| /* |
| * Backend variables and functions. |
| * |
| * Copyright 2000-2008 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <syslog.h> |
| #include <string.h> |
| |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/eb32tree.h> |
| #include <common/time.h> |
| |
| #include <types/acl.h> |
| #include <types/buffers.h> |
| #include <types/global.h> |
| #include <types/polling.h> |
| #include <types/proxy.h> |
| #include <types/server.h> |
| #include <types/session.h> |
| |
| #include <proto/acl.h> |
| #include <proto/backend.h> |
| #include <proto/client.h> |
| #include <proto/fd.h> |
| #include <proto/httperr.h> |
| #include <proto/log.h> |
| #include <proto/proto_http.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/queue.h> |
| #include <proto/stream_sock.h> |
| #include <proto/task.h> |
| |
| #ifdef CONFIG_HAP_TCPSPLICE |
| #include <libtcpsplice.h> |
| #endif |
| |
| static inline void fwrr_remove_from_tree(struct server *s); |
| static inline void fwrr_queue_by_weight(struct eb_root *root, struct server *s); |
| static inline void fwrr_dequeue_srv(struct server *s); |
| static void fwrr_get_srv(struct server *s); |
| static void fwrr_queue_srv(struct server *s); |
| |
| /* This function returns non-zero if a server with the given weight and state |
| * is usable for LB, otherwise zero. |
| */ |
| static inline int srv_is_usable(int state, int weight) |
| { |
| if (!weight) |
| return 0; |
| if (state & SRV_GOINGDOWN) |
| return 0; |
| if (!(state & SRV_RUNNING)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * This function recounts the number of usable active and backup servers for |
| * proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck. |
| * This function also recomputes the total active and backup weights. However, |
| * it does nout update tot_weight nor tot_used. Use update_backend_weight() for |
| * this. |
| */ |
| static void recount_servers(struct proxy *px) |
| { |
| struct server *srv; |
| |
| px->srv_act = px->srv_bck = 0; |
| px->lbprm.tot_wact = px->lbprm.tot_wbck = 0; |
| px->lbprm.fbck = NULL; |
| for (srv = px->srv; srv != NULL; srv = srv->next) { |
| if (!srv_is_usable(srv->state, srv->eweight)) |
| continue; |
| |
| if (srv->state & SRV_BACKUP) { |
| if (!px->srv_bck && |
| !(px->lbprm.algo & PR_O_USE_ALL_BK)) |
| px->lbprm.fbck = srv; |
| px->srv_bck++; |
| px->lbprm.tot_wbck += srv->eweight; |
| } else { |
| px->srv_act++; |
| px->lbprm.tot_wact += srv->eweight; |
| } |
| } |
| } |
| |
| /* This function simply updates the backend's tot_weight and tot_used values |
| * after servers weights have been updated. It is designed to be used after |
| * recount_servers() or equivalent. |
| */ |
| static void update_backend_weight(struct proxy *px) |
| { |
| if (px->srv_act) { |
| px->lbprm.tot_weight = px->lbprm.tot_wact; |
| px->lbprm.tot_used = px->srv_act; |
| } |
| else if (px->lbprm.fbck) { |
| /* use only the first backup server */ |
| px->lbprm.tot_weight = px->lbprm.fbck->eweight; |
| px->lbprm.tot_used = 1; |
| } |
| else { |
| px->lbprm.tot_weight = px->lbprm.tot_wbck; |
| px->lbprm.tot_used = px->srv_bck; |
| } |
| } |
| |
| /* this function updates the map according to server <srv>'s new state */ |
| static void map_set_server_status_down(struct server *srv) |
| { |
| struct proxy *p = srv->proxy; |
| |
| if (srv->state == srv->prev_state && |
| srv->eweight == srv->prev_eweight) |
| return; |
| |
| if (srv_is_usable(srv->state, srv->eweight)) |
| goto out_update_state; |
| |
| /* FIXME: could be optimized since we know what changed */ |
| recount_servers(p); |
| update_backend_weight(p); |
| p->lbprm.map.state |= PR_MAP_RECALC; |
| out_update_state: |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| } |
| |
| /* This function updates the map according to server <srv>'s new state */ |
| static void map_set_server_status_up(struct server *srv) |
| { |
| struct proxy *p = srv->proxy; |
| |
| if (srv->state == srv->prev_state && |
| srv->eweight == srv->prev_eweight) |
| return; |
| |
| if (!srv_is_usable(srv->state, srv->eweight)) |
| goto out_update_state; |
| |
| /* FIXME: could be optimized since we know what changed */ |
| recount_servers(p); |
| update_backend_weight(p); |
| p->lbprm.map.state |= PR_MAP_RECALC; |
| out_update_state: |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| } |
| |
| /* This function recomputes the server map for proxy px. It relies on |
| * px->lbprm.tot_wact, tot_wbck, tot_used, tot_weight, so it must be |
| * called after recount_servers(). It also expects px->lbprm.map.srv |
| * to be allocated with the largest size needed. It updates tot_weight. |
| */ |
| void recalc_server_map(struct proxy *px) |
| { |
| int o, tot, flag; |
| struct server *cur, *best; |
| |
| switch (px->lbprm.tot_used) { |
| case 0: /* no server */ |
| px->lbprm.map.state &= ~PR_MAP_RECALC; |
| return; |
| case 1: /* only one server, just fill first entry */ |
| tot = 1; |
| break; |
| default: |
| tot = px->lbprm.tot_weight; |
| break; |
| } |
| |
| /* here we *know* that we have some servers */ |
| if (px->srv_act) |
| flag = SRV_RUNNING; |
| else |
| flag = SRV_RUNNING | SRV_BACKUP; |
| |
| /* this algorithm gives priority to the first server, which means that |
| * it will respect the declaration order for equivalent weights, and |
| * that whatever the weights, the first server called will always be |
| * the first declared. This is an important asumption for the backup |
| * case, where we want the first server only. |
| */ |
| for (cur = px->srv; cur; cur = cur->next) |
| cur->wscore = 0; |
| |
| for (o = 0; o < tot; o++) { |
| int max = 0; |
| best = NULL; |
| for (cur = px->srv; cur; cur = cur->next) { |
| if (flag == (cur->state & |
| (SRV_RUNNING | SRV_GOINGDOWN | SRV_BACKUP))) { |
| int v; |
| |
| /* If we are forced to return only one server, we don't want to |
| * go further, because we would return the wrong one due to |
| * divide overflow. |
| */ |
| if (tot == 1) { |
| best = cur; |
| /* note that best->wscore will be wrong but we don't care */ |
| break; |
| } |
| |
| cur->wscore += cur->eweight; |
| v = (cur->wscore + tot) / tot; /* result between 0 and 3 */ |
| if (best == NULL || v > max) { |
| max = v; |
| best = cur; |
| } |
| } |
| } |
| px->lbprm.map.srv[o] = best; |
| best->wscore -= tot; |
| } |
| px->lbprm.map.state &= ~PR_MAP_RECALC; |
| } |
| |
| /* This function is responsible of building the server MAP for map-based LB |
| * algorithms, allocating the map, and setting p->lbprm.wmult to the GCD of the |
| * weights if applicable. It should be called only once per proxy, at config |
| * time. |
| */ |
| void init_server_map(struct proxy *p) |
| { |
| struct server *srv; |
| int pgcd; |
| int act, bck; |
| |
| p->lbprm.set_server_status_up = map_set_server_status_up; |
| p->lbprm.set_server_status_down = map_set_server_status_down; |
| p->lbprm.update_server_eweight = NULL; |
| |
| if (!p->srv) |
| return; |
| |
| /* We will factor the weights to reduce the table, |
| * using Euclide's largest common divisor algorithm |
| */ |
| pgcd = p->srv->uweight; |
| for (srv = p->srv->next; srv && pgcd > 1; srv = srv->next) { |
| int w = srv->uweight; |
| while (w) { |
| int t = pgcd % w; |
| pgcd = w; |
| w = t; |
| } |
| } |
| |
| /* It is sometimes useful to know what factor to apply |
| * to the backend's effective weight to know its real |
| * weight. |
| */ |
| p->lbprm.wmult = pgcd; |
| |
| act = bck = 0; |
| for (srv = p->srv; srv; srv = srv->next) { |
| srv->eweight = srv->uweight / pgcd; |
| srv->prev_eweight = srv->eweight; |
| srv->prev_state = srv->state; |
| if (srv->state & SRV_BACKUP) |
| bck += srv->eweight; |
| else |
| act += srv->eweight; |
| } |
| |
| /* this is the largest map we will ever need for this servers list */ |
| if (act < bck) |
| act = bck; |
| |
| p->lbprm.map.srv = (struct server **)calloc(act, sizeof(struct server *)); |
| /* recounts servers and their weights */ |
| p->lbprm.map.state = PR_MAP_RECALC; |
| recount_servers(p); |
| update_backend_weight(p); |
| recalc_server_map(p); |
| } |
| |
| /* This function updates the server trees according to server <srv>'s new |
| * state. It should be called when server <srv>'s status changes to down. |
| * It is not important whether the server was already down or not. It is not |
| * important either that the new state is completely down (the caller may not |
| * know all the variables of a server's state). |
| */ |
| static void fwrr_set_server_status_down(struct server *srv) |
| { |
| struct proxy *p = srv->proxy; |
| struct fwrr_group *grp; |
| |
| if (srv->state == srv->prev_state && |
| srv->eweight == srv->prev_eweight) |
| return; |
| |
| if (srv_is_usable(srv->state, srv->eweight)) |
| goto out_update_state; |
| |
| if (!srv_is_usable(srv->prev_state, srv->prev_eweight)) |
| /* server was already down */ |
| goto out_update_backend; |
| |
| grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act; |
| grp->next_weight -= srv->prev_eweight; |
| |
| if (srv->state & SRV_BACKUP) { |
| p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight; |
| p->srv_bck--; |
| |
| if (srv == p->lbprm.fbck) { |
| /* we lost the first backup server in a single-backup |
| * configuration, we must search another one. |
| */ |
| struct server *srv2 = p->lbprm.fbck; |
| do { |
| srv2 = srv2->next; |
| } while (srv2 && |
| !((srv2->state & SRV_BACKUP) && |
| srv_is_usable(srv2->state, srv2->eweight))); |
| p->lbprm.fbck = srv2; |
| } |
| } else { |
| p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight; |
| p->srv_act--; |
| } |
| |
| fwrr_dequeue_srv(srv); |
| fwrr_remove_from_tree(srv); |
| |
| out_update_backend: |
| /* check/update tot_used, tot_weight */ |
| update_backend_weight(p); |
| out_update_state: |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| } |
| |
| /* This function updates the server trees according to server <srv>'s new |
| * state. It should be called when server <srv>'s status changes to up. |
| * It is not important whether the server was already down or not. It is not |
| * important either that the new state is completely UP (the caller may not |
| * know all the variables of a server's state). This function will not change |
| * the weight of a server which was already up. |
| */ |
| static void fwrr_set_server_status_up(struct server *srv) |
| { |
| struct proxy *p = srv->proxy; |
| struct fwrr_group *grp; |
| |
| if (srv->state == srv->prev_state && |
| srv->eweight == srv->prev_eweight) |
| return; |
| |
| if (!srv_is_usable(srv->state, srv->eweight)) |
| goto out_update_state; |
| |
| if (srv_is_usable(srv->prev_state, srv->prev_eweight)) |
| /* server was already up */ |
| goto out_update_backend; |
| |
| grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act; |
| grp->next_weight += srv->eweight; |
| |
| if (srv->state & SRV_BACKUP) { |
| p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight; |
| p->srv_bck++; |
| |
| if (p->lbprm.fbck) { |
| /* we may have restored a backup server prior to fbck, |
| * in which case it should replace it. |
| */ |
| struct server *srv2 = srv; |
| do { |
| srv2 = srv2->next; |
| } while (srv2 && (srv2 != p->lbprm.fbck)); |
| if (srv2) |
| p->lbprm.fbck = srv; |
| } |
| } else { |
| p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight; |
| p->srv_act++; |
| } |
| |
| /* note that eweight cannot be 0 here */ |
| fwrr_get_srv(srv); |
| srv->npos = grp->curr_pos + (grp->next_weight + grp->curr_weight - grp->curr_pos) / srv->eweight; |
| fwrr_queue_srv(srv); |
| |
| out_update_backend: |
| /* check/update tot_used, tot_weight */ |
| update_backend_weight(p); |
| out_update_state: |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| } |
| |
| /* This function must be called after an update to server <srv>'s effective |
| * weight. It may be called after a state change too. |
| */ |
| static void fwrr_update_server_weight(struct server *srv) |
| { |
| int old_state, new_state; |
| struct proxy *p = srv->proxy; |
| struct fwrr_group *grp; |
| |
| if (srv->state == srv->prev_state && |
| srv->eweight == srv->prev_eweight) |
| return; |
| |
| /* If changing the server's weight changes its state, we simply apply |
| * the procedures we already have for status change. If the state |
| * remains down, the server is not in any tree, so it's as easy as |
| * updating its values. If the state remains up with different weights, |
| * there are some computations to perform to find a new place and |
| * possibly a new tree for this server. |
| */ |
| |
| old_state = srv_is_usable(srv->prev_state, srv->prev_eweight); |
| new_state = srv_is_usable(srv->state, srv->eweight); |
| |
| if (!old_state && !new_state) { |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| return; |
| } |
| else if (!old_state && new_state) { |
| fwrr_set_server_status_up(srv); |
| return; |
| } |
| else if (old_state && !new_state) { |
| fwrr_set_server_status_down(srv); |
| return; |
| } |
| |
| grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act; |
| grp->next_weight = grp->next_weight - srv->prev_eweight + srv->eweight; |
| |
| p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight; |
| p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight; |
| |
| if (srv->lb_tree == grp->init) { |
| fwrr_dequeue_srv(srv); |
| fwrr_queue_by_weight(grp->init, srv); |
| } |
| else if (!srv->lb_tree) { |
| /* FIXME: server was down. This is not possible right now but |
| * may be needed soon for slowstart or graceful shutdown. |
| */ |
| fwrr_dequeue_srv(srv); |
| fwrr_get_srv(srv); |
| srv->npos = grp->curr_pos + (grp->next_weight + grp->curr_weight - grp->curr_pos) / srv->eweight; |
| fwrr_queue_srv(srv); |
| } else { |
| /* The server is either active or in the next queue. If it's |
| * still in the active queue and it has not consumed all of its |
| * places, let's adjust its next position. |
| */ |
| fwrr_get_srv(srv); |
| |
| if (srv->eweight > 0) { |
| int prev_next = srv->npos; |
| int step = grp->next_weight / srv->eweight; |
| |
| srv->npos = srv->lpos + step; |
| srv->rweight = 0; |
| |
| if (srv->npos > prev_next) |
| srv->npos = prev_next; |
| if (srv->npos < grp->curr_pos + 2) |
| srv->npos = grp->curr_pos + step; |
| } else { |
| /* push it into the next tree */ |
| srv->npos = grp->curr_pos + grp->curr_weight; |
| } |
| |
| fwrr_dequeue_srv(srv); |
| fwrr_queue_srv(srv); |
| } |
| |
| update_backend_weight(p); |
| srv->prev_state = srv->state; |
| srv->prev_eweight = srv->eweight; |
| } |
| |
| /* Remove a server from a tree. It must have previously been dequeued. This |
| * function is meant to be called when a server is going down or has its |
| * weight disabled. |
| */ |
| static inline void fwrr_remove_from_tree(struct server *s) |
| { |
| s->lb_tree = NULL; |
| } |
| |
| /* Queue a server in the weight tree <root>, assuming the weight is >0. |
| * We want to sort them by inverted weights, because we need to place |
| * heavy servers first in order to get a smooth distribution. |
| */ |
| static inline void fwrr_queue_by_weight(struct eb_root *root, struct server *s) |
| { |
| s->lb_node.key = SRV_EWGHT_MAX - s->eweight; |
| eb32_insert(root, &s->lb_node); |
| s->lb_tree = root; |
| } |
| |
| /* This function is responsible for building the weight trees in case of fast |
| * weighted round-robin. It also sets p->lbprm.wdiv to the eweight to uweight |
| * ratio. Both active and backup groups are initialized. |
| */ |
| void fwrr_init_server_groups(struct proxy *p) |
| { |
| struct server *srv; |
| struct eb_root init_head = EB_ROOT; |
| |
| p->lbprm.set_server_status_up = fwrr_set_server_status_up; |
| p->lbprm.set_server_status_down = fwrr_set_server_status_down; |
| p->lbprm.update_server_eweight = fwrr_update_server_weight; |
| |
| p->lbprm.wdiv = BE_WEIGHT_SCALE; |
| for (srv = p->srv; srv; srv = srv->next) { |
| srv->prev_eweight = srv->eweight = srv->uweight * BE_WEIGHT_SCALE; |
| srv->prev_state = srv->state; |
| } |
| |
| recount_servers(p); |
| update_backend_weight(p); |
| |
| /* prepare the active servers group */ |
| p->lbprm.fwrr.act.curr_pos = p->lbprm.fwrr.act.curr_weight = |
| p->lbprm.fwrr.act.next_weight = p->lbprm.tot_wact; |
| p->lbprm.fwrr.act.curr = p->lbprm.fwrr.act.t0 = |
| p->lbprm.fwrr.act.t1 = init_head; |
| p->lbprm.fwrr.act.init = &p->lbprm.fwrr.act.t0; |
| p->lbprm.fwrr.act.next = &p->lbprm.fwrr.act.t1; |
| |
| /* prepare the backup servers group */ |
| p->lbprm.fwrr.bck.curr_pos = p->lbprm.fwrr.bck.curr_weight = |
| p->lbprm.fwrr.bck.next_weight = p->lbprm.tot_wbck; |
| p->lbprm.fwrr.bck.curr = p->lbprm.fwrr.bck.t0 = |
| p->lbprm.fwrr.bck.t1 = init_head; |
| p->lbprm.fwrr.bck.init = &p->lbprm.fwrr.bck.t0; |
| p->lbprm.fwrr.bck.next = &p->lbprm.fwrr.bck.t1; |
| |
| /* queue active and backup servers in two distinct groups */ |
| for (srv = p->srv; srv; srv = srv->next) { |
| if (!srv_is_usable(srv->state, srv->eweight)) |
| continue; |
| fwrr_queue_by_weight((srv->state & SRV_BACKUP) ? |
| p->lbprm.fwrr.bck.init : |
| p->lbprm.fwrr.act.init, |
| srv); |
| } |
| } |
| |
| /* simply removes a server from a weight tree */ |
| static inline void fwrr_dequeue_srv(struct server *s) |
| { |
| eb32_delete(&s->lb_node); |
| } |
| |
| /* queues a server into the appropriate group and tree depending on its |
| * backup status, and ->npos. If the server is disabled, simply assign |
| * it to the NULL tree. |
| */ |
| static void fwrr_queue_srv(struct server *s) |
| { |
| struct proxy *p = s->proxy; |
| struct fwrr_group *grp; |
| |
| grp = (s->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act; |
| |
| /* Delay everything which does not fit into the window and everything |
| * which does not fit into the theorical new window. |
| */ |
| if (!srv_is_usable(s->state, s->eweight)) { |
| fwrr_remove_from_tree(s); |
| } |
| else if (s->eweight <= 0 || |
| s->npos >= 2 * grp->curr_weight || |
| s->npos >= grp->curr_weight + grp->next_weight) { |
| /* put into next tree, and readjust npos in case we could |
| * finally take this back to current. */ |
