| #include <haproxy/quic_tls.h> |
| |
| #include <string.h> |
| |
| #include <openssl/ssl.h> |
| |
| #include <openssl/evp.h> |
| #include <openssl/kdf.h> |
| |
| #include <haproxy/buf.h> |
| #include <haproxy/chunk.h> |
| #include <haproxy/xprt_quic.h> |
| |
| |
| DECLARE_POOL(pool_head_quic_tls_secret, "quic_tls_secret", QUIC_TLS_SECRET_LEN); |
| DECLARE_POOL(pool_head_quic_tls_iv, "quic_tls_iv", QUIC_TLS_IV_LEN); |
| DECLARE_POOL(pool_head_quic_tls_key, "quic_tls_key", QUIC_TLS_KEY_LEN); |
| |
| __attribute__((format (printf, 3, 4))) |
| void hexdump(const void *buf, size_t buflen, const char *title_fmt, ...); |
| |
| /* Initial salt depending on QUIC version to derive client/server initial secrets. |
| * This one is for draft-29 QUIC version. |
| */ |
| const unsigned char initial_salt_draft_29[20] = { |
| 0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, |
| 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, |
| 0x43, 0x90, 0xa8, 0x99 |
| }; |
| |
| const unsigned char initial_salt_v1[20] = { |
| 0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, |
| 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, |
| 0xcc, 0xbb, 0x7f, 0x0a |
| }; |
| |
| const unsigned char initial_salt_v2_draft[20] = { |
| 0xa7, 0x07, 0xc2, 0x03, 0xa5, 0x9b, 0x47, 0x18, |
| 0x4a, 0x1d, 0x62, 0xca, 0x57, 0x04, 0x06, 0xea, |
| 0x7a, 0xe3, 0xe5, 0xd3 |
| }; |
| |
| /* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */ |
| void quic_tls_keys_hexdump(struct buffer *buf, |
| const struct quic_tls_secrets *secs) |
| { |
| int i; |
| size_t aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead); |
| size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead); |
| size_t hp_len = (size_t)EVP_CIPHER_key_length(secs->hp); |
| |
| chunk_appendf(buf, "\n key="); |
| for (i = 0; i < aead_keylen; i++) |
| chunk_appendf(buf, "%02x", secs->key[i]); |
| chunk_appendf(buf, "\n iv="); |
| for (i = 0; i < aead_ivlen; i++) |
| chunk_appendf(buf, "%02x", secs->iv[i]); |
| chunk_appendf(buf, "\n hp="); |
| for (i = 0; i < hp_len; i++) |
| chunk_appendf(buf, "%02x", secs->hp_key[i]); |
| } |
| |
| /* Dump <secret> TLS secret. */ |
| void quic_tls_secret_hexdump(struct buffer *buf, |
| const unsigned char *secret, size_t secret_len) |
| { |
| int i; |
| |
| chunk_appendf(buf, " secret="); |
| for (i = 0; i < secret_len; i++) |
| chunk_appendf(buf, "%02x", secret[i]); |
| } |
| |
| int quic_hkdf_extract(const EVP_MD *md, |
| unsigned char *buf, size_t buflen, |
| const unsigned char *key, size_t keylen, |
| const unsigned char *salt, size_t saltlen) |
| { |
| EVP_PKEY_CTX *ctx; |
| |
| ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| if (!ctx) |
| return 0; |
| |
| if (EVP_PKEY_derive_init(ctx) <= 0 || |
| EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 || |
| EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || |
| EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 || |
| EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || |
| EVP_PKEY_derive(ctx, buf, &buflen) <= 0) |
| goto err; |
| |
| EVP_PKEY_CTX_free(ctx); |
| return 1; |
| |
| err: |
| EVP_PKEY_CTX_free(ctx); |
| return 0; |
| } |
| |
| int quic_hkdf_expand(const EVP_MD *md, |
| unsigned char *buf, size_t buflen, |
| const unsigned char *key, size_t keylen, |
| const unsigned char *label, size_t labellen) |
| { |
| EVP_PKEY_CTX *ctx; |
| |
| ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| if (!ctx) |
| return 0; |
| |
| if (EVP_PKEY_derive_init(ctx) <= 0 || |
| EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 || |
| EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || |
| EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || |
| EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 || |
| EVP_PKEY_derive(ctx, buf, &buflen) <= 0) |
| goto err; |
| |
| EVP_PKEY_CTX_free(ctx); |
| return 1; |
| |
| err: |
| EVP_PKEY_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* Extracts a peudo-random secret key from <key> which is eventually not |
| * pseudo-random and expand it to a new pseudo-random key into |
| * <buf> with <buflen> as key length according to HKDF specifications |
| * (https://datatracker.ietf.org/doc/html/rfc5869). |
| * According to this specifications it is highly recommended to use |
| * a salt, even if optional (NULL value). |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_hkdf_extract_and_expand(const EVP_MD *md, |
| unsigned char *buf, size_t buflen, |
| const unsigned char *key, size_t keylen, |
| const unsigned char *salt, size_t saltlen, |
| const unsigned char *label, size_t labellen) |
| { |
| EVP_PKEY_CTX *ctx; |
| |
| ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| if (!ctx) |
| return 0; |
| |
| if (EVP_PKEY_derive_init(ctx) <= 0 || |
| EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) <= 0 || |
| EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || |
| EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 || |
| EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || |
| EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 || |
| EVP_PKEY_derive(ctx, buf, &buflen) <= 0) |
| goto err; |
| |
| EVP_PKEY_CTX_free(ctx); |
| return 1; |
| |
| err: |
| EVP_PKEY_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys |
| * refers to: |
| * |
| * https://tools.ietf.org/html/rfc8446#section-7.1: |
| * 7.1. Key Schedule |
| * |
| * The key derivation process makes use of the HKDF-Extract and |
| * HKDF-Expand functions as defined for HKDF [RFC5869], as well as the |
| * functions defined below: |
| * |
| * HKDF-Expand-Label(Secret, Label, Context, Length) = |
| * HKDF-Expand(Secret, HkdfLabel, Length) |
| * |
| * Where HkdfLabel is specified as: |
| * |
| * struct { |
| * uint16 length = Length; |
| * opaque label<7..255> = "tls13 " + Label; |
| * opaque context<0..255> = Context; |
| * } HkdfLabel; |
| * |
| * Derive-Secret(Secret, Label, Messages) = |
| * HKDF-Expand-Label(Secret, Label, |
| * Transcript-Hash(Messages), Hash.length) |
| * |
| */ |
| int quic_hkdf_expand_label(const EVP_MD *md, |
| unsigned char *buf, size_t buflen, |
| const unsigned char *key, size_t keylen, |
| const unsigned char *label, size_t labellen) |
| { |
| unsigned char hdkf_label[256], *pos; |
| const unsigned char hdkf_label_label[] = "tls13 "; |
| size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1; |
| |
| pos = hdkf_label; |
| *pos++ = buflen >> 8; |
| *pos++ = buflen & 0xff; |
| *pos++ = hdkf_label_label_sz + labellen; |
| memcpy(pos, hdkf_label_label, hdkf_label_label_sz); |
| pos += hdkf_label_label_sz; |
| memcpy(pos, label, labellen); |
| pos += labellen; |
| *pos++ = '\0'; |
| |
| return quic_hkdf_expand(md, buf, buflen, |
| key, keylen, hdkf_label, pos - hdkf_label); |
| } |
| |
| /* |
| * This function derives two keys from <secret> is <ctx> as TLS cryptographic context. |
| * ->key is the TLS key to be derived to encrypt/decrypt data at TLS level. |
| * ->iv is the initialization vector to be used with ->key. |
| * ->hp_key is the key to be derived for header protection. |
| * Obviouly these keys have the same size becaused derived with the same TLS cryptographic context. |
| */ |
| int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp, |
| const EVP_MD *md, const struct quic_version *qv, |
| unsigned char *key, size_t keylen, |
| unsigned char *iv, size_t ivlen, |
| unsigned char *hp_key, size_t hp_keylen, |
| const unsigned char *secret, size_t secretlen) |
| { |
| size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead); |
| size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead); |
| size_t hp_len = hp ? (size_t)EVP_CIPHER_key_length(hp) : 0; |
| |
| if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen) |
| return 0; |
| |
| if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen, |
| qv->key_label,qv->key_label_len) || |
| !quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen, |
| qv->iv_label, qv->iv_label_len) || |
| (hp_key && !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen, |
| qv->hp_label, qv->hp_label_len))) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Derive the initial secret from <secret> and QUIC version dependent salt. |
| * Returns the size of the derived secret if succeeded, 0 if not. |
| */ |
| int quic_derive_initial_secret(const EVP_MD *md, |
| const unsigned char *initial_salt, size_t initial_salt_sz, |
| unsigned char *initial_secret, size_t initial_secret_sz, |
| const unsigned char *secret, size_t secret_sz) |
| { |
| if (!quic_hkdf_extract(md, initial_secret, initial_secret_sz, secret, secret_sz, |
| initial_salt, initial_salt_sz)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Derive the client initial secret from the initial secret. |
| * Returns the size of the derived secret if succeeded, 0 if not. |
| */ |
| int quic_tls_derive_initial_secrets(const EVP_MD *md, |
| unsigned char *rx, size_t rx_sz, |
| unsigned char *tx, size_t tx_sz, |
| const unsigned char *secret, size_t secret_sz, |
| int server) |
| { |
| const unsigned char client_label[] = "client in"; |
| const unsigned char server_label[] = "server in"; |
| const unsigned char *tx_label, *rx_label; |
| size_t rx_label_sz, tx_label_sz; |
| |
| if (server) { |
| rx_label = client_label; |
| rx_label_sz = sizeof client_label; |
| tx_label = server_label; |
| tx_label_sz = sizeof server_label; |
| } |
| else { |
| rx_label = server_label; |
| rx_label_sz = sizeof server_label; |
| tx_label = client_label; |
| tx_label_sz = sizeof client_label; |
| } |
| |
| if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz, |
| rx_label, rx_label_sz - 1) || |
| !quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz, |
| tx_label, tx_label_sz - 1)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Update <sec> secret key into <new_sec> according to RFC 9001 6.1. |
| * Always succeeds. |
| */ |
| int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv, |
| unsigned char *new_sec, size_t new_seclen, |
| const unsigned char *sec, size_t seclen) |
| { |
| return quic_hkdf_expand_label(md, new_sec, new_seclen, sec, seclen, |
| qv->ku_label, qv->ku_label_len); |
| } |
| |
| /* |
| * Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with |
| * <aead_ivlen> as size depending on <pn> packet number. |
| * This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm |
| * used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>. |
| * This function fails and return 0 only if the two buffer lengths are different, 1 if not. |
| */ |
| int quic_aead_iv_build(unsigned char *iv, size_t ivlen, |
| unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn) |
| { |
| int i; |
| unsigned int shift; |
| unsigned char *pos = iv; |
| |
| if (ivlen != aead_ivlen) |
| return 0; |
| |
| for (i = 0; i < ivlen - sizeof pn; i++) |
| *pos++ = *aead_iv++; |
| |
| /* Only the remaining (sizeof pn) bytes are XOR'ed. */ |
| shift = 56; |
| for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8) |
| *pos++ = *aead_iv++ ^ (pn >> shift); |
| |
| return 1; |
| } |
| |
| /* Initialize the cipher context for RX part of <tls_ctx> QUIC TLS context. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx, |
| const EVP_CIPHER *aead, unsigned char *key) |
| { |
| EVP_CIPHER_CTX *ctx; |
| int aead_nid = EVP_CIPHER_nid(aead); |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_DecryptInit_ex(ctx, aead, NULL, NULL, NULL) || |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) || |
| (aead_nid == NID_aes_128_ccm && |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) || |
| !EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL)) |
| goto err; |
| |
| *rx_ctx = ctx; |
| |
| return 1; |
| |
| err: |
| EVP_CIPHER_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* Initialize <*aes_ctx> AES cipher context with <key> as key for encryption */ |
| int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx, |
| const EVP_CIPHER *aes, unsigned char *key) |
| { |
| EVP_CIPHER_CTX *ctx; |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_EncryptInit_ex(ctx, aes, NULL, key, NULL)) |
| goto err; |
| |
| *aes_ctx = ctx; |
| return 1; |
| |
| err: |
| EVP_CIPHER_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* Encrypt <inlen> bytes from <in> buffer into <out> with <ctx> as AES |
| * cipher context. This is the responsibility of the caller to check there |
| * is at least <inlen> bytes of available space in <out> buffer. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_aes_encrypt(unsigned char *out, |
| const unsigned char *in, size_t inlen, |
| EVP_CIPHER_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, in) || |
| !EVP_EncryptUpdate(ctx, out, &ret, out, inlen) || |
| !EVP_EncryptFinal_ex(ctx, out, &ret)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Initialize <*aes_ctx> AES cipher context with <key> as key for decryption */ |
| int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx, |
| const EVP_CIPHER *aes, unsigned char *key) |
| { |
| EVP_CIPHER_CTX *ctx; |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_DecryptInit_ex(ctx, aes, NULL, key, NULL)) |
| goto err; |
| |
| *aes_ctx = ctx; |
| return 1; |
| |
| err: |
| EVP_CIPHER_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* Decrypt <in> data into <out> with <ctx> as AES cipher context. |
| * This is the responsibility of the caller to check there is at least |
| * <outlen> bytes into <in> buffer. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_aes_decrypt(unsigned char *out, |
| const unsigned char *in, size_t inlen, |
| EVP_CIPHER_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, in) || |
| !EVP_DecryptUpdate(ctx, out, &ret, out, inlen) || |
| !EVP_DecryptFinal_ex(ctx, out, &ret)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Initialize the cipher context for TX part of <tls_ctx> QUIC TLS context. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx, |
| const EVP_CIPHER *aead, unsigned char *key) |
| { |
| EVP_CIPHER_CTX *ctx; |
| int aead_nid = EVP_CIPHER_nid(aead); |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_EncryptInit_ex(ctx, aead, NULL, NULL, NULL) || |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) || |
| (aead_nid == NID_aes_128_ccm && |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) || |
| !EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL)) |
| goto err; |
| |
| *tx_ctx = ctx; |
| |
| return 1; |
| |
| err: |
| EVP_CIPHER_CTX_free(ctx); |
| return 0; |
| } |
| |
| /* |
| * https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead |
| * |
| * 5.3. AEAD Usage |
| * |
| * Packets are protected prior to applying header protection (Section 5.4). |
| * The unprotected packet header is part of the associated data (A). When removing |
| * packet protection, an endpoint first removes the header protection. |
| * (...) |
| * These ciphersuites have a 16-byte authentication tag and produce an output 16 |
| * bytes larger than their input. |
| * The key and IV for the packet are computed as described in Section 5.1. The nonce, |
| * N, is formed by combining the packet protection IV with the packet number. The 62 |
| * bits of the reconstructed QUIC packet number in network byte order are left-padded |
| * with zeros to the size of the IV. The exclusive OR of the padded packet number and |
| * the IV forms the AEAD nonce. |
| * |
| * The associated data, A, for the AEAD is the contents of the QUIC header, starting |
| * from the flags byte in either the short or long header, up to and including the |
| * unprotected packet number. |
| * |
| * The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described |
| * in [QUIC-TRANSPORT]. |
| * |
| * The output ciphertext, C, of the AEAD is transmitted in place of P. |
| * |
| * Some AEAD functions have limits for how many packets can be encrypted under the same |
| * key and IV (see for example [AEBounds]). This might be lower than the packet number limit. |
| * An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for |
| * the AEAD that is in use. |
| */ |
| |
| /* Encrypt in place <buf> plaintext with <len> as length with QUIC_TLS_TAG_LEN |
| * included tailing bytes for the tag. |
| * Note that for CCM mode, we must set the the ciphertext length if AAD data |
| * are provided from <aad> buffer with <aad_len> as length. This is always the |
| * case here. So the caller of this function must provide <aad>. |
| * |
| * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption |
| */ |
| int quic_tls_encrypt(unsigned char *buf, size_t len, |
| const unsigned char *aad, size_t aad_len, |
| EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, |
| const unsigned char *key, const unsigned char *iv) |
| { |
| int outlen; |
| int aead_nid = EVP_CIPHER_nid(aead); |
| |
| if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) || |
| (aead_nid == NID_aes_128_ccm && |
| !EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, len)) || |
| !EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) || |
| !EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) || |
| !EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) || |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Decrypt in place <buf> ciphertext with <len> as length with QUIC_TLS_TAG_LEN |
| * included tailing bytes for the tag. |
| * Note that for CCM mode, we must set the the ciphertext length if AAD data |
| * are provided from <aad> buffer with <aad_len> as length. This is always the |
| * case here. So the caller of this function must provide <aad>. Also not the |
| * there is no need to call EVP_DecryptFinal_ex for CCM mode. |
| * |
| * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption |
| */ |
| int quic_tls_decrypt(unsigned char *buf, size_t len, |
| unsigned char *aad, size_t aad_len, |
| EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, |
| const unsigned char *key, const unsigned char *iv) |
| { |
| int outlen; |
| int aead_nid = EVP_CIPHER_nid(aead); |
| |
| if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) || |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, |
| buf + len - QUIC_TLS_TAG_LEN) || |
| (aead_nid == NID_aes_128_ccm && |
