpy(asession_temp->sessid, p3, t->be->appsession_len);
asession_temp->sessid[t->be->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid);
if (asession_temp == NULL) {
if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) {
Alert("Not enough Memory process_srv():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession:calloc().\n");
return;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
asession_temp->request_count = 0;
appsession_hash_insert(&(t->be->htbl_proxy), asession_temp);
} else {
/* free wasted memory */
pool_free2(apools.sessid, local_asession.sessid);
}
if (asession_temp->serverid == NULL) {
if ((asession_temp->serverid = pool_alloc2(apools.serverid)) == NULL) {
Alert("Not enough Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n");
return;
}
asession_temp->serverid[0] = '\0';
}
if (asession_temp->serverid[0] == '\0')
memcpy(asession_temp->serverid, t->srv->id, server_id_len);
asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession);
asession_temp->request_count++;
#if defined(DEBUG_HASH)
Alert("manage_server_side_cookies\n");
appsession_hash_dump(&(t->be->htbl_proxy));
#endif
}/* end if ((t->proxy->appsession_name != NULL) ... */
break; /* we don't want to loop again since there cannot be another cookie on the same line */
} /* we're now at the end of the cookie value */
/* keep the link from this header to next one */
old_idx = cur_idx;
} /* end of cookie processing on this header */
}
/*
* Check if response is cacheable or not. Updates t->flags.
*/
void check_response_for_cacheability(struct session *t, struct buffer *rtr)
{
struct http_txn *txn = &t->txn;
char *p1, *p2;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx;
if (!(txn->flags & TX_CACHEABLE))
return;
/* Iterate through the headers.
* we start with the start line.
*/
cur_idx = 0;
cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
if (val) {
if ((cur_end - (cur_ptr + val) >= 8) &&
strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
}
val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
if (!val)
continue;
/* OK, right now we know we have a cache-control header at cur_ptr */
p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
if (p1 >= cur_end) /* no more info */
continue;
/* p1 is at the beginning of the value */
p2 = p1;
while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
p2++;
/* we have a complete value between p1 and p2 */
if (p2 < cur_end && *p2 == '=') {
/* we have something of the form no-cache="set-cookie" */
if ((cur_end - p1 >= 21) &&
strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0
&& (p1[20] == '"' || p1[20] == ','))
txn->flags &= ~TX_CACHE_COOK;
continue;
}
/* OK, so we know that either p2 points to the end of string or to a comma */
if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) ||
((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) ||
((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) ||
((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) {
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
continue;
}
}
}
/*
* Try to retrieve a known appsession in the URI, then the associated server.
* If the server is found, it's assigned to the session.
*/
void get_srv_from_appsession(struct session *t, const char *begin, int len)
{
struct http_txn *txn = &t->txn;
appsess *asession_temp = NULL;
appsess local_asession;
char *request_line;
if (t->be->appsession_name == NULL ||
(t->txn.meth != HTTP_METH_GET && t->txn.meth != HTTP_METH_POST) ||
(request_line = memchr(begin, ';', len)) == NULL ||
((1 + t->be->appsession_name_len + 1 + t->be->appsession_len) > (begin + len - request_line)))
return;
/* skip ';' */
request_line++;
/* look if we have a jsessionid */
if (strncasecmp(request_line, t->be->appsession_name, t->be->appsession_name_len) != 0)
return;
/* skip jsessionid= */
request_line += t->be->appsession_name_len + 1;
/* First try if we already have an appsession */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough memory process_cli():asession_temp->sessid:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_cli():asession_temp->sessid:calloc().\n");
return;
}
/* Copy the sessionid */
memcpy(asession_temp->sessid, request_line, t->be->appsession_len);
asession_temp->sessid[t->be->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid);
if (asession_temp == NULL) {
if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) {
/* free previously allocated memory */
pool_free2(apools.sessid, local_asession.sessid);
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
asession_temp->request_count=0;
appsession_hash_insert(&(t->be->htbl_proxy), asession_temp);
}
else {
/* free previously allocated memory */
pool_free2(apools.sessid, local_asession.sessid);
}
asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession);
asession_temp->request_count++;
#if defined(DEBUG_HASH)
Alert("get_srv_from_appsession\n");
appsession_hash_dump(&(t->be->htbl_proxy));
#endif
if (asession_temp->serverid == NULL) {
/* TODO redispatch request */
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->be->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) {
/* we found the server and it's usable */
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_VALID;
t->flags |= SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
}
}
/*
* In a GET or HEAD request, check if the requested URI matches the stats uri
* for the current backend, and if an authorization has been passed and is valid.
