blob: ff337e56fb98e833444a9aa9d4e7b94a1aec0edd [file] [log] [blame]
/*
* HTTP protocol analyzer
*
* Copyright 2000-2011 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <time.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <common/appsession.h>
#include <common/base64.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <common/uri_auth.h>
#include <common/version.h>
#include <types/capture.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/auth.h>
#include <proto/backend.h>
#include <proto/buffers.h>
#include <proto/checks.h>
#include <proto/dumpstats.h>
#include <proto/fd.h>
#include <proto/frontend.h>
#include <proto/log.h>
#include <proto/hdr_idx.h>
#include <proto/pattern.h>
#include <proto/proto_tcp.h>
#include <proto/proto_http.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/server.h>
#include <proto/session.h>
#include <proto/stream_interface.h>
#include <proto/stream_sock.h>
#include <proto/task.h>
const char HTTP_100[] =
"HTTP/1.1 100 Continue\r\n\r\n";
const struct chunk http_100_chunk = {
.str = (char *)&HTTP_100,
.len = sizeof(HTTP_100)-1
};
/* Warning: no "connection" header is provided with the 3xx messages below */
const char *HTTP_301 =
"HTTP/1.1 301 Moved Permanently\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
const char *HTTP_302 =
"HTTP/1.1 302 Found\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 302 except that the browser MUST retry with the GET method */
const char *HTTP_303 =
"HTTP/1.1 303 See Other\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
const char *HTTP_401_fmt =
"HTTP/1.0 401 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"WWW-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const char *HTTP_407_fmt =
"HTTP/1.0 407 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"Proxy-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const int http_err_codes[HTTP_ERR_SIZE] = {
[HTTP_ERR_200] = 200, /* used by "monitor-uri" */
[HTTP_ERR_400] = 400,
[HTTP_ERR_403] = 403,
[HTTP_ERR_408] = 408,
[HTTP_ERR_500] = 500,
[HTTP_ERR_502] = 502,
[HTTP_ERR_503] = 503,
[HTTP_ERR_504] = 504,
};
static const char *http_err_msgs[HTTP_ERR_SIZE] = {
[HTTP_ERR_200] =
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>200 OK</h1>\nService ready.\n</body></html>\n",
[HTTP_ERR_400] =
"HTTP/1.0 400 Bad request\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n",
[HTTP_ERR_403] =
"HTTP/1.0 403 Forbidden\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n",
[HTTP_ERR_408] =
"HTTP/1.0 408 Request Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n",
[HTTP_ERR_500] =
"HTTP/1.0 500 Server Error\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>500 Server Error</h1>\nAn internal server error occured.\n</body></html>\n",
[HTTP_ERR_502] =
"HTTP/1.0 502 Bad Gateway\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n",
[HTTP_ERR_503] =
"HTTP/1.0 503 Service Unavailable\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n",
[HTTP_ERR_504] =
"HTTP/1.0 504 Gateway Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n",
};
/* status codes available for the stats admin page (strictly 4 chars length) */
const char *stat_status_codes[STAT_STATUS_SIZE] = {
[STAT_STATUS_DENY] = "DENY",
[STAT_STATUS_DONE] = "DONE",
[STAT_STATUS_ERRP] = "ERRP",
[STAT_STATUS_EXCD] = "EXCD",
[STAT_STATUS_NONE] = "NONE",
[STAT_STATUS_PART] = "PART",
[STAT_STATUS_UNKN] = "UNKN",
};
/* We must put the messages here since GCC cannot initialize consts depending
* on strlen().
*/
struct chunk http_err_chunks[HTTP_ERR_SIZE];
#define FD_SETS_ARE_BITFIELDS
#ifdef FD_SETS_ARE_BITFIELDS
/*
* This map is used with all the FD_* macros to check whether a particular bit
* is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
* which should be encoded. When FD_ISSET() returns non-zero, it means that the
* byte should be encoded. Be careful to always pass bytes from 0 to 255
* exclusively to the macros.
*/
fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
#else
#error "Check if your OS uses bitfields for fd_sets"
#endif
void init_proto_http()
{
int i;
char *tmp;
int msg;
for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
if (!http_err_msgs[msg]) {
Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
abort();
}
http_err_chunks[msg].str = (char *)http_err_msgs[msg];
http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
}
/* initialize the log header encoding map : '{|}"#' should be encoded with
* '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
* URL encoding only requires '"', '#' to be encoded as well as non-
* printable characters above.
*/
memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
memset(url_encode_map, 0, sizeof(url_encode_map));
for (i = 0; i < 32; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
for (i = 127; i < 256; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
tmp = "\"#{|}";
while (*tmp) {
FD_SET(*tmp, hdr_encode_map);
tmp++;
}
tmp = "\"#";
while (*tmp) {
FD_SET(*tmp, url_encode_map);
tmp++;
}
/* memory allocations */
pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED);
pool2_capture = create_pool("capture", CAPTURE_LEN, MEM_F_SHARED);
pool2_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED);
}
/*
* We have 26 list of methods (1 per first letter), each of which can have
* up to 3 entries (2 valid, 1 null).
*/
struct http_method_desc {
http_meth_t meth;
int len;
const char text[8];
};
const struct http_method_desc http_methods[26][3] = {
['C' - 'A'] = {
[0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
},
['D' - 'A'] = {
[0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" },
},
['G' - 'A'] = {
[0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" },
},
['H' - 'A'] = {
[0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" },
},
['P' - 'A'] = {
[0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" },
[1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" },
},
['T' - 'A'] = {
[0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" },
},
/* rest is empty like this :
* [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" },
*/
};
/* It is about twice as fast on recent architectures to lookup a byte in a
* table than to perform a boolean AND or OR between two tests. Refer to
* RFC2616 for those chars.
*/
const char http_is_spht[256] = {
[' '] = 1, ['\t'] = 1,
};
const char http_is_crlf[256] = {
['\r'] = 1, ['\n'] = 1,
};
const char http_is_lws[256] = {
[' '] = 1, ['\t'] = 1,
['\r'] = 1, ['\n'] = 1,
};
const char http_is_sep[256] = {
['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1,
['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1,
['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1,
['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1,
[' '] = 1, ['\t'] = 1, ['\\'] = 1,
};
const char http_is_ctl[256] = {
[0 ... 31] = 1,
[127] = 1,
};
/*
* A token is any ASCII char that is neither a separator nor a CTL char.
* Do not overwrite values in assignment since gcc-2.95 will not handle
* them correctly. Instead, define every non-CTL char's status.
*/
const char http_is_token[256] = {
[' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1,
['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1,
['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1,
[','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0,
['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1,
['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1,
['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0,
['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0,
['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1,
['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1,
['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1,
['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1,
['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1,
['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1,
['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0,
['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1,
['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1,
['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1,
['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1,
['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1,
['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1,
['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1,
['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0,
['|'] = 1, ['}'] = 0, ['~'] = 1,
};
/*
* An http ver_token is any ASCII which can be found in an HTTP version,
* which includes 'H', 'T', 'P', '/', '.' and any digit.
*/
const char http_is_ver_token[256] = {
['.'] = 1, ['/'] = 1,
['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1,
['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1,
['H'] = 1, ['P'] = 1, ['T'] = 1,
};
/*
* Silent debug that outputs only in strace, using fd #-1. Trash is modified.
*/
#if defined(DEBUG_FSM)
static void http_silent_debug(int line, struct session *s)
{
int size = 0;
size += snprintf(trash + size, sizeof(trash) - size,
"[%04d] req: p=%d(%d) s=%d bf=%08x an=%08x data=%p size=%d l=%d w=%p r=%p o=%p sm=%d fw=%ld tf=%08x\n",
line,
s->si[0].state, s->si[0].fd, s->txn.req.msg_state, s->req->flags, s->req->analysers,
s->req->data, s->req->size, s->req->l, s->req->w, s->req->r, s->req->p, s->req->o, s->req->to_forward, s->txn.flags);
write(-1, trash, size);
size = 0;
size += snprintf(trash + size, sizeof(trash) - size,
" %04d rep: p=%d(%d) s=%d bf=%08x an=%08x data=%p size=%d l=%d w=%p r=%p o=%p sm=%d fw=%ld\n",
line,
s->si[1].state, s->si[1].fd, s->txn.rsp.msg_state, s->rep->flags, s->rep->analysers,
s->rep->data, s->rep->size, s->rep->l, s->rep->w, s->rep->r, s->rep->p, s->rep->o, s->rep->to_forward);
write(-1, trash, size);
}
#else
#define http_silent_debug(l,s) do { } while (0)
#endif
/*
* Adds a header and its CRLF at the tail of buffer <b>, just before the last
* CRLF. Text length is measured first, so it cannot be NULL.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail(struct buffer *b, struct http_msg *msg,
struct hdr_idx *hdr_idx, const char *text)
{
int bytes, len;
len = strlen(text);
bytes = buffer_insert_line2(b, b->p + msg->eoh, text, len);
if (!bytes)
return -1;
http_msg_move_end(msg, bytes);
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Adds a header and its CRLF at the tail of buffer <b>, just before the last
* CRLF. <len> bytes are copied, not counting the CRLF. If <text> is NULL, then
* the buffer is only opened and the space reserved, but nothing is copied.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail2(struct buffer *b, struct http_msg *msg,
struct hdr_idx *hdr_idx, const char *text, int len)
{
int bytes;
bytes = buffer_insert_line2(b, b->p + msg->eoh, text, len);
if (!bytes)
return -1;
http_msg_move_end(msg, bytes);
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Checks if <hdr> is exactly <name> for <len> chars, and ends with a colon.
* If so, returns the position of the first non-space character relative to
* <hdr>, or <end>-<hdr> if not found before. If no value is found, it tries
* to return a pointer to the place after the first space. Returns 0 if the
* header name does not match. Checks are case-insensitive.
*/
int http_header_match2(const char *hdr, const char *end,
const char *name, int len)
{
const char *val;
if (hdr + len >= end)
return 0;
if (hdr[len] != ':')
return 0;
if (strncasecmp(hdr, name, len) != 0)
return 0;
val = hdr + len + 1;
while (val < end && HTTP_IS_SPHT(*val))
val++;
if ((val >= end) && (len + 2 <= end - hdr))
return len + 2; /* we may replace starting from second space */
return val - hdr;
}
/* Find the end of the header value contained between <s> and <e>. See RFC2616,
* par 2.2 for more information. Note that it requires a valid header to return
* a valid result. This works for headers defined as comma-separated lists.
*/
char *find_hdr_value_end(char *s, const char *e)
{
int quoted, qdpair;
quoted = qdpair = 0;
for (; s < e; s++) {
if (qdpair) qdpair = 0;
else if (quoted) {
if (*s == '\\') qdpair = 1;
else if (*s == '"') quoted = 0;
}
else if (*s == '"') quoted = 1;
else if (*s == ',') return s;
}
return s;
}
/* Find the first or next occurrence of header <name> in message buffer <sol>
* using headers index <idx>, and return it in the <ctx> structure. This
* structure holds everything necessary to use the header and find next
* occurrence. If its <idx> member is 0, the header is searched from the
* beginning. Otherwise, the next occurrence is returned. The function returns
* 1 when it finds a value, and 0 when there is no more. It is designed to work
* with headers defined as comma-separated lists. As a special case, if ctx->val
* is NULL when searching for a new values of a header, the current header is
* rescanned. This allows rescanning after a header deletion.
*/
int http_find_header2(const char *name, int len,
char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
char *eol, *sov;
int cur_idx, old_idx;
cur_idx = ctx->idx;
if (cur_idx) {
/* We have previously returned a value, let's search
* another one on the same line.
*/
sol = ctx->line;
ctx->del = ctx->val + ctx->vlen + ctx->tws;
sov = sol + ctx->del;
eol = sol + idx->v[cur_idx].len;
if (sov >= eol)
/* no more values in this header */
goto next_hdr;
/* values remaining for this header, skip the comma but save it
* for later use (eg: for header deletion).
*/
sov++;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
goto return_hdr;
}
/* first request for this header */
sol += hdr_idx_first_pos(idx);
old_idx = 0;
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
if (len == 0) {
/* No argument was passed, we want any header.
* To achieve this, we simply build a fake request. */
while (sol + len < eol && sol[len] != ':')
len++;
name = sol;
}
if ((len < eol - sol) &&
(sol[len] == ':') &&
(strncasecmp(sol, name, len) == 0)) {
ctx->del = len;
sov = sol + len + 1;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
ctx->line = sol;
ctx->prev = old_idx;
return_hdr:
ctx->idx = cur_idx;
ctx->val = sov - sol;
eol = find_hdr_value_end(sov, eol);
ctx->tws = 0;
while (eol > sov && http_is_lws[(unsigned char)*(eol - 1)]) {
eol--;
ctx->tws++;
}
ctx->vlen = eol - sov;
return 1;
}
next_hdr:
sol = eol + idx->v[cur_idx].cr + 1;
old_idx = cur_idx;
cur_idx = idx->v[cur_idx].next;
}
return 0;
}
int http_find_header(const char *name,
char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
return http_find_header2(name, strlen(name), sol, idx, ctx);
}
/* Remove one value of a header. This only works on a <ctx> returned by one of
* the http_find_header functions. The value is removed, as well as surrounding
* commas if any. If the removed value was alone, the whole header is removed.
* The ctx is always updated accordingly, as well as buffer <buf> and HTTP
* message <msg>. The new index is returned. If it is zero, it means there is
* no more header, so any processing may stop. The ctx is always left in a form
* that can be handled by http_find_header2() to find next occurrence.
*/
int http_remove_header2(struct http_msg *msg, struct buffer *buf,
struct hdr_idx *idx, struct hdr_ctx *ctx)
{
int cur_idx = ctx->idx;
char *sol = ctx->line;
struct hdr_idx_elem *hdr;
int delta, skip_comma;
if (!cur_idx)
return 0;
hdr = &idx->v[cur_idx];
if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) {
/* This was the only value of the header, we must now remove it entirely. */
delta = buffer_replace2(buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0);
http_msg_move_end(msg, delta);
idx->used--;
hdr->len = 0; /* unused entry */
idx->v[ctx->prev].next = idx->v[ctx->idx].next;
if (idx->tail == ctx->idx)
idx->tail = ctx->prev;
ctx->idx = ctx->prev; /* walk back to the end of previous header */
ctx->line -= idx->v[ctx->idx].len + idx->v[cur_idx].cr + 1;
ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */
ctx->tws = ctx->vlen = 0;
return ctx->idx;
}
/* This was not the only value of this header. We have to remove between
* ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the
* last entry of the list, we remove the last separator.
*/
skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1;
delta = buffer_replace2(buf, sol + ctx->del + skip_comma,
sol + ctx->val + ctx->vlen + ctx->tws + skip_comma,
NULL, 0);
hdr->len += delta;
http_msg_move_end(msg, delta);
ctx->val = ctx->del;
ctx->tws = ctx->vlen = 0;
return ctx->idx;
}
/* This function handles a server error at the stream interface level. The
* stream interface is assumed to be already in a closed state. An optional
* message is copied into the input buffer, and an HTTP status code stored.
* The error flags are set to the values in arguments. Any pending request
* in this buffer will be lost.
*/
static void http_server_error(struct session *t, struct stream_interface *si,
int err, int finst, int status, const struct chunk *msg)
{
buffer_auto_read(si->ob);
buffer_abort(si->ob);
buffer_auto_close(si->ob);
buffer_erase(si->ob);
buffer_auto_close(si->ib);
buffer_auto_read(si->ib);
if (status > 0 && msg) {
t->txn.status = status;
buffer_write(si->ib, msg->str, msg->len);
}
if (!(t->flags & SN_ERR_MASK))
t->flags |= err;
if (!(t->flags & SN_FINST_MASK))
t->flags |= finst;
}
/* This function returns the appropriate error location for the given session
* and message.
*/
struct chunk *error_message(struct session *s, int msgnum)
{
if (s->be->errmsg[msgnum].str)
return &s->be->errmsg[msgnum];
else if (s->fe->errmsg[msgnum].str)
return &s->fe->errmsg[msgnum];
else
return &http_err_chunks[msgnum];
}
/*
* returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text
* string), HTTP_METH_OTHER for unknown methods, or the identified method.
*/
static http_meth_t find_http_meth(const char *str, const int len)
{
unsigned char m;
const struct http_method_desc *h;
m = ((unsigned)*str - 'A');
if (m < 26) {
for (h = http_methods[m]; h->len > 0; h++) {
if (unlikely(h->len != len))
continue;
if (likely(memcmp(str, h->text, h->len) == 0))
return h->meth;
};
return HTTP_METH_OTHER;
}
return HTTP_METH_NONE;
}
/* Parse the URI from the given transaction (which is assumed to be in request
* phase) and look for the "/" beginning the PATH. If not found, return NULL.
* It is returned otherwise.
*/
static char *
http_get_path(struct http_txn *txn)
{
char *ptr, *end;
ptr = txn->req.sol + txn->req.sl.rq.u;
end = ptr + txn->req.sl.rq.u_l;
if (ptr >= end)
return NULL;
/* RFC2616, par. 5.1.2 :
* Request-URI = "*" | absuri | abspath | authority
*/
if (*ptr == '*')
return NULL;
if (isalpha((unsigned char)*ptr)) {
/* this is a scheme as described by RFC3986, par. 3.1 */
ptr++;
while (ptr < end &&
(isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.'))
ptr++;
/* skip '://' */
if (ptr == end || *ptr++ != ':')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
}
/* skip [user[:passwd]@]host[:[port]] */
while (ptr < end && *ptr != '/')
ptr++;
if (ptr == end)
return NULL;
/* OK, we got the '/' ! */
return ptr;
}
/* Returns a 302 for a redirectable request. This may only be called just after
* the stream interface has moved to SI_ST_ASS. Unprocessable requests are
* left unchanged and will follow normal proxy processing.
*/
void perform_http_redirect(struct session *s, struct stream_interface *si)
{
struct http_txn *txn;
struct chunk rdr;
struct server *srv;
char *path;
int len;
/* 1: create the response header */
rdr.len = strlen(HTTP_302);
rdr.str = trash;
rdr.size = sizeof(trash);
memcpy(rdr.str, HTTP_302, rdr.len);
srv = target_srv(&s->target);
/* 2: add the server's prefix */
if (rdr.len + srv->rdr_len > rdr.size)
return;
/* special prefix "/" means don't change URL */
if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') {
memcpy(rdr.str + rdr.len, srv->rdr_pfx, srv->rdr_len);
rdr.len += srv->rdr_len;
}
/* 3: add the request URI */
txn = &s->txn;
path = http_get_path(txn);
if (!path)
return;
len = txn->req.sl.rq.u_l + (txn->req.sol + txn->req.sl.rq.u) - path;
if (rdr.len + len > rdr.size - 4) /* 4 for CRLF-CRLF */
return;
memcpy(rdr.str + rdr.len, path, len);
rdr.len += len;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(rdr.str + rdr.len, "\r\nProxy-Connection: close\r\n\r\n", 29);
rdr.len += 29;
} else {
memcpy(rdr.str + rdr.len, "\r\nConnection: close\r\n\r\n", 23);
rdr.len += 23;
}
/* prepare to return without error. */
si->shutr(si);
si->shutw(si);
si->err_type = SI_ET_NONE;
si->err_loc = NULL;
si->state = SI_ST_CLO;
/* send the message */
http_server_error(s, si, SN_ERR_PRXCOND, SN_FINST_C, 302, &rdr);
/* FIXME: we should increase a counter of redirects per server and per backend. */
if (srv)
srv_inc_sess_ctr(srv);
}
/* Return the error message corresponding to si->err_type. It is assumed
* that the server side is closed. Note that err_type is actually a
* bitmask, where almost only aborts may be cumulated with other
* values. We consider that aborted operations are more important
* than timeouts or errors due to the fact that nobody else in the
* logs might explain incomplete retries. All others should avoid
* being cumulated. It should normally not be possible to have multiple
* aborts at once, but just in case, the first one in sequence is reported.
*/
void http_return_srv_error(struct session *s, struct stream_interface *si)
{
int err_type = si->err_type;
if (err_type & SI_ET_QUEUE_ABRT)
http_server_error(s, si, SN_ERR_CLICL, SN_FINST_Q,
503, error_message(s, HTTP_ERR_503));
else if (err_type & SI_ET_CONN_ABRT)
http_server_error(s, si, SN_ERR_CLICL, SN_FINST_C,
503, error_message(s, HTTP_ERR_503));
else if (err_type & SI_ET_QUEUE_TO)
http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_Q,
503, error_message(s, HTTP_ERR_503));
else if (err_type & SI_ET_QUEUE_ERR)
http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_Q,
503, error_message(s, HTTP_ERR_503));
else if (err_type & SI_ET_CONN_TO)
http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_C,
503, error_message(s, HTTP_ERR_503));
else if (err_type & SI_ET_CONN_ERR)
http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_C,
503, error_message(s, HTTP_ERR_503));
else /* SI_ET_CONN_OTHER and others */
http_server_error(s, si, SN_ERR_INTERNAL, SN_FINST_C,
500, error_message(s, HTTP_ERR_500));
}
extern const char sess_term_cond[8];
extern const char sess_fin_state[8];
extern const char *monthname[12];
struct pool_head *pool2_requri;
struct pool_head *pool2_capture;
struct pool_head *pool2_uniqueid;
/*
* Capture headers from message starting at <som> according to header list
* <cap_hdr>, and fill the <idx> structure appropriately.
*/
void capture_headers(char *som, struct hdr_idx *idx,
char **cap, struct cap_hdr *cap_hdr)
{
char *eol, *sol, *col, *sov;
int cur_idx;
struct cap_hdr *h;
int len;
sol = som + hdr_idx_first_pos(idx);
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
col = sol;
while (col < eol && *col != ':')
col++;
sov = col + 1;
while (sov < eol && http_is_lws[(unsigned char)*sov])
sov++;
for (h = cap_hdr; h; h = h->next) {
if ((h->namelen == col - sol) &&
(strncasecmp(sol, h->name, h->namelen) == 0)) {
if (cap[h->index] == NULL)
cap[h->index] =
pool_alloc2(h->pool);
if (cap[h->index] == NULL) {
Alert("HTTP capture : out of memory.\n");
continue;
}
len = eol - sov;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], sov, len);
cap[h->index][len]=0;
}
}
sol = eol + idx->v[cur_idx].cr + 1;
cur_idx = idx->v[cur_idx].next;
}
}
/* either we find an LF at <ptr> or we jump to <bad>.
*/
#define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0)
/* plays with variables <ptr>, <end> and <state>. Jumps to <good> if OK,
* otherwise to <http_msg_ood> with <state> set to <st>.
*/
#define EAT_AND_JUMP_OR_RETURN(good, st) do { \
ptr++; \
if (likely(ptr < end)) \
goto good; \
else { \
state = (st); \
goto http_msg_ood; \
} \
} while (0)
/*
* This function parses a status line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP,
* HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the response.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_stsline(struct http_msg *msg, const char *msg_buf,
const char *msg_start,
unsigned int state, const char *ptr, const char *end,
unsigned int *ret_ptr, unsigned int *ret_state)
{
switch (state) {
case HTTP_MSG_RPVER:
http_msg_rpver:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.v_l = ptr - msg_start;
EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
}
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RPVER_SP:
http_msg_rpver_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.c = ptr - msg_start;
goto http_msg_rpcode;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
/* so it's a CR/LF, this is invalid */
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RPCODE:
http_msg_rpcode:
if (likely(!HTTP_IS_LWS(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
}
/* so it's a CR/LF, so there is no reason phrase */
msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
http_msg_rsp_reason:
/* FIXME: should we support HTTP responses without any reason phrase ? */
msg->sl.st.r = ptr - msg_start;
msg->sl.st.r_l = 0;
goto http_msg_rpline_eol;
case HTTP_MSG_RPCODE_SP:
http_msg_rpcode_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.r = ptr - msg_start;
goto http_msg_rpreason;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
/* so it's a CR/LF, so there is no reason phrase */
goto http_msg_rsp_reason;
case HTTP_MSG_RPREASON:
http_msg_rpreason:
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON);
msg->sl.st.r_l = ptr - msg_start - msg->sl.st.r;
http_msg_rpline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the response would not be
* complete. We can then record the response length and return
* to the caller which will be able to register it.
*/
msg->sl.st.l = ptr - msg->sol;
return ptr;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of valid data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = ptr - msg_start;
return NULL;
}
/*
* This function parses a request line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP,
* HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the request.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_reqline(struct http_msg *msg, const char *msg_buf,
const char *msg_start,
unsigned int state, const char *ptr, const char *end,
unsigned int *ret_ptr, unsigned int *ret_state)
{
switch (state) {
case HTTP_MSG_RQMETH:
http_msg_rqmeth:
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.m_l = ptr - msg_start;
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
}
if (likely(HTTP_IS_CRLF(*ptr))) {
/* HTTP 0.9 request */
msg->sl.rq.m_l = ptr - msg_start;
http_msg_req09_uri:
msg->sl.rq.u = ptr - msg_start;
http_msg_req09_uri_e:
msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
http_msg_req09_ver:
msg->sl.rq.v = ptr - msg_start;
msg->sl.rq.v_l = 0;
goto http_msg_rqline_eol;
}
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RQMETH_SP:
http_msg_rqmeth_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.u = ptr - msg_start;
goto http_msg_rquri;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri;
case HTTP_MSG_RQURI:
http_msg_rquri:
if (likely((unsigned char)(*ptr - 33) <= 93)) /* 33 to 126 included */
EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
}
if (likely((unsigned char)*ptr >= 128)) {
/* non-ASCII chars are forbidden unless option
* accept-invalid-http-request is enabled in the frontend.
