| /* |
| * Connection management functions |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/namespace.h> |
| |
| #include <proto/connection.h> |
| #include <proto/fd.h> |
| #include <proto/frontend.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/stream_interface.h> |
| #include <proto/sample.h> |
| |
| #ifdef USE_OPENSSL |
| #include <proto/ssl_sock.h> |
| #endif |
| |
| struct pool_head *pool2_connection; |
| struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, }; |
| |
| /* perform minimal intializations, report 0 in case of error, 1 if OK. */ |
| int init_connection() |
| { |
| pool2_connection = create_pool("connection", sizeof (struct connection), MEM_F_SHARED); |
| return pool2_connection != NULL; |
| } |
| |
| /* I/O callback for fd-based connections. It calls the read/write handlers |
| * provided by the connection's sock_ops, which must be valid. |
| */ |
| void conn_fd_handler(int fd) |
| { |
| struct connection *conn = fdtab[fd].owner; |
| unsigned int flags; |
| |
| if (unlikely(!conn)) |
| return; |
| |
| conn_refresh_polling_flags(conn); |
| conn->flags |= CO_FL_WILL_UPDATE; |
| |
| flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */ |
| |
| process_handshake: |
| /* The handshake callbacks are called in sequence. If either of them is |
| * missing something, it must enable the required polling at the socket |
| * layer of the connection. Polling state is not guaranteed when entering |
| * these handlers, so any handshake handler which does not complete its |
| * work must explicitly disable events it's not interested in. Error |
| * handling is also performed here in order to reduce the number of tests |
| * around. |
| */ |
| while (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR))) { |
| if (unlikely(conn->flags & CO_FL_ERROR)) |
| goto leave; |
| |
| if (conn->flags & CO_FL_ACCEPT_CIP) |
| if (!conn_recv_netscaler_cip(conn, CO_FL_ACCEPT_CIP)) |
| goto leave; |
| |
| if (conn->flags & CO_FL_ACCEPT_PROXY) |
| if (!conn_recv_proxy(conn, CO_FL_ACCEPT_PROXY)) |
| goto leave; |
| |
| if (conn->flags & CO_FL_SEND_PROXY) |
| if (!conn_si_send_proxy(conn, CO_FL_SEND_PROXY)) |
| goto leave; |
| #ifdef USE_OPENSSL |
| if (conn->flags & CO_FL_SSL_WAIT_HS) |
| if (!ssl_sock_handshake(conn, CO_FL_SSL_WAIT_HS)) |
| goto leave; |
| #endif |
| } |
| |
| /* Once we're purely in the data phase, we disable handshake polling */ |
| if (!(conn->flags & CO_FL_POLL_SOCK)) |
| __conn_sock_stop_both(conn); |
| |
| /* The connection owner might want to be notified about an end of |
| * handshake indicating the connection is ready, before we proceed with |
| * any data exchange. The callback may fail and cause the connection to |
| * be destroyed, thus we must not use it anymore and should immediately |
| * leave instead. The caller must immediately unregister itself once |
| * called. |
| */ |
| if (conn->xprt_done_cb && conn->xprt_done_cb(conn) < 0) |
| return; |
| |
| if (conn->xprt && fd_send_ready(fd) && |
| ((conn->flags & (CO_FL_XPRT_WR_ENA|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_XPRT_WR_ENA)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| conn->data->send(conn); |
| } |
| |
| /* The data transfer starts here and stops on error and handshakes. Note |
| * that we must absolutely test conn->xprt at each step in case it suddenly |
| * changes due to a quick unexpected close(). |
| */ |
| if (conn->xprt && fd_recv_ready(fd) && |
| ((conn->flags & (CO_FL_XPRT_RD_ENA|CO_FL_WAIT_ROOM|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_XPRT_RD_ENA)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| conn->data->recv(conn); |
| } |
| |
| /* It may happen during the data phase that a handshake is |
| * enabled again (eg: SSL) |
| */ |
| if (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR))) |
| goto process_handshake; |
| |
| if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN)) { |
| /* still waiting for a connection to establish and nothing was |
| * attempted yet to probe the connection. Then let's retry the |
| * connect(). |
| */ |
| if (!tcp_connect_probe(conn)) |
| goto leave; |
| } |
| leave: |
| /* Verify if the connection just established. */ |
| if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) |
| conn->flags |= CO_FL_CONNECTED; |
| |
| /* The connection owner might want to be notified about failures to |