| s->npos -= grp->curr_weight; |
| fwrr_queue_by_weight(grp->next, s); |
| } |
| else { |
| /* The sorting key is stored in units of s->npos * user_weight |
| * in order to avoid overflows. As stated in backend.h, the |
| * lower the scale, the rougher the weights modulation, and the |
| * higher the scale, the lower the number of servers without |
| * overflow. With this formula, the result is always positive, |
| * so we can use eb3é_insert(). |
| */ |
| s->lb_node.key = SRV_UWGHT_RANGE * s->npos + |
| (unsigned)(SRV_EWGHT_MAX + s->rweight - s->eweight) / BE_WEIGHT_SCALE; |
| |
| eb32_insert(&grp->curr, &s->lb_node); |
| s->lb_tree = &grp->curr; |
| } |
| } |
| |
| /* prepares a server when extracting it from the "init" tree */ |
| static inline void fwrr_get_srv_init(struct server *s) |
| { |
| s->npos = s->rweight = 0; |
| } |
| |
| /* prepares a server when extracting it from the "next" tree */ |
| static inline void fwrr_get_srv_next(struct server *s) |
| { |
| struct fwrr_group *grp = (s->state & SRV_BACKUP) ? |
| &s->proxy->lbprm.fwrr.bck : |
| &s->proxy->lbprm.fwrr.act; |
| |
| s->npos += grp->curr_weight; |
| } |
| |
| /* prepares a server when it was marked down */ |
| static inline void fwrr_get_srv_down(struct server *s) |
| { |
| struct fwrr_group *grp = (s->state & SRV_BACKUP) ? |
| &s->proxy->lbprm.fwrr.bck : |
| &s->proxy->lbprm.fwrr.act; |
| |
| s->npos = grp->curr_pos; |
| } |
| |
| /* prepares a server when extracting it from its tree */ |
| static void fwrr_get_srv(struct server *s) |
| { |
| struct proxy *p = s->proxy; |
| struct fwrr_group *grp = (s->state & SRV_BACKUP) ? |
| &p->lbprm.fwrr.bck : |
| &p->lbprm.fwrr.act; |
| |
| if (s->lb_tree == grp->init) { |
| fwrr_get_srv_init(s); |
| } |
| else if (s->lb_tree == grp->next) { |
| fwrr_get_srv_next(s); |
| } |
| else if (s->lb_tree == NULL) { |
| fwrr_get_srv_down(s); |
| } |
| } |
| |
| /* switches trees "init" and "next" for FWRR group <grp>. "init" should be empty |
| * when this happens, and "next" filled with servers sorted by weights. |
| */ |
| static inline void fwrr_switch_trees(struct fwrr_group *grp) |
| { |
| struct eb_root *swap; |
| swap = grp->init; |
| grp->init = grp->next; |
| grp->next = swap; |
| grp->curr_weight = grp->next_weight; |
| grp->curr_pos = grp->curr_weight; |
| } |
| |
| /* return next server from the current tree in FWRR group <grp>, or a server |
| * from the "init" tree if appropriate. If both trees are empty, return NULL. |
| */ |
| static struct server *fwrr_get_server_from_group(struct fwrr_group *grp) |
| { |
| struct eb32_node *node; |
| struct server *s; |
| |
| node = eb32_first(&grp->curr); |
| s = eb32_entry(node, struct server, lb_node); |
| |
| if (!node || s->npos > grp->curr_pos) { |
| /* either we have no server left, or we have a hole */ |
| struct eb32_node *node2; |
| node2 = eb32_first(grp->init); |
| if (node2) { |
| node = node2; |
| s = eb32_entry(node, struct server, lb_node); |
| fwrr_get_srv_init(s); |
| if (s->eweight == 0) /* FIXME: is it possible at all ? */ |
| node = NULL; |
| } |
| } |
| if (node) |
| return s; |
| else |
| return NULL; |
| } |
| |
| /* Computes next position of server <s> in the group. It is mandatory for <s> |
| * to have a non-zero, positive eweight. |
| */ |
| static inline void fwrr_update_position(struct fwrr_group *grp, struct server *s) |
| { |
| if (!s->npos) { |
| /* first time ever for this server */ |
| s->lpos = grp->curr_pos; |
| s->npos = grp->curr_pos + grp->next_weight / s->eweight; |
| s->rweight += grp->next_weight % s->eweight; |
| |
| if (s->rweight >= s->eweight) { |
| s->rweight -= s->eweight; |
| s->npos++; |
| } |
| } else { |
| s->lpos = s->npos; |
| s->npos += grp->next_weight / s->eweight; |
| s->rweight += grp->next_weight % s->eweight; |
| |
| if (s->rweight >= s->eweight) { |
| s->rweight -= s->eweight; |
| s->npos++; |
| } |
| } |
| } |
| |
| /* Return next server from the current tree in backend <p>, or a server from |
| * the init tree if appropriate. If both trees are empty, return NULL. |
| * Saturated servers are skipped and requeued. |
| */ |
| static struct server *fwrr_get_next_server(struct proxy *p) |
| { |
| struct server *srv; |
| struct fwrr_group *grp; |
| struct server *full; |
| int switched; |
| |
| if (p->srv_act) |
| grp = &p->lbprm.fwrr.act; |
| else if (p->lbprm.fbck) |
| return p->lbprm.fbck; |
| else if (p->srv_bck) |
| grp = &p->lbprm.fwrr.bck; |
| else |
| return NULL; |
| |
| switched = 0; |
| full = NULL; /* NULL-terminated list of saturated servers */ |
| while (1) { |
| /* if we see an empty group, let's first try to collect weights |
| * which might have recently changed. |
| */ |
| if (!grp->curr_weight) |
| grp->curr_pos = grp->curr_weight = grp->next_weight; |
| |
| /* get first server from the "current" tree. When the end of |
| * the tree is reached, we may have to switch, but only once. |
| */ |
| while (1) { |
| srv = fwrr_get_server_from_group(grp); |
| if (srv) |
| break; |
| if (switched) |
| goto requeue_servers; |
| switched = 1; |
| fwrr_switch_trees(grp); |
| |
| } |
| |
| /* OK, we have a server. However, it may be saturated, in which |
| * case we don't want to reconsider it for now. We'll update |
| * its position and dequeue it anyway, so that we can move it |
| * to a better place afterwards. |
| */ |
| fwrr_update_position(grp, srv); |
| fwrr_dequeue_srv(srv); |
| grp->curr_pos++; |
| if (!srv->maxconn || srv->cur_sess < srv_dynamic_maxconn(srv)) |
| break; |
| |
| /* the server is saturated, let's chain it for later reinsertion */ |
| srv->next_full = full; |
| full = srv; |
| } |
| |
| /* OK, we got the best server, let's update it */ |
| fwrr_queue_srv(srv); |
| |
| requeue_servers: |
| if (unlikely(full != NULL)) { |
| if (switched) { |
| /* the tree has switched, requeue all extracted servers |
| * into "init", because their place was lost, and only |
| * their weight matters. |
| */ |
| do { |
| fwrr_queue_by_weight(grp->init, full); |
| full = full->next_full; |