* In any case, we capture the faulty char.
*/
if (msg->err_pos < -1)
goto invalid_char;
if (msg->err_pos == -1)
msg->err_pos = ptr - msg_buf;
EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI);
}
if (likely(HTTP_IS_CRLF(*ptr))) {
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri_e;
}
/* OK forbidden chars, 0..31 or 127 */
invalid_char:
msg->err_pos = ptr - msg_buf;
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RQURI_SP:
http_msg_rquri_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.v = ptr - msg_start;
goto http_msg_rqver;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_ver;
case HTTP_MSG_RQVER:
http_msg_rqver:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER);
if (likely(HTTP_IS_CRLF(*ptr))) {
msg->sl.rq.v_l = ptr - msg_start - msg->sl.rq.v;
http_msg_rqline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the request would not be
* complete. We can then record the request length and return
* to the caller which will be able to register it.
*/
msg->sl.rq.l = ptr - msg->sol;
return ptr;
}
/* neither an HTTP_VER token nor a CRLF */
state = HTTP_MSG_ERROR;
break;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of valid data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = ptr - msg_start;
return NULL;
}
/*
* Returns the data from Authorization header. Function may be called more
* than once so data is stored in txn->auth_data. When no header is found
* or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid
* searching again for something we are unable to find anyway.
*/
char get_http_auth_buff[BUFSIZE];
int
get_http_auth(struct session *s)
{
struct http_txn *txn = &s->txn;
struct chunk auth_method;
struct hdr_ctx ctx;
char *h, *p;
int len;
#ifdef DEBUG_AUTH
printf("Auth for session %p: %d\n", s, txn->auth.method);
#endif
if (txn->auth.method == HTTP_AUTH_WRONG)
return 0;
if (txn->auth.method)
return 1;
txn->auth.method = HTTP_AUTH_WRONG;
ctx.idx = 0;
if (txn->flags & TX_USE_PX_CONN) {
h = "Proxy-Authorization";
len = strlen(h);
} else {
h = "Authorization";
len = strlen(h);
}
if (!http_find_header2(h, len, txn->req.sol, &txn->hdr_idx, &ctx))
return 0;
h = ctx.line + ctx.val;
p = memchr(h, ' ', ctx.vlen);
if (!p || p == h)
return 0;
chunk_initlen(&auth_method, h, 0, p-h);
chunk_initlen(&txn->auth.method_data, p+1, 0, ctx.vlen-(p-h)-1);
if (!strncasecmp("Basic", auth_method.str, auth_method.len)) {
len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len,
get_http_auth_buff, BUFSIZE - 1);
if (len < 0)
return 0;
get_http_auth_buff[len] = '\0';
p = strchr(get_http_auth_buff, ':');
if (!p)
return 0;
txn->auth.user = get_http_auth_buff;
*p = '\0';
txn->auth.pass = p+1;
txn->auth.method = HTTP_AUTH_BASIC;
return 1;
}
return 0;
}
/*
* This function parses an HTTP message, either a request or a response,
* depending on the initial msg->msg_state. It can be preempted everywhere
* when data are missing and recalled at the exact same location with no
* information loss. The header index is re-initialized when switching from
* MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other
* fields. Note that msg->som and msg->sol will be initialized after completing
* the first state, so that none of the msg pointers has to be initialized
* prior to the first call.
*/
void http_msg_analyzer(struct buffer *buf, struct http_msg *msg, struct hdr_idx *idx)
{
unsigned int state; /* updated only when leaving the FSM */
register char *ptr, *end; /* request pointers, to avoid dereferences */
state = msg->msg_state;
ptr = buffer_wrap_add(buf, buf->p + msg->next);
end = buffer_wrap_add(buf, buf->p + buf->i);
if (unlikely(ptr >= end))
goto http_msg_ood;
switch (state) {
/*
* First, states that are specific to the response only.
* We check them first so that request and headers are
* closer to each other (accessed more often).
*/
case HTTP_MSG_RPBEFORE:
http_msg_rpbefore:
if (likely(HTTP_IS_TOKEN(*ptr))) {
/* we have a start of message, but we have to check
* first if we need to remove some CRLF. We can only
* do this when o=0.
*/
char *beg = buf->p;
if (unlikely(ptr != beg)) {
if (buf->o)
goto http_msg_ood;
/* Remove empty leading lines, as recommended by RFC2616. */
buffer_ignore(buf, ptr - beg);
}
msg->som = ptr - buf->p;
msg->sol = ptr;
hdr_idx_init(idx);
state = HTTP_MSG_RPVER;
goto http_msg_rpver;
}
if (unlikely(!HTTP_IS_CRLF(*ptr)))
goto http_msg_invalid;
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR);
/* stop here */
case HTTP_MSG_RPBEFORE_CR:
http_msg_rpbefore_cr:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
/* stop here */
case HTTP_MSG_RPVER:
http_msg_rpver:
case HTTP_MSG_RPVER_SP:
case HTTP_MSG_RPCODE:
case HTTP_MSG_RPCODE_SP:
case HTTP_MSG_RPREASON:
ptr = (char *)http_parse_stsline(msg, buf->data, buf->p,
state, ptr, end,
&msg->next, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full response and we know that we have either a CR
* or an LF at <ptr>.
*/
hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r');
msg->sol = ptr;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END);
goto http_msg_rpline_end;
case HTTP_MSG_RPLINE_END:
http_msg_rpline_end:
/* msg->sol must point to the first of CR or LF. */
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Second, states that are specific to the request only
*/
case HTTP_MSG_RQBEFORE:
http_msg_rqbefore:
if (likely(HTTP_IS_TOKEN(*ptr))) {
/* we have a start of message, but we have to check
* first if we need to remove some CRLF. We can only
* do this when o=0.
*/
char *beg = buf->p;
if (likely(ptr != beg)) {
if (buf->o)
goto http_msg_ood;
/* Remove empty leading lines, as recommended by RFC2616. */
buffer_ignore(buf, ptr - beg);
}
msg->som = ptr - buf->p;
msg->sol = ptr;
/* we will need this when keep-alive will be supported
hdr_idx_init(idx);
*/
state = HTTP_MSG_RQMETH;
goto http_msg_rqmeth;
}
if (unlikely(!HTTP_IS_CRLF(*ptr)))
goto http_msg_invalid;
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR);
/* stop here */
case HTTP_MSG_RQBEFORE_CR:
http_msg_rqbefore_cr:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
/* stop here */
case HTTP_MSG_RQMETH:
http_msg_rqmeth:
case HTTP_MSG_RQMETH_SP:
case HTTP_MSG_RQURI:
case HTTP_MSG_RQURI_SP:
case HTTP_MSG_RQVER:
ptr = (char *)http_parse_reqline(msg, buf->data, buf->p,
state, ptr, end,
&msg->next, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r');
msg->sol = ptr;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END);
goto http_msg_rqline_end;
case HTTP_MSG_RQLINE_END:
http_msg_rqline_end:
/* check for HTTP/0.9 request : no version information available.
* msg->sol must point to the first of CR or LF.
*/
if (unlikely(msg->sl.rq.v_l == 0))
goto http_msg_last_lf;
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Common states below
*/
case HTTP_MSG_HDR_FIRST:
http_msg_hdr_first:
msg->sol = ptr;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
case HTTP_MSG_HDR_NAME:
http_msg_hdr_name:
/* assumes msg->sol points to the first char */
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME);
if (likely(*ptr == ':'))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
if (likely(msg->err_pos < -1) || *ptr == '\n')
goto http_msg_invalid;
if (msg->err_pos == -1) /* capture error pointer */
msg->err_pos = ptr - buf->data; /* >= 0 now */
/* and we still accept this non-token character */
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME);
case HTTP_MSG_HDR_L1_SP:
http_msg_hdr_l1_sp:
/* assumes msg->sol points to the first char */
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
/* header value can be basically anything except CR/LF */
msg->sov = ptr - buf->p;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_val;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF);
goto http_msg_hdr_l1_lf;
case HTTP_MSG_HDR_L1_LF:
http_msg_hdr_l1_lf:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS);
case HTTP_MSG_HDR_L1_LWS:
http_msg_hdr_l1_lws:
if (likely(HTTP_IS_SPHT(*ptr))) {
/* replace HT,CR,LF with spaces */
for (; buf->p + msg->sov < ptr; msg->sov++)
buf->p[msg->sov] = ' ';
goto http_msg_hdr_l1_sp;
}
/* we had a header consisting only in spaces ! */
msg->eol = buf->p + msg->sov;
goto http_msg_complete_header;
case HTTP_MSG_HDR_VAL:
http_msg_hdr_val:
/* assumes msg->sol points to the first char, and msg->sov
* points to the first character of the value.
*/
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL);
msg->eol = ptr;
/* Note: we could also copy eol into ->eoh so that we have the
* real header end in case it ends with lots of LWS, but is this
* really needed ?
*/
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF);
goto http_msg_hdr_l2_lf;
case HTTP_MSG_HDR_L2_LF:
http_msg_hdr_l2_lf:
EXPECT_LF_HERE(ptr, http_msg_invalid);
EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS);
case HTTP_MSG_HDR_L2_LWS:
http_msg_hdr_l2_lws:
if (unlikely(HTTP_IS_SPHT(*ptr))) {
/* LWS: replace HT,CR,LF with spaces */
for (; msg->eol < ptr; msg->eol++)
*msg->eol = ' ';
goto http_msg_hdr_val;
}
http_msg_complete_header:
/*
* It was a new header, so the last one is finished.
* Assumes msg->sol points to the first char, msg->sov points
* to the first character of the value and msg->eol to the
* first CR or LF so we know how the line ends. We insert last
* header into the index.
*/
/*
fprintf(stderr,"registering %-2d bytes : ", msg->eol - msg->sol);
write(2, msg->sol, msg->eol-msg->sol);
fprintf(stderr,"\n");
*/
if (unlikely(hdr_idx_add(msg->eol - msg->sol, *msg->eol == '\r',
idx, idx->tail) < 0))
goto http_msg_invalid;
msg->sol = ptr;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
case HTTP_MSG_LAST_LF:
http_msg_last_lf:
/* Assumes msg->sol points to the first of either CR or LF */
EXPECT_LF_HERE(ptr, http_msg_invalid);
ptr++;
msg->sov = msg->next = ptr - buf->p;
msg->eoh = msg->sol - buf->p;
msg->sol = buf->p;
msg->msg_state = HTTP_MSG_BODY;
return;
case HTTP_MSG_ERROR:
/* this may only happen if we call http_msg_analyser() twice with an error */
break;
#ifdef DEBUG_FULL
default:
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
}
http_msg_ood:
/* out of data */
msg->msg_state = state;
msg->next = ptr - buf->p;
return;
http_msg_invalid:
/* invalid message */
msg->msg_state = HTTP_MSG_ERROR;
msg->next = ptr - buf->p;
return;
}
/* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the
* conversion succeeded, 0 in case of error. If the request was already 1.X,
* nothing is done and 1 is returned.
*/
static int http_upgrade_v09_to_v10(struct buffer *req, struct http_msg *msg, struct http_txn *txn)
{
int delta;
char *cur_end;
if (msg->sl.rq.v_l != 0)
return 1;
cur_end = msg->sol + msg->sl.rq.l;
delta = 0;
if (msg->sl.rq.u_l == 0) {
/* if no URI was set, add "/" */
delta = buffer_replace2(req, cur_end, cur_end, " /", 2);
cur_end += delta;
http_msg_move_end(msg, delta);
}
/* add HTTP version */
delta = buffer_replace2(req, cur_end, cur_end, " HTTP/1.0\r\n", 11);
http_msg_move_end(msg, delta);
cur_end += delta;
cur_end = (char *)http_parse_reqline(msg, req->data, req->p,
HTTP_MSG_RQMETH,
msg->sol, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return 0;
/* we have a full HTTP/1.0 request now and we know that
* we have either a CR or an LF at <ptr>.
*/
hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
return 1;
}
/* Parse the Connection: header of an HTTP request, looking for both "close"
* and "keep-alive" values. If a buffer is provided and we already know that
* some headers may safely be removed, we remove them now. The <to_del> flags
* are used for that :
* - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses)
* - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1).
* The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was
* found, and TX_CON_*_SET is adjusted depending on what is left so only
* harmless combinations may be removed. Do not call that after changes have
* been processed. If unused, the buffer can be NULL, and no data will be
* changed.
*/
void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, struct buffer *buf, int to_del)
{
struct hdr_ctx ctx;
const char *hdr_val = "Connection";
int hdr_len = 10;
if (txn->flags & TX_HDR_CONN_PRS)
return;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection";
hdr_len = 16;
}
ctx.idx = 0;
txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET);
while (http_find_header2(hdr_val, hdr_len, msg->sol, &txn->hdr_idx, &ctx)) {
if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
txn->flags |= TX_HDR_CONN_KAL;
if ((to_del & 2) && buf)
http_remove_header2(msg, buf, &txn->hdr_idx, &ctx);
else
txn->flags |= TX_CON_KAL_SET;
}
else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
txn->flags |= TX_HDR_CONN_CLO;
if ((to_del & 1) && buf)
http_remove_header2(msg, buf, &txn->hdr_idx, &ctx);
else
txn->flags |= TX_CON_CLO_SET;
}
}
txn->flags |= TX_HDR_CONN_PRS;
return;
}
/* Apply desired changes on the Connection: header. Values may be removed and/or
* added depending on the <wanted> flags, which are exclusively composed of
* TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The
* TX_CON_*_SET flags are adjusted in txn->flags depending on what is left.
*/
void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, struct buffer *buf, int wanted)
{
struct hdr_ctx ctx;
const char *hdr_val = "Connection";
int hdr_len = 10;
ctx.idx = 0;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection";
hdr_len = 16;
}
txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET);
while (http_find_header2(hdr_val, hdr_len, msg->sol, &txn->hdr_idx, &ctx)) {
if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
if (wanted & TX_CON_KAL_SET)
txn->flags |= TX_CON_KAL_SET;
else
http_remove_header2(msg, buf, &txn->hdr_idx, &ctx);
}
else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
if (wanted & TX_CON_CLO_SET)
txn->flags |= TX_CON_CLO_SET;
else
http_remove_header2(msg, buf, &txn->hdr_idx, &ctx);
}
}
if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
return;
if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) {
txn->flags |= TX_CON_CLO_SET;
hdr_val = "Connection: close";
hdr_len = 17;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection: close";
hdr_len = 23;
}
http_header_add_tail2(buf, msg, &txn->hdr_idx, hdr_val, hdr_len);
}
if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) {
txn->flags |= TX_CON_KAL_SET;
hdr_val = "Connection: keep-alive";
hdr_len = 22;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection: keep-alive";
hdr_len = 28;
}
http_header_add_tail2(buf, msg, &txn->hdr_idx, hdr_val, hdr_len);
}
return;
}
/* Parse the chunk size at msg->next. Once done, it adjusts ->next to point to the
* first byte of body, and increments msg->sov by the number of bytes parsed,
* so that we know we can forward between ->som and ->sov. Note that due to
* possible wrapping at the end of the buffer, it is possible that msg->sov is
* lower than msg->som.
* Return >0 on success, 0 when some data is missing, <0 on error.
* Note: this function is designed to parse wrapped CRLF at the end of the buffer.
*/
int http_parse_chunk_size(struct buffer *buf, struct http_msg *msg)
{
char *ptr = buffer_wrap_add(buf, buf->p + msg->next);
char *ptr_old = ptr;
char *end = buf->data + buf->size;
char *stop = buffer_wrap_add(buf, buf->p + buf->i);
unsigned int chunk = 0;
/* The chunk size is in the following form, though we are only
* interested in the size and CRLF :
* 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF
*/
while (1) {
int c;
if (ptr == stop)
return 0;
c = hex2i(*ptr);
if (c < 0) /* not a hex digit anymore */
break;
if (++ptr >= end)
ptr = buf->data;
if (chunk & 0xF8000000) /* integer overflow will occur if result >= 2GB */
goto error;
chunk = (chunk << 4) + c;
}
/* empty size not allowed */
if (ptr == ptr_old)
goto error;
while (http_is_spht[(unsigned char)*ptr]) {
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
}
/* Up to there, we know that at least one byte is present at *ptr. Check
* for the end of chunk size.
*/
while (1) {
if (likely(HTTP_IS_CRLF(*ptr))) {
/* we now have a CR or an LF at ptr */
if (likely(*ptr == '\r')) {
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
}
if (*ptr != '\n')
goto error;
if (++ptr >= end)
ptr = buf->data;
/* done */
break;
}
else if (*ptr == ';') {
/* chunk extension, ends at next CRLF */
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
while (!HTTP_IS_CRLF(*ptr)) {
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
}
/* we have a CRLF now, loop above */
continue;
}
else
goto error;
}
/* OK we found our CRLF and now <ptr> points to the next byte,
* which may or may not be present. We save that into ->next and
* ->sov.
*/
msg->sov += ptr - ptr_old;
msg->next = buffer_count(buf, buf->p, ptr);
msg->chunk_len = chunk;
msg->body_len += chunk;
msg->msg_state = chunk ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS;
return 1;
error:
msg->err_pos = ptr - buf->data;
return -1;
}
/* This function skips trailers in the buffer <buf> associated with HTTP
* message <msg>. The first visited position is msg->next. If the end of
* the trailers is found, it is automatically scheduled to be forwarded,
* msg->msg_state switches to HTTP_MSG_DONE, and the function returns >0.
* If not enough data are available, the function does not change anything
* except maybe msg->next and msg->sov if it could parse some lines, and returns
* zero. If a parse error is encountered, the function returns < 0 and does not
* change anything except maybe msg->next and msg->sov. Note that the message
* must already be in HTTP_MSG_TRAILERS state before calling this function,
* which implies that all non-trailers data have already been scheduled for
* forwarding, and that the difference between msg->som and msg->sov exactly
* matches the length of trailers already parsed and not forwarded. It is also
* important to note that this function is designed to be able to parse wrapped
* headers at end of buffer.
*/
int http_forward_trailers(struct buffer *buf, struct http_msg *msg)
{
/* we have msg->next which points to next line. Look for CRLF. */
while (1) {
char *p1 = NULL, *p2 = NULL;
char *ptr = buffer_wrap_add(buf, buf->p + msg->next);
char *stop = buffer_wrap_add(buf, buf->p + buf->i);
int bytes;
/* scan current line and stop at LF or CRLF */
while (1) {
if (ptr == stop)
return 0;
if (*ptr == '\n') {
if (!p1)
p1 = ptr;
p2 = ptr;
break;
}
if (*ptr == '\r') {
if (p1) {
msg->err_pos = ptr - buf->data;
return -1;
}
p1 = ptr;
}
ptr++;
if (ptr >= buf->data + buf->size)
ptr = buf->data;
}
/* after LF; point to beginning of next line */
p2++;
if (p2 >= buf->data + buf->size)
p2 = buf->data;
bytes = p2 - buffer_wrap_add(buf, buf->p + msg->next);
if (bytes < 0)
bytes += buf->size;
/* schedule this line for forwarding */
msg->sov += bytes;
if (msg->sov >= buf->size)
msg->sov -= buf->size;
if (p1 == buffer_wrap_add(buf, buf->p + msg->next)) {
/* LF/CRLF at beginning of line => end of trailers at p2.
* Everything was scheduled for forwarding, there's nothing
* left from this message.
*/
msg->next = buffer_count(buf, buf->p, p2);
msg->msg_state = HTTP_MSG_DONE;
return 1;
}
/* OK, next line then */
msg->next = buffer_count(buf, buf->p, p2);
}
}
/* This function may be called only in HTTP_MSG_DATA_CRLF. It reads the CRLF or
* a possible LF alone at the end of a chunk. It automatically adjusts msg->sov,
* ->som, ->next in order to include this part into the next forwarding phase.
* Note that the caller must ensure that ->p points to the first byte to parse.
* It also sets msg_state to HTTP_MSG_CHUNK_SIZE and returns >0 on success. If
* not enough data are available, the function does not change anything and
* returns zero. If a parse error is encountered, the function returns < 0 and
* does not change anything. Note: this function is designed to parse wrapped
* CRLF at the end of the buffer.
*/
int http_skip_chunk_crlf(struct buffer *buf, struct http_msg *msg)
{
char *ptr;
int bytes;
/* NB: we'll check data availabilty at the end. It's not a
* problem because whatever we match first will be checked
* against the correct length.
*/
bytes = 1;
ptr = buf->p;
if (*ptr == '\r') {
bytes++;
ptr++;
if (ptr >= buf->data + buf->size)
ptr = buf->data;
}
if (bytes > buf->i)
return 0;
if (*ptr != '\n') {
msg->err_pos = ptr - buf->data;
return -1;
}
ptr++;
if (ptr >= buf->data + buf->size)
ptr = buf->data;
/* prepare the CRLF to be forwarded (between ->som and ->sov) */
msg->som = 0;
msg->sov = msg->next = bytes;
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
return 1;
}
/* This function may only be used when the buffer's o is empty */
void http_buffer_heavy_realign(struct buffer *buf, struct http_msg *msg)
{
char *end = buf->data + buf->size;
int off = buf->data + buf->size - buf->p;
/* two possible cases :
* - the buffer is in one contiguous block, we move it in-place
* - the buffer is in two blocks, we move it via the swap_buffer
*/
if (buf->i) {
int block1 = buf->i;
int block2 = 0;
if (buf->p + buf->i > buf->data + buf->size) {
/* non-contiguous block */
block1 = buf->data + buf->size - buf->p;
block2 = buf->p + buf->i - (buf->data + buf->size);
}
if (block2)
memcpy(swap_buffer, buf->data, block2);
memmove(buf->data, buf->p, block1);
if (block2)
memcpy(buf->data + block1, swap_buffer, block2);
}
/* adjust all known pointers */
buf->p = buf->data;
msg->sol += off; if (msg->sol >= end) msg->sol -= buf->size;
msg->eol += off; if (msg->eol >= end) msg->eol -= buf->size;
if (msg->err_pos >= 0) {
msg->err_pos += off;
if (msg->err_pos >= buf->size)
msg->err_pos -= buf->size;
}
buf->flags &= ~BF_FULL;
if (buffer_len(buf) >= buffer_max_len(buf))
buf->flags |= BF_FULL;
}
/* This stream analyser waits for a complete HTTP request. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the request (eg: timeout, error, ...). It
* is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req->analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_request(struct session *s, struct buffer *req, int an_bit)
{
/*
* We will parse the partial (or complete) lines.
* We will check the request syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* req->p + msg->som = beginning of request
* req->p + msg->eoh = end of processed headers / start of current one
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
* req->r = end of data
*
* At end of parsing, we may perform a capture of the error (if any), and
* we will set a few fields (msg->sol, txn->meth, sn->flags/SN_REDIRECTABLE).
* We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and
* finally headers capture.
*/
int cur_idx;
int use_close_only;
struct http_txn *txn = &s->txn;
struct http_msg *msg = &txn->req;
struct hdr_ctx ctx;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->i,
req->analysers);
/* we're speaking HTTP here, so let's speak HTTP to the client */
s->srv_error = http_return_srv_error;
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(req) && msg->msg_state < HTTP_MSG_ERROR) {
if ((txn->flags & TX_NOT_FIRST) &&
unlikely((req->flags & BF_FULL) ||
buffer_wrap_add(req, req->p + req->i) < buffer_wrap_add(req, req->p + msg->next) ||
buffer_wrap_add(req, req->p + req->i) > req->data + req->size - global.tune.maxrewrite)) {
if (req->o) {
if (req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_WRITE_ERROR|BF_WRITE_TIMEOUT))
goto failed_keep_alive;
/* some data has still not left the buffer, wake us once that's done */
buffer_dont_connect(req);
req->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */
return 0;
}
if (buffer_wrap_add(req, req->p + req->i) < buffer_wrap_add(req, req->p + msg->next) ||
buffer_wrap_add(req, req->p + req->i) > req->data + req->size - global.tune.maxrewrite)
http_buffer_heavy_realign(req, msg);
}
/* Note that we have the same problem with the response ; we
* may want to send a redirect, error or anything which requires
* some spare space. So we'll ensure that we have at least
* maxrewrite bytes available in the response buffer before
* processing that one. This will only affect pipelined
* keep-alive requests.
*/
if ((txn->flags & TX_NOT_FIRST) &&
unlikely((s->rep->flags & BF_FULL) ||
buffer_wrap_add(s->rep, s->rep->p + s->rep->i) < buffer_wrap_add(s->rep, s->rep->p + txn->rsp.next) ||
buffer_wrap_add(s->rep, s->rep->p + s->rep->i) > s->rep->data + s->rep->size - global.tune.maxrewrite)) {
if (s->rep->o) {
if (s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_WRITE_ERROR|BF_WRITE_TIMEOUT))
goto failed_keep_alive;
/* don't let a connection request be initiated */
buffer_dont_connect(req);
s->rep->flags &= ~BF_EXPECT_MORE; /* speed up sending a previous response */
s->rep->analysers |= an_bit; /* wake us up once it changes */
return 0;
}
}
if (likely(msg->next < req->i)) /* some unparsed data are available */
http_msg_analyzer(req, msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->sol &&
(msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) {
char *eol, *sol;
sol = req->p + msg->som;
eol = sol + msg->sl.rq.l;
debug_hdr("clireq", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("clihdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* requests are checked first. When waiting for a second request
* on a keep-alive session, if we encounter and error, close, t/o,
* we note the error in the session flags but don't set any state.