| * complete the handshake. The callback may fail and cause the |
| * connection to be destroyed, thus we must not use it anymore and |
| * should immediately leave instead. The caller must immediately |
| * unregister itself once called. |
| */ |
| if (((conn->flags ^ flags) & CO_FL_NOTIFY_DONE) && |
| conn->xprt_done_cb && conn->xprt_done_cb(conn) < 0) |
| return; |
| |
| /* The wake callback is normally used to notify the data layer about |
| * data layer activity (successful send/recv), connection establishment, |
| * shutdown and fatal errors. We need to consider the following |
| * situations to wake up the data layer : |
| * - change among the CO_FL_NOTIFY_DATA flags : |
| * {DATA,SOCK}_{RD,WR}_SH, ERROR, |
| * - absence of any of {L4,L6}_CONN and CONNECTED, indicating the |
| * end of handshake and transition to CONNECTED |
| * - raise of CONNECTED with HANDSHAKE down |
| * - end of HANDSHAKE with CONNECTED set |
| * - regular data layer activity |
| * |
| * Note that the wake callback is allowed to release the connection and |
| * the fd (and return < 0 in this case). |
| */ |
| if ((((conn->flags ^ flags) & CO_FL_NOTIFY_DATA) || |
| ((flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) != CO_FL_CONNECTED && |
| (conn->flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) == CO_FL_CONNECTED)) && |
| conn->data->wake(conn) < 0) |
| return; |
| |
| /* remove the events before leaving */ |
| fdtab[fd].ev &= FD_POLL_STICKY; |
| |
| /* commit polling changes */ |
| conn->flags &= ~CO_FL_WILL_UPDATE; |
| conn_cond_update_polling(conn); |
| return; |
| } |
| |
| /* Update polling on connection <c>'s file descriptor depending on its current |
| * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN |
| * in CO_FL_WAIT_*, and the data layer expectations indicated by CO_FL_XPRT_*. |
| * The connection flags are updated with the new flags at the end of the |
| * operation. Polling is totally disabled if an error was reported. |
| */ |
| void conn_update_xprt_polling(struct connection *c) |
| { |
| unsigned int f = c->flags; |
| |
| if (!conn_ctrl_ready(c)) |
| return; |
| |
| /* update read status if needed */ |
| if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_XPRT_RD_ENA)) == CO_FL_XPRT_RD_ENA)) { |
| fd_want_recv(c->handle.fd); |
| f |= CO_FL_CURR_RD_ENA; |
| } |
| else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_XPRT_RD_ENA)) == CO_FL_CURR_RD_ENA)) { |
| fd_stop_recv(c->handle.fd); |
| f &= ~CO_FL_CURR_RD_ENA; |
| } |
| |
| /* update write status if needed */ |
| if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_XPRT_WR_ENA)) == CO_FL_XPRT_WR_ENA)) { |
| fd_want_send(c->handle.fd); |
| f |= CO_FL_CURR_WR_ENA; |
| } |
| else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_XPRT_WR_ENA)) == CO_FL_CURR_WR_ENA)) { |
| fd_stop_send(c->handle.fd); |
| f &= ~CO_FL_CURR_WR_ENA; |
| } |
| c->flags = f; |
| } |
| |
| /* Update polling on connection <c>'s file descriptor depending on its current |
| * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN |
| * in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*. |
| * The connection flags are updated with the new flags at the end of the |
| * operation. Polling is totally disabled if an error was reported. |
| */ |
| void conn_update_sock_polling(struct connection *c) |
| { |
| unsigned int f = c->flags; |
| |
| if (!conn_ctrl_ready(c)) |
| return; |
| |
| /* update read status if needed */ |
| if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_SOCK_RD_ENA)) { |
| fd_want_recv(c->handle.fd); |
| f |= CO_FL_CURR_RD_ENA; |
| } |
| else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_CURR_RD_ENA)) { |
| fd_stop_recv(c->handle.fd); |
| f &= ~CO_FL_CURR_RD_ENA; |
| } |
| |
| /* update write status if needed */ |
| if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_SOCK_WR_ENA)) { |
| fd_want_send(c->handle.fd); |
| f |= CO_FL_CURR_WR_ENA; |
| } |
| else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_CURR_WR_ENA)) { |
| fd_stop_send(c->handle.fd); |
| f &= ~CO_FL_CURR_WR_ENA; |
| } |
| c->flags = f; |
| } |
| |
| /* Send a message over an established connection. It makes use of send() and |
| * returns the same return code and errno. If the socket layer is not ready yet |
| * then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked |
| * as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns |
| * EMSGSIZE if called with a zero length message. The purpose is to simplify |
| * some rare attempts to directly write on the socket from above the connection |
| * (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send". |
| * It automatically retries on EINTR. Other errors cause the connection to be |
| * marked as in error state. It takes similar arguments as send() except the |
| * first one which is the connection instead of the file descriptor. Note, |
| * MSG_DONTWAIT and MSG_NOSIGNAL are forced on the flags. |
| */ |
| int conn_sock_send(struct connection *conn, const void *buf, int len, int flags) |
| { |
| int ret; |
| |
| ret = -1; |
| errno = ENOTSOCK; |
| |
| if (conn->flags & CO_FL_SOCK_WR_SH) |
| goto fail; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| errno = EMSGSIZE; |
| if (!len) |
| goto fail; |
| |
| if (!fd_send_ready(conn->handle.fd)) |
| goto wait; |
| |
| do { |
| ret = send(conn->handle.fd, buf, len, flags | MSG_DONTWAIT | MSG_NOSIGNAL); |
| } while (ret < 0 && errno == EINTR); |
| |
| |
| if (ret > 0) |
| return ret; |
| |
| if (ret == 0 || errno == EAGAIN || errno == ENOTCONN) { |
| wait: |
| fd_cant_send(conn->handle.fd); |
| return 0; |
| } |
| fail: |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR; |
| return ret; |
| } |
| |
| /* Drains possibly pending incoming data on the file descriptor attached to the |
| * connection and update the connection's flags accordingly. This is used to |
| * know whether we need to disable lingering on close. Returns non-zero if it |
| * is safe to close without disabling lingering, otherwise zero. The SOCK_RD_SH |
| * flag may also be updated if the incoming shutdown was reported by the drain() |
| * function. |
| */ |
| int conn_sock_drain(struct connection *conn) |
| { |
| if (!conn_ctrl_ready(conn)) |
| return 1; |
| |
| if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) |
| return 1; |
| |
| if (fdtab[conn->handle.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) { |
| fdtab[conn->handle.fd].linger_risk = 0; |
| } |
| else { |
| if (!fd_recv_ready(conn->handle.fd)) |
| return 0; |
| |
| /* disable draining if we were called and have no drain function */ |
| if (!conn->ctrl->drain) { |
| __conn_xprt_stop_recv(conn); |
| return 0; |
| } |
| |
| if (conn->ctrl->drain(conn->handle.fd) <= 0) |
| return 0; |
| } |
| |
| conn->flags |= CO_FL_SOCK_RD_SH; |
| return 1; |
| } |
| |
| /* |
| * Get data length from tlv |
| */ |
| static int get_tlv_length(const struct tlv *src) |
| { |
| return (src->length_hi << 8) | src->length_lo; |
| } |
| |
| /* This handshake handler waits a PROXY protocol header at the beginning of the |
| * raw data stream. The header looks like this : |
| * |
| * "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n" |
| * |
| * There must be exactly one space between each field. Fields are : |
| * - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6". |
| * - SRC3 : layer 3 (eg: IP) source address in standard text form |
| * - DST3 : layer 3 (eg: IP) destination address in standard text form |
| * - SRC4 : layer 4 (eg: TCP port) source address in standard text form |
| * - DST4 : layer 4 (eg: TCP port) destination address in standard text form |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT wrap. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_proxy(struct connection *conn, int flag) |
| { |
| char *line, *end; |
| struct proxy_hdr_v2 *hdr_v2; |
| const char v2sig[] = PP2_SIGNATURE; |
| int tlv_length = 0; |
| int tlv_offset = 0; |
| |
| /* we might have been called just after an asynchronous shutr */ |
| if (conn->flags & CO_FL_SOCK_RD_SH) |
| goto fail; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| return 0; |
| |
| do { |
| trash.len = recv(conn->handle.fd, trash.str, trash.size, MSG_PEEK); |
| if (trash.len < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN) { |
| fd_cant_recv(conn->handle.fd); |
| return 0; |
| } |
| goto recv_abort; |
| } |
| } while (0); |
| |
| if (!trash.len) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_PRX_EMPTY; |
| goto fail; |
| } |
| |
| if (trash.len < 6) |
| goto missing; |
| |
| line = trash.str; |
| end = trash.str + trash.len; |
| |
| /* Decode a possible proxy request, fail early if it does not match */ |
| if (strncmp(line, "PROXY ", 6) != 0) |
| goto not_v1; |
| |
| line += 6; |