| } while (full); |
| } else { |
| /* requeue all extracted servers just as if they were consumed |
| * so that they regain their expected place. |
| */ |
| do { |
| fwrr_queue_srv(full); |
| full = full->next_full; |
| } while (full); |
| } |
| } |
| return srv; |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the URL parameter hash method. It looks for a specific parameter in the |
| * URL and hashes it to compute the server ID. This is useful to optimize |
| * performance by avoiding bounces between servers in contexts where sessions |
| * are shared but cookies are not usable. If the parameter is not found, NULL |
| * is returned. If any server is found, it will be returned. If no valid server |
| * is found, NULL is returned. |
| * |
| */ |
| struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len) |
| { |
| unsigned long hash = 0; |
| char *p; |
| int plen; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| if (px->lbprm.map.state & PR_MAP_RECALC) |
| recalc_server_map(px); |
| |
| p = memchr(uri, '?', uri_len); |
| if (!p) |
| return NULL; |
| p++; |
| |
| uri_len -= (p - uri); |
| plen = px->url_param_len; |
| |
| if (uri_len <= plen) |
| return NULL; |
| |
| while (uri_len > plen) { |
| /* Look for the parameter name followed by an equal symbol */ |
| if (p[plen] == '=') { |
| /* skip the equal symbol */ |
| uri = p; |
| p += plen + 1; |
| uri_len -= plen + 1; |
| if (memcmp(uri, px->url_param_name, plen) == 0) { |
| /* OK, we have the parameter here at <uri>, and |
| * the value after the equal sign, at <p> |
| */ |
| while (uri_len && *p != '&') { |
| hash = *p + (hash << 6) + (hash << 16) - hash; |
| uri_len--; |
| p++; |
| } |
| return px->lbprm.map.srv[hash % px->lbprm.tot_weight]; |
| } |
| } |
| |
| /* skip to next parameter */ |
| uri = p; |
| p = memchr(uri, '&', uri_len); |
| if (!p) |
| return NULL; |
| p++; |
| uri_len -= (p - uri); |
| } |
| return NULL; |
| } |
| |
| /* |
| * This function marks the session as 'assigned' in direct or dispatch modes, |
| * or tries to assign one in balance mode, according to the algorithm. It does |
| * nothing if the session had already been assigned a server. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. s->srv will be valid. |
| * SRV_STATUS_NOSRV if no server is available. s->srv = NULL. |
| * SRV_STATUS_FULL if all servers are saturated. s->srv = NULL. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the session flag SN_ASSIGNED to indicate that it does |
| * not need to be called anymore. This usually means that s->srv can be trusted |
| * in balance and direct modes. This flag is not cleared, so it's to the caller |
| * to clear it if required (eg: redispatch). |
| * |
| */ |
| |
| int assign_server(struct session *s) |
| { |
| #ifdef DEBUG_FULL |
| fprintf(stderr,"assign_server : s=%p\n",s); |
| #endif |
| |
| if (s->pend_pos) |
| return SRV_STATUS_INTERNAL; |
| |
| if (!(s->flags & SN_ASSIGNED)) { |
| if (s->be->lbprm.algo & BE_LB_ALGO) { |
| int len; |
| |
| if (s->flags & SN_DIRECT) { |
| s->flags |= SN_ASSIGNED; |
| return SRV_STATUS_OK; |
| } |
| |
| if (!s->be->lbprm.tot_weight) |
| return SRV_STATUS_NOSRV; |
| |
| switch (s->be->lbprm.algo & BE_LB_ALGO) { |
| case BE_LB_ALGO_RR: |
| s->srv = fwrr_get_next_server(s->be); |
| if (!s->srv) |
| return SRV_STATUS_FULL; |
| break; |
| case BE_LB_ALGO_SH: |
| if (s->cli_addr.ss_family == AF_INET) |
| len = 4; |
| else if (s->cli_addr.ss_family == AF_INET6) |
| len = 16; |
| else /* unknown IP family */ |
| return SRV_STATUS_INTERNAL; |
| |
| s->srv = get_server_sh(s->be, |
| (void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, |
| len); |
| break; |
| case BE_LB_ALGO_UH: |
| /* URI hashing */ |
| s->srv = get_server_uh(s->be, |
| s->txn.req.sol + s->txn.req.sl.rq.u, |
| s->txn.req.sl.rq.u_l); |
| break; |
| case BE_LB_ALGO_PH: |
| /* URL Parameter hashing */ |
| s->srv = get_server_ph(s->be, |
| s->txn.req.sol + s->txn.req.sl.rq.u, |
| s->txn.req.sl.rq.u_l); |
| if (!s->srv) { |
| /* parameter not found, fall back to round robin on the map */ |
| s->srv = get_server_rr_with_conns(s->be); |
| if (!s->srv) |
| return SRV_STATUS_FULL; |
| } |
| break; |
| default: |
| /* unknown balancing algorithm */ |
| return SRV_STATUS_INTERNAL; |
| } |
| s->be->cum_lbconn++; |
| s->srv->cum_lbconn++; |
| } |
| else if (s->be->options & PR_O_HTTP_PROXY) { |
| if (!s->srv_addr.sin_addr.s_addr) |
| return SRV_STATUS_NOSRV; |
| } |
| else if (!*(int *)&s->be->dispatch_addr.sin_addr && |
| !(s->fe->options & PR_O_TRANSP)) { |
| return SRV_STATUS_NOSRV; |
| } |
| s->flags |= SN_ASSIGNED; |
| } |
| return SRV_STATUS_OK; |
| } |
| |
| |
| /* |
| * This function assigns a server address to a session, and sets SN_ADDR_SET. |
| * The address is taken from the currently assigned server, or from the |
| * dispatch or transparent address. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the session flag SN_ADDR_SET is set. This flag is |
| * not cleared, so it's to the caller to clear it if required. |
| * |
| */ |
| int assign_server_address(struct session *s) |
| { |
| #ifdef DEBUG_FULL |
| fprintf(stderr,"assign_server_address : s=%p\n",s); |
| #endif |
| |
| if ((s->flags & SN_DIRECT) || (s->be->lbprm.algo & BE_LB_ALGO)) { |
| /* A server is necessarily known for this session */ |
| if (!(s->flags & SN_ASSIGNED)) |
| return SRV_STATUS_INTERNAL; |
| |
| s->srv_addr = s->srv->addr; |
| |
| /* if this server remaps proxied ports, we'll use |
| * the port the client connected to with an offset. */ |
| if (s->srv->state & SRV_MAPPORTS) { |
| if (!(s->fe->options & PR_O_TRANSP) && !(s->flags & SN_FRT_ADDR_SET)) |
| get_frt_addr(s); |
| if (s->frt_addr.ss_family == AF_INET) { |
| s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) + |
| ntohs(((struct sockaddr_in *)&s->frt_addr)->sin_port)); |
| } else { |
| s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) + |
| ntohs(((struct sockaddr_in6 *)&s->frt_addr)->sin6_port)); |
| } |
| } |
| } |
| else if (*(int *)&s->be->dispatch_addr.sin_addr) { |
| /* connect to the defined dispatch addr */ |
| s->srv_addr = s->be->dispatch_addr; |
| } |
| else if (s->fe->options & PR_O_TRANSP) { |
| /* in transparent mode, use the original dest addr if no dispatch specified */ |
| if (!(s->flags & SN_FRT_ADDR_SET)) |
| get_frt_addr(s); |
| |
| memcpy(&s->srv_addr, &s->frt_addr, MIN(sizeof(s->srv_addr), sizeof(s->frt_addr))); |
| /* when we support IPv6 on the backend, we may add other tests */ |
| //qfprintf(stderr, "Cannot get original server address.\n"); |
| //return SRV_STATUS_INTERNAL; |
| } |
| else if (s->be->options & PR_O_HTTP_PROXY) { |
| /* If HTTP PROXY option is set, then server is already assigned |
| * during incoming client request parsing. */ |
| } |
| else { |
| /* no server and no LB algorithm ! */ |
| return SRV_STATUS_INTERNAL; |
| } |
| |
| s->flags |= SN_ADDR_SET; |
| return SRV_STATUS_OK; |
| } |
| |
| |
| /* This function assigns a server to session <s> if required, and can add the |
| * connection to either the assigned server's queue or to the proxy's queue. |
| * |
| * Returns : |
| * |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_NOSRV if no server is available. s->srv = NULL. |
| * SRV_STATUS_QUEUED if the connection has been queued. |
| * SRV_STATUS_FULL if the server(s) is/are saturated and the |
| * connection could not be queued. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| */ |
| int assign_server_and_queue(struct session *s) |
| { |
| struct pendconn *p; |
| int err; |
| |
| if (s->pend_pos) |
| return SRV_STATUS_INTERNAL; |
| |
| if (s->flags & SN_ASSIGNED) { |
| if ((s->flags & SN_REDIRECTABLE) && s->srv && s->srv->rdr_len) { |
| /* server scheduled for redirection, and already assigned. We |
| * don't want to go further nor check the queue. |
| */ |
| return SRV_STATUS_OK; |
| } |
| |
| if (s->srv && s->srv->maxqueue > 0 && s->srv->nbpend >= s->srv->maxqueue) { |
| s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); |
| s->srv = NULL; |
| http_flush_cookie_flags(&s->txn); |
| } else { |
| /* a server does not need to be assigned, perhaps because we're in |
| * direct mode, or in dispatch or transparent modes where the server |
| * is not needed. |
| */ |
| if (s->srv && |
| s->srv->maxconn && s->srv->cur_sess >= srv_dynamic_maxconn(s->srv)) { |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_FULL; |
| } |
| return SRV_STATUS_OK; |
| } |
| } |
| |
| /* a server needs to be assigned */ |
| err = assign_server(s); |
| switch (err) { |
| case SRV_STATUS_OK: |
| if ((s->flags & SN_REDIRECTABLE) && s->srv && s->srv->rdr_len) { |
| /* server supporting redirection and it is possible. |
| * Let's report that and ignore maxconn ! |
| */ |
| return SRV_STATUS_OK; |
| } |
| |
| /* in balance mode, we might have servers with connection limits */ |
| if (s->srv && |
| s->srv->maxconn && s->srv->cur_sess >= srv_dynamic_maxconn(s->srv)) { |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_FULL; |
| } |
| return SRV_STATUS_OK; |
| |
| case SRV_STATUS_FULL: |
| /* queue this session into the proxy's queue */ |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_FULL; |
| |
| case SRV_STATUS_NOSRV: |
| case SRV_STATUS_INTERNAL: |
| return err; |
| default: |
| return SRV_STATUS_INTERNAL; |
| } |
| } |
| |
| /* |
| * This function initiates a connection to the server assigned to this session |
| * (s->srv, s->srv_addr). It will assign a server if none is assigned yet. |
| * It can return one of : |
| * - SN_ERR_NONE if everything's OK |
| * - SN_ERR_SRVTO if there are no more servers |
| * - SN_ERR_SRVCL if the connection was refused by the server |
| * - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) |
| * - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) |
| * - SN_ERR_INTERNAL for any other purely internal errors |
| * Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted. |
| */ |
| int connect_server(struct session *s) |
| { |
| int fd, err; |
| |
| if (!(s->flags & SN_ADDR_SET)) { |
| err = assign_server_address(s); |
| if (err != SRV_STATUS_OK) |
| return SN_ERR_INTERNAL; |
| } |
| |
| if ((fd = s->srv_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) { |
| qfprintf(stderr, "Cannot get a server socket.\n"); |
| |
| if (errno == ENFILE) |
| send_log(s->be, LOG_EMERG, |
| "Proxy %s reached system FD limit at %d. Please check system tunables.\n", |
| s->be->id, maxfd); |
| else if (errno == EMFILE) |
| send_log(s->be, LOG_EMERG, |
| "Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n", |
| s->be->id, maxfd); |
| else if (errno == ENOBUFS || errno == ENOMEM) |
| send_log(s->be, LOG_EMERG, |
| "Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n", |
| s->be->id, maxfd); |
| /* this is a resource error */ |
| return SN_ERR_RESOURCE; |
| } |
| |
| if (fd >= global.maxsock) { |
| /* do not log anything there, it's a normal condition when this option |
| * is used to serialize connections to a server ! |
| */ |
| Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n"); |
| close(fd); |
| return SN_ERR_PRXCOND; /* it is a configuration limit */ |
| } |
| |
| #ifdef CONFIG_HAP_TCPSPLICE |
| if ((s->fe->options & s->be->options) & PR_O_TCPSPLICE) { |
| /* TCP splicing supported by both FE and BE */ |
| tcp_splice_initfd(s->cli_fd, fd); |
| } |
| #endif |
| |
| if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) || |
| (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) { |
| qfprintf(stderr,"Cannot set client socket to non blocking mode.\n"); |
| close(fd); |
| return SN_ERR_INTERNAL; |
| } |
| |
| if (s->be->options & PR_O_TCP_SRV_KA) |
| setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); |
| |
| if (s->be->options & PR_O_TCP_NOLING) |
| setsockopt(fd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); |
| |
| /* allow specific binding : |
| * - server-specific at first |
| * - proxy-specific next |
| */ |
| if (s->srv != NULL && s->srv->state & SRV_BIND_SRC) { |
| struct sockaddr_in *remote = NULL; |
| int ret, flags = 0; |
| |
| #if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY) |
| switch (s->srv->state & SRV_TPROXY_MASK) { |
| case SRV_TPROXY_ADDR: |
| remote = (struct sockaddr_in *)&s->srv->tproxy_addr; |
| flags = 3; |
| break; |
| case SRV_TPROXY_CLI: |
| flags |= 2; |
| /* fall through */ |
| case SRV_TPROXY_CIP: |
| /* FIXME: what can we do if the client connects in IPv6 ? */ |
| flags |= 1; |
| remote = (struct sockaddr_in *)&s->cli_addr; |
| break; |
| } |
| #endif |
| ret = tcpv4_bind_socket(fd, flags, &s->srv->source_addr, remote); |
| if (ret) { |
| close(fd); |
| if (ret == 1) { |
| Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n", |
| s->be->id, s->srv->id); |
| send_log(s->be, LOG_EMERG, |
| "Cannot bind to source address before connect() for server %s/%s.\n", |
| s->be->id, s->srv->id); |
| } else { |
| Alert("Cannot bind to tproxy source address before connect() for server %s/%s. Aborting.\n", |
| s->be->id, s->srv->id); |
| send_log(s->be, LOG_EMERG, |
| "Cannot bind to tproxy source address before connect() for server %s/%s.\n", |
| s->be->id, s->srv->id); |
| } |
| return SN_ERR_RESOURCE; |
| } |
| } |
| else if (s->be->options & PR_O_BIND_SRC) { |
| struct sockaddr_in *remote = NULL; |
| int ret, flags = 0; |
| |
| #if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY) |
| switch (s->be->options & PR_O_TPXY_MASK) { |
| case PR_O_TPXY_ADDR: |
| remote = (struct sockaddr_in *)&s->be->tproxy_addr; |
| flags = 3; |
| break; |
| case PR_O_TPXY_CLI: |
| flags |= 2; |
| /* fall through */ |
| case PR_O_TPXY_CIP: |
| /* FIXME: what can we do if the client connects in IPv6 ? */ |
| flags |= 1; |
| remote = (struct sockaddr_in *)&s->cli_addr; |
| break; |
| } |
| #endif |
| ret = tcpv4_bind_socket(fd, flags, &s->be->source_addr, remote); |
| if (ret) { |
| close(fd); |
| if (ret == 1) { |
| Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n", |
| s->be->id); |
| send_log(s->be, LOG_EMERG, |
| "Cannot bind to source address before connect() for proxy %s.\n", |
| s->be->id); |
| } else { |
| Alert("Cannot bind to tproxy source address before connect() for proxy %s. Aborting.\n", |
| s->be->id); |
| send_log(s->be, LOG_EMERG, |
| "Cannot bind to tproxy source address before connect() for proxy %s.\n", |
| s->be->id); |
| } |
| return SN_ERR_RESOURCE; |
| } |
| } |
| |
| if ((connect(fd, (struct sockaddr *)&s->srv_addr, sizeof(s->srv_addr)) == -1) && |
| (errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) { |
| |
| if (errno == EAGAIN || errno == EADDRINUSE) { |
| char *msg; |
| if (errno == EAGAIN) /* no free ports left, try again later */ |
| msg = "no free ports"; |
| else |
| msg = "local address already in use"; |
| |
| qfprintf(stderr,"Cannot connect: %s.\n",msg); |
| close(fd); |
| send_log(s->be, LOG_EMERG, |
| "Connect() failed for server %s/%s: %s.\n", |
| s->be->id, s->srv->id, msg); |
| return SN_ERR_RESOURCE; |
| } else if (errno == ETIMEDOUT) { |
| //qfprintf(stderr,"Connect(): ETIMEDOUT"); |
| close(fd); |
| return SN_ERR_SRVTO; |
| } else { |
| // (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM) |
| //qfprintf(stderr,"Connect(): %d", errno); |
| close(fd); |
| return SN_ERR_SRVCL; |
| } |
| } |
| |
| fdtab[fd].owner = s->task; |
| fdtab[fd].state = FD_STCONN; /* connection in progress */ |
| fdtab[fd].cb[DIR_RD].f = &stream_sock_read; |
| fdtab[fd].cb[DIR_RD].b = s->rep; |
| fdtab[fd].cb[DIR_WR].f = &stream_sock_write; |
| fdtab[fd].cb[DIR_WR].b = s->req; |
| |
| fdtab[fd].peeraddr = (struct sockaddr *)&s->srv_addr; |
| fdtab[fd].peerlen = sizeof(s->srv_addr); |
| |
| EV_FD_SET(fd, DIR_WR); /* for connect status */ |
| |
| fd_insert(fd); |
| if (s->srv) { |
| s->srv->cur_sess++; |
| if (s->srv->cur_sess > s->srv->cur_sess_max) |
| s->srv->cur_sess_max = s->srv->cur_sess; |
| } |
| |
| if (!tv_add_ifset(&s->req->cex, &now, &s->be->timeout.connect)) |
| tv_eternity(&s->req->cex); |
| return SN_ERR_NONE; /* connection is OK */ |
| } |
| |
| |
| /* |
| * This function checks the retry count during the connect() job. |
| * It updates the session's srv_state and retries, so that the caller knows |
| * what it has to do. It uses the last connection error to set the log when |
| * it expires. It returns 1 when it has expired, and 0 otherwise. |
| */ |
| int srv_count_retry_down(struct session *t, int conn_err) |
| { |
| /* we are in front of a retryable error */ |
| t->conn_retries--; |
| if (t->srv) |
| t->srv->retries++; |
| t->be->retries++; |
| |
| if (t->conn_retries < 0) { |
| /* if not retryable anymore, let's abort */ |
| tv_eternity(&t->req->cex); |
| srv_close_with_err(t, conn_err, SN_FINST_C, |
| 503, error_message(t, HTTP_ERR_503)); |
| if (t->srv) |
| t->srv->cum_sess++; |
| if (t->srv) |
| t->srv->failed_conns++; |
| t->be->failed_conns++; |
| |
| /* We used to have a free connection slot. Since we'll never use it, |
| * we have to inform the server that it may be used by another session. |
| */ |
| if (may_dequeue_tasks(t->srv, t->be)) |
| task_wakeup(t->srv->queue_mgt); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * This function performs the retryable part of the connect() job. |
| * It updates the session's srv_state and retries, so that the caller knows |
| * what it has to do. It returns 1 when it breaks out of the loop, or 0 if |
| * it needs to redispatch. |
| */ |
| int srv_retryable_connect(struct session *t) |
| { |
| int conn_err; |
| |
| /* This loop ensures that we stop before the last retry in case of a |
| * redispatchable server. |
| */ |
| do { |
| /* initiate a connection to the server */ |
| conn_err = connect_server(t); |
| switch (conn_err) { |
| |
| case SN_ERR_NONE: |
| //fprintf(stderr,"0: c=%d, s=%d\n", c, s); |
| t->srv_state = SV_STCONN; |
| if (t->srv) |
| t->srv->cum_sess++; |
| return 1; |
| |
| case SN_ERR_INTERNAL: |
| tv_eternity(&t->req->cex); |
| srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C, |
| 500, error_message(t, HTTP_ERR_500)); |
| if (t->srv) |
| t->srv->cum_sess++; |
| if (t->srv) |
| t->srv->failed_conns++; |