* Since the error will be noted there, it will not be counted by
* process_session() as a frontend error.
* Last, we may increase some tracked counters' http request errors on
* the cases that are deliberately the client's fault. For instance,
* a timeout or connection reset is not counted as an error. However
* a bad request is.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/*
* First, let's catch bad requests.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
session_inc_http_req_ctr(s);
session_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(s->fe);
goto return_bad_req;
}
/* 1: Since we are in header mode, if there's no space
* left for headers, we won't be able to free more
* later, so the session will never terminate. We
* must terminate it now.
*/
if (unlikely(req->flags & BF_FULL)) {
/* FIXME: check if URI is set and return Status
* 414 Request URI too long instead.
*/
session_inc_http_req_ctr(s);
session_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(s->fe);
if (msg->err_pos < 0)
msg->err_pos = req->i;
goto return_bad_req;
}
/* 2: have we encountered a read error ? */
else if (req->flags & BF_READ_ERROR) {
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
/* we cannot return any message on error */
if (msg->err_pos >= 0) {
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
session_inc_http_err_ctr(s);
}
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
session_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(s->fe);
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return 0;
}
/* 3: has the read timeout expired ? */
else if (req->flags & BF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLITO;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
/* read timeout : give up with an error message. */
if (msg->err_pos >= 0) {
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
session_inc_http_err_ctr(s);
}
txn->status = 408;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_408));
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
session_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(s->fe);
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return 0;
}
/* 4: have we encountered a close ? */
else if (req->flags & BF_SHUTR) {
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (msg->err_pos >= 0)
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
txn->status = 400;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
msg->msg_state = HTTP_MSG_ERROR;
req->analysers = 0;
session_inc_http_err_ctr(s);
session_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(s->fe);
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return 0;
}
buffer_dont_connect(req);
req->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */
s->rep->flags &= ~BF_EXPECT_MORE; /* speed up sending a previous response */
#ifdef TCP_QUICKACK
if (s->listener->options & LI_O_NOQUICKACK) {
/* We need more data, we have to re-enable quick-ack in case we
* previously disabled it, otherwise we might cause the client
* to delay next data.
*/
setsockopt(s->si[0].fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
}
#endif
if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) {
/* If the client starts to talk, let's fall back to
* request timeout processing.
*/
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp)) {
if ((msg->msg_state == HTTP_MSG_RQBEFORE) &&
(txn->flags & TX_WAIT_NEXT_RQ) &&
tick_isset(s->be->timeout.httpka))
req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
else
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
}
/* we're not ready yet */
return 0;
failed_keep_alive:
/* Here we process low-level errors for keep-alive requests. In
* short, if the request is not the first one and it experiences
* a timeout, read error or shutdown, we just silently close so
* that the client can try again.
*/
txn->status = 0;
msg->msg_state = HTTP_MSG_RQBEFORE;
req->analysers = 0;
s->logs.logwait = 0;
s->rep->flags &= ~BF_EXPECT_MORE; /* speed up sending a previous response */
stream_int_retnclose(req->prod, NULL);
return 0;
}
/* OK now we have a complete HTTP request with indexed headers. Let's
* complete the request parsing by setting a few fields we will need
* later. At this point, we have the last CRLF at req->data + msg->eoh.
* If the request is in HTTP/0.9 form, the rule is still true, and eoh
* points to the CRLF of the request line. msg->next points to the first
* byte after the last LF. msg->sov points to the first byte of data.
* msg->eol cannot be trusted because it may have been left uninitialized
* (for instance in the absence of headers).
*/
session_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(s->fe); /* one more valid request for this FE */
if (txn->flags & TX_WAIT_NEXT_RQ) {
/* kill the pending keep-alive timeout */
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* Maybe we found in invalid header name while we were configured not
* to block on that, so we have to capture it now.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
/*
* 1: identify the method
*/
txn->meth = find_http_meth(msg->sol, msg->sl.rq.m_l);
/* we can make use of server redirect on GET and HEAD */
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SN_REDIRECTABLE;
/*
* 2: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend.
*/
if (unlikely((s->fe->monitor_uri_len != 0) &&
(s->fe->monitor_uri_len == msg->sl.rq.u_l) &&
!memcmp(msg->sol + msg->sl.rq.u,
s->fe->monitor_uri,
s->fe->monitor_uri_len))) {
/*
* We have found the monitor URI
*/
struct acl_cond *cond;
s->flags |= SN_MONITOR;
s->fe->fe_counters.intercepted_req++;
/* Check if we want to fail this monitor request or not */
list_for_each_entry(cond, &s->fe->mon_fail_cond, list) {
int ret = acl_exec_cond(cond, s->fe, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
/* we fail this request, let's return 503 service unavail */
txn->status = 503;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_503));
goto return_prx_cond;
}
}
/* nothing to fail, let's reply normaly */
txn->status = 200;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_200));
goto return_prx_cond;
}
/*
* 3: Maybe we have to copy the original REQURI for the logs ?
* Note: we cannot log anymore if the request has been
* classified as invalid.
*/
if (unlikely(s->logs.logwait & LW_REQ)) {
/* we have a complete HTTP request that we must log */
if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) {
int urilen = msg->sl.rq.l;
if (urilen >= REQURI_LEN)
urilen = REQURI_LEN - 1;
memcpy(txn->uri, &req->p[msg->som], urilen);
txn->uri[urilen] = 0;
if (!(s->logs.logwait &= ~LW_REQ))
s->do_log(s);
} else {
Alert("HTTP logging : out of memory.\n");
}
}
if (!LIST_ISEMPTY(&s->fe->format_unique_id)) {
s->unique_id = pool_alloc2(pool2_uniqueid);
}
/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(req, msg, txn))
goto return_bad_req;
/* ... and check if the request is HTTP/1.1 or above */
if ((msg->sl.rq.v_l == 8) &&
((msg->sol[msg->sl.rq.v + 5] > '1') ||
((msg->sol[msg->sl.rq.v + 5] == '1') &&
(msg->sol[msg->sl.rq.v + 7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL);
/* if the frontend has "option http-use-proxy-header", we'll check if
* we have what looks like a proxied connection instead of a connection,
* and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
* Note that this is *not* RFC-compliant, however browsers and proxies
* happen to do that despite being non-standard :-(
* We consider that a request not beginning with either '/' or '*' is
* a proxied connection, which covers both "scheme://location" and
* CONNECT ip:port.
*/
if ((s->fe->options2 & PR_O2_USE_PXHDR) &&
msg->sol[msg->sl.rq.u] != '/' && msg->sol[msg->sl.rq.u] != '*')
txn->flags |= TX_USE_PX_CONN;
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
/* 5: we may need to capture headers */
if (unlikely((s->logs.logwait & LW_REQHDR) && txn->req.cap))
capture_headers(msg->sol, &txn->hdr_idx,
txn->req.cap, s->fe->req_cap);
/* 6: determine the transfer-length.
* According to RFC2616 #4.4, amended by the HTTPbis working group,
* the presence of a message-body in a REQUEST and its transfer length
* must be determined that way (in order of precedence) :
* 1. The presence of a message-body in a request is signaled by the
* inclusion of a Content-Length or Transfer-Encoding header field
* in the request's header fields. When a request message contains
* both a message-body of non-zero length and a method that does
* not define any semantics for that request message-body, then an
* origin server SHOULD either ignore the message-body or respond
* with an appropriate error message (e.g., 413). A proxy or
* gateway, when presented the same request, SHOULD either forward
* the request inbound with the message- body or ignore the
* message-body when determining a response.
*
* 2. If a Transfer-Encoding header field (Section 9.7) is present
* and the "chunked" transfer-coding (Section 6.2) is used, the
* transfer-length is defined by the use of this transfer-coding.
* If a Transfer-Encoding header field is present and the "chunked"
* transfer-coding is not present, the transfer-length is defined
* by the sender closing the connection.
*
* 3. If a Content-Length header field is present, its decimal value in
* OCTETs represents both the entity-length and the transfer-length.
* If a message is received with both a Transfer-Encoding header
* field and a Content-Length header field, the latter MUST be ignored.
*
* 4. By the server closing the connection. (Closing the connection
* cannot be used to indicate the end of a request body, since that
* would leave no possibility for the server to send back a response.)
*
* Whenever a transfer-coding is applied to a message-body, the set of
* transfer-codings MUST include "chunked", unless the message indicates
* it is terminated by closing the connection. When the "chunked"
* transfer-coding is used, it MUST be the last transfer-coding applied
* to the message-body.
*/
use_close_only = 0;
ctx.idx = 0;
/* set TE_CHNK and XFER_LEN only if "chunked" is seen last */
while ((msg->flags & HTTP_MSGF_VER_11) &&
http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* bad transfer-encoding (chunked followed by something else) */
use_close_only = 1;
msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
break;
}
}
ctx.idx = 0;
while (!(msg->flags & HTTP_MSGF_TE_CHNK) && !use_close_only &&
http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - req->data;
goto return_bad_req;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - req->data;
goto return_bad_req; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - req->data;
goto return_bad_req;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - req->data;
goto return_bad_req; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
msg->body_len = msg->chunk_len = cl;
}
/* bodyless requests have a known length */
if (!use_close_only)
msg->flags |= HTTP_MSGF_XFER_LEN;
/* end of job, return OK */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_bad_req:
/* We centralize bad requests processing here */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
}
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
return_prx_cond:
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
req->analysers = 0;
req->analyse_exp = TICK_ETERNITY;
return 0;
}
/* We reached the stats page through a POST request.
* Parse the posted data and enable/disable servers if necessary.
* Returns 1 if request was parsed or zero if it needs more data.
*/
int http_process_req_stat_post(struct stream_interface *si, struct http_txn *txn, struct buffer *req)
{
struct proxy *px = NULL;
struct server *sv = NULL;
char key[LINESIZE];
int action = ST_ADM_ACTION_NONE;
int reprocess = 0;
int total_servers = 0;
int altered_servers = 0;
char *first_param, *cur_param, *next_param, *end_params;
char *st_cur_param = NULL;
char *st_next_param = NULL;
first_param = req->p + txn->req.eoh + 2;
end_params = first_param + txn->req.body_len;
cur_param = next_param = end_params;
if (end_params >= req->data + req->size - global.tune.maxrewrite) {
/* Prevent buffer overflow */
si->applet.ctx.stats.st_code = STAT_STATUS_EXCD;
return 1;
}
else if (end_params > req->p + req->i) {
/* we need more data */
si->applet.ctx.stats.st_code = STAT_STATUS_NONE;
return 0;
}
*end_params = '\0';
si->applet.ctx.stats.st_code = STAT_STATUS_NONE;
/*
* Parse the parameters in reverse order to only store the last value.
* From the html form, the backend and the action are at the end.
*/
while (cur_param > first_param) {
char *value;
int poffset, plen;
cur_param--;
if ((*cur_param == '&') || (cur_param == first_param)) {
reprocess_servers:
/* Parse the key */
poffset = (cur_param != first_param ? 1 : 0);
plen = next_param - cur_param + (cur_param == first_param ? 1 : 0);
if ((plen > 0) && (plen <= sizeof(key))) {
strncpy(key, cur_param + poffset, plen);
key[plen - 1] = '\0';
} else {
si->applet.ctx.stats.st_code = STAT_STATUS_EXCD;
goto out;
}
/* Parse the value */
value = key;
while (*value != '\0' && *value != '=') {
value++;
}
if (*value == '=') {
/* Ok, a value is found, we can mark the end of the key */
*value++ = '\0';
}
if (!url_decode(key) || !url_decode(value))
break;
/* Now we can check the key to see what to do */
if (!px && (strcmp(key, "b") == 0)) {
if ((px = findproxy(value, PR_CAP_BE)) == NULL) {
/* the backend name is unknown or ambiguous (duplicate names) */
si->applet.ctx.stats.st_code = STAT_STATUS_ERRP;
goto out;
}
}
else if (!action && (strcmp(key, "action") == 0)) {
if (strcmp(value, "disable") == 0) {
action = ST_ADM_ACTION_DISABLE;
}
else if (strcmp(value, "enable") == 0) {
action = ST_ADM_ACTION_ENABLE;
}
else {
si->applet.ctx.stats.st_code = STAT_STATUS_ERRP;
goto out;
}
}
else if (strcmp(key, "s") == 0) {
if (!(px && action)) {
/*
* Indicates that we'll need to reprocess the parameters
* as soon as backend and action are known
*/
if (!reprocess) {
st_cur_param = cur_param;
st_next_param = next_param;
}
reprocess = 1;
}
else if ((sv = findserver(px, value)) != NULL) {
switch (action) {
case ST_ADM_ACTION_DISABLE:
if ((px->state != PR_STSTOPPED) && !(sv->state & SRV_MAINTAIN)) {
/* Not already in maintenance, we can change the server state */
sv->state |= SRV_MAINTAIN;
set_server_down(sv);
altered_servers++;
total_servers++;
}
break;
case ST_ADM_ACTION_ENABLE:
if ((px->state != PR_STSTOPPED) && (sv->state & SRV_MAINTAIN)) {
/* Already in maintenance, we can change the server state */
set_server_up(sv);
sv->health = sv->rise; /* up, but will fall down at first failure */
altered_servers++;
total_servers++;
}
break;
}
} else {
/* the server name is unknown or ambiguous (duplicate names) */
total_servers++;
}
}
if (reprocess && px && action) {
/* Now, we know the backend and the action chosen by the user.
* We can safely restart from the first server parameter
* to reprocess them
*/
cur_param = st_cur_param;
next_param = st_next_param;
reprocess = 0;
goto reprocess_servers;
}
next_param = cur_param;
}
}
if (total_servers == 0) {
si->applet.ctx.stats.st_code = STAT_STATUS_NONE;
}
else if (altered_servers == 0) {
si->applet.ctx.stats.st_code = STAT_STATUS_ERRP;
}
else if (altered_servers == total_servers) {
si->applet.ctx.stats.st_code = STAT_STATUS_DONE;
}
else {
si->applet.ctx.stats.st_code = STAT_STATUS_PART;
}
out:
return 1;
}
/* returns a pointer to the first rule which forbids access (deny or http_auth),
* or NULL if everything's OK.
*/
static inline struct http_req_rule *
http_check_access_rule(struct proxy *px, struct list *rules, struct session *s, struct http_txn *txn)
{
struct http_req_rule *rule;
list_for_each_entry(rule, rules, list) {
int ret = 1;
if (rule->action >= HTTP_REQ_ACT_MAX)
continue;
/* check condition, but only if attached */
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
if (rule->action == HTTP_REQ_ACT_ALLOW)
return NULL; /* no problem */
else
return rule; /* most likely a deny or auth rule */
}
}
return NULL;
}
/* This stream analyser runs all HTTP request processing which is common to
* frontends and backends, which means blocking ACLs, filters, connection-close,
* reqadd, stats and redirects. This is performed for the designated proxy.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request (eg: deny,
* error, ...).
*/
int http_process_req_common(struct session *s, struct buffer *req, int an_bit, struct proxy *px)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &txn->req;
struct acl_cond *cond;
struct http_req_rule *http_req_last_rule = NULL;
struct redirect_rule *rule;
struct cond_wordlist *wl;
int do_stats;
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
buffer_dont_connect(req);
return 0;
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->i,
req->analysers);
/* first check whether we have some ACLs set to block this request */
list_for_each_entry(cond, &px->block_cond, list) {
int ret = acl_exec_cond(cond, px, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
txn->status = 403;
/* let's log the request time */
s->logs.tv_request = now;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_403));
session_inc_http_err_ctr(s);
goto return_prx_cond;
}
}
/* evaluate http-request rules */
http_req_last_rule = http_check_access_rule(px, &px->http_req_rules, s, txn);
/* evaluate stats http-request rules only if http-request is OK */
if (!http_req_last_rule) {
do_stats = stats_check_uri(s->rep->prod, txn, px);
if (do_stats)
http_req_last_rule = http_check_access_rule(px, &px->uri_auth->http_req_rules, s, txn);
}
else
do_stats = 0;
/* return a 403 if either rule has blocked */
if (http_req_last_rule && http_req_last_rule->action == HTTP_REQ_ACT_DENY) {
txn->status = 403;
s->logs.tv_request = now;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_403));
session_inc_http_err_ctr(s);
s->fe->fe_counters.denied_req++;
if (an_bit == AN_REQ_HTTP_PROCESS_BE)
s->be->be_counters.denied_req++;
if (s->listener->counters)
s->listener->counters->denied_req++;
goto return_prx_cond;
}
/* try headers filters */
if (px->req_exp != NULL) {
if (apply_filters_to_request(s, req, px) < 0)
goto return_bad_req;
/* has the request been denied ? */
if (txn->flags & TX_CLDENY) {
/* no need to go further */
txn->status = 403;
/* let's log the request time */
s->logs.tv_request = now;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_403));
session_inc_http_err_ctr(s);
goto return_prx_cond;
}
/* When a connection is tarpitted, we use the tarpit timeout,
* which may be the same as the connect timeout if unspecified.
* If unset, then set it to zero because we really want it to
* eventually expire. We build the tarpit as an analyser.
*/
if (txn->flags & TX_CLTARPIT) {
buffer_erase(s->req);
/* wipe the request out so that we can drop the connection early
* if the client closes first.
*/
buffer_dont_connect(req);
req->analysers = 0; /* remove switching rules etc... */
req->analysers |= AN_REQ_HTTP_TARPIT;
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit);
if (!req->analyse_exp)
req->analyse_exp = tick_add(now_ms, 0);
session_inc_http_err_ctr(s);
return 1;
}
}
/* Until set to anything else, the connection mode is set as TUNNEL. It will
* only change if both the request and the config reference something else.
* Option httpclose by itself does not set a mode, it remains a tunnel mode
* in which headers are mangled. However, if another mode is set, it will
* affect it (eg: server-close/keep-alive + httpclose = close). Note that we
* avoid to redo the same work if FE and BE have the same settings (common).
* The method consists in checking if options changed between the two calls
* (implying that either one is non-null, or one of them is non-null and we
* are there for the first time.
*/
if ((!(txn->flags & TX_HDR_CONN_PRS) &&
(s->fe->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) ||
((s->fe->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) !=
(s->be->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)))) {
int tmp = TX_CON_WANT_TUN;
if ((s->fe->options|s->be->options) & PR_O_KEEPALIVE ||
((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
tmp = TX_CON_WANT_KAL;
if ((s->fe->options|s->be->options) & PR_O_SERVER_CLO)
tmp = TX_CON_WANT_SCL;
if ((s->fe->options|s->be->options) & PR_O_FORCE_CLO)
tmp = TX_CON_WANT_CLO;
if ((txn->flags & TX_CON_WANT_MSK) < tmp)
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp;
if (!(txn->flags & TX_HDR_CONN_PRS)) {
/* parse the Connection header and possibly clean it */
int to_del = 0;
if ((msg->flags & HTTP_MSGF_VER_11) ||
((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL &&
!((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA)))
to_del |= 2; /* remove "keep-alive" */
if (!(msg->flags & HTTP_MSGF_VER_11))
to_del |= 1; /* remove "close" */
http_parse_connection_header(txn, msg, req, to_del);
}
/* check if client or config asks for explicit close in KAL/SCL */
if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) &&
((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */
(!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */
((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE) || /* httpclose+any = forceclose */
!(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */
s->fe->state == PR_STSTOPPED)) /* frontend is stopping */
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
}
/* we can be blocked here because the request needs to be authenticated,
* either to pass or to access stats.
*/
if (http_req_last_rule && http_req_last_rule->action == HTTP_REQ_ACT_HTTP_AUTH) {
struct chunk msg;
char *realm = http_req_last_rule->http_auth.realm;
if (!realm)
realm = do_stats?STATS_DEFAULT_REALM:px->id;
sprintf(trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, realm);
chunk_initlen(&msg, trash, sizeof(trash), strlen(trash));
txn->status = 401;
stream_int_retnclose(req->prod, &msg);
/* on 401 we still count one error, because normal browsing
* won't significantly increase the counter but brute force
* attempts will.
*/
session_inc_http_err_ctr(s);
goto return_prx_cond;
}
/* add request headers from the rule sets in the same order */
list_for_each_entry(wl, &px->req_add, list) {
if (wl->cond) {
int ret = acl_exec_cond(wl->cond, px, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (unlikely(http_header_add_tail(req, &txn->req, &txn->hdr_idx, wl->s) < 0))
goto return_bad_req;
}
if (do_stats) {
struct stats_admin_rule *stats_admin_rule;
/* We need to provide stats for this request.
* FIXME!!! that one is rather dangerous, we want to
* make it follow standard rules (eg: clear req->analysers).
*/
/* now check whether we have some admin rules for this request */
list_for_each_entry(stats_admin_rule, &s->be->uri_auth->admin_rules, list) {
int ret = 1;
if (stats_admin_rule->cond) {
ret = acl_exec_cond(stats_admin_rule->cond, s->be, s, &s->txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (stats_admin_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
s->rep->prod->applet.ctx.stats.flags |= STAT_ADMIN;
break;
}
}
/* Was the status page requested with a POST ? */
if (txn->meth == HTTP_METH_POST) {
if (s->rep->prod->applet.ctx.stats.flags & STAT_ADMIN) {
if (msg->msg_state < HTTP_MSG_100_SENT) {
/* If we have HTTP/1.1 and Expect: 100-continue, then we must
* send an HTTP/1.1 100 Continue intermediate response.
*/
if (msg->flags & HTTP_MSGF_VER_11) {
struct hdr_ctx ctx;
ctx.idx = 0;
/* Expect is allowed in 1.1, look for it */
if (http_find_header2("Expect", 6, msg->sol, &txn->hdr_idx, &ctx) &&
unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) {
buffer_write(s->rep, http_100_chunk.str, http_100_chunk.len);
}
}
msg->msg_state = HTTP_MSG_100_SENT;
s->logs.tv_request = now; /* update the request timer to reflect full request */
}
if (!http_process_req_stat_post(s->rep->prod, txn, req)) {
/* we need more data */
req->analysers |= an_bit;
buffer_dont_connect(req);
return 0;
}
} else {
s->rep->prod->applet.ctx.stats.st_code = STAT_STATUS_DENY;
}
}
s->logs.tv_request = now;
s->task->nice = -32; /* small boost for HTTP statistics */
stream_int_register_handler(s->rep->prod, &http_stats_applet);
copy_target(&s->target, &s->rep->prod->target); // for logging only
s->rep->prod->applet.private = s;
s->rep->prod->applet.st0 = s->rep->prod->applet.st1 = 0;
req->analysers = 0;
if (s->fe == s->be) /* report it if the request was intercepted by the frontend */
s->fe->fe_counters.intercepted_req++;
return 0;
}
/* check whether we have some ACLs set to redirect this request */
list_for_each_entry(rule, &px->redirect_rules, list) {
int ret = ACL_PAT_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct chunk rdr = { .str = trash, .size = sizeof(trash), .len = 0 };
const char *msg_fmt;
/* build redirect message */
switch(rule->code) {
case 303:
msg_fmt = HTTP_303;
break;
case 301:
msg_fmt = HTTP_301;
break;
case 302:
default:
msg_fmt = HTTP_302;
break;
}
if (unlikely(!chunk_strcpy(&rdr, msg_fmt)))
goto return_bad_req;
switch(rule->type) {
case REDIRECT_TYPE_PREFIX: {
const char *path;
int pathlen;
path = http_get_path(txn);
/* build message using path */
if (path) {
pathlen = txn->req.sl.rq.u_l + (txn->req.sol + txn->req.sl.rq.u) - path;
if (rule->flags & REDIRECT_FLAG_DROP_QS) {
int qs = 0;
while (qs < pathlen) {
if (path[qs] == '?') {
pathlen = qs;
break;
}
qs++;
}
}
} else {
path = "/";
pathlen = 1;
}
if (rdr.len + rule->rdr_len + pathlen > rdr.size - 4)
goto return_bad_req;
/* add prefix. Note that if prefix == "/", we don't want to
* add anything, otherwise it makes it hard for the user to
* configure a self-redirection.
*/
if (rule->rdr_len != 1 || *rule->rdr_str != '/') {
memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len);
rdr.len += rule->rdr_len;
}
/* add path */
memcpy(rdr.str + rdr.len, path, pathlen);
rdr.len += pathlen;
/* append a slash at the end of the location is needed and missing */
if (rdr.len && rdr.str[rdr.len - 1] != '/' &&
(rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
if (rdr.len > rdr.size - 5)
goto return_bad_req;
rdr.str[rdr.len] = '/';
rdr.len++;
}
break;
}
case REDIRECT_TYPE_LOCATION:
default:
if (rdr.len + rule->rdr_len > rdr.size - 4)
goto return_bad_req;
/* add location */
memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len);
rdr.len += rule->rdr_len;
break;
}
if (rule->cookie_len) {
memcpy(rdr.str + rdr.len, "\r\nSet-Cookie: ", 14);
rdr.len += 14;
memcpy(rdr.str + rdr.len, rule->cookie_str, rule->cookie_len);
rdr.len += rule->cookie_len;
memcpy(rdr.str + rdr.len, "\r\n", 2);
rdr.len += 2;
}
/* add end of headers and the keep-alive/close status.
* We may choose to set keep-alive if the Location begins
* with a slash, because the client will come back to the
* same server.