| if (trash.len < 9) /* shortest possible line */ |
| goto missing; |
| |
| if (memcmp(line, "TCP4 ", 5) == 0) { |
| u32 src3, dst3, sport, dport; |
| |
| line += 5; |
| |
| src3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dst3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| sport = read_uint((const char **)&line, end); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dport = read_uint((const char **)&line, end); |
| if (line > end - 2) |
| goto missing; |
| if (*line++ != '\r') |
| goto bad_header; |
| if (*line++ != '\n') |
| goto bad_header; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = htonl(src3); |
| ((struct sockaddr_in *)&conn->addr.from)->sin_port = htons(sport); |
| |
| ((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = htonl(dst3); |
| ((struct sockaddr_in *)&conn->addr.to)->sin_port = htons(dport); |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (memcmp(line, "TCP6 ", 5) == 0) { |
| u32 sport, dport; |
| char *src_s; |
| char *dst_s, *sport_s, *dport_s; |
| struct in6_addr src3, dst3; |
| |
| line += 5; |
| |
| src_s = line; |
| dst_s = sport_s = dport_s = NULL; |
| while (1) { |
| if (line > end - 2) { |
| goto missing; |
| } |
| else if (*line == '\r') { |
| *line = 0; |
| line++; |
| if (*line++ != '\n') |
| goto bad_header; |
| break; |
| } |
| |
| if (*line == ' ') { |
| *line = 0; |
| if (!dst_s) |
| dst_s = line + 1; |
| else if (!sport_s) |
| sport_s = line + 1; |
| else if (!dport_s) |
| dport_s = line + 1; |
| } |
| line++; |
| } |
| |
| if (!dst_s || !sport_s || !dport_s) |
| goto bad_header; |
| |
| sport = read_uint((const char **)&sport_s,dport_s - 1); |
| if (*sport_s != 0) |
| goto bad_header; |
| |
| dport = read_uint((const char **)&dport_s,line - 2); |
| if (*dport_s != 0) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1) |
| goto bad_header; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, &src3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = htons(sport); |
| |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, &dst3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = htons(dport); |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) { |
| /* This can be a UNIX socket forwarded by an haproxy upstream */ |
| line += 9; |
| } |
| else { |
| /* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */ |
| conn->err_code = CO_ER_PRX_BAD_PROTO; |
| goto fail; |
| } |
| |
| trash.len = line - trash.str; |
| goto eat_header; |
| |
| not_v1: |
| /* try PPv2 */ |
| if (trash.len < PP2_HEADER_LEN) |
| goto missing; |
| |
| hdr_v2 = (struct proxy_hdr_v2 *)trash.str; |
| |
| if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 || |
| (hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) { |
| conn->err_code = CO_ER_PRX_NOT_HDR; |
| goto fail; |
| } |
| |
| if (trash.len < PP2_HEADER_LEN + ntohs(hdr_v2->len)) |
| goto missing; |
| |
| switch (hdr_v2->ver_cmd & PP2_CMD_MASK) { |
| case 0x01: /* PROXY command */ |
| switch (hdr_v2->fam) { |
| case 0x11: /* TCPv4 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET) |
| goto bad_header; |
| |
| ((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr; |
| ((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_v2->addr.ip4.src_port; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_v2->addr.ip4.dst_port; |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET; |
| tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET; |
| break; |
| case 0x21: /* TCPv6 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6) |
| goto bad_header; |
| |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16); |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_v2->addr.ip6.src_port; |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16); |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_v2->addr.ip6.dst_port; |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6; |
| tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET6; |
| break; |
| } |
| |
| /* TLV parsing */ |
| if (tlv_length > 0) { |
| while (tlv_offset + TLV_HEADER_SIZE <= trash.len) { |
| const struct tlv *tlv_packet = (struct tlv *) &trash.str[tlv_offset]; |
| const int tlv_len = get_tlv_length(tlv_packet); |
| tlv_offset += tlv_len + TLV_HEADER_SIZE; |
| |
| switch (tlv_packet->type) { |
| #ifdef CONFIG_HAP_NS |
| case PP2_TYPE_NETNS: { |
| const struct netns_entry *ns; |