*
* It is assumed that the request is either a HEAD or GET and that the
* t->be->uri_auth field is valid. An HTTP/401 response may be sent, or
* produce_content() can be called to start sending data.
*
* Returns 1 if the session's state changes, otherwise 0.
*/
int stats_check_uri_auth(struct session *t, struct proxy *backend)
{
struct http_txn *txn = &t->txn;
struct uri_auth *uri_auth = backend->uri_auth;
struct user_auth *user;
int authenticated, cur_idx;
char *h;
memset(&t->data_ctx.stats, 0, sizeof(t->data_ctx.stats));
/* check URI size */
if (uri_auth->uri_len > txn->req.sl.rq.u_l)
return 0;
h = t->req->data + txn->req.sl.rq.u;
/* the URI is in h */
if (memcmp(h, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
h += uri_auth->uri_len;
while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 3) {
if (memcmp(h, ";up", 3) == 0) {
t->data_ctx.stats.flags |= STAT_HIDE_DOWN;
break;
}
h++;
}
if (uri_auth->refresh) {
h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len;
while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 10) {
if (memcmp(h, ";norefresh", 10) == 0) {
t->data_ctx.stats.flags |= STAT_NO_REFRESH;
break;
}
h++;
}
}
h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len;
while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 4) {
if (memcmp(h, ";csv", 4) == 0) {
t->data_ctx.stats.flags |= STAT_FMT_CSV;
break;
}
h++;
}
t->data_ctx.stats.flags |= STAT_SHOW_STAT | STAT_SHOW_INFO;
/* we are in front of a interceptable URI. Let's check
* if there's an authentication and if it's valid.
*/
user = uri_auth->users;
if (!user) {
/* no user auth required, it's OK */
authenticated = 1;
} else {
authenticated = 0;
/* a user list is defined, we have to check.
* skip 21 chars for "Authorization: Basic ".
*/
/* FIXME: this should move to an earlier place */
cur_idx = 0;
h = t->req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
int len = txn->hdr_idx.v[cur_idx].len;
if (len > 14 &&
!strncasecmp("Authorization:", h, 14)) {
txn->auth_hdr.str = h;
txn->auth_hdr.len = len;
break;
}
h += len + txn->hdr_idx.v[cur_idx].cr + 1;
}
if (txn->auth_hdr.len < 21 ||
memcmp(txn->auth_hdr.str + 14, " Basic ", 7))
user = NULL;
while (user) {
if ((txn->auth_hdr.len == user->user_len + 14 + 7)
&& !memcmp(txn->auth_hdr.str + 14 + 7,
user->user_pwd, user->user_len)) {
authenticated = 1;
break;
}
user = user->next;
}
}
if (!authenticated) {
struct chunk msg;
/* no need to go further */
msg.str = trash;
msg.len = sprintf(trash, HTTP_401_fmt, uri_auth->auth_realm);
txn->status = 401;
client_retnclose(t, &msg);
trace_term(t, TT_HTTP_URI_1);
t->req->analysers = 0;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
/* The request is valid, the user is authenticated. Let's start sending
* data.