*/
txn->status = rule->code;
/* let's log the request time */
s->logs.tv_request = now;
if (rule->rdr_len >= 1 && *rule->rdr_str == '/' &&
(msg->flags & HTTP_MSGF_XFER_LEN) &&
!(msg->flags & HTTP_MSGF_TE_CHNK) && !txn->req.body_len &&
((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
/* keep-alive possible */
if (!(msg->flags & HTTP_MSGF_VER_11)) {
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(rdr.str + rdr.len, "\r\nProxy-Connection: keep-alive", 30);
rdr.len += 30;
} else {
memcpy(rdr.str + rdr.len, "\r\nConnection: keep-alive", 24);
rdr.len += 24;
}
}
memcpy(rdr.str + rdr.len, "\r\n\r\n", 4);
rdr.len += 4;
buffer_write(req->prod->ob, rdr.str, rdr.len);
/* "eat" the request */
buffer_ignore(req, msg->sov - msg->som);
msg->som = msg->sov;
req->analysers = AN_REQ_HTTP_XFER_BODY;
s->rep->analysers = AN_RES_HTTP_XFER_BODY;
txn->req.msg_state = HTTP_MSG_CLOSED;
txn->rsp.msg_state = HTTP_MSG_DONE;
break;
} else {
/* keep-alive not possible */
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(rdr.str + rdr.len, "\r\nProxy-Connection: close\r\n\r\n", 29);
rdr.len += 29;
} else {
memcpy(rdr.str + rdr.len, "\r\nConnection: close\r\n\r\n", 23);
rdr.len += 23;
}
stream_int_retnclose(req->prod, &rdr);
goto return_prx_cond;
}
}
}
/* POST requests may be accompanied with an "Expect: 100-Continue" header.
* If this happens, then the data will not come immediately, so we must
* send all what we have without waiting. Note that due to the small gain
* in waiting for the body of the request, it's easier to simply put the
* BF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove
* itself once used.
*/
req->flags |= BF_SEND_DONTWAIT;
/* that's OK for us now, let's move on to next analysers */
return 1;
return_bad_req:
/* We centralize bad requests processing here */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
}
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
return_prx_cond:
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
req->analysers = 0;
req->analyse_exp = TICK_ETERNITY;
return 0;
}
/* This function performs all the processing enabled for the current request.
* It returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* request. It relies on buffers flags, and updates s->req->analysers.
*/
int http_process_request(struct session *s, struct buffer *req, int an_bit)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &txn->req;
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
buffer_dont_connect(req);
return 0;
}
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->i,
req->analysers);
/*
* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want with the remaining request. Also, now we
* may have separate values for ->fe, ->be.
*/
/*
* If HTTP PROXY is set we simply get remote server address
* parsing incoming request.
*/
if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SN_ADDR_SET)) {
url2sa(msg->sol + msg->sl.rq.u, msg->sl.rq.u_l, &s->req->cons->addr.to);
}
/*
* 7: Now we can work with the cookies.
* Note that doing so might move headers in the request, but
* the fields will stay coherent and the URI will not move.
* This should only be performed in the backend.
*/
if ((s->be->cookie_name || s->be->appsession_name || s->fe->capture_name)
&& !(txn->flags & (TX_CLDENY|TX_CLTARPIT)))
manage_client_side_cookies(s, req);
/*
* 8: the appsession cookie was looked up very early in 1.2,
* so let's do the same now.
*/
/* It needs to look into the URI unless persistence must be ignored */
if ((txn->sessid == NULL) && s->be->appsession_name && !(s->flags & SN_IGNORE_PRST)) {
get_srv_from_appsession(s, msg->sol + msg->sl.rq.u, msg->sl.rq.u_l);
}
/* add unique-id if "header-unique-id" is specified */
if (!LIST_ISEMPTY(&s->fe->format_unique_id))
build_logline(s, s->unique_id, UNIQUEID_LEN, &s->fe->format_unique_id);
if (s->fe->header_unique_id && s->unique_id) {
int ret = snprintf(trash, global.tune.bufsize, "%s: %s", s->fe->header_unique_id, s->unique_id);
if (ret < 0 || ret > global.tune.bufsize)
goto return_bad_req;
if(unlikely(http_header_add_tail(req, &txn->req, &txn->hdr_idx, trash) < 0))
goto return_bad_req;
}
/*
* 9: add X-Forwarded-For if either the frontend or the backend
* asks for it.
*/
if ((s->fe->options | s->be->options) & PR_O_FWDFOR) {
struct hdr_ctx ctx = { .idx = 0 };
if (!((s->fe->options | s->be->options) & PR_O_FF_ALWAYS) &&
http_find_header2(s->be->fwdfor_hdr_name, s->be->fwdfor_hdr_len, txn->req.sol, &txn->hdr_idx, &ctx)) {
/* The header is set to be added only if none is present
* and we found it, so don't do anything.
*/
}
else if (s->req->prod->addr.from.ss_family == AF_INET) {
/* Add an X-Forwarded-For header unless the source IP is
* in the 'except' network range.
*/
if ((!s->fe->except_mask.s_addr ||
(((struct sockaddr_in *)&s->req->prod->addr.from)->sin_addr.s_addr & s->fe->except_mask.s_addr)
!= s->fe->except_net.s_addr) &&
(!s->be->except_mask.s_addr ||
(((struct sockaddr_in *)&s->req->prod->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr)
!= s->be->except_net.s_addr)) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&s->req->prod->addr.from)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->fwdfor_hdr_len) {
len = s->be->fwdfor_hdr_len;
memcpy(trash, s->be->fwdfor_hdr_name, len);
} else {
len = s->fe->fwdfor_hdr_len;
memcpy(trash, s->fe->fwdfor_hdr_name, len);
}
len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(http_header_add_tail2(req, &txn->req,
&txn->hdr_idx, trash, len) < 0))
goto return_bad_req;
}
}
else if (s->req->prod->addr.from.ss_family == AF_INET6) {
/* FIXME: for the sake of completeness, we should also support
* 'except' here, although it is mostly useless in this case.
*/
int len;
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&s->req->prod->addr.from))->sin6_addr,
pn, sizeof(pn));
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->fwdfor_hdr_len) {
len = s->be->fwdfor_hdr_len;
memcpy(trash, s->be->fwdfor_hdr_name, len);
} else {
len = s->fe->fwdfor_hdr_len;
memcpy(trash, s->fe->fwdfor_hdr_name, len);
}
len += sprintf(trash + len, ": %s", pn);
if (unlikely(http_header_add_tail2(req, &txn->req,
&txn->hdr_idx, trash, len) < 0))
goto return_bad_req;
}
}
/*
* 10: add X-Original-To if either the frontend or the backend
* asks for it.
*/
if ((s->fe->options | s->be->options) & PR_O_ORGTO) {
/* FIXME: don't know if IPv6 can handle that case too. */
if (s->req->prod->addr.from.ss_family == AF_INET) {
/* Add an X-Original-To header unless the destination IP is
* in the 'except' network range.
*/
stream_sock_get_to_addr(s->req->prod);
if (s->req->prod->addr.to.ss_family == AF_INET &&
((!s->fe->except_mask_to.s_addr ||
(((struct sockaddr_in *)&s->req->prod->addr.to)->sin_addr.s_addr & s->fe->except_mask_to.s_addr)
!= s->fe->except_to.s_addr) &&
(!s->be->except_mask_to.s_addr ||
(((struct sockaddr_in *)&s->req->prod->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr)
!= s->be->except_to.s_addr))) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&s->req->prod->addr.to)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-original-to, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->orgto_hdr_len) {
len = s->be->orgto_hdr_len;
memcpy(trash, s->be->orgto_hdr_name, len);
} else {
len = s->fe->orgto_hdr_len;
memcpy(trash, s->fe->orgto_hdr_name, len);
}
len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(http_header_add_tail2(req, &txn->req,
&txn->hdr_idx, trash, len) < 0))
goto return_bad_req;
}
}
}
/* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set. */
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE)) {
unsigned int want_flags = 0;
if (msg->flags & HTTP_MSGF_VER_11) {
if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL ||
((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE)) &&
!((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
want_flags |= TX_CON_CLO_SET;
} else {
if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
!((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE)) ||
((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
want_flags |= TX_CON_KAL_SET;
}
if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
http_change_connection_header(txn, msg, req, want_flags);
}
/* If we have no server assigned yet and we're balancing on url_param
* with a POST request, we may be interested in checking the body for
* that parameter. This will be done in another analyser.
*/
if (!(s->flags & (SN_ASSIGNED|SN_DIRECT)) &&
s->txn.meth == HTTP_METH_POST && s->be->url_param_name != NULL &&
s->be->url_param_post_limit != 0 &&
(msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) {
buffer_dont_connect(req);
req->analysers |= AN_REQ_HTTP_BODY;
}
if (msg->flags & HTTP_MSGF_XFER_LEN) {
req->analysers |= AN_REQ_HTTP_XFER_BODY;
#ifdef TCP_QUICKACK
/* We expect some data from the client. Unless we know for sure
* we already have a full request, we have to re-enable quick-ack
* in case we previously disabled it, otherwise we might cause
* the client to delay further data.
*/
if ((s->listener->options & LI_O_NOQUICKACK) &&
((msg->flags & HTTP_MSGF_TE_CHNK) ||
(msg->body_len > req->i - txn->req.eoh - 2)))
setsockopt(s->si[0].fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
#endif
}
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
req->analyse_exp = TICK_ETERNITY;
req->analysers &= ~an_bit;
s->logs.tv_request = now;
/* OK let's go on with the BODY now */
return 1;
return_bad_req: /* let's centralize all bad requests */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, msg->msg_state, s->fe);
}
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
req->analysers = 0;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return 0;
}
/* This function is an analyser which processes the HTTP tarpit. It always
* returns zero, at the beginning because it prevents any other processing
* from occurring, and at the end because it terminates the request.
*/
int http_process_tarpit(struct session *s, struct buffer *req, int an_bit)
{
struct http_txn *txn = &s->txn;
/* This connection is being tarpitted. The CLIENT side has
* already set the connect expiration date to the right
* timeout. We just have to check that the client is still
* there and that the timeout has not expired.
*/
buffer_dont_connect(req);
if ((req->flags & (BF_SHUTR|BF_READ_ERROR)) == 0 &&
!tick_is_expired(req->analyse_exp, now_ms))
return 0;
/* We will set the queue timer to the time spent, just for
* logging purposes. We fake a 500 server error, so that the
* attacker will not suspect his connection has been tarpitted.
* It will not cause trouble to the logs because we can exclude
* the tarpitted connections by filtering on the 'PT' status flags.
*/
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
txn->status = 500;
if (req->flags != BF_READ_ERROR)
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_500));
req->analysers = 0;
req->analyse_exp = TICK_ETERNITY;
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_T;
return 0;
}
/* This function is an analyser which processes the HTTP request body. It looks
* for parameters to be used for the load balancing algorithm (url_param). It
* must only be called after the standard HTTP request processing has occurred,
* because it expects the request to be parsed. It returns zero if it needs to
* read more data, or 1 once it has completed its analysis.
*/
int http_process_request_body(struct session *s, struct buffer *req, int an_bit)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &s->txn.req;
long long limit = s->be->url_param_post_limit;
/* We have to parse the HTTP request body to find any required data.
* "balance url_param check_post" should have been the only way to get
* into this. We were brought here after HTTP header analysis, so all
* related structures are ready.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
goto missing_data;
if (msg->msg_state < HTTP_MSG_100_SENT) {
/* If we have HTTP/1.1 and Expect: 100-continue, then we must
* send an HTTP/1.1 100 Continue intermediate response.
*/
if (msg->flags & HTTP_MSGF_VER_11) {
struct hdr_ctx ctx;
ctx.idx = 0;
/* Expect is allowed in 1.1, look for it */
if (http_find_header2("Expect", 6, msg->sol, &txn->hdr_idx, &ctx) &&
unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) {
buffer_write(s->rep, http_100_chunk.str, http_100_chunk.len);
}
}
msg->msg_state = HTTP_MSG_100_SENT;
}
if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
/* we have msg->sov which points to the first byte of message body.
* msg->som still points to the beginning of the message. We must
* save the body in msg->next because it survives buffer re-alignments.
*/
msg->next = msg->sov;
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
else
msg->msg_state = HTTP_MSG_DATA;
}
if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
/* read the chunk size and assign it to ->chunk_len, then
* set ->sov and ->next to point to the body and switch to DATA or
* TRAILERS state.
*/
int ret = http_parse_chunk_size(req, msg);
if (!ret)
goto missing_data;
else if (ret < 0) {
session_inc_http_err_ctr(s);
goto return_bad_req;
}
}
/* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state.
* We have the first data byte is in msg->sov. We're waiting for at
* least <url_param_post_limit> bytes after msg->sov.
*/
if (msg->body_len < limit)
limit = msg->body_len;
if (req->i - (msg->sov - msg->som) >= limit) /* we have enough bytes now */
goto http_end;
missing_data:
/* we get here if we need to wait for more data */
if (req->flags & BF_FULL) {
session_inc_http_err_ctr(s);
goto return_bad_req;
}
if ((req->flags & BF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) {
txn->status = 408;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_408));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLITO;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_D;
goto return_err_msg;
}
/* we get here if we need to wait for more data */
if (!(req->flags & (BF_FULL | BF_READ_ERROR | BF_SHUTR))) {
/* Not enough data. We'll re-use the http-request
* timeout here. Ideally, we should set the timeout
* relative to the accept() date. We just set the
* request timeout once at the beginning of the
* request.
*/
buffer_dont_connect(req);
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
return 0;
}
http_end:
/* The situation will not evolve, so let's give up on the analysis. */
s->logs.tv_request = now; /* update the request timer to reflect full request */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_bad_req: /* let's centralize all bad requests */
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return_err_msg:
req->analysers = 0;
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
return 0;
}
int http_send_name_header(struct http_txn *txn, struct http_msg *msg, struct buffer *buf, struct proxy* be, const char* srv_name) {
struct hdr_ctx ctx;
char *hdr_name = be->server_id_hdr_name;
int hdr_name_len = be->server_id_hdr_len;
char *hdr_val;
ctx.idx = 0;
while (http_find_header2(hdr_name, hdr_name_len, msg->sol, &txn->hdr_idx, &ctx)) {
/* remove any existing values from the header */
http_remove_header2(msg, buf, &txn->hdr_idx, &ctx);
}
/* Add the new header requested with the server value */
hdr_val = trash;
memcpy(hdr_val, hdr_name, hdr_name_len);
hdr_val += hdr_name_len;
*hdr_val++ = ':';
*hdr_val++ = ' ';
hdr_val += strlcpy2(hdr_val, srv_name, trash + sizeof(trash) - hdr_val);
http_header_add_tail2(buf, msg, &txn->hdr_idx, trash, hdr_val - trash);
return 0;
}
/* Terminate current transaction and prepare a new one. This is very tricky
* right now but it works.
*/
void http_end_txn_clean_session(struct session *s)
{
/* FIXME: We need a more portable way of releasing a backend's and a
* server's connections. We need a safer way to reinitialize buffer
* flags. We also need a more accurate method for computing per-request
* data.
*/
http_silent_debug(__LINE__, s);
s->req->cons->flags |= SI_FL_NOLINGER;
s->req->cons->shutr(s->req->cons);
s->req->cons->shutw(s->req->cons);
http_silent_debug(__LINE__, s);
if (s->flags & SN_BE_ASSIGNED) {
s->be->beconn--;
if (unlikely(s->srv_conn))
sess_change_server(s, NULL);
}
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
session_process_counters(s);
session_stop_backend_counters(s);
if (s->txn.status) {
int n;
n = s->txn.status / 100;
if (n < 1 || n > 5)
n = 0;
if (s->fe->mode == PR_MODE_HTTP)
s->fe->fe_counters.p.http.rsp[n]++;
if ((s->flags & SN_BE_ASSIGNED) &&
(s->be->mode == PR_MODE_HTTP))
s->be->be_counters.p.http.rsp[n]++;
}
/* don't count other requests' data */
s->logs.bytes_in -= s->req->i;
s->logs.bytes_out -= s->rep->i;
/* let's do a final log if we need it */
if (s->logs.logwait &&
!(s->flags & SN_MONITOR) &&
(!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) {
s->do_log(s);
}
s->logs.accept_date = date; /* user-visible date for logging */
s->logs.tv_accept = now; /* corrected date for internal use */
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_size = 0; /* we will get this number soon */
s->logs.bytes_in = s->req->total = s->req->i;
s->logs.bytes_out = s->rep->total = s->rep->i;
if (s->pend_pos)
pendconn_free(s->pend_pos);
if (target_srv(&s->target)) {
if (s->flags & SN_CURR_SESS) {
s->flags &= ~SN_CURR_SESS;
target_srv(&s->target)->cur_sess--;
}
if (may_dequeue_tasks(target_srv(&s->target), s->be))
process_srv_queue(target_srv(&s->target));
}
clear_target(&s->target);
s->req->cons->state = s->req->cons->prev_state = SI_ST_INI;
s->req->cons->fd = -1; /* just to help with debugging */
s->req->cons->err_type = SI_ET_NONE;
s->req->cons->conn_retries = 0; /* used for logging too */
s->req->cons->err_loc = NULL;
s->req->cons->exp = TICK_ETERNITY;
s->req->cons->flags = SI_FL_NONE;
s->req->flags &= ~(BF_SHUTW|BF_SHUTW_NOW|BF_AUTO_CONNECT|BF_WRITE_ERROR|BF_STREAMER|BF_STREAMER_FAST|BF_NEVER_WAIT);
s->rep->flags &= ~(BF_SHUTR|BF_SHUTR_NOW|BF_READ_ATTACHED|BF_READ_ERROR|BF_READ_NOEXP|BF_STREAMER|BF_STREAMER_FAST|BF_WRITE_PARTIAL|BF_NEVER_WAIT);
s->flags &= ~(SN_DIRECT|SN_ASSIGNED|SN_ADDR_SET|SN_BE_ASSIGNED|SN_FORCE_PRST|SN_IGNORE_PRST);
s->flags &= ~(SN_CURR_SESS|SN_REDIRECTABLE);
s->txn.meth = 0;
http_reset_txn(s);
s->txn.flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ;
if (s->fe->options2 & PR_O2_INDEPSTR)
s->req->cons->flags |= SI_FL_INDEP_STR;
if (s->fe->options2 & PR_O2_NODELAY) {
s->req->flags |= BF_NEVER_WAIT;
s->rep->flags |= BF_NEVER_WAIT;
}
/* if the request buffer is not empty, it means we're
* about to process another request, so send pending
* data with MSG_MORE to merge TCP packets when possible.
* Just don't do this if the buffer is close to be full,
* because the request will wait for it to flush a little
* bit before proceeding.
*/
if (s->req->i) {
if (s->rep->o &&
!(s->rep->flags & BF_FULL) &&
buffer_wrap_add(s->rep, s->rep->p + s->rep->i) <= s->rep->data + s->rep->size - global.tune.maxrewrite)
s->rep->flags |= BF_EXPECT_MORE;
}
/* we're removing the analysers, we MUST re-enable events detection */
buffer_auto_read(s->req);
buffer_auto_close(s->req);
buffer_auto_read(s->rep);
buffer_auto_close(s->rep);
s->req->analysers = s->listener->analysers;
s->req->analysers &= ~AN_REQ_DECODE_PROXY;
s->rep->analysers = 0;
http_silent_debug(__LINE__, s);
}
/* This function updates the request state machine according to the response
* state machine and buffer flags. It returns 1 if it changes anything (flag
* or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
* it is only used to find when a request/response couple is complete. Both
* this function and its equivalent should loop until both return zero. It
* can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
*/
int http_sync_req_state(struct session *s)
{
struct buffer *buf = s->req;
struct http_txn *txn = &s->txn;
unsigned int old_flags = buf->flags;
unsigned int old_state = txn->req.msg_state;
http_silent_debug(__LINE__, s);
if (unlikely(txn->req.msg_state < HTTP_MSG_BODY))
return 0;
if (txn->req.msg_state == HTTP_MSG_DONE) {
/* No need to read anymore, the request was completely parsed.
* We can shut the read side unless we want to abort_on_close,
* or we have a POST request. The issue with POST requests is
* that some browsers still send a CRLF after the request, and
* this CRLF must be read so that it does not remain in the kernel
* buffers, otherwise a close could cause an RST on some systems
* (eg: Linux).
*/
if (!(s->be->options & PR_O_ABRT_CLOSE) && txn->meth != HTTP_METH_POST)
buffer_dont_read(buf);
if (txn->rsp.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->rsp.msg_state < HTTP_MSG_DONE) {
/* The server has not finished to respond, so we
* don't want to move in order not to upset it.
*/
goto wait_other_side;
}
if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
/* if any side switches to tunnel mode, the other one does too */
buffer_auto_read(buf);
txn->req.msg_state = HTTP_MSG_TUNNEL;
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : queue a connection close to the server */
if (!(buf->flags & (BF_SHUTW|BF_SHUTW_NOW)))
buffer_shutw_now(buf);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the session is complete
* once both states are CLOSED.
*/
if (!(buf->flags & (BF_SHUTW|BF_SHUTW_NOW))) {
buffer_shutr_now(buf);
buffer_shutw_now(buf);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Since tunnel
* mode does not set the body analyser, we can't reach this place
* in tunnel mode, so we're left with keep-alive only.
* This mode is currently not implemented, we switch to tunnel mode.
*/
buffer_auto_read(buf);
txn->req.msg_state = HTTP_MSG_TUNNEL;
}
if (buf->flags & (BF_SHUTW|BF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
buf->cons->flags |= SI_FL_NOLINGER; /* we want to close ASAP */
if (!(buf->flags & BF_OUT_EMPTY)) {
txn->req.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
else {
txn->req.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
}
goto wait_other_side;
}
if (txn->req.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (buf->flags & BF_OUT_EMPTY) {
txn->req.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (buf->flags & BF_SHUTW) {
txn->req.msg_state = HTTP_MSG_ERROR;
goto wait_other_side;
}
}
if (txn->req.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
goto wait_other_side;
}
wait_other_side:
http_silent_debug(__LINE__, s);
return txn->req.msg_state != old_state || buf->flags != old_flags;
}
/* This function updates the response state machine according to the request
* state machine and buffer flags. It returns 1 if it changes anything (flag
* or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
* it is only used to find when a request/response couple is complete. Both
* this function and its equivalent should loop until both return zero. It
* can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
*/
int http_sync_res_state(struct session *s)
{
struct buffer *buf = s->rep;
struct http_txn *txn = &s->txn;
unsigned int old_flags = buf->flags;
unsigned int old_state = txn->rsp.msg_state;
http_silent_debug(__LINE__, s);
if (unlikely(txn->rsp.msg_state < HTTP_MSG_BODY))
return 0;
if (txn->rsp.msg_state == HTTP_MSG_DONE) {
/* In theory, we don't need to read anymore, but we must
* still monitor the server connection for a possible close
* while the request is being uploaded, so we don't disable
* reading.
*/
/* buffer_dont_read(buf); */
if (txn->req.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->req.msg_state < HTTP_MSG_DONE) {
/* The client seems to still be sending data, probably
* because we got an error response during an upload.
* We have the choice of either breaking the connection
* or letting it pass through. Let's do the later.
*/
goto wait_other_side;
}
if (txn->req.msg_state == HTTP_MSG_TUNNEL) {
/* if any side switches to tunnel mode, the other one does too */
buffer_auto_read(buf);
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : shut read and wait for the request
* side to close its output buffer. The caller will detect
* when we're in DONE and the other is in CLOSED and will
* catch that for the final cleanup.
*/
if (!(buf->flags & (BF_SHUTR|BF_SHUTR_NOW)))
buffer_shutr_now(buf);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the session is complete
* once both states are CLOSED.
*/
if (!(buf->flags & (BF_SHUTW|BF_SHUTW_NOW))) {
buffer_shutr_now(buf);
buffer_shutw_now(buf);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Since tunnel
* mode does not set the body analyser, we can't reach this place
* in tunnel mode, so we're left with keep-alive only.
* This mode is currently not implemented, we switch to tunnel mode.
*/
buffer_auto_read(buf);
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
}
if (buf->flags & (BF_SHUTW|BF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
if (!(buf->flags & BF_OUT_EMPTY)) {
txn->rsp.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
else {
txn->rsp.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
}
goto wait_other_side;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (buf->flags & BF_OUT_EMPTY) {
txn->rsp.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (buf->flags & BF_SHUTW) {
txn->rsp.msg_state = HTTP_MSG_ERROR;
s->be->be_counters.cli_aborts++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.cli_aborts++;
goto wait_other_side;
}
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* drop any pending data */
buffer_ignore(buf, buf->i);
buffer_auto_close(buf);
buffer_auto_read(buf);
goto wait_other_side;
}
wait_other_side:
http_silent_debug(__LINE__, s);
return txn->rsp.msg_state != old_state || buf->flags != old_flags;
}
/* Resync the request and response state machines. Return 1 if either state
* changes.
*/
int http_resync_states(struct session *s)
{
struct http_txn *txn = &s->txn;
int old_req_state = txn->req.msg_state;
int old_res_state = txn->rsp.msg_state;
http_silent_debug(__LINE__, s);
http_sync_req_state(s);
while (1) {
http_silent_debug(__LINE__, s);
if (!http_sync_res_state(s))
break;
http_silent_debug(__LINE__, s);
if (!http_sync_req_state(s))
break;
}
http_silent_debug(__LINE__, s);
/* OK, both state machines agree on a compatible state.
* There are a few cases we're interested in :
* - HTTP_MSG_TUNNEL on either means we have to disable both analysers
* - HTTP_MSG_CLOSED on both sides means we've reached the end in both
* directions, so let's simply disable both analysers.
* - HTTP_MSG_CLOSED on the response only means we must abort the
* request.
* - HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE on the response
* with server-close mode means we've completed one request and we
* must re-initialize the server connection.
*/
if (txn->req.msg_state == HTTP_MSG_TUNNEL ||
txn->rsp.msg_state == HTTP_MSG_TUNNEL ||
(txn->req.msg_state == HTTP_MSG_CLOSED &&
txn->rsp.msg_state == HTTP_MSG_CLOSED)) {
s->req->analysers = 0;
buffer_auto_close(s->req);
buffer_auto_read(s->req);
s->rep->analysers = 0;
buffer_auto_close(s->rep);
buffer_auto_read(s->rep);
}
else if (txn->rsp.msg_state == HTTP_MSG_CLOSED ||
txn->rsp.msg_state == HTTP_MSG_ERROR ||
txn->req.msg_state == HTTP_MSG_ERROR ||
(s->rep->flags & BF_SHUTW)) {
s->rep->analysers = 0;
buffer_auto_close(s->rep);
buffer_auto_read(s->rep);
s->req->analysers = 0;
buffer_abort(s->req);
buffer_auto_close(s->req);
buffer_auto_read(s->req);
buffer_ignore(s->req, s->req->i);
}
else if (txn->req.msg_state == HTTP_MSG_CLOSED &&
txn->rsp.msg_state == HTTP_MSG_DONE &&
((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)) {
/* server-close: terminate this server connection and
* reinitialize a fresh-new transaction.
*/
http_end_txn_clean_session(s);
}
http_silent_debug(__LINE__, s);
return txn->req.msg_state != old_req_state ||
txn->rsp.msg_state != old_res_state;
}
/* This function is an analyser which forwards request body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the session.
* When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
* bytes of pending data + the headers if not already done (between som and sov).
* It eventually adjusts som to match sov after the data in between have been sent.
*/
int http_request_forward_body(struct session *s, struct buffer *req, int an_bit)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &s->txn.req;
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((req->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) ||
((req->flags & BF_SHUTW) && (req->to_forward || req->o))) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* in most states, we should abort in case of early close */
buffer_auto_close(req);
/* Note that we don't have to send 100-continue back because we don't
* need the data to complete our job, and it's up to the server to
* decide whether to return 100, 417 or anything else in return of
* an "Expect: 100-continue" header.
*/
if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
/* we have msg->sov which points to the first byte of message body.
* msg->som still points to the beginning of the message. We must
* save the body in msg->next because it survives buffer re-alignments.
*/
msg->next = msg->sov;
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
else {
msg->msg_state = HTTP_MSG_DATA;
}
}
while (1) {
int bytes;
http_silent_debug(__LINE__, s);
/* we may have some data pending */
bytes = msg->sov - msg->som;
if (msg->chunk_len || bytes) {
msg->som = msg->sov;
if (likely(bytes < 0)) /* sov may have wrapped at the end */
bytes += req->size;
msg->next -= bytes; /* will be forwarded */
msg->chunk_len += (unsigned int)bytes;
msg->chunk_len -= buffer_forward(req, msg->chunk_len);
}
if (msg->msg_state == HTTP_MSG_DATA) {
/* must still forward */
if (req->to_forward)
goto missing_data;
/* nothing left to forward */
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_DATA_CRLF;
else
msg->msg_state = HTTP_MSG_DONE;
}
else if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
/* read the chunk size and assign it to ->chunk_len, then
* set ->sov and ->next to point to the body and switch to DATA or
* TRAILERS state.
*/
int ret = http_parse_chunk_size(req, msg);
if (!ret)
goto missing_data;
else if (ret < 0) {
session_inc_http_err_ctr(s);
if (msg->err_pos >= 0)
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, HTTP_MSG_CHUNK_SIZE, s->be);
goto return_bad_req;
}
/* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */
}
else if (msg->msg_state == HTTP_MSG_DATA_CRLF) {
/* we want the CRLF after the data */
int ret;
ret = http_skip_chunk_crlf(req, msg);
if (ret == 0)
goto missing_data;
else if (ret < 0) {
session_inc_http_err_ctr(s);
if (msg->err_pos >= 0)
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, HTTP_MSG_DATA_CRLF, s->be);
goto return_bad_req;
}
/* we're in MSG_CHUNK_SIZE now */
}
else if (msg->msg_state == HTTP_MSG_TRAILERS) {
int ret = http_forward_trailers(req, msg);
if (ret == 0)
goto missing_data;
else if (ret < 0) {
session_inc_http_err_ctr(s);
if (msg->err_pos >= 0)
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, HTTP_MSG_TRAILERS, s->be);
goto return_bad_req;
}
/* we're in HTTP_MSG_DONE now */
}
else {
int old_state = msg->msg_state;
/* other states, DONE...TUNNEL */
/* for keep-alive we don't want to forward closes on DONE */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
buffer_dont_close(req);
if (http_resync_states(s)) {
/* some state changes occurred, maybe the analyser
* was disabled too.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (req->flags & BF_SHUTW) {
/* request errors are most likely due to
* the server aborting the transfer.
*/
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(&s->fe->invalid_req, s, req, msg, old_state, s->be);
goto return_bad_req;
}
return 1;
}
/* If "option abortonclose" is set on the backend, we
* want to monitor the client's connection and forward
* any shutdown notification to the server, which will
* decide whether to close or to go on processing the
* request.
*/
if (s->be->options & PR_O_ABRT_CLOSE) {
buffer_auto_read(req);
buffer_auto_close(req);
}
else if (s->txn.meth == HTTP_METH_POST) {
/* POST requests may require to read extra CRLF
* sent by broken browsers and which could cause
* an RST to be sent upon close on some systems
* (eg: Linux).
*/
buffer_auto_read(req);
}
return 0;
}
}
missing_data:
/* stop waiting for data if the input is closed before the end */
if (req->flags & BF_SHUTR) {
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLICL;
if (!(s->flags & SN_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SN_FINST_H;
else
s->flags |= SN_FINST_D;
}
s->fe->fe_counters.cli_aborts++;
s->be->be_counters.cli_aborts++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.cli_aborts++;
goto return_bad_req_stats_ok;
}
/* waiting for the last bits to leave the buffer */
if (req->flags & BF_SHUTW)
goto aborted_xfer;
/* When TE: chunked is used, we need to get there again to parse remaining
* chunks even if the client has closed, so we don't want to set BF_DONTCLOSE.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
buffer_dont_close(req);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the BF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
req->flags |= BF_EXPECT_MORE;
http_silent_debug(__LINE__, s);
return 0;
return_bad_req: /* let's centralize all bad requests */
s->fe->fe_counters.failed_req++;
if (s->listener->counters)
s->listener->counters->failed_req++;
return_bad_req_stats_ok:
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
stream_int_retnclose(req->prod, NULL);
} else {
txn->status = 400;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400));
}
req->analysers = 0;
s->rep->analysers = 0; /* we're in data phase, we want to abort both directions */
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SN_FINST_H;
else
s->flags |= SN_FINST_D;
}
return 0;
aborted_xfer:
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
stream_int_retnclose(req->prod, NULL);
} else {
txn->status = 502;
stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_502));
}
req->analysers = 0;
s->rep->analysers = 0; /* we're in data phase, we want to abort both directions */
s->fe->fe_counters.srv_aborts++;
s->be->be_counters.srv_aborts++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.srv_aborts++;
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_SRVCL;
if (!(s->flags & SN_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SN_FINST_H;
else
s->flags |= SN_FINST_D;
}
return 0;
}
/* This stream analyser waits for a complete HTTP response. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the response (eg: timeout, error, ...). It
* is tied to AN_RES_WAIT_HTTP and may may remove itself from s->rep->analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_response(struct session *s, struct buffer *rep, int an_bit)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &txn->rsp;
struct hdr_ctx ctx;
int use_close_only;
int cur_idx;
int n;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->i,
rep->analysers);
/*
* Now parse the partial (or complete) lines.
* We will check the response syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* rep->data + msg->som = beginning of response
* rep->data + msg->eoh = end of processed headers / start of current one
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
* rep->r = end of data
* Once we reach MSG_BODY, rep->sol = rep->data + msg->som
*/
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(rep) && msg->msg_state < HTTP_MSG_ERROR) {
if (unlikely((rep->flags & BF_FULL) ||
buffer_wrap_add(rep, rep->p + rep->i) < buffer_wrap_add(rep, rep->p + msg->next) ||
buffer_wrap_add(rep, rep->p + rep->i) > rep->data + rep->size - global.tune.maxrewrite)) {
if (rep->o) {
/* some data has still not left the buffer, wake us once that's done */
if (rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_WRITE_ERROR|BF_WRITE_TIMEOUT))
goto abort_response;
buffer_dont_close(rep);
rep->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */
return 0;
}
if (rep->i <= rep->size - global.tune.maxrewrite)
http_buffer_heavy_realign(rep, msg);
}
if (likely(msg->next < rep->i))
http_msg_analyzer(rep, msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->sol &&
(msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) {
char *eol, *sol;
sol = rep->p + msg->som;
eol = sol + msg->sl.st.l;
debug_hdr("srvrep", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("srvhdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid response.
* If not so, we check the FD and buffer states before leaving.
* A full response is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* responses are checked first.
*
* Depending on whether the client is still there or not, we
* may send an error response back or not. Note that normally
* we should only check for HTTP status there, and check I/O
* errors somewhere else.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* Invalid response */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
/* we detected a parsing error. We want to archive this response
* in the dedicated proxy area for later troubleshooting.
*/
hdr_response_bad:
if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
s->be->be_counters.failed_resp++;
if (target_srv(&s->target)) {
target_srv(&s->target)->counters.failed_resp++;
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_HDRRSP);
}
abort_response:
buffer_auto_close(rep);
rep->analysers = 0;
txn->status = 502;
rep->prod->flags |= SI_FL_NOLINGER;
buffer_ignore(rep, rep->i);
stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_H;
return 0;
}
/* too large response does not fit in buffer. */
else if (rep->flags & BF_FULL) {
if (msg->err_pos < 0)
msg->err_pos = rep->i;
goto hdr_response_bad;
}
/* read error */
else if (rep->flags & BF_READ_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
s->be->be_counters.failed_resp++;
if (target_srv(&s->target)) {
target_srv(&s->target)->counters.failed_resp++;
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_READ_ERROR);
}
buffer_auto_close(rep);
rep->analysers = 0;
txn->status = 502;
rep->prod->flags |= SI_FL_NOLINGER;
buffer_ignore(rep, rep->i);
stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_SRVCL;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_H;
return 0;
}
/* read timeout : return a 504 to the client. */
else if (rep->flags & BF_READ_TIMEOUT) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
s->be->be_counters.failed_resp++;
if (target_srv(&s->target)) {
target_srv(&s->target)->counters.failed_resp++;
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
}
buffer_auto_close(rep);
rep->analysers = 0;
txn->status = 504;
rep->prod->flags |= SI_FL_NOLINGER;
buffer_ignore(rep, rep->i);
stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_504));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_SRVTO;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_H;
return 0;
}
/* close from server, capture the response if the server has started to respond */
else if (rep->flags & BF_SHUTR) {
if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
s->be->be_counters.failed_resp++;
if (target_srv(&s->target)) {
target_srv(&s->target)->counters.failed_resp++;
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
}
buffer_auto_close(rep);
rep->analysers = 0;
txn->status = 502;
rep->prod->flags |= SI_FL_NOLINGER;
buffer_ignore(rep, rep->i);
stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502));
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_SRVCL;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_H;
return 0;
}
/* write error to client (we don't send any message then) */
else if (rep->flags & BF_WRITE_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
s->be->be_counters.failed_resp++;
rep->analysers = 0;
buffer_auto_close(rep);
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLICL;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_H;
/* process_session() will take care of the error */
return 0;
}
buffer_dont_close(rep);
return 0;
}
/* More interesting part now : we know that we have a complete
* response which at least looks like HTTP. We have an indicator
* of each header's length, so we can parse them quickly.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, msg->msg_state, s->fe);
/*
* 1: get the status code
*/
n = msg->sol[msg->sl.st.c] - '0';
if (n < 1 || n > 5)
n = 0;
/* when the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan.
*/
if (n == 4)
session_inc_http_err_ctr(s);
if (target_srv(&s->target))
target_srv(&s->target)->counters.p.http.rsp[n]++;
/* check if the response is HTTP/1.1 or above */
if ((msg->sl.st.v_l == 8) &&
((msg->sol[5] > '1') ||
((msg->sol[5] == '1') &&
(msg->sol[7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_CON_CLO_SET|TX_CON_KAL_SET);
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
txn->status = strl2ui(msg->sol + msg->sl.st.c, msg->sl.st.c_l);
/* Adjust server's health based on status code. Note: status codes 501
* and 505 are triggered on demand by client request, so we must not
* count them as server failures.
*/
if (target_srv(&s->target)) {
if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_OK);
else
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_STS);
}
/*
* 2: check for cacheability.
*/
switch (txn->status) {
case 200:
case 203:
case 206:
case 300:
case 301:
case 410:
/* RFC2616 @13.4:
* "A response received with a status code of
* 200, 203, 206, 300, 301 or 410 MAY be stored
* by a cache (...) unless a cache-control
* directive prohibits caching."
*
* RFC2616 @9.5: POST method :
* "Responses to this method are not cacheable,
* unless the response includes appropriate
* Cache-Control or Expires header fields."
*/
if (likely(txn->meth != HTTP_METH_POST) &&
(s->be->options & (PR_O_CHK_CACHE|PR_O_COOK_NOC)))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
break;
default:
break;
}
/*
* 3: we may need to capture headers
*/
s->logs.logwait &= ~LW_RESP;
if (unlikely((s->logs.logwait & LW_RSPHDR) && txn->rsp.cap))
capture_headers(msg->sol, &txn->hdr_idx,
txn->rsp.cap, s->fe->rsp_cap);
/* 4: determine the transfer-length.
* According to RFC2616 #4.4, amended by the HTTPbis working group,
* the presence of a message-body in a RESPONSE and its transfer length
* must be determined that way :
*
* All responses to the HEAD request method MUST NOT include a
* message-body, even though the presence of entity-header fields
* might lead one to believe they do. All 1xx (informational), 204
* (No Content), and 304 (Not Modified) responses MUST NOT include a
* message-body. All other responses do include a message-body,
* although it MAY be of zero length.
*
* 1. Any response which "MUST NOT" include a message-body (such as the
* 1xx, 204 and 304 responses and any response to a HEAD request) is
* always terminated by the first empty line after the header fields,
* regardless of the entity-header fields present in the message.
*
* 2. If a Transfer-Encoding header field (Section 9.7) is present and
* the "chunked" transfer-coding (Section 6.2) is used, the
* transfer-length is defined by the use of this transfer-coding.
* If a Transfer-Encoding header field is present and the "chunked"
* transfer-coding is not present, the transfer-length is defined by
* the sender closing the connection.
*
* 3. If a Content-Length header field is present, its decimal value in
* OCTETs represents both the entity-length and the transfer-length.
* If a message is received with both a Transfer-Encoding header
* field and a Content-Length header field, the latter MUST be ignored.
*
* 4. If the message uses the media type "multipart/byteranges", and
* the transfer-length is not otherwise specified, then this self-
* delimiting media type defines the transfer-length. This media
* type MUST NOT be used unless the sender knows that the recipient
* can parse it; the presence in a request of a Range header with
* multiple byte-range specifiers from a 1.1 client implies that the
* client can parse multipart/byteranges responses.
*
* 5. By the server closing the connection.
*/
/* Skip parsing if no content length is possible. The response flags
* remain 0 as well as the chunk_len, which may or may not mirror
* the real header value, and we note that we know the response's length.
* FIXME: should we parse anyway and return an error on chunked encoding ?
*/
if (txn->meth == HTTP_METH_HEAD ||
(txn->status >= 100 && txn->status < 200) ||
txn->status == 204 || txn->status == 304) {
msg->flags |= HTTP_MSGF_XFER_LEN;
goto skip_content_length;
}
use_close_only = 0;
ctx.idx = 0;
while ((msg->flags & HTTP_MSGF_VER_11) &&
http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* bad transfer-encoding (chunked followed by something else) */
use_close_only = 1;
msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
break;
}
}
/* FIXME: below we should remove the content-length header(s) in case of chunked encoding */
ctx.idx = 0;
while (!(msg->flags & HTTP_MSGF_TE_CHNK) && !use_close_only &&
http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - rep->data;
goto hdr_response_bad;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - rep->data;
goto hdr_response_bad; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - rep->data;
goto hdr_response_bad;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - rep->data;
goto hdr_response_bad; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
msg->body_len = msg->chunk_len = cl;
}
/* FIXME: we should also implement the multipart/byterange method.
* For now on, we resort to close mode in this case (unknown length).
*/
skip_content_length:
/* end of job, return OK */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
buffer_auto_close(rep);
return 1;
}
/* This function performs all the processing enabled for the current response.
* It normally returns 1 unless it wants to break. It relies on buffers flags,
* and updates t->rep->analysers. It might make sense to explode it into several
* other functions. It works like process_request (see indications above).
*/
int http_process_res_common(struct session *t, struct buffer *rep, int an_bit, struct proxy *px)
{
struct http_txn *txn = &t->txn;
struct http_msg *msg = &txn->rsp;
struct proxy *cur_proxy;
struct cond_wordlist *wl;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
t,
rep,
rep->rex, rep->wex,
rep->flags,
rep->i,
rep->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */
return 0;
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
/* Now we have to check if we need to modify the Connection header.
* This is more difficult on the response than it is on the request,
* because we can have two different HTTP versions and we don't know
* how the client will interprete a response. For instance, let's say
* that the client sends a keep-alive request in HTTP/1.0 and gets an
* HTTP/1.1 response without any header. Maybe it will bound itself to
* HTTP/1.0 because it only knows about it, and will consider the lack
* of header as a close, or maybe it knows HTTP/1.1 and can consider
* the lack of header as a keep-alive. Thus we will use two flags
* indicating how a request MAY be understood by the client. In case
* of multiple possibilities, we'll fix the header to be explicit. If
* ambiguous cases such as both close and keepalive are seen, then we
* will fall back to explicit close. Note that we won't take risks with
* HTTP/1.0 clients which may not necessarily understand keep-alive.
* See doc/internals/connection-header.txt for the complete matrix.
*/
if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
txn->status == 101)) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely
* to understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement specific
* parsers for such protocols, we'll want to check the Upgrade
* header which contains information about that protocol for
* responses with status 101 (eg: see RFC2817 about TLS).
*/
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN;
}
else if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN ||
((t->fe->options|t->be->options) & PR_O_HTTP_CLOSE))) {
int to_del = 0;
/* on unknown transfer length, we must close */
if (!(msg->flags & HTTP_MSGF_XFER_LEN) &&
(txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
/* now adjust header transformations depending on current state */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
to_del |= 2; /* remove "keep-alive" on any response */
if (!(msg->flags & HTTP_MSGF_VER_11))
to_del |= 1; /* remove "close" for HTTP/1.0 responses */
}
else { /* SCL / KAL */
to_del |= 1; /* remove "close" on any response */
if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11)
to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */
}
/* Parse and remove some headers from the connection header */
http_parse_connection_header(txn, msg, rep, to_del);
/* Some keep-alive responses are converted to Server-close if
* the server wants to close.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) {
if ((txn->flags & TX_HDR_CONN_CLO) ||
(!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11)))
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL;
}
}
if (1) {
/*
* 3: we will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* Filters are tried with ->be first, then with ->fe if it is
* different from ->be.
*/
cur_proxy = t->be;
while (1) {
struct proxy *rule_set = cur_proxy;
/* try headers filters */
if (rule_set->rsp_exp != NULL) {
if (apply_filters_to_response(t, rep, rule_set) < 0) {
return_bad_resp:
if (target_srv(&t->target)) {
target_srv(&t->target)->counters.failed_resp++;
health_adjust(target_srv(&t->target), HANA_STATUS_HTTP_RSP);
}
t->be->be_counters.failed_resp++;
return_srv_prx_502:
rep->analysers = 0;
txn->status = 502;
rep->prod->flags |= SI_FL_NOLINGER;
buffer_ignore(rep, rep->i);
stream_int_retnclose(rep->cons, error_message(t, HTTP_ERR_502));
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
return 0;
}
}
/* has the response been denied ? */
if (txn->flags & TX_SVDENY) {
if (target_srv(&t->target))
target_srv(&t->target)->counters.failed_secu++;
t->be->be_counters.denied_resp++;
t->fe->fe_counters.denied_resp++;
if (t->listener->counters)
t->listener->counters->denied_resp++;
goto return_srv_prx_502;
}
/* add response headers from the rule sets in the same order */
list_for_each_entry(wl, &rule_set->rsp_add, list) {
if (txn->status < 200)
break;
if (wl->cond) {
int ret = acl_exec_cond(wl->cond, px, t, txn, ACL_DIR_RTR);
ret = acl_pass(ret);
if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (unlikely(http_header_add_tail(rep, &txn->rsp, &txn->hdr_idx, wl->s) < 0))
goto return_bad_resp;
}
/* check whether we're already working on the frontend */
if (cur_proxy == t->fe)
break;
cur_proxy = t->fe;
}
/*
* We may be facing a 100-continue response, in which case this
* is not the right response, and we're waiting for the next one.
* Let's allow this response to go to the client and wait for the
* next one.
*/
if (unlikely(txn->status == 100)) {
hdr_idx_init(&txn->hdr_idx);
msg->next -= buffer_forward(rep, rep->p + msg->next - msg->sol);
msg->msg_state = HTTP_MSG_RPBEFORE;
txn->status = 0;
rep->analysers |= AN_RES_WAIT_HTTP | an_bit;
return 1;
}
else if (unlikely(txn->status < 200))
goto skip_header_mangling;
/* we don't have any 1xx status code now */
/*
* 4: check for server cookie.
*/
if (t->be->cookie_name || t->be->appsession_name || t->fe->capture_name ||
(t->be->options & PR_O_CHK_CACHE))
manage_server_side_cookies(t, rep);
/*
* 5: check for cache-control or pragma headers if required.
*/
if ((t->be->options & (PR_O_COOK_NOC | PR_O_CHK_CACHE)) != 0)
check_response_for_cacheability(t, rep);
/*
* 6: add server cookie in the response if needed
*/
if (target_srv(&t->target) && (t->be->options & PR_O_COOK_INS) &&
!((txn->flags & TX_SCK_FOUND) && (t->be->options2 & PR_O2_COOK_PSV)) &&
(!(t->flags & SN_DIRECT) ||
((t->be->cookie_maxidle || txn->cookie_last_date) &&
(!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) ||
(t->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date
(!t->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date
(!(t->be->options & PR_O_COOK_POST) || (txn->meth == HTTP_METH_POST)) &&
!(t->flags & SN_IGNORE_PRST)) {
int len;
/* the server is known, it's not the one the client requested, or the
* cookie's last seen date needs to be refreshed. We have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
if (!target_srv(&t->target)->cookie) {
len = sprintf(trash,
"Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/",
t->be->cookie_name);
}
else {
len = sprintf(trash, "Set-Cookie: %s=%s", t->be->cookie_name, target_srv(&t->target)->cookie);
if (t->be->cookie_maxidle || t->be->cookie_maxlife) {
/* emit last_date, which is mandatory */
trash[len++] = COOKIE_DELIM_DATE;
s30tob64((date.tv_sec+3) >> 2, trash + len); len += 5;
if (t->be->cookie_maxlife) {
/* emit first_date, which is either the original one or
* the current date.
*/
trash[len++] = COOKIE_DELIM_DATE;
s30tob64(txn->cookie_first_date ?
txn->cookie_first_date >> 2 :
(date.tv_sec+3) >> 2, trash + len);
len += 5;
}
}
len += sprintf(trash + len, "; path=/");
}
if (t->be->cookie_domain)
len += sprintf(trash+len, "; domain=%s", t->be->cookie_domain);
if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx,
trash, len) < 0))
goto return_bad_resp;
txn->flags &= ~TX_SCK_MASK;
if (target_srv(&t->target)->cookie && (t->flags & SN_DIRECT))
/* the server did not change, only the date was updated */
txn->flags |= TX_SCK_UPDATED;
else
txn->flags |= TX_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if ((t->be->options & PR_O_COOK_NOC) && (txn->flags & TX_CACHEABLE)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx,
"Cache-control: private", 22) < 0))
goto return_bad_resp;
}
}
/*
* 7: check if result will be cacheable with a cookie.
* We'll block the response if security checks have caught
* nasty things such as a cacheable cookie.
*/
if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) ==
(TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) &&
(t->be->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
if (target_srv(&t->target))
target_srv(&t->target)->counters.failed_secu++;
t->be->be_counters.denied_resp++;
t->fe->fe_counters.denied_resp++;
if (t->listener->counters)
t->listener->counters->denied_resp++;
Alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
t->be->id, target_srv(&t->target) ? target_srv(&t->target)->id : "<dispatch>");
send_log(t->be, LOG_ALERT,
"Blocking cacheable cookie in response from instance %s, server %s.\n",
t->be->id, target_srv(&t->target) ? target_srv(&t->target)->id : "<dispatch>");
goto return_srv_prx_502;
}
/*
* 8: adjust "Connection: close" or "Connection: keep-alive" if needed.
*/
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
((t->fe->options|t->be->options) & PR_O_HTTP_CLOSE)) {
unsigned int want_flags = 0;
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* we want a keep-alive response here. Keep-alive header
* required if either side is not 1.1.
*/
if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11))
want_flags |= TX_CON_KAL_SET;
}
else {
/* we want a close response here. Close header required if
* the server is 1.1, regardless of the client.
*/
if (msg->flags & HTTP_MSGF_VER_11)
want_flags |= TX_CON_CLO_SET;
}
if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
http_change_connection_header(txn, msg, rep, want_flags);
}
skip_header_mangling:
if ((msg->flags & HTTP_MSGF_XFER_LEN) ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN)
rep->analysers |= AN_RES_HTTP_XFER_BODY;
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
t->logs.t_data = tv_ms_elapsed(&t->logs.tv_accept, &now);
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. We have
* to temporarily assign bytes_out to log what we currently have.
*/
if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_data; /* to get a valid end date */
t->logs.bytes_out = txn->rsp.eoh;
t->do_log(t);
t->logs.bytes_out = 0;
}
/* Note: we must not try to cheat by jumping directly to DATA,
* otherwise we would not let the client side wake up.
*/
return 1;
}
return 1;
}
/* This function is an analyser which forwards response body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the session.
* When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
* bytes of pending data + the headers if not already done (between som and sov).
* It eventually adjusts som to match sov after the data in between have been sent.
*/
int http_response_forward_body(struct session *s, struct buffer *res, int an_bit)
{
struct http_txn *txn = &s->txn;
struct http_msg *msg = &s->txn.rsp;
int bytes;
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((res->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) ||
((res->flags & BF_SHUTW) && (res->to_forward || res->o)) ||
!s->req->analysers) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* in most states, we should abort in case of early close */
buffer_auto_close(res);
if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
/* we have msg->sov which points to the first byte of message body.
* msg->som still points to the beginning of the message. We must
* save the body in msg->next because it survives buffer re-alignments.
*/
msg->next = msg->sov;
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
else {
msg->msg_state = HTTP_MSG_DATA;
}
}
while (1) {
int bytes;
http_silent_debug(__LINE__, s);
/* we may have some data pending */
bytes = msg->sov - msg->som;
if (msg->chunk_len || bytes) {
msg->som = msg->sov;
if (likely(bytes < 0)) /* sov may have wrapped at the end */
bytes += res->size;
msg->next -= bytes; /* will be forwarded */
msg->chunk_len += (unsigned int)bytes;
msg->chunk_len -= buffer_forward(res, msg->chunk_len);
}
if (msg->msg_state == HTTP_MSG_DATA) {
/* must still forward */
if (res->to_forward)
goto missing_data;
/* nothing left to forward */
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_DATA_CRLF;
else
msg->msg_state = HTTP_MSG_DONE;
}
else if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
/* read the chunk size and assign it to ->chunk_len, then
* set ->sov and ->next to point to the body and switch to DATA or
* TRAILERS state.
*/
int ret = http_parse_chunk_size(res, msg);
if (!ret)
goto missing_data;
else if (ret < 0) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, res, msg, HTTP_MSG_CHUNK_SIZE, s->fe);
goto return_bad_res;
}
/* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */
}
else if (msg->msg_state == HTTP_MSG_DATA_CRLF) {
/* we want the CRLF after the data */
int ret;
ret = http_skip_chunk_crlf(res, msg);
if (!ret)
goto missing_data;
else if (ret < 0) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, res, msg, HTTP_MSG_DATA_CRLF, s->fe);
goto return_bad_res;
}
/* we're in MSG_CHUNK_SIZE now */
}
else if (msg->msg_state == HTTP_MSG_TRAILERS) {
int ret = http_forward_trailers(res, msg);
if (ret == 0)
goto missing_data;
else if (ret < 0) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, res, msg, HTTP_MSG_TRAILERS, s->fe);
goto return_bad_res;
}
/* we're in HTTP_MSG_DONE now */
}
else {
int old_state = msg->msg_state;
/* other states, DONE...TUNNEL */
/* for keep-alive we don't want to forward closes on DONE */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
buffer_dont_close(res);
if (http_resync_states(s)) {
http_silent_debug(__LINE__, s);
/* some state changes occurred, maybe the analyser
* was disabled too.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (res->flags & BF_SHUTW) {
/* response errors are most likely due to
* the client aborting the transfer.
*/
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, res, msg, old_state, s->fe);
goto return_bad_res;
}
return 1;
}
return 0;
}
}
missing_data:
/* stop waiting for data if the input is closed before the end */
if (res->flags & BF_SHUTR) {
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_SRVCL;
s->be->be_counters.srv_aborts++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.srv_aborts++;
goto return_bad_res_stats_ok;
}
if (res->flags & BF_SHUTW)
goto aborted_xfer;
/* we need to obey the req analyser, so if it leaves, we must too */
if (!s->req->analysers)
goto return_bad_res;
/* forward any pending data */
bytes = msg->sov - msg->som;
if (msg->chunk_len || bytes) {
msg->som = msg->sov;
if (likely(bytes < 0)) /* sov may have wrapped at the end */
bytes += res->size;
msg->next -= bytes; /* will be forwarded */
msg->chunk_len += (unsigned int)bytes;
msg->chunk_len -= buffer_forward(res, msg->chunk_len);
}
/* When TE: chunked is used, we need to get there again to parse remaining
* chunks even if the server has closed, so we don't want to set BF_DONTCLOSE.
* Similarly, with keep-alive on the client side, we don't want to forward a
* close.
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
buffer_dont_close(res);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the BF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
res->flags |= BF_EXPECT_MORE;
/* the session handler will take care of timeouts and errors */
http_silent_debug(__LINE__, s);
return 0;
return_bad_res: /* let's centralize all bad responses */
s->be->be_counters.failed_resp++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.failed_resp++;
return_bad_res_stats_ok:
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
stream_int_retnclose(res->cons, NULL);
res->analysers = 0;
s->req->analysers = 0; /* we're in data phase, we want to abort both directions */
if (target_srv(&s->target))
health_adjust(target_srv(&s->target), HANA_STATUS_HTTP_HDRRSP);
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_D;
return 0;
aborted_xfer:
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
stream_int_retnclose(res->cons, NULL);
res->analysers = 0;
s->req->analysers = 0; /* we're in data phase, we want to abort both directions */
s->fe->fe_counters.cli_aborts++;
s->be->be_counters.cli_aborts++;
if (target_srv(&s->target))
target_srv(&s->target)->counters.cli_aborts++;
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_CLICL;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_D;
return 0;
}
/* Iterate the same filter through all request headers.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_headers(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = &t->txn;
struct hdr_idx_elem *cur_hdr;
int len, delta;
last_hdr = 0;
cur_next = txn->req.sol + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_SETBE:
/* It is not possible to jump a second time.
* FIXME: should we return an HTTP/500 here so that
* the admin knows there's a problem ?
*/
if (t->be != t->fe)
break;
/* Swithing Proxy */
session_set_backend(t, (struct proxy *)exp->replace);
last_hdr = 1;
break;
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
last_hdr = 1;
t->fe->fe_counters.denied_req++;
if (t->fe != t->be)
t->be->be_counters.denied_req++;
if (t->listener->counters)
t->listener->counters->denied_req++;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
last_hdr = 1;
t->fe->fe_counters.denied_req++;
if (t->fe != t->be)
t->be->be_counters.denied_req++;
if (t->listener->counters)
t->listener->counters->denied_req++;
break;
case ACT_REPLACE:
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(req, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
break;
case ACT_REMOVE:
delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
http_msg_move_end(&txn->req, delta);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
cur_idx = old_idx;
break;
}
}
if (cur_end)
*cur_end = term; /* restore the string terminator */
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the request line.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid request line.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_line(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = &t->txn;
int len, delta;
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = txn->req.sol;
cur_end = cur_ptr + txn->req.sl.rq.l;
/* Now we have the request line between cur_ptr and cur_end */
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_SETBE:
/* It is not possible to jump a second time.
* FIXME: should we return an HTTP/500 here so that
* the admin knows there's a problem ?
*/
if (t->be != t->fe)
break;
/* Swithing Proxy */
session_set_backend(t, (struct proxy *)exp->replace);
done = 1;
break;
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
t->fe->fe_counters.denied_req++;
if (t->fe != t->be)
t->be->be_counters.denied_req++;
if (t->listener->counters)
t->listener->counters->denied_req++;
done = 1;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
t->fe->fe_counters.denied_req++;
if (t->fe != t->be)
t->be->be_counters.denied_req++;
if (t->listener->counters)
t->listener->counters->denied_req++;
done = 1;
break;
case ACT_REPLACE:
*cur_end = term; /* restore the string terminator */
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(req, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
http_msg_move_end(&txn->req, delta);
cur_end += delta;
cur_end = (char *)http_parse_reqline(&txn->req, req->data, req->p,
HTTP_MSG_RQMETH,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l);
hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
*cur_end = term; /* restore the string terminator */
return done;
}
/*
* Apply all the req filters of proxy <px> to all headers in buffer <req> of session <s>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable request. Since it can manage the switch to another backend, it
* updates the per-proxy DENY stats.
*/
int apply_filters_to_request(struct session *s, struct buffer *req, struct proxy *px)
{
struct http_txn *txn = &s->txn;
struct hdr_exp *exp;
for (exp = px->req_exp; exp; exp = exp->next) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if (txn->flags & (TX_CLDENY|TX_CLTARPIT))
break;
if ((txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_TARPIT || exp->action == ACT_PASS))
continue;
/* if this filter had a condition, evaluate it now and skip to
* next filter if the condition does not match.
*/
if (exp->cond) {
ret = acl_exec_cond(exp->cond, px, s, txn, ACL_DIR_REQ);
ret = acl_pass(ret);
if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
/* Apply the filter to the request line. */
ret = apply_filter_to_req_line(s, req, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the request, it can be
* iterated through all headers.
*/
apply_filter_to_req_headers(s, req, exp);
}
}
return 0;
}
/*
* Try to retrieve the server associated to the appsession.
* If the server is found, it's assigned to the session.
*/
void manage_client_side_appsession(struct session *t, const char *buf, int len) {
struct http_txn *txn = &t->txn;
appsess *asession = NULL;
char *sessid_temp = NULL;
if (len > t->be->appsession_len) {
len = t->be->appsession_len;
}
if (t->be->options2 & PR_O2_AS_REQL) {
/* request-learn option is enabled : store the sessid in the session for future use */
if (txn->sessid != NULL) {
/* free previously allocated memory as we don't need the session id found in the URL anymore */
pool_free2(apools.sessid, txn->sessid);
}
if ((txn->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough memory process_cli():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n");
return;
}
memcpy(txn->sessid, buf, len);
txn->sessid[len] = 0;
}
if ((sessid_temp = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough memory process_cli():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n");
return;
}
memcpy(sessid_temp, buf, len);
sessid_temp[len] = 0;
asession = appsession_hash_lookup(&(t->be->htbl_proxy), sessid_temp);
/* free previously allocated memory */
pool_free2(apools.sessid, sessid_temp);
if (asession != NULL) {
asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession);
if (!(t->be->options2 & PR_O2_AS_REQL))
asession->request_count++;
if (asession->serverid != NULL) {
struct server *srv = t->be->srv;
while (srv) {
if (strcmp(srv->id, asession->serverid) == 0) {
if ((srv->state & SRV_RUNNING) ||
(t->be->options & PR_O_PERSIST) ||
(t->flags & SN_FORCE_PRST)) {
/* we found the server and it's usable */
txn->flags &= ~TX_CK_MASK;
txn->flags |= (srv->state & SRV_RUNNING) ? TX_CK_VALID : TX_CK_DOWN;
t->flags |= SN_DIRECT | SN_ASSIGNED;
set_target_server(&t->target, srv);
break;
} else {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
}
}
}
/* Find the end of a cookie value contained between <s> and <e>. It works the
* same way as with headers above except that the semi-colon also ends a token.
* See RFC2965 for more information. Note that it requires a valid header to
* return a valid result.
*/
char *find_cookie_value_end(char *s, const char *e)
{
int quoted, qdpair;
quoted = qdpair = 0;
for (; s < e; s++) {
if (qdpair) qdpair = 0;
else if (quoted) {
if (*s == '\\') qdpair = 1;
else if (*s == '"') quoted = 0;
}
else if (*s == '"') quoted = 1;
else if (*s == ',' || *s == ';') return s;
}
return s;
}
/* Delete a value in a header between delimiters <from> and <next> in buffer
* <buf>. The number of characters displaced is returned, and the pointer to
* the first delimiter is updated if required. The function tries as much as
* possible to respect the following principles :
* - replace <from> delimiter by the <next> one unless <from> points to a
* colon, in which case <next> is simply removed
* - set exactly one space character after the new first delimiter, unless
* there are not enough characters in the block being moved to do so.
* - remove unneeded spaces before the previous delimiter and after the new
* one.
*
* It is the caller's responsibility to ensure that :
* - <from> points to a valid delimiter or the colon ;
* - <next> points to a valid delimiter or the final CR/LF ;
* - there are non-space chars before <from> ;
* - there is a CR/LF at or after <next>.
*/
int del_hdr_value(struct buffer *buf, char **from, char *next)
{
char *prev = *from;
if (*prev == ':') {
/* We're removing the first value, preserve the colon and add a
* space if possible.
*/
if (!http_is_crlf[(unsigned char)*next])
next++;
prev++;
if (prev < next)
*prev++ = ' ';
while (http_is_spht[(unsigned char)*next])
next++;
} else {
/* Remove useless spaces before the old delimiter. */
while (http_is_spht[(unsigned char)*(prev-1)])
prev--;
*from = prev;
/* copy the delimiter and if possible a space if we're
* not at the end of the line.
*/
if (!http_is_crlf[(unsigned char)*next]) {
*prev++ = *next++;
if (prev + 1 < next)
*prev++ = ' ';
while (http_is_spht[(unsigned char)*next])
next++;
}
}
return buffer_replace2(buf, prev, next, NULL, 0);
}
/*
* Manage client-side cookie. It can impact performance by about 2% so it is
* desirable to call it only when needed. This code is quite complex because
* of the multiple very crappy and ambiguous syntaxes we have to support. it
* highly recommended not to touch this part without a good reason !
*/
void manage_client_side_cookies(struct session *t, struct buffer *req)
{
struct http_txn *txn = &t->txn;
int preserve_hdr;
int cur_idx, old_idx;
char *hdr_beg, *hdr_end, *hdr_next, *del_from;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers, we start with the start line. */
old_idx = 0;
hdr_next = txn->req.sol + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6);
if (!val) {
old_idx = cur_idx;
continue;
}
del_from = NULL; /* nothing to be deleted */
preserve_hdr = 0; /* assume we may kill the whole header */
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it.
*
* Note: RFC2965 is unclear about the processing of spaces around
* the equal sign in the ATTR=VALUE form. A careful inspection of
* the RFC explicitly allows spaces before it, and not within the
* tokens (attrs or values). An inspection of RFC2109 allows that
* too but section 10.1.3 lets one think that spaces may be allowed
* after the equal sign too, resulting in some (rare) buggy
* implementations trying to do that. So let's do what servers do.
* Latest ietf draft forbids spaces all around. Also, earlier RFCs
* allowed quoted strings in values, with any possible character
* after a backslash, including control chars and delimitors, which
* causes parsing to become ambiguous. Browsers also allow spaces
* within values even without quotes.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header. All of these headers are valid :
*
* Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n
* Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n
* Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
* | | | | | | | | |
* | | | | | | | | hdr_end <--+
* | | | | | | | +--> next
* | | | | | | +----> val_end
* | | | | | +-----------> val_beg
* | | | | +--------------> equal
* | | | +----------------> att_end
* | | +---------------------> att_beg
* | +--------------------------> prev
* +--------------------------------> hdr_beg
*/
for (prev = hdr_beg + 6; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg])
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ',' || *equal == ';')
break;
if (http_is_spht[(unsigned char)*equal++])
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg])
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)])
val_end--;
} else {
val_beg = val_end = next = equal;
}
/* We have nothing to do with attributes beginning with '$'. However,
* they will automatically be removed if a header before them is removed,
* since they're supposed to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next) {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req, &del_from, prev);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
continue;
}
/* if there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(req, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(req, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->req, stripped_before);
}
/* now everything is as on the diagram above */
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a client side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (t->fe->capture_name != NULL && txn->cli_cookie == NULL &&
(val_end - att_beg >= t->fe->capture_namelen) &&
memcmp(att_beg, t->fe->capture_name, t->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
} else {
if (log_len > t->fe->capture_len)
log_len = t->fe->capture_len;
memcpy(txn->cli_cookie, att_beg, log_len);
txn->cli_cookie[log_len] = 0;
}
}
/* Persistence cookies in passive, rewrite or insert mode have the
* following form :
*
* Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
*
* For cookies in prefix mode, the form is :
*
* Cookie: NAME=SRV~VALUE
*/
if ((att_end - att_beg == t->be->cookie_len) && (t->be->cookie_name != NULL) &&
(memcmp(att_beg, t->be->cookie_name, att_end - att_beg) == 0)) {
struct server *srv = t->be->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID between val_beg and delim, and the original cookie between
* delim+1 and val_end. Otherwise, delim==val_end :
*
* Cookie: NAME=SRV; # in all but prefix modes
* Cookie: NAME=SRV~OPAQUE ; # in prefix mode
* | || || | |+-> next
* | || || | +--> val_end
* | || || +---------> delim
* | || |+------------> val_beg
* | || +-------------> att_end = equal
* | |+-----------------> att_beg
* | +------------------> prev
* +-------------------------> hdr_beg
*/
if (t->be->options & PR_O_COOK_PFX) {
for (delim = val_beg; delim < val_end; delim++)
if (*delim == COOKIE_DELIM)
break;
} else {
char *vbar1;
delim = val_end;
/* Now check if the cookie contains a date field, which would
* appear after a vertical bar ('|') just after the server name
* and before the delimiter.
*/
vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
if (vbar1) {
/* OK, so left of the bar is the server's cookie and
* right is the last seen date. It is a base64 encoded
* 30-bit value representing the UNIX date since the
* epoch in 4-second quantities.
*/
int val;
delim = vbar1++;
if (val_end - vbar1 >= 5) {
val = b64tos30(vbar1);
if (val > 0)
txn->cookie_last_date = val << 2;
}
/* look for a second vertical bar */
vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
if (vbar1 && (val_end - vbar1 > 5)) {
val = b64tos30(vbar1 + 1);
if (val > 0)
txn->cookie_first_date = val << 2;
}
}
}
/* if the cookie has an expiration date and the proxy wants to check
* it, then we do that now. We first check if the cookie is too old,
* then only if it has expired. We detect strict overflow because the
* time resolution here is not great (4 seconds). Cookies with dates
* in the future are ignored if their offset is beyond one day. This
* allows an admin to fix timezone issues without expiring everyone
* and at the same time avoids keeping unwanted side effects for too
* long.
*/
if (txn->cookie_first_date && t->be->cookie_maxlife &&
(((signed)(date.tv_sec - txn->cookie_first_date) > (signed)t->be->cookie_maxlife) ||
((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_OLD;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
else if (txn->cookie_last_date && t->be->cookie_maxidle &&
(((signed)(date.tv_sec - txn->cookie_last_date) > (signed)t->be->cookie_maxidle) ||
((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_EXPIRED;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
* The same behaviour is applied when persistence must be ignored.
*/
if ((delim == val_beg) || (t->flags & (SN_IGNORE_PRST | SN_ASSIGNED)))
srv = NULL;
while (srv) {
if (srv->cookie && (srv->cklen == delim - val_beg) &&
!memcmp(val_beg, srv->cookie, delim - val_beg)) {
if ((srv->state & SRV_RUNNING) ||
(t->be->options & PR_O_PERSIST) ||
(t->flags & SN_FORCE_PRST)) {
/* we found the server and we can use it */
txn->flags &= ~TX_CK_MASK;
txn->flags |= (srv->state & SRV_RUNNING) ? TX_CK_VALID : TX_CK_DOWN;
t->flags |= SN_DIRECT | SN_ASSIGNED;
set_target_server(&t->target, srv);
break;
} else {
/* we found a server, but it's down,
* mark it as such and go on in case
* another one is available.
*/
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
/* no server matched this cookie or we deliberately skipped it */
txn->flags &= ~TX_CK_MASK;
if ((t->flags & (SN_IGNORE_PRST | SN_ASSIGNED)))
txn->flags |= TX_CK_UNUSED;
else
txn->flags |= TX_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((t->be->options & PR_O_COOK_PFX) && (delim != val_end)) {
int delta; /* negative */
delta = buffer_replace2(req, val_beg, delim + 1, NULL, 0);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
del_from = NULL;
preserve_hdr = 1; /* we want to keep this cookie */
}
else if (del_from == NULL &&
(t->be->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) {
del_from = prev;
}
} else {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req, &del_from, prev);
if (att_beg >= del_from)
att_beg += delta;
if (att_end >= del_from)
att_end += delta;
val_beg += delta;
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
}
/* Look for the appsession cookie unless persistence must be ignored */
if (!(t->flags & SN_IGNORE_PRST) && (t->be->appsession_name != NULL)) {
int cmp_len, value_len;
char *value_begin;
if (t->be->options2 & PR_O2_AS_PFX) {
cmp_len = MIN(val_end - att_beg, t->be->appsession_name_len);
value_begin = att_beg + t->be->appsession_name_len;
value_len = val_end - att_beg - t->be->appsession_name_len;
} else {
cmp_len = att_end - att_beg;
value_begin = val_beg;
value_len = val_end - val_beg;
}
/* let's see if the cookie is our appcookie */
if (cmp_len == t->be->appsession_name_len &&
memcmp(att_beg, t->be->appsession_name, cmp_len) == 0) {
manage_client_side_appsession(t, value_begin, value_len);
}
}
/* continue with next cookie on this header line */
att_beg = next;
} /* for each cookie */
/* There are no more cookies on this line.
* We may still have one (or several) marked for deletion at the
* end of the line. We must do this now in two ways :
* - if some cookies must be preserved, we only delete from the
* mark to the end of line ;
* - if nothing needs to be preserved, simply delete the whole header
*/
if (del_from) {
int delta;
if (preserve_hdr) {
delta = del_hdr_value(req, &del_from, hdr_end);
hdr_end = del_from;
cur_hdr->len += delta;
} else {
delta = buffer_replace2(req, hdr_beg, hdr_next, NULL, 0);
/* FIXME: this should be a separate function */
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
}
hdr_next += delta;
http_msg_move_end(&txn->req, delta);
}
/* check next header */
old_idx = cur_idx;
}
}
/* Iterate the same filter through all response headers contained in <rtr>.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
*/
int apply_filter_to_resp_headers(struct session *t, struct buffer *rtr, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = &t->txn;
struct hdr_idx_elem *cur_hdr;
int len, delta;
last_hdr = 0;
cur_next = txn->rsp.sol + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
last_hdr = 1;
break;
case ACT_REPLACE:
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
break;
case ACT_REMOVE:
delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
http_msg_move_end(&txn->rsp, delta);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
cur_idx = old_idx;
break;
}
}
if (cur_end)
*cur_end = term; /* restore the string terminator */
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the status line in the response buffer <rtr>.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid status line.
*/
int apply_filter_to_sts_line(struct session *t, struct buffer *rtr, struct hdr_exp *exp)
{
char term;
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = &t->txn;
int len, delta;
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = txn->rsp.sol;
cur_end = cur_ptr + txn->rsp.sl.st.l;
/* Now we have the status line between cur_ptr and cur_end */
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
done = 1;
break;
case ACT_REPLACE:
*cur_end = term; /* restore the string terminator */
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
http_msg_move_end(&txn->rsp, delta);
cur_end += delta;
cur_end = (char *)http_parse_stsline(&txn->rsp, rtr->data, rtr->p,
HTTP_MSG_RPVER,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full respnse and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->status = strl2ui(txn->rsp.sol + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l);
hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
*cur_end = term; /* restore the string terminator */
return done;
}
/*
* Apply all the resp filters of proxy <px> to all headers in buffer <rtr> of session <s>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable response.
*/
int apply_filters_to_response(struct session *s, struct buffer *rtr, struct proxy *px)
{
struct http_txn *txn = &s->txn;
struct hdr_exp *exp;
for (exp = px->rsp_exp; exp; exp = exp->next) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if (txn->flags & TX_SVDENY)
break;
if ((txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_PASS)) {
exp = exp->next;
continue;
}
/* if this filter had a condition, evaluate it now and skip to
* next filter if the condition does not match.
*/
if (exp->cond) {
ret = acl_exec_cond(exp->cond, px, s, txn, ACL_DIR_RTR);
ret = acl_pass(ret);
if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
/* Apply the filter to the status line. */
ret = apply_filter_to_sts_line(s, rtr, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the response, it can be
* iterated through all headers.
*/
apply_filter_to_resp_headers(s, rtr, exp);
}
}
return 0;
}
/*
* Manage server-side cookies. It can impact performance by about 2% so it is
* desirable to call it only when needed. This function is also used when we
* just need to know if there is a cookie (eg: for check-cache).
*/
void manage_server_side_cookies(struct session *t, struct buffer *res)
{
struct http_txn *txn = &t->txn;
struct server *srv;
int is_cookie2;
int cur_idx, old_idx, delta;
char *hdr_beg, *hdr_end, *hdr_next;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = 0;
hdr_next = txn->rsp.sol + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Set-Cookie" and "Set-Cookie2" headers.
*/
is_cookie2 = 0;
prev = hdr_beg + 10;
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10);
if (!val) {
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11);
if (!val) {
old_idx = cur_idx;
continue;
}
is_cookie2 = 1;
prev = hdr_beg + 11;
}
/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
* <prev> points to the colon.
*/
txn->flags |= TX_SCK_PRESENT;
/* Maybe we only wanted to see if there was a Set-Cookie (eg:
* check-cache is enabled) and we are not interested in checking
* them. Warning, the cookie capture is declared in the frontend.