| ns = netns_store_lookup((char*)tlv_packet->value, tlv_len); |
| if (ns) |
| conn->proxy_netns = ns; |
| break; |
| } |
| #endif |
| default: |
| break; |
| } |
| } |
| } |
| |
| /* unsupported protocol, keep local connection address */ |
| break; |
| case 0x00: /* LOCAL command */ |
| /* keep local connection address for LOCAL */ |
| break; |
| default: |
| goto bad_header; /* not a supported command */ |
| } |
| |
| trash.len = PP2_HEADER_LEN + ntohs(hdr_v2->len); |
| goto eat_header; |
| |
| eat_header: |
| /* remove the PROXY line from the request. For this we re-read the |
| * exact line at once. If we don't get the exact same result, we |
| * fail. |
| */ |
| do { |
| int len2 = recv(conn->handle.fd, trash.str, trash.len, 0); |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.len) |
| goto recv_abort; |
| } while (0); |
| |
| conn->flags &= ~flag; |
| conn->flags |= CO_FL_RCVD_PROXY; |
| return 1; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_PRX_TRUNCATED; |
| goto fail; |
| |
| bad_header: |
| /* This is not a valid proxy protocol header */ |
| conn->err_code = CO_ER_PRX_BAD_HDR; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_PRX_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| __conn_sock_stop_both(conn); |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| /* This handshake handler waits a NetScaler Client IP insertion header |
| * at the beginning of the raw data stream. The header looks like this: |
| * |
| * 4 bytes: CIP magic number |
| * 4 bytes: Header length |
| * 20+ bytes: Header of the last IP packet sent by the client during |
| * TCP handshake. |
| * 20+ bytes: Header of the last TCP packet sent by the client during |
| * TCP handshake. |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT be |
| * fragmented. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_netscaler_cip(struct connection *conn, int flag) |
| { |
| char *line; |
| uint32_t cip_magic; |
| uint32_t cip_len; |
| uint8_t ip_v; |
| |
| /* we might have been called just after an asynchronous shutr */ |
| if (conn->flags & CO_FL_SOCK_RD_SH) |
| goto fail; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| return 0; |
| |
| do { |
| trash.len = recv(conn->handle.fd, trash.str, trash.size, MSG_PEEK); |
| if (trash.len < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN) { |
| fd_cant_recv(conn->handle.fd); |
| return 0; |
| } |
| goto recv_abort; |
| } |
| } while (0); |
| |
| if (!trash.len) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_CIP_EMPTY; |
| goto fail; |
| } |
| |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length */ |
| if (trash.len < 8) |
| goto missing; |
| |
| line = trash.str; |
| |
| cip_magic = ntohl(*(uint32_t *)line); |
| cip_len = ntohl(*(uint32_t *)(line+4)); |
| |
| /* Decode a possible NetScaler Client IP request, fail early if |
| * it does not match */ |
| if (cip_magic != objt_listener(conn->target)->bind_conf->ns_cip_magic) |
| goto bad_magic; |
| |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length, minimal IP header */ |
| if (trash.len < 28) |
| goto missing; |
| |
| line += 8; |
| |
| /* Get IP version from the first four bits */ |
| ip_v = (*line & 0xf0) >> 4; |
| |
| if (ip_v == 4) { |
| struct ip *hdr_ip4; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip4 = (struct ip *)line; |
| |
| if (trash.len < (8 + ntohs(hdr_ip4->ip_len))) { |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length, IPv4 header */ |
| goto missing; |
| } else if (hdr_ip4->ip_p != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } else if (trash.len < (28 + ntohs(hdr_ip4->ip_len))) { |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length, IPv4 header, TCP header */ |
| goto missing; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4)); |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr; |
| ((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr; |
| ((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_tcp->dest; |
| |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (ip_v == 6) { |
| struct ip6_hdr *hdr_ip6; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip6 = (struct ip6_hdr *)line; |
| |
| if (trash.len < 28) { |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length, IPv6 header */ |
| goto missing; |
| } else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } else if (trash.len < 48) { |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, CIP length, IPv6 header, TCP header */ |