| !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len - QUIC_TLS_TAG_LEN)) || |
| !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) || |
| !EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN) || |
| (aead_nid != NID_aes_128_ccm && |
| !EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen))) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Similar to quic_tls_decrypt(), except that this function does not decrypt |
| * in place its ciphertest if <out> output buffer ciphertest with <len> as length |
| * is different from <in> input buffer. This is the responbality of the caller |
| * to check that the output buffer has at least the same size as the input buffer. |
| * Note that for CCM mode, we must set the the ciphertext length if AAD data |
| * are provided from <aad> buffer with <aad_len> as length. This is always the |
| * case here. So the caller of this function must provide <aad>. Also note that |
| * there is no need to call EVP_DecryptFinal_ex for CCM mode. |
| * |
| * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption |
| * |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_decrypt2(unsigned char *out, |
| unsigned char *in, size_t len, |
| unsigned char *aad, size_t aad_len, |
| EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, |
| const unsigned char *key, const unsigned char *iv) |
| { |
| int outlen; |
| int aead_nid = EVP_CIPHER_nid(aead); |
| |
| len -= QUIC_TLS_TAG_LEN; |
| if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) || |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, in + len) || |
| (aead_nid == NID_aes_128_ccm && |
| !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len)) || |
| !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) || |
| !EVP_DecryptUpdate(ctx, out, &outlen, in, len) || |
| (aead_nid != NID_aes_128_ccm && |
| !EVP_DecryptFinal_ex(ctx, out + outlen, &outlen))) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Derive <key> and <iv> key and IV to be used to encrypt a retry token |
| * with <secret> which is not pseudo-random. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_tls_derive_retry_token_secret(const EVP_MD *md, |
| unsigned char *key, size_t keylen, |
| unsigned char *iv, size_t ivlen, |
| const unsigned char *salt, size_t saltlen, |
| const unsigned char *secret, size_t secretlen) |
| { |
| unsigned char tmpkey[QUIC_TLS_KEY_LEN]; |
| const unsigned char tmpkey_label[] = "retry token"; |
| const unsigned char key_label[] = "retry token key"; |
| const unsigned char iv_label[] = "retry token iv"; |
| |
| if (!quic_hkdf_extract_and_expand(md, tmpkey, sizeof tmpkey, |
| secret, secretlen, salt, saltlen, |
| tmpkey_label, sizeof tmpkey_label - 1) || |
| !quic_hkdf_expand(md, key, keylen, tmpkey, sizeof tmpkey, |
| key_label, sizeof key_label - 1) || |
| !quic_hkdf_expand(md, iv, ivlen, secret, secretlen, |
| iv_label, sizeof iv_label - 1)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Generate the AEAD tag for the Retry packet <pkt> of <pkt_len> bytes and |
| * write it to <tag>. The tag is written just after the <pkt> area. It should |
| * be at least 16 bytes longs. <odcid> is the CID of the Initial packet |
| * received which triggers the Retry. |
| * |
| * Returns non-zero on success else zero. |
| */ |
| int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len, |
| unsigned char *pkt, size_t pkt_len, |
| const struct quic_version *qv) |
| { |
| const EVP_CIPHER *evp = EVP_aes_128_gcm(); |
| EVP_CIPHER_CTX *ctx; |
| |
| /* encryption buffer - not used as only AEAD tag generation is proceed */ |
| unsigned char *out = NULL; |
| /* address to store the AEAD tag */ |
| unsigned char *tag = pkt + pkt_len; |
| int outlen, ret = 0; |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| /* rfc9001 5.8. Retry Packet Integrity |
| * |
| * AEAD is proceed over a pseudo-Retry packet used as AAD. It contains |
| * the ODCID len + data and the Retry packet itself. |
| */ |
| if (!EVP_EncryptInit_ex(ctx, evp, NULL, qv->retry_tag_key, qv->retry_tag_nonce) || |
| /* specify pseudo-Retry as AAD */ |
| !EVP_EncryptUpdate(ctx, NULL, &outlen, &odcid_len, sizeof(odcid_len)) || |
| !EVP_EncryptUpdate(ctx, NULL, &outlen, odcid, odcid_len) || |
| !EVP_EncryptUpdate(ctx, NULL, &outlen, pkt, pkt_len) || |
| /* finalize */ |
| !EVP_EncryptFinal_ex(ctx, out, &outlen) || |
| /* store the tag */ |
| !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, tag)) { |
| goto out; |
| } |
| ret = 1; |
| |
| out: |
| EVP_CIPHER_CTX_free(ctx); |
| return ret; |
| } |