*/
if (t->be->cookie_name == NULL &&
t->be->appsession_name == NULL &&
t->fe->capture_name == NULL)
return;
/* OK so now we know we have to process this response cookie.
* The format of the Set-Cookie header is slightly different
* from the format of the Cookie header in that it does not
* support the comma as a cookie delimiter (thus the header
* cannot be folded) because the Expires attribute described in
* the original Netscape's spec may contain an unquoted date
* with a comma inside. We have to live with this because
* many browsers don't support Max-Age and some browsers don't
* support quoted strings. However the Set-Cookie2 header is
* clean.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header (in case of set-cookie2). A special
* pointer, <scav> points to the beginning of the set-cookie-av
* fields after the first semi-colon. The <next> pointer points
* either to the end of line (set-cookie) or next unquoted comma
* (set-cookie2). All of these headers are valid :
*
* Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n
* Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n
* | | | | | | | | | |
* | | | | | | | | +-> next hdr_end <--+
* | | | | | | | +------------> scav
* | | | | | | +--------------> val_end
* | | | | | +--------------------> val_beg
* | | | | +----------------------> equal
* | | | +------------------------> att_end
* | | +----------------------------> att_beg
* | +------------------------------> prev
* +-----------------------------------------> hdr_beg
*/
for (; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg])
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
break;
if (http_is_spht[(unsigned char)*equal++])
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg])
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)])
val_end--;
} else {
/* <equal> points to next comma, semi-colon or EOL */
val_beg = val_end = next = equal;
}
if (next < hdr_end) {
/* Set-Cookie2 supports multiple cookies, and <next> points to
* a colon or semi-colon before the end. So skip all attr-value
* pairs and look for the next comma. For Set-Cookie, since
* commas are permitted in values, skip to the end.
*/
if (is_cookie2)
next = find_hdr_value_end(next, hdr_end);
else
next = hdr_end;
}
/* Now everything is as on the diagram above */
/* Ignore cookies with no equal sign */
if (equal == val_end)
continue;
/* If there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(res, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(res, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->rsp, stripped_before);
}
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a server side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (t->fe->capture_name != NULL &&
txn->srv_cookie == NULL &&
(val_end - att_beg >= t->fe->capture_namelen) &&
memcmp(att_beg, t->fe->capture_name, t->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
}
else {
if (log_len > t->fe->capture_len)
log_len = t->fe->capture_len;
memcpy(txn->srv_cookie, att_beg, log_len);
txn->srv_cookie[log_len] = 0;
}
}
srv = target_srv(&t->target);
/* now check if we need to process it for persistence */
if (!(t->flags & SN_IGNORE_PRST) &&
(att_end - att_beg == t->be->cookie_len) && (t->be->cookie_name != NULL) &&
(memcmp(att_beg, t->be->cookie_name, att_end - att_beg) == 0)) {
/* assume passive cookie by default */
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_FOUND;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access.
*/
if (t->be->options2 & PR_O2_COOK_PSV) {
/* The "preserve" flag was set, we don't want to touch the
* server's cookie.
*/
}
else if ((srv && (t->be->options & PR_O_COOK_INS)) ||
((t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_IND))) {
/* this cookie must be deleted */
if (*prev == ':' && next == hdr_end) {
/* whole header */
delta = buffer_replace2(res, hdr_beg, hdr_next, NULL, 0);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
hdr_next += delta;
http_msg_move_end(&txn->rsp, delta);
/* note: while both invalid now, <next> and <hdr_end>
* are still equal, so the for() will stop as expected.
*/
} else {
/* just remove the value */
int delta = del_hdr_value(res, &prev, next);
next = prev;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
}
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_DELETED;
/* and go on with next cookie */
}
else if (srv && srv->cookie && (t->be->options & PR_O_COOK_RW)) {
/* replace bytes val_beg->val_end with the cookie name associated
* with this server since we know it.
*/
delta = buffer_replace2(res, val_beg, val_end, srv->cookie, srv->cklen);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
else if (srv && srv && (t->be->options & PR_O_COOK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimiter between them..
*/
delta = buffer_replace2(res, val_beg, val_beg, srv->cookie, srv->cklen + 1);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
val_beg[srv->cklen] = COOKIE_DELIM;
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
}
/* next, let's see if the cookie is our appcookie, unless persistence must be ignored */
else if (!(t->flags & SN_IGNORE_PRST) && (t->be->appsession_name != NULL)) {
int cmp_len, value_len;
char *value_begin;
if (t->be->options2 & PR_O2_AS_PFX) {
cmp_len = MIN(val_end - att_beg, t->be->appsession_name_len);
value_begin = att_beg + t->be->appsession_name_len;
value_len = MIN(t->be->appsession_len, val_end - att_beg - t->be->appsession_name_len);
} else {
cmp_len = att_end - att_beg;
value_begin = val_beg;
value_len = MIN(t->be->appsession_len, val_end - val_beg);
}
if ((cmp_len == t->be->appsession_name_len) &&
(memcmp(att_beg, t->be->appsession_name, t->be->appsession_name_len) == 0)) {
/* free a possibly previously allocated memory */
pool_free2(apools.sessid, txn->sessid);
/* Store the sessid in the session for future use */
if ((txn->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n");
return;
}
memcpy(txn->sessid, value_begin, value_len);
txn->sessid[value_len] = 0;
}
}
/* that's done for this cookie, check the next one on the same
* line when next != hdr_end (only if is_cookie2).
*/
}
/* check next header */
old_idx = cur_idx;
}
if (txn->sessid != NULL) {
appsess *asession = NULL;
/* only do insert, if lookup fails */
asession = appsession_hash_lookup(&(t->be->htbl_proxy), txn->sessid);
if (asession == NULL) {
size_t server_id_len;
if ((asession = pool_alloc2(pool2_appsess)) == NULL) {
Alert("Not enough Memory process_srv():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession:calloc().\n");
return;
}
asession->serverid = NULL; /* to avoid a double free in case of allocation error */
if ((asession->sessid = pool_alloc2(apools.sessid)) == NULL) {
Alert("Not enough Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n");
t->be->htbl_proxy.destroy(asession);
return;
}
memcpy(asession->sessid, txn->sessid, t->be->appsession_len);
asession->sessid[t->be->appsession_len] = 0;
server_id_len = strlen(target_srv(&t->target)->id) + 1;
if ((asession->serverid = pool_alloc2(apools.serverid)) == NULL) {
Alert("Not enough Memory process_srv():asession->serverid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n");
t->be->htbl_proxy.destroy(asession);
return;
}
asession->serverid[0] = '\0';
memcpy(asession->serverid, target_srv(&t->target)->id, server_id_len);
asession->request_count = 0;
appsession_hash_insert(&(t->be->htbl_proxy), asession);
}
asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession);
asession->request_count++;
}
}
/*
* Check if response is cacheable or not. Updates t->flags.
*/
void check_response_for_cacheability(struct session *t, struct buffer *rtr)
{
struct http_txn *txn = &t->txn;
char *p1, *p2;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx;
if (!(txn->flags & TX_CACHEABLE))
return;
/* Iterate through the headers.
* we start with the start line.
*/
cur_idx = 0;
cur_next = txn->rsp.sol + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
if (val) {
if ((cur_end - (cur_ptr + val) >= 8) &&
strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
}
val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
if (!val)
continue;
/* OK, right now we know we have a cache-control header at cur_ptr */
p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
if (p1 >= cur_end) /* no more info */
continue;
/* p1 is at the beginning of the value */
p2 = p1;
while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
p2++;
/* we have a complete value between p1 and p2 */
if (p2 < cur_end && *p2 == '=') {
/* we have something of the form no-cache="set-cookie" */
if ((cur_end - p1 >= 21) &&
strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0
&& (p1[20] == '"' || p1[20] == ','))
txn->flags &= ~TX_CACHE_COOK;
continue;
}
/* OK, so we know that either p2 points to the end of string or to a comma */
if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) ||
((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) ||
((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) ||
((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) {
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
continue;
}
}
}
/*
* Try to retrieve a known appsession in the URI, then the associated server.
* If the server is found, it's assigned to the session.
*/
void get_srv_from_appsession(struct session *t, const char *begin, int len)
{
char *end_params, *first_param, *cur_param, *next_param;
char separator;
int value_len;
int mode = t->be->options2 & PR_O2_AS_M_ANY;
if (t->be->appsession_name == NULL ||
(t->txn.meth != HTTP_METH_GET && t->txn.meth != HTTP_METH_POST && t->txn.meth != HTTP_METH_HEAD)) {
return;
}
first_param = NULL;
switch (mode) {
case PR_O2_AS_M_PP:
first_param = memchr(begin, ';', len);
break;
case PR_O2_AS_M_QS:
first_param = memchr(begin, '?', len);
break;
}
if (first_param == NULL) {
return;
}
switch (mode) {
case PR_O2_AS_M_PP:
if ((end_params = memchr(first_param, '?', len - (begin - first_param))) == NULL) {
end_params = (char *) begin + len;
}
separator = ';';
break;
case PR_O2_AS_M_QS:
end_params = (char *) begin + len;
separator = '&';
break;
default:
/* unknown mode, shouldn't happen */
return;
}
cur_param = next_param = end_params;
while (cur_param > first_param) {
cur_param--;
if ((cur_param[0] == separator) || (cur_param == first_param)) {
/* let's see if this is the appsession parameter */
if ((cur_param + t->be->appsession_name_len + 1 < next_param) &&
((t->be->options2 & PR_O2_AS_PFX) || cur_param[t->be->appsession_name_len + 1] == '=') &&
(strncasecmp(cur_param + 1, t->be->appsession_name, t->be->appsession_name_len) == 0)) {
/* Cool... it's the right one */
cur_param += t->be->appsession_name_len + (t->be->options2 & PR_O2_AS_PFX ? 1 : 2);
value_len = MIN(t->be->appsession_len, next_param - cur_param);
if (value_len > 0) {
manage_client_side_appsession(t, cur_param, value_len);
}
break;
}
next_param = cur_param;
}
}
#if defined(DEBUG_HASH)
Alert("get_srv_from_appsession\n");
appsession_hash_dump(&(t->be->htbl_proxy));
#endif
}
/*
* In a GET, HEAD or POST request, check if the requested URI matches the stats uri
* for the current backend.
*
* It is assumed that the request is either a HEAD, GET, or POST and that the
* uri_auth field is valid.
*
* Returns 1 if stats should be provided, otherwise 0.
*/
int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend)
{
struct uri_auth *uri_auth = backend->uri_auth;
char *h;
if (!uri_auth)
return 0;
if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
return 0;
memset(&si->applet.ctx.stats, 0, sizeof(si->applet.ctx.stats));
si->applet.ctx.stats.st_code = STAT_STATUS_INIT;
/* check URI size */
if (uri_auth->uri_len > txn->req.sl.rq.u_l)
return 0;
h = txn->req.sol + txn->req.sl.rq.u;
/* the URI is in h */
if (memcmp(h, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
h += uri_auth->uri_len;
while (h <= txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 3) {
if (memcmp(h, ";up", 3) == 0) {
si->applet.ctx.stats.flags |= STAT_HIDE_DOWN;
break;
}
h++;
}
if (uri_auth->refresh) {
h = txn->req.sol + txn->req.sl.rq.u + uri_auth->uri_len;
while (h <= txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 10) {
if (memcmp(h, ";norefresh", 10) == 0) {
si->applet.ctx.stats.flags |= STAT_NO_REFRESH;
break;
}
h++;
}
}
h = txn->req.sol + txn->req.sl.rq.u + uri_auth->uri_len;
while (h <= txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 4) {
if (memcmp(h, ";csv", 4) == 0) {
si->applet.ctx.stats.flags |= STAT_FMT_CSV;
break;
}
h++;
}
h = txn->req.sol + txn->req.sl.rq.u + uri_auth->uri_len;
while (h <= txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 8) {
if (memcmp(h, ";st=", 4) == 0) {
int i;
h += 4;
for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) {
if (strncmp(stat_status_codes[i], h, 4) == 0) {
si->applet.ctx.stats.st_code = i;
break;
}
}
si->applet.ctx.stats.st_code = STAT_STATUS_UNKN;
break;
}
h++;
}
si->applet.ctx.stats.flags |= STAT_SHOW_STAT | STAT_SHOW_INFO;
return 1;
}
/*
* Capture a bad request or response and archive it in the proxy's structure.
* WARNING: it's unlikely that we've reached HTTP_MSG_BODY here so we must not
* assume that msg->sol = buf->p + msg->som.
*/
void http_capture_bad_message(struct error_snapshot *es, struct session *s,
struct buffer *buf, struct http_msg *msg,
int state, struct proxy *other_end)
{
if (buffer_wrap_add(buf, buf->p + buf->i) <= (buf->p + msg->som)) { /* message wraps */
int len1 = buf->size - msg->som - (buf->p - buf->data);
es->len = buffer_wrap_add(buf, buf->p + buf->i) - (buf->p + msg->som) + buf->size;
memcpy(es->buf, buf->p + msg->som, MIN(len1, sizeof(es->buf)));
if (es->len > len1 && len1 < sizeof(es->buf))
memcpy(es->buf, buf->data, MIN(es->len, sizeof(es->buf)) - len1);
}
else {
es->len = buffer_wrap_add(buf, buf->p + buf->i) - (buf->p + msg->som);
memcpy(es->buf, buf->p + msg->som, MIN(es->len, sizeof(es->buf)));
}
if (msg->err_pos >= 0)
es->pos = msg->err_pos - msg->som - (buf->p - buf->data);
else if (buffer_wrap_add(buf, buf->p + msg->next) >= (buf->p + msg->som))
es->pos = buffer_wrap_add(buf, buf->p + msg->next) - (buf->p + msg->som);
else
es->pos = buffer_wrap_add(buf, buf->p + msg->next) - (buf->p + msg->som) + buf->size;
es->when = date; // user-visible date
es->sid = s->uniq_id;
es->srv = target_srv(&s->target);
es->oe = other_end;
es->src = s->req->prod->addr.from;
es->state = state;
es->flags = buf->flags;
es->ev_id = error_snapshot_id++;
}
/* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
* header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
* performed over the whole headers. Otherwise it must contain a valid header
* context, initialised with ctx->idx=0 for the first lookup in a series. If
* <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
* is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
* than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
* -1.
* The return value is 0 if nothing was found, or non-zero otherwise.
*/
unsigned int http_get_hdr(struct http_msg *msg, const char *hname, int hlen,
struct hdr_idx *idx, int occ,
struct hdr_ctx *ctx, char **vptr, int *vlen)
{
struct hdr_ctx local_ctx;
char *ptr_hist[MAX_HDR_HISTORY];
int len_hist[MAX_HDR_HISTORY];
unsigned int hist_ptr;
int found;
if (!ctx) {
local_ctx.idx = 0;
ctx = &local_ctx;
}
if (occ >= 0) {
/* search from the beginning */
while (http_find_header2(hname, hlen, msg->sol, idx, ctx)) {
occ--;
if (occ <= 0) {
*vptr = ctx->line + ctx->val;
*vlen = ctx->vlen;
return 1;
}
}
return 0;
}
/* negative occurrence, we scan all the list then walk back */
if (-occ > MAX_HDR_HISTORY)
return 0;
found = hist_ptr = 0;
while (http_find_header2(hname, hlen, msg->sol, idx, ctx)) {
ptr_hist[hist_ptr] = ctx->line + ctx->val;
len_hist[hist_ptr] = ctx->vlen;
if (++hist_ptr >= MAX_HDR_HISTORY)
hist_ptr = 0;
found++;
}
if (-occ > found)
return 0;
/* OK now we have the last occurrence in [hist_ptr-1], and we need to
* find occurrence -occ, so we have to check [hist_ptr+occ].
*/
hist_ptr += occ;
if (hist_ptr >= MAX_HDR_HISTORY)
hist_ptr -= MAX_HDR_HISTORY;
*vptr = ptr_hist[hist_ptr];
*vlen = len_hist[hist_ptr];
return 1;
}
/*
* Print a debug line with a header
*/
void debug_hdr(const char *dir, struct session *t, const char *start, const char *end)
{
int len, max;
len = sprintf(trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id,
dir, (unsigned short)t->req->prod->fd, (unsigned short)t->req->cons->fd);
max = end - start;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy2(trash + len, start, max + 1);
trash[len++] = '\n';
if (write(1, trash, len) < 0) /* shut gcc warning */;
}
/*
* Initialize a new HTTP transaction for session <s>. It is assumed that all
* the required fields are properly allocated and that we only need to (re)init
* them. This should be used before processing any new request.
*/
void http_init_txn(struct session *s)
{
struct http_txn *txn = &s->txn;
struct proxy *fe = s->fe;
txn->flags = 0;
txn->status = -1;
global.req_count++;
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
txn->req.flags = 0;
txn->req.sol = txn->req.eol = NULL;
txn->req.som = txn->req.eoh = 0; /* relative to the buffer */
txn->req.next = 0;
txn->rsp.flags = 0;
txn->rsp.sol = txn->rsp.eol = NULL;
txn->rsp.som = txn->rsp.eoh = 0; /* relative to the buffer */
txn->rsp.next = 0;
txn->req.chunk_len = 0LL;
txn->req.body_len = 0LL;
txn->rsp.chunk_len = 0LL;
txn->rsp.body_len = 0LL;
txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
txn->auth.method = HTTP_AUTH_UNKNOWN;
txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */
if (fe->options2 & PR_O2_REQBUG_OK)
txn->req.err_pos = -1; /* let buggy requests pass */
if (txn->req.cap)
memset(txn->req.cap, 0, fe->nb_req_cap * sizeof(void *));
if (txn->rsp.cap)
memset(txn->rsp.cap, 0, fe->nb_rsp_cap * sizeof(void *));
if (txn->hdr_idx.v)
hdr_idx_init(&txn->hdr_idx);
}
/* to be used at the end of a transaction */
void http_end_txn(struct session *s)
{
struct http_txn *txn = &s->txn;
/* these ones will have been dynamically allocated */
pool_free2(pool2_requri, txn->uri);
pool_free2(pool2_capture, txn->cli_cookie);
pool_free2(pool2_capture, txn->srv_cookie);
pool_free2(apools.sessid, txn->sessid);
pool_free2(pool2_uniqueid, s->unique_id);
s->unique_id = NULL;
txn->sessid = NULL;
txn->uri = NULL;
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
if (txn->req.cap) {
struct cap_hdr *h;
for (h = s->fe->req_cap; h; h = h->next)
pool_free2(h->pool, txn->req.cap[h->index]);
memset(txn->req.cap, 0, s->fe->nb_req_cap * sizeof(void *));
}
if (txn->rsp.cap) {
struct cap_hdr *h;
for (h = s->fe->rsp_cap; h; h = h->next)
pool_free2(h->pool, txn->rsp.cap[h->index]);
memset(txn->rsp.cap, 0, s->fe->nb_rsp_cap * sizeof(void *));
}
}
/* to be used at the end of a transaction to prepare a new one */
void http_reset_txn(struct session *s)
{
http_end_txn(s);
http_init_txn(s);
s->be = s->fe;
s->logs.logwait = s->fe->to_log;
session_del_srv_conn(s);
clear_target(&s->target);
/* re-init store persistence */
s->store_count = 0;
s->pend_pos = NULL;
s->req->flags |= BF_READ_DONTWAIT; /* one read is usually enough */
/* We must trim any excess data from the response buffer, because we
* may have blocked an invalid response from a server that we don't
* want to accidentely forward once we disable the analysers, nor do
* we want those data to come along with next response. A typical
* example of such data would be from a buggy server responding to
* a HEAD with some data, or sending more than the advertised
* content-length.
*/
if (unlikely(s->rep->i))
s->rep->i = 0;
s->req->rto = s->fe->timeout.client;
s->req->wto = TICK_ETERNITY;
s->rep->rto = TICK_ETERNITY;
s->rep->wto = s->fe->timeout.client;
s->req->rex = TICK_ETERNITY;
s->req->wex = TICK_ETERNITY;
s->req->analyse_exp = TICK_ETERNITY;
s->rep->rex = TICK_ETERNITY;
s->rep->wex = TICK_ETERNITY;
s->rep->analyse_exp = TICK_ETERNITY;
}
void free_http_req_rules(struct list *r) {
struct http_req_rule *tr, *pr;
list_for_each_entry_safe(pr, tr, r, list) {
LIST_DEL(&pr->list);
if (pr->action == HTTP_REQ_ACT_HTTP_AUTH)
free(pr->http_auth.realm);
free(pr);
}
}
struct http_req_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
{
struct http_req_rule *rule;
int cur_arg;
rule = (struct http_req_rule*)calloc(1, sizeof(struct http_req_rule));
if (!rule) {
Alert("parsing [%s:%d]: out of memory.\n", file, linenum);
return NULL;
}
if (!*args[0]) {
goto req_error_parsing;
} else if (!strcmp(args[0], "allow")) {
rule->action = HTTP_REQ_ACT_ALLOW;
cur_arg = 1;
} else if (!strcmp(args[0], "deny")) {
rule->action = HTTP_REQ_ACT_DENY;
cur_arg = 1;
} else if (!strcmp(args[0], "auth")) {
rule->action = HTTP_REQ_ACT_HTTP_AUTH;
cur_arg = 1;
while(*args[cur_arg]) {
if (!strcmp(args[cur_arg], "realm")) {
rule->http_auth.realm = strdup(args[cur_arg + 1]);
cur_arg+=2;
continue;
} else
break;
}
} else {
req_error_parsing:
Alert("parsing [%s:%d]: %s '%s', expects 'allow', 'deny', 'auth'.\n",
file, linenum, *args[1]?"unknown parameter":"missing keyword in", args[*args[1]?1:0]);
return NULL;
}
if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
struct acl_cond *cond;
if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg)) == NULL) {
Alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition.\n",
file, linenum, args[0]);
return NULL;
}
rule->cond = cond;
}
else if (*args[cur_arg]) {
Alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth' or"
" either 'if' or 'unless' followed by a condition but found '%s'.\n",
file, linenum, args[0], args[cur_arg]);
return NULL;
}
return rule;
}
/************************************************************************/
/* The code below is dedicated to ACL parsing and matching */
/************************************************************************/
/* 1. Check on METHOD
* We use the pre-parsed method if it is known, and store its number as an
* integer. If it is unknown, we use the pointer and the length.
*/
static int acl_parse_meth(const char **text, struct acl_pattern *pattern, int *opaque)
{
int len, meth;
len = strlen(*text);
meth = find_http_meth(*text, len);
pattern->val.i = meth;
if (meth == HTTP_METH_OTHER) {
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str)
return 0;
pattern->len = len;
}
return 1;
}
/* This function fetches the method of current HTTP request and stores
* it in the global pattern struct as a chunk. There are two possibilities :
* - if the method is known (not HTTP_METH_OTHER), its identifier is stored
* in <len> and <ptr> is NULL ;
* - if the method is unknown (HTTP_METH_OTHER), <ptr> points to the text and
* <len> to its length.
* This is intended to be used with acl_match_meth() only.
*/
static int
acl_fetch_meth(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
int meth;
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
meth = txn->meth;
temp_pattern.data.str.len = meth;
temp_pattern.data.str.str = NULL;
if (meth == HTTP_METH_OTHER) {
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
temp_pattern.data.str.len = txn->req.sl.rq.m_l;
temp_pattern.data.str.str = txn->req.sol;
}
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
/* See above how the method is stored in the global pattern */
static int acl_match_meth(struct acl_test *test, struct acl_pattern *pattern)
{
int icase;
if (temp_pattern.data.str.str == NULL) {
/* well-known method */
if (temp_pattern.data.str.len == pattern->val.i)
return ACL_PAT_PASS;
return ACL_PAT_FAIL;
}
/* Uncommon method, only HTTP_METH_OTHER is accepted now */
if (pattern->val.i != HTTP_METH_OTHER)
return ACL_PAT_FAIL;
/* Other method, we must compare the strings */
if (pattern->len != temp_pattern.data.str.len)
return ACL_PAT_FAIL;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, temp_pattern.data.str.str, temp_pattern.data.str.len) != 0) ||
(!icase && strncmp(pattern->ptr.str, temp_pattern.data.str.str, temp_pattern.data.str.len) != 0))
return ACL_PAT_FAIL;
return ACL_PAT_PASS;
}
/* 2. Check on Request/Status Version
* We simply compare strings here.
*/
static int acl_parse_ver(const char **text, struct acl_pattern *pattern, int *opaque)
{
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str)
return 0;
pattern->len = strlen(*text);
return 1;
}
static int
acl_fetch_rqver(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->req.sl.rq.v_l;
ptr = txn->req.sol + txn->req.sl.rq.v;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
temp_pattern.data.str.str = ptr;
temp_pattern.data.str.len = len;
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
static int
acl_fetch_stver(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.v_l;
ptr = txn->rsp.sol;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
temp_pattern.data.str.str = ptr;
temp_pattern.data.str.len = len;
test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST;
return 1;
}
/* 3. Check on Status Code. We manipulate integers here. */
static int
acl_fetch_stcode(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr;
int len;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.c_l;
ptr = txn->rsp.sol + txn->rsp.sl.st.c;
temp_pattern.data.integer = __strl2ui(ptr, len);
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
/* 4. Check on URL/URI. A pointer to the URI is stored. */
static int
acl_fetch_url(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
temp_pattern.data.str.len = txn->req.sl.rq.u_l;
temp_pattern.data.str.str = txn->req.sol + txn->req.sl.rq.u;
/* we do not need to set READ_ONLY because the data is in a buffer */
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
static int
acl_fetch_url_ip(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* Parse HTTP request */
url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->req->cons->addr.to);
if (((struct sockaddr_in *)&l4->req->cons->addr.to)->sin_family != AF_INET)
return 0;
temp_pattern.type = PATTERN_TYPE_IP;
temp_pattern.data.ip = ((struct sockaddr_in *)&l4->req->cons->addr.to)->sin_addr;
/*
* If we are parsing url in frontend space, we prepare backend stage
* to not parse again the same url ! optimization lazyness...
*/
if (px->options & PR_O_HTTP_PROXY)
l4->flags |= SN_ADDR_SET;
test->flags = 0;
return 1;
}
static int
acl_fetch_url_port(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* Same optimization as url_ip */
url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->req->cons->addr.to);
temp_pattern.data.integer = ntohs(((struct sockaddr_in *)&l4->req->cons->addr.to)->sin_port);
if (px->options & PR_O_HTTP_PROXY)
l4->flags |= SN_ADDR_SET;
test->flags = ACL_TEST_F_READ_ONLY;
return 1;
}
/* 5. Check on HTTP header. A pointer to the beginning of the value is returned.
* This generic function is used by both acl_fetch_chdr() and acl_fetch_shdr().
*/
static int
acl_fetch_hdr(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a;
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE))
/* search for header from the beginning */
ctx->idx = 0;
if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) {
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
temp_pattern.data.str.str = (char *)ctx->line + ctx->val;
temp_pattern.data.str.len = ctx->vlen;
return 1;
}
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_chdr(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 6. Check on HTTP header count. The number of occurrences is returned.
* This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*.
*/
static int
acl_fetch_hdr_cnt(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx ctx;
int cnt;
if (!txn)
return 0;
ctx.idx = 0;
cnt = 0;
while (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, &ctx))
cnt++;
temp_pattern.data.integer = cnt;
test->flags = ACL_TEST_F_VOL_HDR;
return 1;
}
static int
acl_fetch_chdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr_cnt(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr_cnt(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 7. Check on HTTP header's integer value. The integer value is returned.
* FIXME: the type is 'int', it may not be appropriate for everything.
* This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*.
*/
static int
acl_fetch_hdr_val(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a;
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE))
/* search for header from the beginning */
ctx->idx = 0;
if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) {
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
temp_pattern.data.integer = strl2ic((char *)ctx->line + ctx->val, ctx->vlen);
return 1;
}
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_chdr_val(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr_val(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr_val(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr_val(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 7. Check on HTTP header's IPv4 address value. The IPv4 address is returned.
* This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*.
*/
static int
acl_fetch_hdr_ip(struct proxy *px, struct session *l4, void *l7, char *sol,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a;
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE))
/* search for header from the beginning */
ctx->idx = 0;
while (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) {
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
/* Same optimization as url_ip */
temp_pattern.type = PATTERN_TYPE_IP;
if (url2ipv4((char *)ctx->line + ctx->val, &temp_pattern.data.ip))
return 1;
/* Dods not look like an IP address, let's fetch next one */
}
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_chdr_ip(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
return acl_fetch_hdr_ip(px, l4, txn, txn->req.sol, expr, test);
}
static int
acl_fetch_shdr_ip(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
return acl_fetch_hdr_ip(px, l4, txn, txn->rsp.sol, expr, test);
}
/* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at
* the first '/' after the possible hostname, and ends before the possible '?'.
*/
static int
acl_fetch_path(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
char *ptr, *end;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
end = txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
ptr = http_get_path(txn);
if (!ptr)
return 0;
/* OK, we got the '/' ! */
temp_pattern.data.str.str = ptr;
while (ptr < end && *ptr != '?')
ptr++;
temp_pattern.data.str.len = ptr - temp_pattern.data.str.str;
/* we do not need to set READ_ONLY because the data is in a buffer */
test->flags = ACL_TEST_F_VOL_1ST;
return 1;
}
static int
acl_fetch_proto_http(struct proxy *px, struct session *s, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct buffer *req = s->req;
struct http_txn *txn = &s->txn;
struct http_msg *msg = &txn->req;
/* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged
* as a layer7 ACL, which involves automatic allocation of hdr_idx.
*/
if (!s || !req)
return 0;
if (unlikely(msg->msg_state >= HTTP_MSG_BODY)) {
/* Already decoded as OK */
test->flags |= ACL_TEST_F_SET_RES_PASS;
return 1;
}
/* Try to decode HTTP request */
if (likely(msg->next < req->i))
http_msg_analyzer(req, msg, &txn->hdr_idx);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
if ((msg->msg_state == HTTP_MSG_ERROR) || (req->flags & BF_FULL)) {
test->flags |= ACL_TEST_F_SET_RES_FAIL;
return 1;
}
/* wait for final state */
test->flags |= ACL_TEST_F_MAY_CHANGE;
return 0;
}
/* OK we got a valid HTTP request. We have some minor preparation to
* perform so that further checks can rely on HTTP tests.
*/
txn->meth = find_http_meth(msg->sol, msg->sl.rq.m_l);
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SN_REDIRECTABLE;
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(req, msg, txn)) {
test->flags |= ACL_TEST_F_SET_RES_FAIL;
return 1;
}
test->flags |= ACL_TEST_F_SET_RES_PASS;
return 1;
}
/* return a valid test if the current request is the first one on the connection */
static int
acl_fetch_http_first_req(struct proxy *px, struct session *s, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (!s)
return 0;
if (s->txn.flags & TX_NOT_FIRST)
test->flags |= ACL_TEST_F_SET_RES_FAIL;
else
test->flags |= ACL_TEST_F_SET_RES_PASS;
return 1;
}
static int
acl_fetch_http_auth(struct proxy *px, struct session *s, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (!s)
return 0;
if (!get_http_auth(s))
return 0;
test->ctx.a[0] = expr->arg.ul;
test->ctx.a[1] = s->txn.auth.user;
test->ctx.a[2] = s->txn.auth.pass;
test->flags |= ACL_TEST_F_READ_ONLY | ACL_TEST_F_NULL_MATCH;
return 1;
}
/* Try to find the next occurrence of a cookie name in a cookie header value.
* The lookup begins at <hdr>. The pointer and size of the next occurrence of
* the cookie value is returned into *value and *value_l, and the function
* returns a pointer to the next pointer to search from if the value was found.
* Otherwise if the cookie was not found, NULL is returned and neither value
* nor value_l are touched. The input <hdr> string should first point to the
* header's value, and the <hdr_end> pointer must point to the first character
* not part of the value. <list> must be non-zero if value may represent a list
* of values (cookie headers). This makes it faster to abort parsing when no
* list is expected.
*/
static char *
extract_cookie_value(char *hdr, const char *hdr_end,
char *cookie_name, size_t cookie_name_l, int list,
char **value, int *value_l)
{
char *equal, *att_end, *att_beg, *val_beg, *val_end;
char *next;
/* we search at least a cookie name followed by an equal, and more
* generally something like this :
* Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
*/
for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) {
/* Iterate through all cookies on this line */
while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg])
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (list && *equal == ','))
break;
if (http_is_spht[(unsigned char)*equal++])
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg])
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)])
val_end--;
} else {
val_beg = val_end = next = equal;
}
/* We have nothing to do with attributes beginning with '$'. However,
* they will automatically be removed if a header before them is removed,
* since they're supposed to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next)
continue;
/* Now we have the cookie name between att_beg and att_end, and
* its value between val_beg and val_end.
*/
if (att_end - att_beg == cookie_name_l &&
memcmp(att_beg, cookie_name, cookie_name_l) == 0) {
/* let's return this value and indicate where to go on from */
*value = val_beg;
*value_l = val_end - val_beg;
return next + 1;
}
/* Set-Cookie headers only have the name in the first attr=value part */
if (!list)
break;
}
return NULL;
}
/* Iterate over all cookies present in a request. The context is stored in
* test->ctx.a[0] for the in-header position, test->ctx.a[1] for the
* end-of-header-value, and test->ctx.a[2] for the hdr_idx. If <multi> is
* non-null, then multiple cookies may be parsed on the same line.
* The cookie name is in expr->arg and the name length in expr->arg_len.
*/
static int
acl_fetch_any_cookie_value(struct proxy *px, struct session *l4, void *l7, char *sol,
const char *hdr_name, int hdr_name_len, int multi,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx *ctx = (struct hdr_ctx *)&test->ctx.a[2];
if (!txn)
return 0;
if (!(test->flags & ACL_TEST_F_FETCH_MORE)) {
/* search for the header from the beginning, we must first initialize
* the search parameters.
*/
test->ctx.a[0] = NULL;
ctx->idx = 0;
}
while (1) {
/* Note: test->ctx.a[0] == NULL every time we need to fetch a new header */
if (!test->ctx.a[0]) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx))
goto out;
if (ctx->vlen < expr->arg_len + 1)
continue;
test->ctx.a[0] = ctx->line + ctx->val;
test->ctx.a[1] = test->ctx.a[0] + ctx->vlen;
}
test->ctx.a[0] = extract_cookie_value(test->ctx.a[0], test->ctx.a[1],
expr->arg.str, expr->arg_len, multi,
&temp_pattern.data.str.str,
&temp_pattern.data.str.len);
if (test->ctx.a[0]) {
/* one value was returned into temp_pattern.data.str.{str,len} */
test->flags |= ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 1;
}
}
out:
test->flags &= ~ACL_TEST_F_FETCH_MORE;
test->flags |= ACL_TEST_F_VOL_HDR;
return 0;
}
static int
acl_fetch_cookie_value(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* The Cookie header allows multiple cookies on the same line */
return acl_fetch_any_cookie_value(px, l4, txn, txn->req.sol, "Cookie", 6, 1, expr, test);
}
static int
acl_fetch_scookie_value(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
/* The Set-Cookie header allows only one cookie on the same line */
return acl_fetch_any_cookie_value(px, l4, txn, txn->rsp.sol, "Set-Cookie", 10, 0, expr, test);
}
/* Iterate over all cookies present in a request to count how many occurrences
* match the name in expr->arg and expr->arg_len. If <multi> is non-null, then
* multiple cookies may be parsed on the same line.
*/
static int
acl_fetch_any_cookie_cnt(struct proxy *px, struct session *l4, void *l7, char *sol,
const char *hdr_name, int hdr_name_len, int multi,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
struct hdr_idx *idx = &txn->hdr_idx;
struct hdr_ctx ctx;
int cnt;
char *val_beg, *val_end;
if (!txn)
return 0;
val_end = val_beg = NULL;
ctx.idx = 0;
cnt = 0;
while (1) {
/* Note: val_beg == NULL every time we need to fetch a new header */
if (!val_beg) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx))
break;
if (ctx.vlen < expr->arg_len + 1)
continue;
val_beg = ctx.line + ctx.val;
val_end = val_beg + ctx.vlen;
}
while ((val_beg = extract_cookie_value(val_beg, val_end,
expr->arg.str, expr->arg_len, multi,
&temp_pattern.data.str.str,
&temp_pattern.data.str.len))) {
cnt++;
}
}
temp_pattern.data.integer = cnt;
test->flags |= ACL_TEST_F_VOL_HDR;
return 1;
}
static int
acl_fetch_cookie_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->req.msg_state < HTTP_MSG_BODY)
return 0;
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
/* The Cookie header allows multiple cookies on the same line */
return acl_fetch_any_cookie_cnt(px, l4, txn, txn->req.sol, "Cookie", 6, 1, expr, test);
}
static int
acl_fetch_scookie_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
struct http_txn *txn = l7;
if (!txn)
return 0;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
/* The Set-Cookie header allows only one cookie on the same line */
return acl_fetch_any_cookie_cnt(px, l4, txn, txn->rsp.sol, "Set-Cookie", 10, 0, expr, test);
}
/************************************************************************/
/* All supported keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten */
static struct acl_kw_list acl_kws = {{ },{
{ "req_proto_http", acl_parse_nothing, acl_fetch_proto_http, acl_match_nothing, ACL_USE_L7REQ_PERMANENT },
{ "method", acl_parse_meth, acl_fetch_meth, acl_match_meth, ACL_USE_L7REQ_PERMANENT },
{ "req_ver", acl_parse_ver, acl_fetch_rqver, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "resp_ver", acl_parse_ver, acl_fetch_stver, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP },
{ "status", acl_parse_int, acl_fetch_stcode, acl_match_int, ACL_USE_L7RTR_PERMANENT },
{ "url", acl_parse_str, acl_fetch_url, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "url_beg", acl_parse_str, acl_fetch_url, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "url_end", acl_parse_str, acl_fetch_url, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "url_sub", acl_parse_str, acl_fetch_url, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "url_dir", acl_parse_str, acl_fetch_url, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "url_dom", acl_parse_str, acl_fetch_url, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "url_reg", acl_parse_reg, acl_fetch_url, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "url_len", acl_parse_int, acl_fetch_url, acl_match_len, ACL_USE_L7REQ_VOLATILE },
{ "url_ip", acl_parse_ip, acl_fetch_url_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "url_port", acl_parse_int, acl_fetch_url_port, acl_match_int, ACL_USE_L7REQ_VOLATILE },
/* note: we should set hdr* to use ACL_USE_HDR_VOLATILE, and chdr* to use L7REQ_VOLATILE */
{ "hdr", acl_parse_str, acl_fetch_chdr, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "hdr_reg", acl_parse_reg, acl_fetch_chdr, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "hdr_beg", acl_parse_str, acl_fetch_chdr, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "hdr_end", acl_parse_str, acl_fetch_chdr, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "hdr_sub", acl_parse_str, acl_fetch_chdr, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "hdr_dir", acl_parse_str, acl_fetch_chdr, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "hdr_dom", acl_parse_str, acl_fetch_chdr, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "hdr_cnt", acl_parse_int, acl_fetch_chdr_cnt,acl_match_int, ACL_USE_L7REQ_VOLATILE },
{ "hdr_len", acl_parse_int, acl_fetch_chdr, acl_match_len, ACL_USE_L7REQ_VOLATILE },
{ "hdr_val", acl_parse_int, acl_fetch_chdr_val,acl_match_int, ACL_USE_L7REQ_VOLATILE },
{ "hdr_ip", acl_parse_ip, acl_fetch_chdr_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "shdr", acl_parse_str, acl_fetch_shdr, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP },
{ "shdr_reg", acl_parse_reg, acl_fetch_shdr, acl_match_reg, ACL_USE_L7RTR_VOLATILE },
{ "shdr_beg", acl_parse_str, acl_fetch_shdr, acl_match_beg, ACL_USE_L7RTR_VOLATILE },
{ "shdr_end", acl_parse_str, acl_fetch_shdr, acl_match_end, ACL_USE_L7RTR_VOLATILE },
{ "shdr_sub", acl_parse_str, acl_fetch_shdr, acl_match_sub, ACL_USE_L7RTR_VOLATILE },
{ "shdr_dir", acl_parse_str, acl_fetch_shdr, acl_match_dir, ACL_USE_L7RTR_VOLATILE },
{ "shdr_dom", acl_parse_str, acl_fetch_shdr, acl_match_dom, ACL_USE_L7RTR_VOLATILE },
{ "shdr_cnt", acl_parse_int, acl_fetch_shdr_cnt,acl_match_int, ACL_USE_L7RTR_VOLATILE },
{ "shdr_len", acl_parse_int, acl_fetch_shdr, acl_match_len, ACL_USE_L7RTR_VOLATILE },
{ "shdr_val", acl_parse_int, acl_fetch_shdr_val,acl_match_int, ACL_USE_L7RTR_VOLATILE },
{ "shdr_ip", acl_parse_ip, acl_fetch_shdr_ip, acl_match_ip, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP },
{ "cook", acl_parse_str, acl_fetch_cookie_value, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "cook_reg", acl_parse_reg, acl_fetch_cookie_value, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "cook_beg", acl_parse_str, acl_fetch_cookie_value, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "cook_end", acl_parse_str, acl_fetch_cookie_value, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "cook_sub", acl_parse_str, acl_fetch_cookie_value, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "cook_dir", acl_parse_str, acl_fetch_cookie_value, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "cook_dom", acl_parse_str, acl_fetch_cookie_value, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "cook_len", acl_parse_int, acl_fetch_cookie_value, acl_match_len, ACL_USE_L7REQ_VOLATILE },
{ "cook_cnt", acl_parse_int, acl_fetch_cookie_cnt, acl_match_int, ACL_USE_L7REQ_VOLATILE },
{ "scook", acl_parse_str, acl_fetch_scookie_value, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP },
{ "scook_reg", acl_parse_reg, acl_fetch_scookie_value, acl_match_reg, ACL_USE_L7RTR_VOLATILE },
{ "scook_beg", acl_parse_str, acl_fetch_scookie_value, acl_match_beg, ACL_USE_L7RTR_VOLATILE },
{ "scook_end", acl_parse_str, acl_fetch_scookie_value, acl_match_end, ACL_USE_L7RTR_VOLATILE },
{ "scook_sub", acl_parse_str, acl_fetch_scookie_value, acl_match_sub, ACL_USE_L7RTR_VOLATILE },
{ "scook_dir", acl_parse_str, acl_fetch_scookie_value, acl_match_dir, ACL_USE_L7RTR_VOLATILE },
{ "scook_dom", acl_parse_str, acl_fetch_scookie_value, acl_match_dom, ACL_USE_L7RTR_VOLATILE },
{ "scook_len", acl_parse_int, acl_fetch_scookie_value, acl_match_len, ACL_USE_L7RTR_VOLATILE },
{ "scook_cnt", acl_parse_int, acl_fetch_scookie_cnt, acl_match_int, ACL_USE_L7RTR_VOLATILE },
{ "path", acl_parse_str, acl_fetch_path, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP },
{ "path_reg", acl_parse_reg, acl_fetch_path, acl_match_reg, ACL_USE_L7REQ_VOLATILE },
{ "path_beg", acl_parse_str, acl_fetch_path, acl_match_beg, ACL_USE_L7REQ_VOLATILE },
{ "path_end", acl_parse_str, acl_fetch_path, acl_match_end, ACL_USE_L7REQ_VOLATILE },
{ "path_sub", acl_parse_str, acl_fetch_path, acl_match_sub, ACL_USE_L7REQ_VOLATILE },
{ "path_dir", acl_parse_str, acl_fetch_path, acl_match_dir, ACL_USE_L7REQ_VOLATILE },
{ "path_dom", acl_parse_str, acl_fetch_path, acl_match_dom, ACL_USE_L7REQ_VOLATILE },
{ "path_len", acl_parse_int, acl_fetch_path, acl_match_len, ACL_USE_L7REQ_VOLATILE },
{ "http_auth", acl_parse_nothing, acl_fetch_http_auth, acl_match_auth, ACL_USE_L7REQ_PERMANENT },
{ "http_auth_group", acl_parse_strcat, acl_fetch_http_auth, acl_match_auth, ACL_USE_L7REQ_PERMANENT },
{ "http_first_req", acl_parse_nothing, acl_fetch_http_first_req, acl_match_nothing, ACL_USE_L7REQ_PERMANENT },
{ NULL, NULL, NULL, NULL },
}};
/************************************************************************/
/* The code below is dedicated to pattern fetching and matching */
/************************************************************************/
/* Returns the last occurrence of specified header. */
static int
pattern_fetch_hdr(struct proxy *px, struct session *l4, void *l7, int dir,
const struct pattern_arg *arg_p, int arg_i, union pattern_data *data)
{
struct http_txn *txn = l7;
return http_get_hdr(&txn->req, arg_p->data.str.str, arg_p->data.str.len, &txn->hdr_idx,
-1, NULL, &data->str.str, &data->str.len);
}
/*
* Given a path string and its length, find the position of beginning of the
* query string. Returns NULL if no query string is found in the path.
*
* Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22:
*
* find_query_string(path, n) points to "yo=mama;ye=daddy" string.
*/
static inline char *find_query_string(char *path, size_t path_l)
{
char *p;
p = memchr(path, '?', path_l);
return p ? p + 1 : NULL;
}
static inline int is_param_delimiter(char c)
{
return c == '&' || c == ';';
}
/*
* Given a url parameter, find the starting position of the first occurence,
* or NULL if the parameter is not found.
*
* Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye",
* the function will return query_string+8.
*/
static char*
find_url_param_pos(char* query_string, size_t query_string_l,
char* url_param_name, size_t url_param_name_l)
{
char *pos, *last;
pos = query_string;
last = query_string + query_string_l - url_param_name_l - 1;
while (pos <= last) {
if (pos[url_param_name_l] == '=') {
if (memcmp(pos, url_param_name, url_param_name_l) == 0)
return pos;
pos += url_param_name_l + 1;
}
while (pos <= last && !is_param_delimiter(*pos))
pos++;
pos++;
}
return NULL;
}
/*
* Given a url parameter name, returns its value and size into *value and
* *value_l respectively, and returns non-zero. If the parameter is not found,
* zero is returned and value/value_l are not touched.
*/
static int
find_url_param_value(char* path, size_t path_l,
char* url_param_name, size_t url_param_name_l,
char** value, size_t* value_l)
{
char *query_string, *qs_end;
char *arg_start;
char *value_start, *value_end;
query_string = find_query_string(path, path_l);
if (!query_string)
return 0;
qs_end = path + path_l;
arg_start = find_url_param_pos(query_string, qs_end - query_string,
url_param_name, url_param_name_l);
if (!arg_start)
return 0;
value_start = arg_start + url_param_name_l + 1;
value_end = value_start;
while ((value_end < qs_end) && !is_param_delimiter(*value_end))
value_end++;
*value = value_start;
*value_l = value_end - value_start;
return value_end != value_start;
}
static int
pattern_fetch_url_param(struct proxy *px, struct session *l4, void *l7, int dir,
const struct pattern_arg *arg_p, int arg_i, union pattern_data *data)
{
struct http_txn *txn = l7;
struct http_msg *msg = &txn->req;
char *url_param_value;
size_t url_param_value_l;
if (!find_url_param_value(msg->sol + msg->sl.rq.u, msg->sl.rq.u_l,
arg_p->data.str.str, arg_p->data.str.len,
&url_param_value, &url_param_value_l))
return 0;
data->str.str = url_param_value;
data->str.len = url_param_value_l;
return 1;
}
/* Try to find in request or response message is in <msg> and whose transaction
* is in <txn> the last occurrence of a cookie name in all cookie header values
* whose header name is <hdr_name> with name of length <hdr_name_len>. The
* pointer and size of the last occurrence of the cookie value is returned into
* <value> and <value_l>, and the function returns non-zero if the value was
* found. Otherwise if the cookie was not found, zero is returned and neither
* value nor value_l are touched. The input hdr string should begin at the
* header's value, and its size should be in hdr_l. <list> must be non-zero if
* value may represent a list of values (cookie headers).
*/
static int
find_cookie_value(struct http_msg *msg, struct http_txn *txn,
const char *hdr_name, int hdr_name_len,
char *cookie_name, size_t cookie_name_l, int list,
char **value, int *value_l)
{
struct hdr_ctx ctx;
int found = 0;
ctx.idx = 0;
while (http_find_header2(hdr_name, hdr_name_len, msg->sol, &txn->hdr_idx, &ctx)) {
char *hdr, *end;
if (ctx.vlen < cookie_name_l + 1)
continue;
hdr = ctx.line + ctx.val;
end = hdr + ctx.vlen;
while ((hdr = extract_cookie_value(hdr, end, cookie_name, cookie_name_l, 1, value, value_l)))
found = 1;
}
return found;
}
static int
pattern_fetch_cookie(struct proxy *px, struct session *l4, void *l7, int dir,
const struct pattern_arg *arg_p, int arg_i, union pattern_data *data)
{
struct http_txn *txn = l7;
struct http_msg *msg = &txn->req;
char *cookie_value;
int cookie_value_l;
int found = 0;
found = find_cookie_value(msg, txn, "Cookie", 6,
arg_p->data.str.str, arg_p->data.str.len, 1,
&cookie_value, &cookie_value_l);
if (found) {
data->str.str = cookie_value;
data->str.len = cookie_value_l;
}
return found;
}
static int
pattern_fetch_set_cookie(struct proxy *px, struct session *l4, void *l7, int dir,
const struct pattern_arg *arg_p, int arg_i, union pattern_data *data)
{
struct http_txn *txn = l7;
struct http_msg *msg = &txn->rsp;
char *cookie_value;
int cookie_value_l;
int found = 0;
found = find_cookie_value(msg, txn, "Set-Cookie", 10,
arg_p->data.str.str, arg_p->data.str.len, 1,
&cookie_value, &cookie_value_l);
if (found) {
data->str.str = cookie_value;
data->str.len = cookie_value_l;
}
return found;
}
/************************************************************************/
/* All supported keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten */
static struct pattern_fetch_kw_list pattern_fetch_keywords = {{ },{
{ "hdr", pattern_fetch_hdr, pattern_arg_str, PATTERN_TYPE_STRING, PATTERN_FETCH_REQ },
{ "url_param", pattern_fetch_url_param, pattern_arg_str, PATTERN_TYPE_STRING, PATTERN_FETCH_REQ },
{ "cookie", pattern_fetch_cookie, pattern_arg_str, PATTERN_TYPE_STRING, PATTERN_FETCH_REQ },
{ "set-cookie", pattern_fetch_set_cookie, pattern_arg_str, PATTERN_TYPE_STRING, PATTERN_FETCH_RTR },
{ NULL, NULL, NULL, 0, 0 },
}};
__attribute__((constructor))
static void __http_protocol_init(void)
{
acl_register_keywords(&acl_kws);
pattern_register_fetches(&pattern_fetch_keywords);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/