| goto missing; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr)); |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr = hdr_ip6->ip6_src; |
| ((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr = hdr_ip6->ip6_dst; |
| ((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_tcp->dest; |
| |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else { |
| /* The protocol does not match something known (IPv4/IPv6) */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| line += cip_len; |
| trash.len = line - trash.str; |
| |
| /* remove the NetScaler Client IP header from the request. For this |
| * we re-read the exact line at once. If we don't get the exact same |
| * result, we fail. |
| */ |
| do { |
| int len2 = recv(conn->handle.fd, trash.str, trash.len, 0); |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.len) |
| goto recv_abort; |
| } while (0); |
| |
| conn->flags &= ~flag; |
| return 1; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_CIP_TRUNCATED; |
| goto fail; |
| |
| bad_magic: |
| conn->err_code = CO_ER_CIP_BAD_MAGIC; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_CIP_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| __conn_sock_stop_both(conn); |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote) |
| { |
| int ret = 0; |
| |
| if (srv && (srv->pp_opts & SRV_PP_V2)) { |
| ret = make_proxy_line_v2(buf, buf_len, srv, remote); |
| } |
| else { |
| if (remote) |
| ret = make_proxy_line_v1(buf, buf_len, &remote->addr.from, &remote->addr.to); |
| else |
| ret = make_proxy_line_v1(buf, buf_len, NULL, NULL); |
| } |
| |
| return ret; |
| } |
| |
| /* Makes a PROXY protocol line from the two addresses. The output is sent to |
| * buffer <buf> for a maximum size of <buf_len> (including the trailing zero). |
| * It returns the number of bytes composing this line (including the trailing |
| * LF), or zero in case of failure (eg: not enough space). It supports TCP4, |
| * TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is |
| * emitted as well. |
| */ |
| int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst) |
| { |
| int ret = 0; |
| |
| if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) { |
| ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP4 "); |
| if (ret >= buf_len) |
| return 0; |
| |
| /* IPv4 src */ |
| if (!inet_ntop(src->ss_family, &((struct sockaddr_in *)src)->sin_addr, buf + ret, buf_len - ret)) |
| return 0; |
| |
| ret += strlen(buf + ret); |
| if (ret >= buf_len) |
| return 0; |
| |
| buf[ret++] = ' '; |
| |
| /* IPv4 dst */ |
| if (!inet_ntop(dst->ss_family, &((struct sockaddr_in *)dst)->sin_addr, buf + ret, buf_len - ret)) |
| return 0; |
| |
| ret += strlen(buf + ret); |
| if (ret >= buf_len) |
| return 0; |
| |
| /* source and destination ports */ |
| ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n", |
| ntohs(((struct sockaddr_in *)src)->sin_port), |
| ntohs(((struct sockaddr_in *)dst)->sin_port)); |
| if (ret >= buf_len) |
| return 0; |
| } |
| else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) { |
| ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP6 "); |
| if (ret >= buf_len) |
| return 0; |
| |
| /* IPv6 src */ |
| if (!inet_ntop(src->ss_family, &((struct sockaddr_in6 *)src)->sin6_addr, buf + ret, buf_len - ret)) |
| return 0; |
| |
| ret += strlen(buf + ret); |
| if (ret >= buf_len) |
| return 0; |
| |
| buf[ret++] = ' '; |
| |
| /* IPv6 dst */ |
| if (!inet_ntop(dst->ss_family, &((struct sockaddr_in6 *)dst)->sin6_addr, buf + ret, buf_len - ret)) |
| return 0; |
| |
| ret += strlen(buf + ret); |
| if (ret >= buf_len) |
| return 0; |
| |
| /* source and destination ports */ |
| ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n", |
| ntohs(((struct sockaddr_in6 *)src)->sin6_port), |
| ntohs(((struct sockaddr_in6 *)dst)->sin6_port)); |
| if (ret >= buf_len) |
| return 0; |
| } |
| else { |
| /* unknown family combination */ |
| ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n"); |
| if (ret >= buf_len) |
| return 0; |
| } |
| return ret; |
| } |
| |
| #if defined(USE_OPENSSL) || defined(CONFIG_HAP_NS) |
| static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value) |
| { |
| struct tlv *tlv; |
| |
| if (!dest || (length + sizeof(*tlv) > dest_len)) |
| return 0; |
| |
| tlv = (struct tlv *)dest; |
| |
| tlv->type = type; |
| tlv->length_hi = length >> 8; |
| tlv->length_lo = length & 0x00ff; |
| memcpy(tlv->value, value, length); |
| return length + sizeof(*tlv); |
| } |
| #endif |
| |
| int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote) |
| { |
| const char pp2_signature[] = PP2_SIGNATURE; |
| int ret = 0; |
| struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf; |
| struct sockaddr_storage null_addr = { .ss_family = 0 }; |
| struct sockaddr_storage *src = &null_addr; |
| struct sockaddr_storage *dst = &null_addr; |
| |
| #ifdef USE_OPENSSL |
| char *value = NULL; |
| struct tlv_ssl *tlv; |
| int ssl_tlv_len = 0; |
| struct chunk *cn_trash; |
| #endif |
| |
| if (buf_len < PP2_HEADER_LEN) |
| return 0; |
| memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN); |
| |
| if (remote) { |
| src = &remote->addr.from; |
| dst = &remote->addr.to; |
| } |
| |
| if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) { |
| if (buf_len < PP2_HDR_LEN_INET) |
| return 0; |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY; |
| hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM; |
| hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr; |
| hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr; |
| hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port; |
| hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| ret = PP2_HDR_LEN_INET; |
| } |
| else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) { |
| if (buf_len < PP2_HDR_LEN_INET6) |
| return 0; |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY; |
| hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM; |
| memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16); |
| memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16); |
| hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port; |
| hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; |
| ret = PP2_HDR_LEN_INET6; |
| } |
| else { |
| if (buf_len < PP2_HDR_LEN_UNSPEC) |
| return 0; |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL; |
| hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC; |
| ret = PP2_HDR_LEN_UNSPEC; |
| } |
| |
| #ifdef USE_OPENSSL |
| if (srv->pp_opts & SRV_PP_V2_SSL) { |
| if ((buf_len - ret) < sizeof(struct tlv_ssl)) |
| return 0; |
| tlv = (struct tlv_ssl *)&buf[ret]; |
| memset(tlv, 0, sizeof(struct tlv_ssl)); |
| ssl_tlv_len += sizeof(struct tlv_ssl); |
| tlv->tlv.type = PP2_TYPE_SSL; |
| if (ssl_sock_is_ssl(remote)) { |
| tlv->client |= PP2_CLIENT_SSL; |
| value = ssl_sock_get_version(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_TYPE_SSL_VERSION, strlen(value), value); |
| } |
| if (ssl_sock_get_cert_used_sess(remote)) { |
| tlv->client |= PP2_CLIENT_CERT_SESS; |
| tlv->verify = htonl(ssl_sock_get_verify_result(remote)); |
| if (ssl_sock_get_cert_used_conn(remote)) |
| tlv->client |= PP2_CLIENT_CERT_CONN; |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_CN) { |
| cn_trash = get_trash_chunk(); |
| if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_TYPE_SSL_CN, cn_trash->len, cn_trash->str); |
| } |
| } |
| } |
| tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8; |
| tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff; |
| ret += ssl_tlv_len; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAP_NS |
| if (remote && (remote->proxy_netns)) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], buf_len, PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key); |
| } |
| #endif |
| |
| hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN)); |
| |
| return ret; |
| } |
| |
| /* fetch if the received connection used a PROXY protocol header */ |
| int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (!(conn->flags & CO_FL_CONNECTED)) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0; |
| |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Note: fetches that may return multiple types must be declared as the lowest |
| * common denominator, the type that can be casted into all other ones. For |
| * instance v4/v6 must be declared v4. |
| */ |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { |
| { "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, |
| { /* END */ }, |
| }}; |
| |
| |
| __attribute__((constructor)) |
| static void __connection_init(void) |
| { |
| sample_register_fetches(&sample_fetch_keywords); |
| } |