*/
EV_FD_CLR(t->cli_fd, DIR_RD);
buffer_shutr(t->req);
buffer_shutr(t->rep);
buffer_set_rlim(t->req, BUFSIZE); /* no more rewrite needed */
t->logs.tv_request = now;
t->data_source = DATA_SRC_STATS;
t->data_state = DATA_ST_INIT;
t->task->nice = -32; /* small boost for HTTP statistics */
produce_content(t);
return 1;
}
/*
* Print a debug line with a header
*/
void debug_hdr(const char *dir, struct session *t, const char *start, const char *end)
{
int len, max;
len = sprintf(trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id,
dir, (unsigned short)t->cli_fd, (unsigned short)t->req->cons->fd);
max = end - start;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy2(trash + len, start, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/************************************************************************/
/* The code below is dedicated to ACL parsing and matching */
/************************************************************************/
/* 1. Check on METHOD
* We use the pre-parsed method if it is known, and store its number as an
* integer. If it is unknown, we use the pointer and the length.
*/
static int acl_parse_meth(const char **text, struct acl_pattern *pattern, int *opaque)
{
int len, meth;
len = strlen(*text);
meth = find_http_meth(*text, len);
pattern->val.i = meth;
if (meth == HTTP_METH_OTHER) {
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str)
return 0;
pattern->len = len;
}
return 1;
}
static int
acl_fetch_meth(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
int meth;
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
meth = txn->meth;
test->i = meth;
if (meth == HTTP_METH_OTHER) {
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
test->len = txn->req.sl.rq.m_l;
test->ptr = txn->req.sol;
}
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
static int acl_match_meth(struct acl_test *test, struct acl_pattern *pattern)
{
int icase;
if (test->i != pattern->val.i)
return ACL_PAT_FAIL;
if (test->i != HTTP_METH_OTHER)
return ACL_PAT_PASS;
/* Other method, we must compare the strings */
if (pattern->len != test->len)
return ACL_PAT_FAIL;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, test->ptr, test->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, test->ptr, test->len) != 0))
return ACL_PAT_FAIL;
return ACL_PAT_PASS;
}
/* 2. Check on Request/Status Version
* We simply compare strings here.
*/
static int acl_parse_ver(const char **text, struct acl_pattern *pattern, int *opaque)
{
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str)
return 0;
pattern->len = strlen(*text);
return 1;
}
static int
acl_fetch_rqver(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
len = txn->req.sl.rq.v_l;
ptr = txn->req.sol + txn->req.sl.rq.v - txn->req.som;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
test->ptr = ptr;
test->len = len;
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
static int
acl_fetch_stver(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.v_l;
ptr = txn->rsp.sol;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
test->ptr = ptr;
test->len = len;
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
/* 3. Check on Status Code. We manipulate integers here. */
static int
acl_fetch_stcode(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.c_l;
ptr = txn->rsp.sol + txn->rsp.sl.st.c - txn->rsp.som;
test->i = __strl2ui(ptr, len);
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
/* 4. Check on URL/URI. A pointer to the URI is stored. */
static int
acl_fetch_url(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
test->len = txn->req.sl.rq.u_l;
test->ptr = txn->req.sol + txn->req.sl.rq.u;
/* we do not need to set READ_ONLY because the data is in a buffer */
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
static int
acl_fetch_url_ip(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* Parse HTTP request */
url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr);
test->ptr = (void *)&((struct sockaddr_in *)&l4->srv_addr)->sin_addr;
test->i = AF_INET;
/*
* If we are parsing url in frontend space, we prepare backend stage
* to not parse again the same url ! optimization lazyness...
*/
if (px->options & PR_O_HTTP_PROXY)
l4->flags |= SN_ADDR_SET;
test->flags = ACL_TEST_F_READ_ONLY;
return 1;
}
static int
acl_fetch_url_port(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* Same optimization as url_ip */
url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr);
test->i = ntohs(((struct sockaddr_in *)&l4->srv_addr)->sin_port);
if (px->options & PR_O_HTTP_PROXY)
l4->flags |= SN_ADDR_SET;
test->flags = ACL_TEST_F_READ_ONLY;
return 1;
}
/* 5. Check on HTTP header. A pointer to the beginning of the value is returned.
* This generic function is used by both acl_fetch_chdr() and acl_fetch_shdr().
*/
static int
acl_fetch_hdr(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a;
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE))
/* search for header from the beginning */
ctx->idx = 0;
if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) {
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
test->len = ctx->vlen;
test->ptr = (char *)ctx->line + ctx->val;
return 1;
}
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_chdr(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 6. Check on HTTP header count. The number of occurrences is returned.
* This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*.
*/
static int
acl_fetch_hdr_cnt(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx ctx;
int cnt;
if (!txn)
return 0;
ctx.idx = 0;
cnt = 0;
while (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, &ctx))
cnt++;
test->i = cnt;
test->flags = ACL_TEST_F_VOL_HDR;
return 1;
}
static int
acl_fetch_chdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr_cnt(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr_cnt(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 7. Check on HTTP header's integer value. The integer value is returned.
* FIXME: the type is 'int', it may not be appropriate for everything.
* This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*.
*/
static int
acl_fetch_hdr_val(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a;
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE))
/* search for header from the beginning */
ctx->idx = 0;
if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) {
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
test->i = strl2ic((char *)ctx->line + ctx->val, ctx->vlen);
return 1;
}
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_chdr_val(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr_val(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr_val(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr_val(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at
* the first '/' after the possible hostname, and ends before the possible '?'.
*/
static int
acl_fetch_path(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr, *end;
if (!txn)
return 0;
if (txn->req.msg_state != HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
end = txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
ptr = http_get_path(txn);
if (!ptr)
return 0;
/* OK, we got the '/' ! */
test->ptr = ptr;
while (ptr < end && *ptr != '?')
ptr++;
test->len = ptr - test->ptr;
/* we do not need to set READ_ONLY because the data is in a buffer */
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
/************************************************************************/
/* All supported keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten */
static struct acl_kw_list acl_kws = {{ },{
{ "method", acl_parse_meth, acl_fetch_meth, acl_match_meth, ACL_USE_L7REQ_PERMANENT },
{ "req_ver", acl_parse_ver, acl_fetch_rqver, acl_match_str, ACL_USE_L7REQ_VOLATILE },
{ "resp_ver", acl_parse_ver, acl_fetch_stver, acl_match_str, ACL_USE_L7RTR_VOLATILE },
{ "status", acl_parse_int, acl_fetch_stcode, acl_match_int, ACL_USE_L7RTR_PERMANENT },
{ "url", acl_parse_str, acl_fetch_url, acl_match_str, ACL_USE_L7REQ_VOLATILE },
{ "url_beg", acl_parse_str, acl_fetch_url, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "url_end", acl_parse_str, acl_fetch_url, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "url_sub", acl_parse_str, acl_fetch_url, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "url_dir", acl_parse_str, acl_fetch_url, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "url_dom", acl_parse_str, acl_fetch_url, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "url_reg", acl_parse_reg, acl_fetch_url, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "url_ip", acl_parse_ip, acl_fetch_url_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE },
{ "url_port", acl_parse_int, acl_fetch_url_port, acl_match_int, ACL_USE_L7REQ_VOLATILE },
/* note: we should set hdr* to use ACL_USE_HDR_VOLATILE, and chdr* to use L7REQ_VOLATILE */
{ "hdr", acl_parse_str, acl_fetch_chdr, acl_match_str, ACL_USE_L7REQ_VOLATILE },
{ "hdr_reg", acl_parse_reg, acl_fetch_chdr, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "hdr_beg", acl_parse_str, acl_fetch_chdr, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "hdr_end", acl_parse_str, acl_fetch_chdr, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "hdr_sub", acl_parse_str, acl_fetch_chdr, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "hdr_dir", acl_parse_str, acl_fetch_chdr, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "hdr_dom", acl_parse_str, acl_fetch_chdr, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "hdr_cnt", acl_parse_int, acl_fetch_chdr_cnt,acl_match_int, ACL_USE_L7REQ_VOLATILE },
{ "hdr_val", acl_parse_int, acl_fetch_chdr_val,acl_match_int, ACL_USE_L7REQ_VOLATILE },
{ "shdr", acl_parse_str, acl_fetch_shdr, acl_match_str, ACL_USE_L7RTR_VOLATILE },
{ "shdr_reg", acl_parse_reg, acl_fetch_shdr, acl_match_reg, ACL_USE_L7RTR_VOLATILE },
{ "shdr_beg", acl_parse_str, acl_fetch_shdr, acl_match_beg, ACL_USE_L7RTR_VOLATILE },
{ "shdr_end", acl_parse_str, acl_fetch_shdr, acl_match_end, ACL_USE_L7RTR_VOLATILE },
{ "shdr_sub", acl_parse_str, acl_fetch_shdr, acl_match_sub, ACL_USE_L7RTR_VOLATILE },
{ "shdr_dir", acl_parse_str, acl_fetch_shdr, acl_match_dir, ACL_USE_L7RTR_VOLATILE },
{ "shdr_dom", acl_parse_str, acl_fetch_shdr, acl_match_dom, ACL_USE_L7RTR_VOLATILE },
{ "shdr_cnt", acl_parse_int, acl_fetch_shdr_cnt,acl_match_int, ACL_USE_L7RTR_VOLATILE },
{ "shdr_val", acl_parse_int, acl_fetch_shdr_val,acl_match_int, ACL_USE_L7RTR_VOLATILE },
{ "path", acl_parse_str, acl_fetch_path, acl_match_str, ACL_USE_L7REQ_VOLATILE },
{ "path_reg", acl_parse_reg, acl_fetch_path, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "path_beg", acl_parse_str, acl_fetch_path, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "path_end", acl_parse_str, acl_fetch_path, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "path_sub", acl_parse_str, acl_fetch_path, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "path_dir", acl_parse_str, acl_fetch_path, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "path_dom", acl_parse_str, acl_fetch_path, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ NULL, NULL, NULL, NULL },
#if 0
{ "line", acl_parse_str, acl_fetch_line, acl_match_str },
{ "line_reg", acl_parse_reg, acl_fetch_line, acl_match_reg },
{ "line_beg", acl_parse_str, acl_fetch_line, acl_match_beg },
{ "line_end", acl_parse_str, acl_fetch_line, acl_match_end },
{ "line_sub", acl_parse_str, acl_fetch_line, acl_match_sub },
{ "line_dir", acl_parse_str, acl_fetch_line, acl_match_dir },
{ "line_dom", acl_parse_str, acl_fetch_line, acl_match_dom },
{ "cook", acl_parse_str, acl_fetch_cook, acl_match_str },
{ "cook_reg", acl_parse_reg, acl_fetch_cook, acl_match_reg },
{ "cook_beg", acl_parse_str, acl_fetch_cook, acl_match_beg },
{ "cook_end", acl_parse_str, acl_fetch_cook, acl_match_end },
{ "cook_sub", acl_parse_str, acl_fetch_cook, acl_match_sub },
{ "cook_dir", acl_parse_str, acl_fetch_cook, acl_match_dir },
{ "cook_dom", acl_parse_str, acl_fetch_cook, acl_match_dom },
{ "cook_pst", acl_parse_none, acl_fetch_cook, acl_match_pst },
{ "auth_user", acl_parse_str, acl_fetch_user, acl_match_str },
{ "auth_regex", acl_parse_reg, acl_fetch_user, acl_match_reg },
{ "auth_clear", acl_parse_str, acl_fetch_auth, acl_match_str },
{ "auth_md5", acl_parse_str, acl_fetch_auth, acl_match_md5 },
{ NULL, NULL, NULL, NULL },
#endif
}};
__attribute__((constructor))
static void __http_protocol_init(void)
{
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/