| /* |
| * Server management functions. |
| * |
| * Copyright 2000-2008 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdlib.h> |
| |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/memory.h> |
| |
| #include <types/capture.h> |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/backend.h> |
| #include <proto/buffers.h> |
| #include <proto/checks.h> |
| #include <proto/dumpstats.h> |
| #include <proto/hdr_idx.h> |
| #include <proto/log.h> |
| #include <proto/session.h> |
| #include <proto/pattern.h> |
| #include <proto/pipe.h> |
| #include <proto/proto_http.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/server.h> |
| #include <proto/stick_table.h> |
| #include <proto/stream_interface.h> |
| #include <proto/stream_sock.h> |
| #include <proto/task.h> |
| |
| struct pool_head *pool2_session; |
| struct list sessions; |
| |
| /* |
| * frees the context associated to a session. It must have been removed first. |
| */ |
| void session_free(struct session *s) |
| { |
| struct http_txn *txn = &s->txn; |
| struct proxy *fe = s->fe; |
| struct bref *bref, *back; |
| |
| if (s->pend_pos) |
| pendconn_free(s->pend_pos); |
| |
| if (s->srv) { /* there may be requests left pending in queue */ |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| s->srv->cur_sess--; |
| } |
| if (may_dequeue_tasks(s->srv, s->be)) |
| process_srv_queue(s->srv); |
| } |
| |
| if (unlikely(s->srv_conn)) { |
| /* the session still has a reserved slot on a server, but |
| * it should normally be only the same as the one above, |
| * so this should not happen in fact. |
| */ |
| sess_change_server(s, NULL); |
| } |
| |
| if (s->req->pipe) |
| put_pipe(s->req->pipe); |
| |
| if (s->rep->pipe) |
| put_pipe(s->rep->pipe); |
| |
| pool_free2(pool2_buffer, s->req); |
| pool_free2(pool2_buffer, s->rep); |
| |
| http_end_txn(s); |
| |
| if (fe) { |
| pool_free2(fe->hdr_idx_pool, txn->hdr_idx.v); |
| pool_free2(fe->rsp_cap_pool, txn->rsp.cap); |
| pool_free2(fe->req_cap_pool, txn->req.cap); |
| } |
| |
| list_for_each_entry_safe(bref, back, &s->back_refs, users) { |
| /* we have to unlink all watchers. We must not relink them if |
| * this session was the last one in the list. |
| */ |
| LIST_DEL(&bref->users); |
| LIST_INIT(&bref->users); |
| if (s->list.n != &sessions) |
| LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users); |
| bref->ref = s->list.n; |
| } |
| LIST_DEL(&s->list); |
| pool_free2(pool2_session, s); |
| |
| /* We may want to free the maximum amount of pools if the proxy is stopping */ |
| if (fe && unlikely(fe->state == PR_STSTOPPED)) { |
| pool_flush2(pool2_buffer); |
| pool_flush2(fe->hdr_idx_pool); |
| pool_flush2(pool2_requri); |
| pool_flush2(pool2_capture); |
| pool_flush2(pool2_session); |
| pool_flush2(fe->req_cap_pool); |
| pool_flush2(fe->rsp_cap_pool); |
| } |
| } |
| |
| |
| /* perform minimal intializations, report 0 in case of error, 1 if OK. */ |
| int init_session() |
| { |
| LIST_INIT(&sessions); |
| pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED); |
| return pool2_session != NULL; |
| } |
| |
| void session_process_counters(struct session *s) |
| { |
| unsigned long long bytes; |
| |
| if (s->req) { |
| bytes = s->req->total - s->logs.bytes_in; |
| s->logs.bytes_in = s->req->total; |
| if (bytes) { |
| s->fe->counters.bytes_in += bytes; |
| |
| if (s->be != s->fe) |
| s->be->counters.bytes_in += bytes; |
| |
| if (s->srv) |
| s->srv->counters.bytes_in += bytes; |
| |
| if (s->listener->counters) |
| s->listener->counters->bytes_in += bytes; |
| } |
| } |
| |
| if (s->rep) { |
| bytes = s->rep->total - s->logs.bytes_out; |
| s->logs.bytes_out = s->rep->total; |
| if (bytes) { |
| s->fe->counters.bytes_out += bytes; |
| |
| if (s->be != s->fe) |
| s->be->counters.bytes_out += bytes; |
| |
| if (s->srv) |
| s->srv->counters.bytes_out += bytes; |
| |
| if (s->listener->counters) |
| s->listener->counters->bytes_out += bytes; |
| } |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_CON) meaning that a |
| * connection was attempted and that the file descriptor is already allocated. |
| * We must check for establishment, error and abort. Possible output states |
| * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and |
| * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER, |
| * otherwise 1. |
| */ |
| int sess_update_st_con_tcp(struct session *s, struct stream_interface *si) |
| { |
| struct buffer *req = si->ob; |
| struct buffer *rep = si->ib; |
| |
| /* If we got an error, or if nothing happened and the connection timed |
| * out, we must give up. The CER state handler will take care of retry |
| * attempts and error reports. |
| */ |
| if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) { |
| si->exp = TICK_ETERNITY; |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_CAP_SPLICE; |
| fd_delete(si->fd); |
| |
| if (si->err_type) |
| return 0; |
| |
| si->err_loc = s->srv; |
| if (si->flags & SI_FL_ERR) |
| si->err_type = SI_ET_CONN_ERR; |
| else |
| si->err_type = SI_ET_CONN_TO; |
| return 0; |
| } |
| |
| /* OK, maybe we want to abort */ |
| if (unlikely((rep->flags & BF_SHUTW) || |
| ((req->flags & BF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */ |
| (((req->flags & (BF_OUT_EMPTY|BF_WRITE_ACTIVITY)) == BF_OUT_EMPTY) || |
| s->be->options & PR_O_ABRT_CLOSE)))) { |
| /* give up */ |
| si->shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| si->err_loc = s->srv; |
| si->flags &= ~SI_FL_CAP_SPLICE; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 1; |
| } |
| |
| /* we need to wait a bit more if there was no activity either */ |
| if (!(req->flags & BF_WRITE_ACTIVITY)) |
| return 1; |
| |
| /* OK, this means that a connection succeeded. The caller will be |
| * responsible for handling the transition from CON to EST. |
| */ |
| s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->exp = TICK_ETERNITY; |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| si->err_loc = NULL; |
| return 1; |
| } |
| |
| /* This function is called with (si->state == SI_ST_CER) meaning that a |
| * previous connection attempt has failed and that the file descriptor |
| * has already been released. Possible causes include asynchronous error |
| * notification and time out. Possible output states are SI_ST_CLO when |
| * retries are exhausted, SI_ST_TAR when a delay is wanted before a new |
| * connection attempt, SI_ST_ASS when it's wise to retry on the same server, |
| * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are |
| * marked as in error state. It returns 0. |
| */ |
| int sess_update_st_cer(struct session *s, struct stream_interface *si) |
| { |
| /* we probably have to release last session from the server */ |
| if (s->srv) { |
| health_adjust(s->srv, HANA_STATUS_L4_ERR); |
| |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| s->srv->cur_sess--; |
| } |
| } |
| |
| /* ensure that we have enough retries left */ |
| s->conn_retries--; |
| if (s->conn_retries < 0) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_ERR; |
| si->err_loc = s->srv; |
| } |
| |
| if (s->srv) |
| s->srv->counters.failed_conns++; |
| s->be->counters.failed_conns++; |
| if (may_dequeue_tasks(s->srv, s->be)) |
| process_srv_queue(s->srv); |
| |
| /* shutw is enough so stop a connecting socket */ |
| si->shutw(si); |
| si->ob->flags |= BF_WRITE_ERROR; |
| si->ib->flags |= BF_READ_ERROR; |
| |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 0; |
| } |
| |
| /* If the "redispatch" option is set on the backend, we are allowed to |
| * retry on another server for the last retry. In order to achieve this, |
| * we must mark the session unassigned, and eventually clear the DIRECT |
| * bit to ignore any persistence cookie. We won't count a retry nor a |
| * redispatch yet, because this will depend on what server is selected. |
| */ |
| if (s->srv && s->conn_retries == 0 && |
| s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) { |
| if (may_dequeue_tasks(s->srv, s->be)) |
| process_srv_queue(s->srv); |
| |
| s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); |
| s->prev_srv = s->srv; |
| si->state = SI_ST_REQ; |
| } else { |
| if (s->srv) |
| s->srv->counters.retries++; |
| s->be->counters.retries++; |
| si->state = SI_ST_ASS; |
| } |
| |
| if (si->flags & SI_FL_ERR) { |
| /* The error was an asynchronous connection error, and we will |
| * likely have to retry connecting to the same server, most |
| * likely leading to the same result. To avoid this, we wait |
| * one second before retrying. |
| */ |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| |
| si->state = SI_ST_TAR; |
| si->exp = tick_add(now_ms, MS_TO_TICKS(1000)); |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function handles the transition between the SI_ST_CON state and the |
| * SI_ST_EST state. It must only be called after switching from SI_ST_CON to |
| * SI_ST_EST. |
| */ |
| void sess_establish(struct session *s, struct stream_interface *si) |
| { |
| struct buffer *req = si->ob; |
| struct buffer *rep = si->ib; |
| |
| if (s->srv) |
| health_adjust(s->srv, HANA_STATUS_L4_OK); |
| |
| if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. */ |
| if (s->fe->to_log && !(s->logs.logwait & LW_BYTES)) { |
| s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ |
| s->do_log(s); |
| } |
| } |
| else { |
| s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE; |
| /* reset hdr_idx which was already initialized by the request. |
| * right now, the http parser does it. |
| * hdr_idx_init(&s->txn.hdr_idx); |
| */ |
| } |
| |
| rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana; |
| rep->flags |= BF_READ_ATTACHED; /* producer is now attached */ |
| req->wex = TICK_ETERNITY; |
| } |
| |
| /* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR. |
| * Other input states are simply ignored. |
| * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON. |
| * Flags must have previously been updated for timeouts and other conditions. |
| */ |
| void sess_update_stream_int(struct session *s, struct stream_interface *si) |
| { |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state); |
| |
| if (si->state == SI_ST_ASS) { |
| /* Server assigned to connection request, we have to try to connect now */ |
| int conn_err; |
| |
| conn_err = connect_server(s); |
| if (conn_err == SN_ERR_NONE) { |
| /* state = SI_ST_CON now */ |
| if (s->srv) |
| srv_inc_sess_ctr(s->srv); |
| return; |
| } |
| |
| /* We have received a synchronous error. We might have to |
| * abort, retry immediately or redispatch. |
| */ |
| if (conn_err == SN_ERR_INTERNAL) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_OTHER; |
| si->err_loc = s->srv; |
| } |
| |
| if (s->srv) |
| srv_inc_sess_ctr(s->srv); |
| if (s->srv) |
| s->srv->counters.failed_conns++; |
| s->be->counters.failed_conns++; |
| |
| /* release other sessions waiting for this server */ |
| if (may_dequeue_tasks(s->srv, s->be)) |
| process_srv_queue(s->srv); |
| |
| /* Failed and not retryable. */ |
| si->shutr(si); |
| si->shutw(si); |
| si->ob->flags |= BF_WRITE_ERROR; |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* no session was ever accounted for this server */ |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* We are facing a retryable error, but we don't want to run a |
| * turn-around now, as the problem is likely a source port |
| * allocation problem, so we want to retry now. |
| */ |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_ERR; |
| sess_update_st_cer(s, si); |
| /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ |
| return; |
| } |
| else if (si->state == SI_ST_QUE) { |
| /* connection request was queued, check for any update */ |
| if (!s->pend_pos) { |
| /* The connection is not in the queue anymore. Either |
| * we have a server connection slot available and we |
| * go directly to the assigned state, or we need to |
| * load-balance first and go to the INI state. |
| */ |
| si->exp = TICK_ETERNITY; |
| if (unlikely(!(s->flags & SN_ASSIGNED))) |
| si->state = SI_ST_REQ; |
| else { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| return; |
| } |
| |
| /* Connection request still in queue... */ |
| if (si->flags & SI_FL_EXP) { |
| /* ... and timeout expired */ |
| si->exp = TICK_ETERNITY; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| if (s->srv) |
| s->srv->counters.failed_conns++; |
| s->be->counters.failed_conns++; |
| si->shutr(si); |
| si->shutw(si); |
| si->ob->flags |= BF_WRITE_TIMEOUT; |
| if (!si->err_type) |
| si->err_type = SI_ET_QUEUE_TO; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Connection remains in queue, check if we have to abort it */ |
| if ((si->ob->flags & (BF_READ_ERROR)) || |
| ((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */ |
| (si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) { |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->shutr(si); |
| si->shutw(si); |
| si->err_type |= SI_ET_QUEUE_ABRT; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Nothing changed */ |
| return; |
| } |
| else if (si->state == SI_ST_TAR) { |
| /* Connection request might be aborted */ |
| if ((si->ob->flags & (BF_READ_ERROR)) || |
| ((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */ |
| (si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) { |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| si->shutr(si); |
| si->shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| if (!(si->flags & SI_FL_EXP)) |
| return; /* still in turn-around */ |
| |
| si->exp = TICK_ETERNITY; |
| |
| /* we keep trying on the same server as long as the session is |
| * marked "assigned". |
| * FIXME: Should we force a redispatch attempt when the server is down ? |
| */ |
| if (s->flags & SN_ASSIGNED) |
| si->state = SI_ST_ASS; |
| else |
| si->state = SI_ST_REQ; |
| return; |
| } |
| } |
| |
| /* This function initiates a server connection request on a stream interface |
| * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS, |
| * indicating that a server has been assigned. It may also return SI_ST_QUE, |
| * or SI_ST_CLO upon error. |
| */ |
| static void sess_prepare_conn_req(struct session *s, struct stream_interface *si) { |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state); |
| |
| if (si->state != SI_ST_REQ) |
| return; |
| |
| /* Try to assign a server */ |
| if (srv_redispatch_connect(s) != 0) { |
| /* We did not get a server. Either we queued the |
| * connection request, or we encountered an error. |
| */ |
| if (si->state == SI_ST_QUE) |
| return; |
| |
| /* we did not get any server, let's check the cause */ |
| si->shutr(si); |
| si->shutw(si); |
| si->ob->flags |= BF_WRITE_ERROR; |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_OTHER; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* The server is assigned */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| |
| /* This stream analyser checks the switching rules and changes the backend |
| * if appropriate. The default_backend rule is also considered, then the |
| * target backend's forced persistence rules are also evaluated last if any. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request. |
| */ |
| int process_switching_rules(struct session *s, struct buffer *req, int an_bit) |
| { |
| struct force_persist_rule *prst_rule; |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->l, |
| req->analysers); |
| |
| /* now check whether we have some switching rules for this request */ |
| if (!(s->flags & SN_BE_ASSIGNED)) { |
| struct switching_rule *rule; |
| |
| list_for_each_entry(rule, &s->fe->switching_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, ACL_DIR_REQ); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| if (!session_set_backend(s, rule->be.backend)) |
| goto sw_failed; |
| break; |
| } |
| } |
| |
| /* To ensure correct connection accounting on the backend, we |
| * have to assign one if it was not set (eg: a listen). This |
| * measure also takes care of correctly setting the default |
| * backend if any. |
| */ |
| if (!(s->flags & SN_BE_ASSIGNED)) |
| if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be)) |
| goto sw_failed; |
| } |
| |
| /* we don't want to run the HTTP filters again if the backend has not changed */ |
| if (s->fe == s->be) |
| s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE; |
| |
| /* as soon as we know the backend, we must check if we have a matching forced |
| * persistence rule, and report that in the session. |
| */ |
| list_for_each_entry(prst_rule, &s->be->force_persist_rules, list) { |
| int ret = 1; |
| |
| if (prst_rule->cond) { |
| ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, ACL_DIR_REQ); |
| ret = acl_pass(ret); |
| if (prst_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| s->flags |= SN_FORCE_PRST; |
| break; |
| } |
| } |
| |
| return 1; |
| |
| sw_failed: |
| /* immediately abort this request in case of allocation failure */ |
| buffer_abort(s->req); |
| buffer_abort(s->rep); |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_RESOURCE; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_R; |
| |
| s->txn.status = 500; |
| s->req->analysers = 0; |
| s->req->analyse_exp = TICK_ETERNITY; |
| return 0; |
| } |
| |
| /* This stream analyser works on a request. It applies all sticking rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| int process_sticking_rules(struct session *s, struct buffer *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct sticking_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->l, |
| req->analysers); |
| |
| list_for_each_entry(rule, &px->sticking_rules, list) { |
| int ret = 1 ; |