| t->be->failed_conns++; |
| /* release other sessions waiting for this server */ |
| if (may_dequeue_tasks(t->srv, t->be)) |
| task_wakeup(t->srv->queue_mgt); |
| return 1; |
| } |
| /* ensure that we have enough retries left */ |
| if (srv_count_retry_down(t, conn_err)) { |
| return 1; |
| } |
| } while (t->srv == NULL || t->conn_retries > 0 || !(t->be->options & PR_O_REDISP)); |
| |
| /* We're on our last chance, and the REDISP option was specified. |
| * We will ignore cookie and force to balance or use the dispatcher. |
| */ |
| /* let's try to offer this slot to anybody */ |
| if (may_dequeue_tasks(t->srv, t->be)) |
| task_wakeup(t->srv->queue_mgt); |
| |
| if (t->srv) { |
| t->srv->cum_sess++; |
| t->srv->failed_conns++; |
| t->srv->redispatches++; |
| } |
| t->be->redispatches++; |
| |
| t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); |
| t->flags |= SN_REDISP; |
| t->srv = NULL; /* it's left to the dispatcher to choose a server */ |
| http_flush_cookie_flags(&t->txn); |
| return 0; |
| } |
| |
| |
| /* This function performs the "redispatch" part of a connection attempt. It |
| * will assign a server if required, queue the connection if required, and |
| * handle errors that might arise at this level. It can change the server |
| * state. It will return 1 if it encounters an error, switches the server |
| * state, or has to queue a connection. Otherwise, it will return 0 indicating |
| * that the connection is ready to use. |
| */ |
| |
| int srv_redispatch_connect(struct session *t) |
| { |
| int conn_err; |
| |
| /* We know that we don't have any connection pending, so we will |
| * try to get a new one, and wait in this state if it's queued |
| */ |
| conn_err = assign_server_and_queue(t); |
| switch (conn_err) { |
| case SRV_STATUS_OK: |
| break; |
| |
| case SRV_STATUS_NOSRV: |
| /* note: it is guaranteed that t->srv == NULL here */ |
| tv_eternity(&t->req->cex); |
| srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_C, |
| 503, error_message(t, HTTP_ERR_503)); |
| if (t->srv) |
| t->srv->cum_sess++; |
| if (t->srv) |
| t->srv->failed_conns++; |
| t->be->failed_conns++; |
| |
| return 1; |
| |
| case SRV_STATUS_QUEUED: |
| /* note: we use the connect expiration date for the queue. */ |
| if (!tv_add_ifset(&t->req->cex, &now, &t->be->timeout.queue)) |
| tv_eternity(&t->req->cex); |
| t->srv_state = SV_STIDLE; |
| /* do nothing else and do not wake any other session up */ |
| return 1; |
| |
| case SRV_STATUS_FULL: |
| case SRV_STATUS_INTERNAL: |
| default: |
| tv_eternity(&t->req->cex); |
| srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C, |
| 500, error_message(t, HTTP_ERR_500)); |
| if (t->srv) |
| t->srv->cum_sess++; |
| if (t->srv) |
| t->srv->failed_conns++; |
| t->be->failed_conns++; |
| |
| /* release other sessions waiting for this server */ |
| if (may_dequeue_tasks(t->srv, t->be)) |
| task_wakeup(t->srv->queue_mgt); |
| return 1; |
| } |
| /* if we get here, it's because we got SRV_STATUS_OK, which also |
| * means that the connection has not been queued. |
| */ |
| return 0; |
| } |
| |
| int be_downtime(struct proxy *px) { |
| if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time |
| return px->down_time; |
| |
| return now.tv_sec - px->last_change + px->down_time; |
| } |
| |
| /* This function parses a "balance" statement in a backend section describing |
| * <curproxy>. It returns -1 if there is any error, otherwise zero. If it |
| * returns -1, it may write an error message into ther <err> buffer, for at |
| * most <errlen> bytes, trailing zero included. The trailing '\n' will not be |
| * written. The function must be called with <args> pointing to the first word |
| * after "balance". |
| */ |
| int backend_parse_balance(const char **args, char *err, int errlen, struct proxy *curproxy) |
| { |
| if (!*(args[0])) { |
| /* if no option is set, use round-robin by default */ |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| return 0; |
| } |
| |
| if (!strcmp(args[0], "roundrobin")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| } |
| else if (!strcmp(args[0], "source")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_SH; |
| } |
| else if (!strcmp(args[0], "uri")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_UH; |
| } |
| else if (!strcmp(args[0], "url_param")) { |
| if (!*args[1]) { |
| snprintf(err, errlen, "'balance url_param' requires an URL parameter name."); |
| return -1; |
| } |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_PH; |
| if (curproxy->url_param_name) |
| free(curproxy->url_param_name); |
| curproxy->url_param_name = strdup(args[1]); |
| curproxy->url_param_len = strlen(args[1]); |
| } |
| else { |
| snprintf(err, errlen, "'balance' only supports 'roundrobin', 'source', 'uri' and 'url_param' options."); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /************************************************************************/ |
| /* All supported keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* set test->i to the number of enabled servers on the proxy */ |
| static int |
| acl_fetch_nbsrv(struct proxy *px, struct session *l4, void *l7, int dir, |
| struct acl_expr *expr, struct acl_test *test) |
| { |
| test->flags = ACL_TEST_F_VOL_TEST; |
| if (expr->arg_len) { |
| /* another proxy was designated, we must look for it */ |
| for (px = proxy; px; px = px->next) |
| if ((px->cap & PR_CAP_BE) && !strcmp(px->id, expr->arg.str)) |
| break; |
| } |
| if (!px) |
| return 0; |
| |
| if (px->srv_act) |
| test->i = px->srv_act; |
| else if (px->lbprm.fbck) |
| test->i = 1; |
| else |
| test->i = px->srv_bck; |
| |
| return 1; |
| } |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct acl_kw_list acl_kws = {{ },{ |
| { "nbsrv", acl_parse_int, acl_fetch_nbsrv, acl_match_int }, |
| { NULL, NULL, NULL, NULL }, |
| }}; |
| |
| |
| __attribute__((constructor)) |
| static void __backend_init(void) |
| { |
| acl_register_keywords(&acl_kws); |
| } |
| |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |