blob: f77292cf4a56b52122a9cec7593b3af951581c8d [file] [log] [blame]
/*
* HTTP compression.
*
* Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
* William Lallemand <wlallemand@exceliance.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <stdio.h>
#if defined(USE_SLZ)
#include <slz.h>
#elif defined(USE_ZLIB)
/* Note: the crappy zlib and openssl libs both define the "free_func" type.
* That's a very clever idea to use such a generic name in general purpose
* libraries, really... The zlib one is easier to redefine than openssl's,
* so let's only fix this one.
*/
#define free_func zlib_free_func
#include <zlib.h>
#undef free_func
#endif /* USE_ZLIB */
#include <haproxy/api.h>
#include <haproxy/dynbuf.h>
#include <common/cfgparse.h>
#include <haproxy/thread.h>
#include <haproxy/pool.h>
#include <haproxy/global.h>
#include <haproxy/compression-t.h>
#include <haproxy/compression.h>
#include <haproxy/freq_ctr.h>
#include <proto/stream.h>
#if defined(USE_ZLIB)
__decl_spinlock(comp_pool_lock);
#endif
#ifdef USE_ZLIB
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
static void free_zlib(void *opaque, void *ptr);
/* zlib allocation */
static struct pool_head *zlib_pool_deflate_state = NULL;
static struct pool_head *zlib_pool_window = NULL;
static struct pool_head *zlib_pool_prev = NULL;
static struct pool_head *zlib_pool_head = NULL;
static struct pool_head *zlib_pool_pending_buf = NULL;
long zlib_used_memory = 0;
static int global_tune_zlibmemlevel = 8; /* zlib memlevel */
static int global_tune_zlibwindowsize = MAX_WBITS; /* zlib window size */
#endif
unsigned int compress_min_idle = 0;
static int identity_init(struct comp_ctx **comp_ctx, int level);
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out);
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out);
static int identity_end(struct comp_ctx **comp_ctx);
#if defined(USE_SLZ)
static int rfc1950_init(struct comp_ctx **comp_ctx, int level);
static int rfc1951_init(struct comp_ctx **comp_ctx, int level);
static int rfc1952_init(struct comp_ctx **comp_ctx, int level);
static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out);
static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out);
static int rfc195x_end(struct comp_ctx **comp_ctx);
#elif defined(USE_ZLIB)
static int gzip_init(struct comp_ctx **comp_ctx, int level);
static int raw_def_init(struct comp_ctx **comp_ctx, int level);
static int deflate_init(struct comp_ctx **comp_ctx, int level);
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out);
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out);
static int deflate_end(struct comp_ctx **comp_ctx);
#endif /* USE_ZLIB */
const struct comp_algo comp_algos[] =
{
{ "identity", 8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end },
#if defined(USE_SLZ)
{ "deflate", 7, "deflate", 7, rfc1950_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end },
{ "raw-deflate", 11, "deflate", 7, rfc1951_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end },
{ "gzip", 4, "gzip", 4, rfc1952_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end },
#elif defined(USE_ZLIB)
{ "deflate", 7, "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
{ "raw-deflate", 11, "deflate", 7, raw_def_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
{ "gzip", 4, "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
#endif /* USE_ZLIB */
{ NULL, 0, NULL, 0, NULL , NULL, NULL, NULL, NULL }
};
/*
* Add a content-type in the configuration
*/
int comp_append_type(struct comp *comp, const char *type)
{
struct comp_type *comp_type;
comp_type = calloc(1, sizeof(*comp_type));
comp_type->name_len = strlen(type);
comp_type->name = strdup(type);
comp_type->next = comp->types;
comp->types = comp_type;
return 0;
}
/*
* Add an algorithm in the configuration
*/
int comp_append_algo(struct comp *comp, const char *algo)
{
struct comp_algo *comp_algo;
int i;
for (i = 0; comp_algos[i].cfg_name; i++) {
if (!strcmp(algo, comp_algos[i].cfg_name)) {
comp_algo = calloc(1, sizeof(*comp_algo));
memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
comp_algo->next = comp->algos;
comp->algos = comp_algo;
return 0;
}
}
return -1;
}
#if defined(USE_ZLIB) || defined(USE_SLZ)
DECLARE_STATIC_POOL(pool_comp_ctx, "comp_ctx", sizeof(struct comp_ctx));
/*
* Alloc the comp_ctx
*/
static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
{
#ifdef USE_ZLIB
z_stream *strm;
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
return -1;
#endif
*comp_ctx = pool_alloc(pool_comp_ctx);
if (*comp_ctx == NULL)
return -1;
#if defined(USE_SLZ)
(*comp_ctx)->direct_ptr = NULL;
(*comp_ctx)->direct_len = 0;
(*comp_ctx)->queued = BUF_NULL;
#elif defined(USE_ZLIB)
_HA_ATOMIC_ADD(&zlib_used_memory, sizeof(struct comp_ctx));
__ha_barrier_atomic_store();
strm = &(*comp_ctx)->strm;
strm->zalloc = alloc_zlib;
strm->zfree = free_zlib;
strm->opaque = *comp_ctx;
#endif
return 0;
}
/*
* Dealloc the comp_ctx
*/
static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
{
if (!*comp_ctx)
return 0;
pool_free(pool_comp_ctx, *comp_ctx);
*comp_ctx = NULL;
#ifdef USE_ZLIB
_HA_ATOMIC_SUB(&zlib_used_memory, sizeof(struct comp_ctx));
__ha_barrier_atomic_store();
#endif
return 0;
}
#endif
/****************************
**** Identity algorithm ****
****************************/
/*
* Init the identity algorithm
*/
static int identity_init(struct comp_ctx **comp_ctx, int level)
{
return 0;
}
/*
* Process data
* Return size of consumed data or -1 on error
*/
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
{
char *out_data = b_tail(out);
int out_len = b_room(out);
if (out_len < in_len)
return -1;
memcpy(out_data, in_data, in_len);
b_add(out, in_len);
return in_len;
}
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out)
{
return 0;
}
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out)
{
return 0;
}
/*
* Deinit the algorithm
*/
static int identity_end(struct comp_ctx **comp_ctx)
{
return 0;
}
#ifdef USE_SLZ
/* SLZ's gzip format (RFC1952). Returns < 0 on error. */
static int rfc1952_init(struct comp_ctx **comp_ctx, int level)
{
if (init_comp_ctx(comp_ctx) < 0)
return -1;
(*comp_ctx)->cur_lvl = !!level;
return slz_rfc1952_init(&(*comp_ctx)->strm, !!level);
}
/* SLZ's raw deflate format (RFC1951). Returns < 0 on error. */
static int rfc1951_init(struct comp_ctx **comp_ctx, int level)
{
if (init_comp_ctx(comp_ctx) < 0)
return -1;
(*comp_ctx)->cur_lvl = !!level;
return slz_rfc1951_init(&(*comp_ctx)->strm, !!level);
}
/* SLZ's zlib format (RFC1950). Returns < 0 on error. */
static int rfc1950_init(struct comp_ctx **comp_ctx, int level)
{
if (init_comp_ctx(comp_ctx) < 0)
return -1;
(*comp_ctx)->cur_lvl = !!level;
return slz_rfc1950_init(&(*comp_ctx)->strm, !!level);
}
/* Return the size of consumed data or -1. The output buffer is unused at this
* point, we only keep a reference to the input data or a copy of them if the
* reference is already used.
*/
static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
{
static THREAD_LOCAL struct buffer tmpbuf = BUF_NULL;
if (in_len <= 0)
return 0;
if (comp_ctx->direct_ptr && b_is_null(&comp_ctx->queued)) {
/* data already being pointed to, we're in front of fragmented
* data and need a buffer now. We reuse the same buffer, as it's
* not used out of the scope of a series of add_data()*, end().
*/
if (unlikely(!tmpbuf.size)) {
/* this is the first time we need the compression buffer */
if (b_alloc(&tmpbuf) == NULL)
return -1; /* no memory */
}
b_reset(&tmpbuf);
memcpy(b_tail(&tmpbuf), comp_ctx->direct_ptr, comp_ctx->direct_len);
b_add(&tmpbuf, comp_ctx->direct_len);
comp_ctx->direct_ptr = NULL;
comp_ctx->direct_len = 0;
comp_ctx->queued = tmpbuf;
/* fall through buffer copy */
}
if (!b_is_null(&comp_ctx->queued)) {
/* data already pending */
memcpy(b_tail(&comp_ctx->queued), in_data, in_len);
b_add(&comp_ctx->queued, in_len);
return in_len;
}
comp_ctx->direct_ptr = in_data;
comp_ctx->direct_len = in_len;
return in_len;
}
/* Compresses the data accumulated using add_data(), and optionally sends the
* format-specific trailer if <finish> is non-null. <out> is expected to have a
* large enough free non-wrapping space as verified by http_comp_buffer_init().
* The number of bytes emitted is reported.
*/
static int rfc195x_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int finish)
{
struct slz_stream *strm = &comp_ctx->strm;
const char *in_ptr;
int in_len;
int out_len;
in_ptr = comp_ctx->direct_ptr;
in_len = comp_ctx->direct_len;
if (!b_is_null(&comp_ctx->queued)) {
in_ptr = b_head(&comp_ctx->queued);
in_len = b_data(&comp_ctx->queued);
}
out_len = b_data(out);
if (in_ptr)
b_add(out, slz_encode(strm, b_tail(out), in_ptr, in_len, !finish));
if (finish)
b_add(out, slz_finish(strm, b_tail(out)));
out_len = b_data(out) - out_len;
/* very important, we must wipe the data we've just flushed */
comp_ctx->direct_len = 0;
comp_ctx->direct_ptr = NULL;
comp_ctx->queued = BUF_NULL;
/* Verify compression rate limiting and CPU usage */
if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */
(ti->idle_pct < compress_min_idle)) { /* idle */
if (comp_ctx->cur_lvl > 0)
strm->level = --comp_ctx->cur_lvl;
}
else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel && comp_ctx->cur_lvl < 1) {
strm->level = ++comp_ctx->cur_lvl;
}
/* and that's all */
return out_len;
}
static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out)
{
return rfc195x_flush_or_finish(comp_ctx, out, 0);
}
static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out)
{
return rfc195x_flush_or_finish(comp_ctx, out, 1);
}
/* we just need to free the comp_ctx here, nothing was allocated */
static int rfc195x_end(struct comp_ctx **comp_ctx)
{
deinit_comp_ctx(comp_ctx);
return 0;
}
#elif defined(USE_ZLIB) /* ! USE_SLZ */
/*
* This is a tricky allocation function using the zlib.
* This is based on the allocation order in deflateInit2.
*/
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
{
struct comp_ctx *ctx = opaque;
static THREAD_LOCAL char round = 0; /* order in deflateInit2 */
void *buf = NULL;
struct pool_head *pool = NULL;
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
goto end;
switch (round) {
case 0:
if (zlib_pool_deflate_state == NULL) {
HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
if (zlib_pool_deflate_state == NULL)
zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
}
pool = zlib_pool_deflate_state;
ctx->zlib_deflate_state = buf = pool_alloc(pool);
break;
case 1:
if (zlib_pool_window == NULL) {
HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
if (zlib_pool_window == NULL)
zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
}
pool = zlib_pool_window;
ctx->zlib_window = buf = pool_alloc(pool);
break;
case 2:
if (zlib_pool_prev == NULL) {
HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
if (zlib_pool_prev == NULL)
zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
}
pool = zlib_pool_prev;
ctx->zlib_prev = buf = pool_alloc(pool);
break;
case 3:
if (zlib_pool_head == NULL) {
HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
if (zlib_pool_head == NULL)
zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
}
pool = zlib_pool_head;
ctx->zlib_head = buf = pool_alloc(pool);
break;
case 4:
if (zlib_pool_pending_buf == NULL) {
HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
if (zlib_pool_pending_buf == NULL)
zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
}
pool = zlib_pool_pending_buf;
ctx->zlib_pending_buf = buf = pool_alloc(pool);
break;
}
if (buf != NULL) {
_HA_ATOMIC_ADD(&zlib_used_memory, pool->size);
__ha_barrier_atomic_store();
}
end:
/* deflateInit2() first allocates and checks the deflate_state, then if
* it succeeds, it allocates all other 4 areas at ones and checks them
* at the end. So we want to correctly count the rounds depending on when
* zlib is supposed to abort.
*/
if (buf || round)
round = (round + 1) % 5;
return buf;
}
static void free_zlib(void *opaque, void *ptr)
{
struct comp_ctx *ctx = opaque;
struct pool_head *pool = NULL;
if (ptr == ctx->zlib_window)
pool = zlib_pool_window;
else if (ptr == ctx->zlib_deflate_state)
pool = zlib_pool_deflate_state;
else if (ptr == ctx->zlib_prev)
pool = zlib_pool_prev;
else if (ptr == ctx->zlib_head)
pool = zlib_pool_head;
else if (ptr == ctx->zlib_pending_buf)
pool = zlib_pool_pending_buf;
pool_free(pool, ptr);
_HA_ATOMIC_SUB(&zlib_used_memory, pool->size);
__ha_barrier_atomic_store();
}
/**************************
**** gzip algorithm ****
***************************/
static int gzip_init(struct comp_ctx **comp_ctx, int level)
{
z_stream *strm;
if (init_comp_ctx(comp_ctx) < 0)
return -1;
strm = &(*comp_ctx)->strm;
if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize + 16, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
deinit_comp_ctx(comp_ctx);
return -1;
}
(*comp_ctx)->cur_lvl = level;
return 0;
}
/* Raw deflate algorithm */
static int raw_def_init(struct comp_ctx **comp_ctx, int level)
{
z_stream *strm;
if (init_comp_ctx(comp_ctx) < 0)
return -1;
strm = &(*comp_ctx)->strm;
if (deflateInit2(strm, level, Z_DEFLATED, -global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
deinit_comp_ctx(comp_ctx);
return -1;
}
(*comp_ctx)->cur_lvl = level;
return 0;
}
/**************************
**** Deflate algorithm ****
***************************/
static int deflate_init(struct comp_ctx **comp_ctx, int level)
{
z_stream *strm;
if (init_comp_ctx(comp_ctx) < 0)
return -1;
strm = &(*comp_ctx)->strm;
if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
deinit_comp_ctx(comp_ctx);
return -1;
}
(*comp_ctx)->cur_lvl = level;
return 0;
}
/* Return the size of consumed data or -1 */
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
{
int ret;
z_stream *strm = &comp_ctx->strm;
char *out_data = b_tail(out);
int out_len = b_room(out);
if (in_len <= 0)
return 0;
if (out_len <= 0)
return -1;
strm->next_in = (unsigned char *)in_data;
strm->avail_in = in_len;
strm->next_out = (unsigned char *)out_data;
strm->avail_out = out_len;
ret = deflate(strm, Z_NO_FLUSH);
if (ret != Z_OK)
return -1;
/* deflate update the available data out */
b_add(out, out_len - strm->avail_out);
return in_len - strm->avail_in;
}
static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
{
int ret;
int out_len = 0;
z_stream *strm = &comp_ctx->strm;
strm->next_in = NULL;
strm->avail_in = 0;
strm->next_out = (unsigned char *)b_tail(out);
strm->avail_out = b_room(out);
ret = deflate(strm, flag);
if (ret != Z_OK && ret != Z_STREAM_END)
return -1;
out_len = b_room(out) - strm->avail_out;
b_add(out, out_len);
/* compression limit */
if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */
(ti->idle_pct < compress_min_idle)) { /* idle */
/* decrease level */
if (comp_ctx->cur_lvl > 0) {
comp_ctx->cur_lvl--;
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
}
} else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) {
/* increase level */
comp_ctx->cur_lvl++ ;
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
}
return out_len;
}
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out)
{
return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH);
}
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out)
{
return deflate_flush_or_finish(comp_ctx, out, Z_FINISH);
}
static int deflate_end(struct comp_ctx **comp_ctx)
{
z_stream *strm = &(*comp_ctx)->strm;
int ret;
ret = deflateEnd(strm);
deinit_comp_ctx(comp_ctx);
return ret;
}
/* config parser for global "tune.zlibmemlevel" */
static int zlib_parse_global_memlevel(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]);
return -1;
}
global_tune_zlibmemlevel = atoi(args[1]);
if (global_tune_zlibmemlevel < 1 || global_tune_zlibmemlevel > 9) {
memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]);
return -1;
}
return 0;
}
/* config parser for global "tune.zlibwindowsize" */
static int zlib_parse_global_windowsize(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]);
return -1;
}
global_tune_zlibwindowsize = atoi(args[1]);
if (global_tune_zlibwindowsize < 8 || global_tune_zlibwindowsize > 15) {
memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]);
return -1;
}
return 0;
}
#endif /* USE_ZLIB */
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
#ifdef USE_ZLIB
{ CFG_GLOBAL, "tune.zlib.memlevel", zlib_parse_global_memlevel },
{ CFG_GLOBAL, "tune.zlib.windowsize", zlib_parse_global_windowsize },
#endif
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
__attribute__((constructor))
static void __comp_fetch_init(void)
{
#ifdef USE_SLZ
slz_make_crc_table();
slz_prepare_dist_table();
#endif
#if defined(USE_ZLIB) && defined(DEFAULT_MAXZLIBMEM)
global.maxzlibmem = DEFAULT_MAXZLIBMEM * 1024U * 1024U;
#endif
}
static void comp_register_build_opts(void)
{
char *ptr = NULL;
int i;
#ifdef USE_ZLIB
memprintf(&ptr, "Built with zlib version : " ZLIB_VERSION);
memprintf(&ptr, "%s\nRunning on zlib version : %s", ptr, zlibVersion());
#elif defined(USE_SLZ)
memprintf(&ptr, "Built with libslz for stateless compression.");
#else
memprintf(&ptr, "Built without compression support (neither USE_ZLIB nor USE_SLZ are set).");
#endif
memprintf(&ptr, "%s\nCompression algorithms supported :", ptr);
for (i = 0; comp_algos[i].cfg_name; i++)
memprintf(&ptr, "%s%s %s(\"%s\")", ptr, (i == 0 ? "" : ","), comp_algos[i].cfg_name, comp_algos[i].ua_name);
if (i == 0)
memprintf(&ptr, "%s none", ptr);
hap_register_build_opts(ptr, 1);
}
INITCALL0(STG_REGISTER, comp_register_build_opts);