| int i; |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| if (i != s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_REQ); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = pattern_process_key(px, s, &s->txn, PATTERN_FETCH_REQ, rule->expr, rule->table.t->type); |
| if (!key) |
| continue; |
| |
| if (rule->flags & STK_IS_MATCH) { |
| struct stksess *ts; |
| |
| if ((ts = stktable_lookup(rule->table.t, key)) != NULL) { |
| if (!(s->flags & SN_ASSIGNED)) { |
| struct eb32_node *node; |
| |
| /* srv found in table */ |
| node = eb32_lookup(&px->conf.used_server_id, ts->sid); |
| if (node) { |
| struct server *srv; |
| |
| srv = container_of(node, struct server, conf.id); |
| if ((srv->state & SRV_RUNNING) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SN_FORCE_PRST)) { |
| s->flags |= SN_DIRECT | SN_ASSIGNED; |
| s->srv = srv; |
| } |
| } |
| } |
| ts->expire = tick_add(now_ms, MS_TO_TICKS(rule->table.t->expire)); |
| } |
| } |
| if (rule->flags & STK_IS_STORE) { |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a response. It applies all store rules on it |
| * then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| int process_store_rules(struct session *s, struct buffer *rep, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct sticking_rule *rule; |
| int i; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| rep->l, |
| rep->analysers); |
| |
| list_for_each_entry(rule, &px->storersp_rules, list) { |
| int ret = 1 ; |
| int storereqidx = -1; |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) { |
| if (!(s->store[i].flags)) |
| storereqidx = i; |
| break; |
| } |
| } |
| |
| if ((i != s->store_count) && (storereqidx == -1)) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_RTR); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = pattern_process_key(px, s, &s->txn, PATTERN_FETCH_RTR, rule->expr, rule->table.t->type); |
| if (!key) |
| continue; |
| |
| if (storereqidx != -1) { |
| stksess_key(s->store[storereqidx].table, s->store[storereqidx].ts, key); |
| s->store[storereqidx].flags = 1; |
| } |
| else if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count].flags = 1; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| |
| /* process store request and store response */ |
| for (i = 0; i < s->store_count; i++) { |
| if (stktable_store(s->store[i].table, s->store[i].ts, s->srv->puid) > 0) { |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| } |
| } |
| |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This macro is very specific to the function below. See the comments in |
| * process_session() below to understand the logic and the tests. |
| */ |
| #define UPDATE_ANALYSERS(real, list, back, flag) { \ |
| list = (((list) & ~(flag)) | ~(back)) & (real); \ |
| back = real; \ |
| if (!(list)) \ |
| break; \ |
| if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ |
| continue; \ |
| } |
| |
| /* Processes the client, server, request and response jobs of a session task, |
| * then puts it back to the wait queue in a clean state, or cleans up its |
| * resources if it must be deleted. Returns in <next> the date the task wants |
| * to be woken up, or TICK_ETERNITY. In order not to call all functions for |
| * nothing too many times, the request and response buffers flags are monitored |
| * and each function is called only if at least another function has changed at |
| * least one flag it is interested in. |
| */ |
| struct task *process_session(struct task *t) |
| { |
| struct session *s = t->context; |
| unsigned int rqf_last, rpf_last; |
| unsigned int req_ana_back; |
| |
| //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, |
| // s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags); |
| |
| /* this data may be no longer valid, clear it */ |
| memset(&s->txn.auth, 0, sizeof(s->txn.auth)); |
| |
| /* This flag must explicitly be set every time */ |
| s->req->flags &= ~BF_READ_NOEXP; |
| |
| /* Keep a copy of req/rep flags so that we can detect shutdowns */ |
| rqf_last = s->req->flags; |
| rpf_last = s->rep->flags; |
| |
| /* we don't want the stream interface functions to recursively wake us up */ |
| if (s->req->prod->owner == t) |
| s->req->prod->flags |= SI_FL_DONT_WAKE; |
| if (s->req->cons->owner == t) |
| s->req->cons->flags |= SI_FL_DONT_WAKE; |
| |
| /* 1a: Check for low level timeouts if needed. We just set a flag on |
| * stream interfaces when their timeouts have expired. |
| */ |
| if (unlikely(t->state & TASK_WOKEN_TIMER)) { |
| stream_int_check_timeouts(&s->si[0]); |
| stream_int_check_timeouts(&s->si[1]); |
| |
| /* check buffer timeouts, and close the corresponding stream interfaces |
| * for future reads or writes. Note: this will also concern upper layers |
| * but we do not touch any other flag. We must be careful and correctly |
| * detect state changes when calling them. |
| */ |
| |
| buffer_check_timeouts(s->req); |
| |
| if (unlikely((s->req->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) { |
| s->req->cons->flags |= SI_FL_NOLINGER; |
| s->req->cons->shutw(s->req->cons); |
| } |
| |
| if (unlikely((s->req->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT)) |
| s->req->prod->shutr(s->req->prod); |
| |
| buffer_check_timeouts(s->rep); |
| |
| if (unlikely((s->rep->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) { |
| s->rep->cons->flags |= SI_FL_NOLINGER; |
| s->rep->cons->shutw(s->rep->cons); |
| } |
| |
| if (unlikely((s->rep->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT)) |
| s->rep->prod->shutr(s->rep->prod); |
| } |
| |
| /* 1b: check for low-level errors reported at the stream interface. |
| * First we check if it's a retryable error (in which case we don't |
| * want to tell the buffer). Otherwise we report the error one level |
| * upper by setting flags into the buffers. Note that the side towards |
| * the client cannot have connect (hence retryable) errors. Also, the |
| * connection setup code must be able to deal with any type of abort. |
| */ |
| if (unlikely(s->si[0].flags & SI_FL_ERR)) { |
| if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) { |
| s->si[0].shutr(&s->si[0]); |
| s->si[0].shutw(&s->si[0]); |
| stream_int_report_error(&s->si[0]); |
| if (!(s->req->analysers) && !(s->rep->analysers)) { |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_CLICL; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_D; |
| } |
| } |
| } |
| |
| if (unlikely(s->si[1].flags & SI_FL_ERR)) { |
| if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) { |
| s->si[1].shutr(&s->si[1]); |
| s->si[1].shutw(&s->si[1]); |
| stream_int_report_error(&s->si[1]); |
| s->be->counters.failed_resp++; |
| if (s->srv) |
| s->srv->counters.failed_resp++; |
| if (!(s->req->analysers) && !(s->rep->analysers)) { |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_SRVCL; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_D; |
| } |
| } |
| /* note: maybe we should process connection errors here ? */ |
| } |
| |
| if (s->si[1].state == SI_ST_CON) { |
| /* we were trying to establish a connection on the server side, |
| * maybe it succeeded, maybe it failed, maybe we timed out, ... |
| */ |
| if (unlikely(!sess_update_st_con_tcp(s, &s->si[1]))) |
| sess_update_st_cer(s, &s->si[1]); |
| else if (s->si[1].state == SI_ST_EST) |
| sess_establish(s, &s->si[1]); |
| |
| /* state is now one of SI_ST_CON (still in progress), SI_ST_EST |
| * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), |
| * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. |
| */ |
| } |
| |
| resync_stream_interface: |
| /* Check for connection closure */ |
| |
| DPRINTF(stderr, |
| "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", |
| now_ms, __FUNCTION__, __LINE__, |
| t, |
| s, s->flags, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state, |
| s->rep->cons->err_type, s->req->cons->err_type, |
| s->conn_retries); |
| |
| /* nothing special to be done on client side */ |
| if (unlikely(s->req->prod->state == SI_ST_DIS)) |
| s->req->prod->state = SI_ST_CLO; |
| |
| /* When a server-side connection is released, we have to count it and |
| * check for pending connections on this server. |
| */ |
| if (unlikely(s->req->cons->state == SI_ST_DIS)) { |
| s->req->cons->state = SI_ST_CLO; |
| if (s->srv) { |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| s->srv->cur_sess--; |
| } |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(s->srv, s->be)) |
| process_srv_queue(s->srv); |
| } |
| } |
| |
| /* |
| * Note: of the transient states (REQ, CER, DIS), only REQ may remain |
| * at this point. |
| */ |
| |
| resync_request: |
| /* Analyse request */ |
| if ((s->req->flags & BF_MASK_ANALYSER) || |
| (s->req->flags ^ rqf_last) & BF_MASK_STATIC) { |
| unsigned int flags = s->req->flags; |
| |
| if (s->req->prod->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop new connections, |
| * disable reading or closing. Note: if an analyser |
| * disables any of these bits, it is responsible for |
| * enabling them again when it disables itself, so |
| * that other analysers are called in similar conditions. |
| */ |
| buffer_auto_read(s->req); |
| buffer_auto_connect(s->req); |
| buffer_auto_close(s->req); |
| |
| /* We will call all analysers for which a bit is set in |
| * s->req->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the session. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| * |
| * We build a list of analysers to run. We evaluate all |
| * of these analysers in the order of the lower bit to |
| * the higher bit. This ordering is very important. |
| * An analyser will often add/remove other analysers, |
| * including itself. Any changes to itself have no effect |
| * on the loop. If it removes any other analysers, we |
| * want those analysers not to be called anymore during |
| * this loop. If it adds an analyser that is located |
| * after itself, we want it to be scheduled for being |
| * processed during the loop. If it adds an analyser |
| * which is located before it, we want it to switch to |
| * it immediately, even if it has already been called |
| * once but removed since. |
| * |
| * In order to achieve this, we compare the analyser |
| * list after the call with a copy of it before the |
| * call. The work list is fed with analyser bits that |
| * appeared during the call. Then we compare previous |
| * work list with the new one, and check the bits that |
| * appeared. If the lowest of these bits is lower than |
| * the current bit, it means we have enabled a previous |
| * analyser and must immediately loop again. |
| */ |
| |
| ana_list = ana_back = s->req->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| |
| if (ana_list & AN_REQ_INSPECT) { |
| if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT); |
| } |
| |
| if (ana_list & AN_REQ_WAIT_HTTP) { |
| if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_FE) { |
| if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE); |
| } |
| |
| if (ana_list & AN_REQ_SWITCHING_RULES) { |
| if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_BE) { |
| if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_TARPIT) { |
| if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_INNER) { |
| if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_BODY) { |
| if (!http_process_request_body(s, s->req, AN_REQ_HTTP_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY); |
| } |
| |
| if (ana_list & AN_REQ_PRST_RDP_COOKIE) { |
| if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); |
| } |
| |
| if (ana_list & AN_REQ_STICKING_RULES) { |
| if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_XFER_BODY) { |
| if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); |
| } |
| break; |
| } |
| } |
| |
| if ((s->req->flags ^ flags) & BF_MASK_STATIC) { |
| rqf_last = s->req->flags; |
| goto resync_request; |
| } |
| } |
| |
| /* we'll monitor the request analysers while parsing the response, |
| * because some response analysers may indirectly enable new request |
| * analysers (eg: HTTP keep-alive). |
| */ |
| req_ana_back = s->req->analysers; |
| |
| resync_response: |
| /* Analyse response */ |
| |
| if (unlikely(s->rep->flags & BF_HIJACK)) { |
| /* In inject mode, we wake up everytime something has |
| * happened on the write side of the buffer. |
| */ |
| unsigned int flags = s->rep->flags; |
| |
| if ((s->rep->flags & (BF_WRITE_PARTIAL|BF_WRITE_ERROR|BF_SHUTW)) && |
| !(s->rep->flags & BF_FULL)) { |
| s->rep->hijacker(s, s->rep); |
| } |
| |
| if ((s->rep->flags ^ flags) & BF_MASK_STATIC) { |
| rpf_last = s->rep->flags; |
| goto resync_response; |
| } |
| } |
| else if ((s->rep->flags & BF_MASK_ANALYSER) || |
| (s->rep->flags ^ rpf_last) & BF_MASK_STATIC) { |
| unsigned int flags = s->rep->flags; |
| |
| if (s->rep->prod->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop disable reading or |
| * closing. Note: if an analyser disables any of these |
| * bits, it is responsible for enabling them again when |
| * it disables itself, so that other analysers are called |
| * in similar conditions. |
| */ |
| buffer_auto_read(s->rep); |
| buffer_auto_close(s->rep); |
| |
| /* We will call all analysers for which a bit is set in |
| * s->rep->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the session. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| */ |
| |
| ana_list = ana_back = s->rep->analysers; |
| while (ana_list && max_loops--) { |
| if (!ana_list) |
| break; |
| |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| |
| if (ana_list & AN_RES_WAIT_HTTP) { |
| if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_RES_STORE_RULES) { |
| if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES); |
| } |
| |
| if (ana_list & AN_RES_HTTP_PROCESS_BE) { |
| if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_RES_HTTP_XFER_BODY) { |
| if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); |
| } |
| break; |
| } |
| } |
| |
| if ((s->rep->flags ^ flags) & BF_MASK_STATIC) { |
| rpf_last = s->rep->flags; |
| goto resync_response; |
| } |
| } |
| |
| /* maybe someone has added some request analysers, so we must check and loop */ |
| if (s->req->analysers & ~req_ana_back) |
| goto resync_request; |
| |
| /* FIXME: here we should call protocol handlers which rely on |
| * both buffers. |
| */ |
| |
| |
| /* |
| * Now we propagate unhandled errors to the session |
| */ |
| if (!(s->flags & SN_ERR_MASK)) { |
| if (s->req->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) { |
| /* Report it if the client got an error or a read timeout expired */ |
| s->req->analysers = 0; |
| if (s->req->flags & BF_READ_ERROR) |
| s->flags |= SN_ERR_CLICL; |
| else if (s->req->flags & BF_READ_TIMEOUT) |
| s->flags |= SN_ERR_CLITO; |
| else if (s->req->flags & BF_WRITE_ERROR) |
| s->flags |= SN_ERR_SRVCL; |
| else |
| s->flags |= SN_ERR_SRVTO; |
| sess_set_term_flags(s); |
| } |
| else if (s->rep->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) { |
| /* Report it if the server got an error or a read timeout expired */ |
| s->rep->analysers = 0; |
| if (s->rep->flags & BF_READ_ERROR) |
| s->flags |= SN_ERR_SRVCL; |
| else if (s->rep->flags & BF_READ_TIMEOUT) |
| s->flags |= SN_ERR_SRVTO; |
| else if (s->rep->flags & BF_WRITE_ERROR) |
| s->flags |= SN_ERR_CLICL; |
| else |
| s->flags |= SN_ERR_CLITO; |
| sess_set_term_flags(s); |
| } |
| } |
| |
| /* |
| * Here we take care of forwarding unhandled data. This also includes |
| * connection establishments and shutdown requests. |
| */ |
| |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| */ |
| if (!s->req->analysers && |
| !(s->req->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) && |
| (s->req->prod->state >= SI_ST_EST) && |
| (s->req->to_forward != BUF_INFINITE_FORWARD)) { |
| /* This buffer is freewheeling, there's no analyser nor hijacker |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| buffer_auto_read(s->req); |
| buffer_auto_connect(s->req); |
| buffer_auto_close(s->req); |
| buffer_flush(s->req); |
| |
| /* If the producer is still connected, we'll enable data to flow |
| * from the producer to the consumer (which might possibly not be |
| * connected yet). |
| */ |
| if (!(s->req->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW))) |
| buffer_forward(s->req, BUF_INFINITE_FORWARD); |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward request data */ |
| if (!(s->req->flags & (BF_KERN_SPLICING|BF_SHUTR)) && |
| s->req->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) && |
| (pipes_used < global.maxpipes) && |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (s->req->flags & BF_STREAMER_FAST)))) { |
| s->req->flags |= BF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rqf_last = s->req->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* first, let's check if the request buffer needs to shutdown(write), which may |
| * happen either because the input is closed or because we want to force a close |
| * once the server has begun to respond. |
| */ |
| if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) == |
| (BF_AUTO_CLOSE|BF_SHUTR))) |
| buffer_shutw_now(s->req); |
| |
| /* shutdown(write) pending */ |
| if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_OUT_EMPTY)) == (BF_SHUTW_NOW|BF_OUT_EMPTY))) |
| s->req->cons->shutw(s->req->cons); |
| |
| /* shutdown(write) done on server side, we must stop the client too */ |
| if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW && |
| !s->req->analysers)) |
| buffer_shutr_now(s->req); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((s->req->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) |
| s->req->prod->shutr(s->req->prod); |
| |
| /* it's possible that an upper layer has requested a connection setup or abort. |
| * There are 2 situations where we decide to establish a new connection : |
| * - there are data scheduled for emission in the buffer |
| * - the BF_AUTO_CONNECT flag is set (active connection) |
| */ |
| if (s->req->cons->state == SI_ST_INI) { |
| if (!(s->req->flags & (BF_SHUTW|BF_SHUTW_NOW))) { |
| if ((s->req->flags & (BF_AUTO_CONNECT|BF_OUT_EMPTY)) != BF_OUT_EMPTY) { |
| /* If we have a ->connect method, we need to perform a connection request, |
| * otherwise we immediately switch to the connected state. |
| */ |
| if (s->req->cons->connect) |
| s->req->cons->state = SI_ST_REQ; /* new connection requested */ |
| else |
| s->req->cons->state = SI_ST_EST; /* connection established */ |
| } |
| } |
| else { |
| s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */ |
| buffer_shutw_now(s->req); /* fix buffer flags upon abort */ |
| buffer_shutr_now(s->rep); |
| } |
| } |
| |
| |
| /* we may have a pending connection request, or a connection waiting |
| * for completion. |
| */ |
| if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) { |
| do { |
| /* nb: step 1 might switch from QUE to ASS, but we first want |
| * to give a chance to step 2 to perform a redirect if needed. |
| */ |
| if (s->si[1].state != SI_ST_REQ) |
| sess_update_stream_int(s, &s->si[1]); |
| if (s->si[1].state == SI_ST_REQ) |
| sess_prepare_conn_req(s, &s->si[1]); |
| |
| if (s->si[1].state == SI_ST_ASS && s->srv && |
| s->srv->rdr_len && (s->flags & SN_REDIRECTABLE)) |
| perform_http_redirect(s, &s->si[1]); |
| } while (s->si[1].state == SI_ST_ASS); |
| } |
| |
| /* Benchmarks have shown that it's optimal to do a full resync now */ |
| if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| /* otherwise wewant to check if we need to resync the req buffer or not */ |
| if ((s->req->flags ^ rqf_last) & BF_MASK_STATIC) |
| goto resync_request; |
| |
| /* perform output updates to the response buffer */ |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| */ |
| if (!s->rep->analysers && |
| !(s->rep->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) && |
| (s->rep->prod->state >= SI_ST_EST) && |
| (s->rep->to_forward != BUF_INFINITE_FORWARD)) { |
| /* This buffer is freewheeling, there's no analyser nor hijacker |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| buffer_auto_read(s->rep); |
| buffer_auto_close(s->rep); |
| buffer_flush(s->rep); |
| if (!(s->rep->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW))) |
| buffer_forward(s->rep, BUF_INFINITE_FORWARD); |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward response data */ |
| if (!(s->rep->flags & (BF_KERN_SPLICING|BF_SHUTR)) && |
| s->rep->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) && |
| (pipes_used < global.maxpipes) && |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (s->rep->flags & BF_STREAMER_FAST)))) { |
| s->rep->flags |= BF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rpf_last = s->rep->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* |
| * FIXME: this is probably where we should produce error responses. |
| */ |
| |
| /* first, let's check if the response buffer needs to shutdown(write) */ |
| if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) == |
| (BF_AUTO_CLOSE|BF_SHUTR))) |
| buffer_shutw_now(s->rep); |
| |
| /* shutdown(write) pending */ |
| if (unlikely((s->rep->flags & (BF_SHUTW|BF_OUT_EMPTY|BF_SHUTW_NOW)) == (BF_OUT_EMPTY|BF_SHUTW_NOW))) |
| s->rep->cons->shutw(s->rep->cons); |
| |
| /* shutdown(write) done on the client side, we must stop the server too */ |
| if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW) && |
| !s->rep->analysers) |
| buffer_shutr_now(s->rep); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((s->rep->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) |
| s->rep->prod->shutr(s->rep->prod); |
| |
| if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| if (s->req->flags != rqf_last) |
| goto resync_request; |
| |
| if ((s->rep->flags ^ rpf_last) & BF_MASK_STATIC) |
| goto resync_response; |
| |
| /* we're interested in getting wakeups again */ |
| s->req->prod->flags &= ~SI_FL_DONT_WAKE; |
| s->req->cons->flags &= ~SI_FL_DONT_WAKE; |
| |
| /* This is needed only when debugging is enabled, to indicate |
| * client-side or server-side close. Please note that in the unlikely |
| * event where both sides would close at once, the sequence is reported |
| * on the server side first. |
| */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || |
| (global.mode & MODE_VERBOSE)))) { |
| int len; |
| |
| if (s->si[1].state == SI_ST_CLO && |
| s->si[1].prev_state == SI_ST_EST) { |
| len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)s->si[0].fd, |
| (unsigned short)s->si[1].fd); |
| write(1, trash, len); |
| } |
| |
| if (s->si[0].state == SI_ST_CLO && |
| s->si[0].prev_state == SI_ST_EST) { |
| len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)s->si[0].fd, |
| (unsigned short)s->si[1].fd); |
| write(1, trash, len); |
| } |
| } |
| |
| if (likely((s->rep->cons->state != SI_ST_CLO) || |
| (s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) { |
| |
| if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED)) |
| session_process_counters(s); |
| |
| if (s->rep->cons->state == SI_ST_EST && !s->rep->cons->iohandler) |
| s->rep->cons->update(s->rep->cons); |
| |
| if (s->req->cons->state == SI_ST_EST && !s->req->cons->iohandler) |
| s->req->cons->update(s->req->cons); |
| |
| s->req->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL); |
| s->rep->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL); |
| s->si[0].prev_state = s->si[0].state; |
| s->si[1].prev_state = s->si[1].state; |
| s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| |
| /* Trick: if a request is being waiting for the server to respond, |
| * and if we know the server can timeout, we don't want the timeout |
| * to expire on the client side first, but we're still interested |
| * in passing data from the client to the server (eg: POST). Thus, |
| * we can cancel the client's request timeout if the server's |
| * request timeout is set and the server has not yet sent a response. |
| */ |
| |
| if ((s->rep->flags & (BF_AUTO_CLOSE|BF_SHUTR)) == 0 && |
| (tick_isset(s->req->wex) || tick_isset(s->rep->rex))) { |
| s->req->flags |= BF_READ_NOEXP; |
| s->req->rex = TICK_ETERNITY; |
| } |
| |
| /* Call the second stream interface's I/O handler if it's embedded. |
| * Note that this one may wake the task up again. |
| */ |
| if (s->req->cons->iohandler) { |
| s->req->cons->iohandler(s->req->cons); |
| if (task_in_rq(t)) { |
| /* If we woke up, we don't want to requeue the |
| * task to the wait queue, but rather requeue |
| * it into the runqueue ASAP. |
| */ |
| t->expire = TICK_ETERNITY; |
| return t; |
| } |
| } |
| |
| t->expire = tick_first(tick_first(s->req->rex, s->req->wex), |
| tick_first(s->rep->rex, s->rep->wex)); |
| if (s->req->analysers) |
| t->expire = tick_first(t->expire, s->req->analyse_exp); |
| |
| if (s->si[0].exp) |
| t->expire = tick_first(t->expire, s->si[0].exp); |
| |
| if (s->si[1].exp) |
| t->expire = tick_first(t->expire, s->si[1].exp); |
| |
| #ifdef DEBUG_FULL |
| fprintf(stderr, |
| "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" |
| " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", |
| now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp, |
| s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state); |
| #endif |
| |
| #ifdef DEBUG_DEV |
| /* this may only happen when no timeout is set or in case of an FSM bug */ |
| if (!tick_isset(t->expire)) |
| ABORT_NOW(); |
| #endif |
| return t; /* nothing more to do */ |
| } |
| |
| s->fe->feconn--; |
| if (s->flags & SN_BE_ASSIGNED) |
| s->be->beconn--; |
| actconn--; |
| s->listener->nbconn--; |
| if (s->listener->state == LI_FULL && |
| s->listener->nbconn < s->listener->maxconn) { |
| /* we should reactivate the listener */ |
| EV_FD_SET(s->listener->fd, DIR_RD); |
| s->listener->state = LI_READY; |
| } |
| |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { |
| int len; |
| len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)s->req->prod->fd, (unsigned short)s->req->cons->fd); |
| write(1, trash, len); |
| } |
| |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| session_process_counters(s); |
| |
| if (s->txn.status) { |
| int n; |
| |
| n = s->txn.status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (s->fe->mode == PR_MODE_HTTP) |
| s->fe->counters.fe.http.rsp[n]++; |
| |
| if ((s->flags & SN_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP)) |
| s->be->counters.be.http.rsp[n]++; |
| } |
| |
| /* let's do a final log if we need it */ |
| if (s->logs.logwait && |
| !(s->flags & SN_MONITOR) && |
| (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { |
| s->do_log(s); |
| } |
| |
| /* the task MUST not be in the run queue anymore */ |
| session_free(s); |
| task_delete(t); |
| task_free(t); |
| return NULL; |
| } |
| |
| /* |
| * This function adjusts sess->srv_conn and maintains the previous and new |
| * server's served session counts. Setting newsrv to NULL is enough to release |
| * current connection slot. This function also notifies any LB algo which might |
| * expect to be informed about any change in the number of active sessions on a |
| * server. |
| */ |
| void sess_change_server(struct session *sess, struct server *newsrv) |
| { |
| if (sess->srv_conn == newsrv) |
| return; |
| |
| if (sess->srv_conn) { |
| sess->srv_conn->served--; |
| if (sess->srv_conn->proxy->lbprm.server_drop_conn) |
| sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); |
| sess->srv_conn = NULL; |
| } |
| |
| if (newsrv) { |
| newsrv->served++; |
| if (newsrv->proxy->lbprm.server_take_conn) |
| newsrv->proxy->lbprm.server_take_conn(newsrv); |
| sess->srv_conn = newsrv; |
| } |
| } |
| |
| /* Set correct session termination flags in case no analyser has done it. It |
| * also counts a failed request if the server state has not reached the request |
| * stage. |
| */ |
| void sess_set_term_flags(struct session *s) |
| { |
| if (!(s->flags & SN_FINST_MASK)) { |
| if (s->si[1].state < SI_ST_REQ) { |
| |
| s->fe->counters.failed_req++; |
| if (s->listener->counters) |
| s->listener->counters->failed_req++; |
| |
| s->flags |= SN_FINST_R; |
| } |
| else if (s->si[1].state == SI_ST_QUE) |
| s->flags |= SN_FINST_Q; |
| else if (s->si[1].state < SI_ST_EST) |
| s->flags |= SN_FINST_C; |
| else if (s->si[1].state == SI_ST_EST) |
| s->flags |= SN_FINST_D; |
| else |
| s->flags |= SN_FINST_L; |
| } |
| } |
| |
| /* Handle server-side errors for default protocols. It is called whenever a a |
| * connection setup is aborted or a request is aborted in queue. It sets the |
| * session termination flags so that the caller does not have to worry about |
| * them. It's installed as ->srv_error for the server-side stream_interface. |
| */ |
| void default_srv_error(struct session *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| int err = 0, fin = 0; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) { |
| err = SN_ERR_CLICL; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_ABRT) { |
| err = SN_ERR_CLICL; |
| fin = SN_FINST_C; |
| } |
| else if (err_type & SI_ET_QUEUE_TO) { |
| err = SN_ERR_SRVTO; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_QUEUE_ERR) { |
| err = SN_ERR_SRVCL; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_TO) { |
| err = SN_ERR_SRVTO; |
| fin = SN_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_ERR) { |
| err = SN_ERR_SRVCL; |
| fin = SN_FINST_C; |
| } |
| else /* SI_ET_CONN_OTHER and others */ { |
| err = SN_ERR_INTERNAL; |
| fin = SN_FINST_C; |
| } |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= fin; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |