blob: 48f0ec33158784a87d2dd4e0127ad2e0f76baaff [file] [log] [blame]
/*
* Connection management functions
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/namespace.h>
#include <proto/connection.h>
#include <proto/fd.h>
#include <proto/frontend.h>
#include <proto/proto_tcp.h>
#include <proto/stream_interface.h>
#include <proto/sample.h>
#ifdef USE_OPENSSL
#include <proto/ssl_sock.h>
#endif
struct pool_head *pool2_connection;
struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, };
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_connection()
{
pool2_connection = create_pool("connection", sizeof (struct connection), MEM_F_SHARED);
return pool2_connection != NULL;
}
/* I/O callback for fd-based connections. It calls the read/write handlers
* provided by the connection's sock_ops, which must be valid.
*/
void conn_fd_handler(int fd)
{
struct connection *conn = fdtab[fd].owner;
unsigned int flags;
if (unlikely(!conn))
return;
conn_refresh_polling_flags(conn);
conn->flags |= CO_FL_WILL_UPDATE;
flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */
process_handshake:
/* The handshake callbacks are called in sequence. If either of them is
* missing something, it must enable the required polling at the socket
* layer of the connection. Polling state is not guaranteed when entering
* these handlers, so any handshake handler which does not complete its
* work must explicitly disable events it's not interested in. Error
* handling is also performed here in order to reduce the number of tests
* around.
*/
while (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR))) {
if (unlikely(conn->flags & CO_FL_ERROR))
goto leave;
if (conn->flags & CO_FL_ACCEPT_CIP)
if (!conn_recv_netscaler_cip(conn, CO_FL_ACCEPT_CIP))
goto leave;
if (conn->flags & CO_FL_ACCEPT_PROXY)
if (!conn_recv_proxy(conn, CO_FL_ACCEPT_PROXY))
goto leave;
if (conn->flags & CO_FL_SEND_PROXY)
if (!conn_si_send_proxy(conn, CO_FL_SEND_PROXY))
goto leave;
#ifdef USE_OPENSSL
if (conn->flags & CO_FL_SSL_WAIT_HS)
if (!ssl_sock_handshake(conn, CO_FL_SSL_WAIT_HS))
goto leave;
#endif
}
/* Once we're purely in the data phase, we disable handshake polling */
if (!(conn->flags & CO_FL_POLL_SOCK))
__conn_sock_stop_both(conn);
/* The connection owner might want to be notified about an end of
* handshake indicating the connection is ready, before we proceed with
* any data exchange. The callback may fail and cause the connection to
* be destroyed, thus we must not use it anymore and should immediately
* leave instead. The caller must immediately unregister itself once
* called.
*/
if (conn->xprt_done_cb && conn->xprt_done_cb(conn) < 0)
return;
if (conn->xprt && fd_send_ready(fd) &&
((conn->flags & (CO_FL_XPRT_WR_ENA|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_XPRT_WR_ENA)) {
/* force reporting of activity by clearing the previous flags :
* we'll have at least ERROR or CONNECTED at the end of an I/O,
* both of which will be detected below.
*/
flags = 0;
conn->data->send(conn);
}
/* The data transfer starts here and stops on error and handshakes. Note
* that we must absolutely test conn->xprt at each step in case it suddenly
* changes due to a quick unexpected close().
*/
if (conn->xprt && fd_recv_ready(fd) &&
((conn->flags & (CO_FL_XPRT_RD_ENA|CO_FL_WAIT_ROOM|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_XPRT_RD_ENA)) {
/* force reporting of activity by clearing the previous flags :
* we'll have at least ERROR or CONNECTED at the end of an I/O,
* both of which will be detected below.
*/
flags = 0;
conn->data->recv(conn);
}
/* It may happen during the data phase that a handshake is
* enabled again (eg: SSL)
*/
if (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR)))
goto process_handshake;
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN)) {
/* still waiting for a connection to establish and nothing was
* attempted yet to probe the connection. Then let's retry the
* connect().
*/
if (!tcp_connect_probe(conn))
goto leave;
}
leave:
/* Verify if the connection just established. */
if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED))))
conn->flags |= CO_FL_CONNECTED;
/* The connection owner might want to be notified about failures to
* complete the handshake. The callback may fail and cause the
* connection to be destroyed, thus we must not use it anymore and
* should immediately leave instead. The caller must immediately
* unregister itself once called.
*/
if (((conn->flags ^ flags) & CO_FL_NOTIFY_DONE) &&
conn->xprt_done_cb && conn->xprt_done_cb(conn) < 0)
return;
/* The wake callback is normally used to notify the data layer about
* data layer activity (successful send/recv), connection establishment,
* shutdown and fatal errors. We need to consider the following
* situations to wake up the data layer :
* - change among the CO_FL_NOTIFY_DATA flags :
* {DATA,SOCK}_{RD,WR}_SH, ERROR,
* - absence of any of {L4,L6}_CONN and CONNECTED, indicating the
* end of handshake and transition to CONNECTED
* - raise of CONNECTED with HANDSHAKE down
* - end of HANDSHAKE with CONNECTED set
* - regular data layer activity
*
* Note that the wake callback is allowed to release the connection and
* the fd (and return < 0 in this case).
*/
if ((((conn->flags ^ flags) & CO_FL_NOTIFY_DATA) ||
((flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) != CO_FL_CONNECTED &&
(conn->flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) == CO_FL_CONNECTED)) &&
conn->data->wake(conn) < 0)
return;
/* remove the events before leaving */
fdtab[fd].ev &= FD_POLL_STICKY;
/* commit polling changes */
conn->flags &= ~CO_FL_WILL_UPDATE;
conn_cond_update_polling(conn);
return;
}
/* Update polling on connection <c>'s file descriptor depending on its current
* state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
* in CO_FL_WAIT_*, and the data layer expectations indicated by CO_FL_XPRT_*.
* The connection flags are updated with the new flags at the end of the
* operation. Polling is totally disabled if an error was reported.
*/
void conn_update_xprt_polling(struct connection *c)
{
unsigned int f = c->flags;
if (!conn_ctrl_ready(c))
return;
/* update read status if needed */
if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_XPRT_RD_ENA)) == CO_FL_XPRT_RD_ENA)) {
fd_want_recv(c->handle.fd);
f |= CO_FL_CURR_RD_ENA;
}
else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_XPRT_RD_ENA)) == CO_FL_CURR_RD_ENA)) {
fd_stop_recv(c->handle.fd);
f &= ~CO_FL_CURR_RD_ENA;
}
/* update write status if needed */
if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_XPRT_WR_ENA)) == CO_FL_XPRT_WR_ENA)) {
fd_want_send(c->handle.fd);
f |= CO_FL_CURR_WR_ENA;
}
else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_XPRT_WR_ENA)) == CO_FL_CURR_WR_ENA)) {
fd_stop_send(c->handle.fd);
f &= ~CO_FL_CURR_WR_ENA;
}
c->flags = f;
}
/* Update polling on connection <c>'s file descriptor depending on its current
* state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
* in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*.
* The connection flags are updated with the new flags at the end of the
* operation. Polling is totally disabled if an error was reported.
*/
void conn_update_sock_polling(struct connection *c)
{
unsigned int f = c->flags;
if (!conn_ctrl_ready(c))
return;
/* update read status if needed */
if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_SOCK_RD_ENA)) {
fd_want_recv(c->handle.fd);
f |= CO_FL_CURR_RD_ENA;
}
else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_CURR_RD_ENA)) {
fd_stop_recv(c->handle.fd);
f &= ~CO_FL_CURR_RD_ENA;
}
/* update write status if needed */
if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_SOCK_WR_ENA)) {
fd_want_send(c->handle.fd);
f |= CO_FL_CURR_WR_ENA;
}
else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_CURR_WR_ENA)) {
fd_stop_send(c->handle.fd);
f &= ~CO_FL_CURR_WR_ENA;
}
c->flags = f;
}
/* Send a message over an established connection. It makes use of send() and
* returns the same return code and errno. If the socket layer is not ready yet
* then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked
* as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns
* EMSGSIZE if called with a zero length message. The purpose is to simplify
* some rare attempts to directly write on the socket from above the connection
* (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send".
* It automatically retries on EINTR. Other errors cause the connection to be
* marked as in error state. It takes similar arguments as send() except the
* first one which is the connection instead of the file descriptor. Note,
* MSG_DONTWAIT and MSG_NOSIGNAL are forced on the flags.
*/
int conn_sock_send(struct connection *conn, const void *buf, int len, int flags)
{
int ret;
ret = -1;
errno = ENOTSOCK;
if (conn->flags & CO_FL_SOCK_WR_SH)
goto fail;
if (!conn_ctrl_ready(conn))
goto fail;
errno = EMSGSIZE;
if (!len)
goto fail;
if (!fd_send_ready(conn->handle.fd))
goto wait;
do {
ret = send(conn->handle.fd, buf, len, flags | MSG_DONTWAIT | MSG_NOSIGNAL);
} while (ret < 0 && errno == EINTR);
if (ret > 0)
return ret;
if (ret == 0 || errno == EAGAIN || errno == ENOTCONN) {
wait:
fd_cant_send(conn->handle.fd);
return 0;
}
fail:
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR;
return ret;
}
/* Drains possibly pending incoming data on the file descriptor attached to the
* connection and update the connection's flags accordingly. This is used to
* know whether we need to disable lingering on close. Returns non-zero if it
* is safe to close without disabling lingering, otherwise zero. The SOCK_RD_SH
* flag may also be updated if the incoming shutdown was reported by the drain()
* function.
*/
int conn_sock_drain(struct connection *conn)
{
if (!conn_ctrl_ready(conn))
return 1;
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))
return 1;
if (fdtab[conn->handle.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) {
fdtab[conn->handle.fd].linger_risk = 0;
}
else {
if (!fd_recv_ready(conn->handle.fd))
return 0;
/* disable draining if we were called and have no drain function */
if (!conn->ctrl->drain) {
__conn_xprt_stop_recv(conn);
return 0;
}
if (conn->ctrl->drain(conn->handle.fd) <= 0)
return 0;
}
conn->flags |= CO_FL_SOCK_RD_SH;
return 1;
}
/*
* Get data length from tlv
*/
static int get_tlv_length(const struct tlv *src)
{
return (src->length_hi << 8) | src->length_lo;
}
/* This handshake handler waits a PROXY protocol header at the beginning of the
* raw data stream. The header looks like this :
*
* "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n"
*
* There must be exactly one space between each field. Fields are :
* - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6".
* - SRC3 : layer 3 (eg: IP) source address in standard text form
* - DST3 : layer 3 (eg: IP) destination address in standard text form
* - SRC4 : layer 4 (eg: TCP port) source address in standard text form
* - DST4 : layer 4 (eg: TCP port) destination address in standard text form
*
* This line MUST be at the beginning of the buffer and MUST NOT wrap.
*
* The header line is small and in all cases smaller than the smallest normal
* TCP MSS. So it MUST always be delivered as one segment, which ensures we
* can safely use MSG_PEEK and avoid buffering.
*
* Once the data is fetched, the values are set in the connection's address
* fields, and data are removed from the socket's buffer. The function returns
* zero if it needs to wait for more data or if it fails, or 1 if it completed
* and removed itself.
*/
int conn_recv_proxy(struct connection *conn, int flag)
{
char *line, *end;
struct proxy_hdr_v2 *hdr_v2;
const char v2sig[] = PP2_SIGNATURE;
int tlv_length = 0;
int tlv_offset = 0;
/* we might have been called just after an asynchronous shutr */
if (conn->flags & CO_FL_SOCK_RD_SH)
goto fail;
if (!conn_ctrl_ready(conn))
goto fail;
if (!fd_recv_ready(conn->handle.fd))
return 0;
do {
trash.len = recv(conn->handle.fd, trash.str, trash.size, MSG_PEEK);
if (trash.len < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN) {
fd_cant_recv(conn->handle.fd);
return 0;
}
goto recv_abort;
}
} while (0);
if (!trash.len) {
/* client shutdown */
conn->err_code = CO_ER_PRX_EMPTY;
goto fail;
}
if (trash.len < 6)
goto missing;
line = trash.str;
end = trash.str + trash.len;
/* Decode a possible proxy request, fail early if it does not match */
if (strncmp(line, "PROXY ", 6) != 0)
goto not_v1;
line += 6;
if (trash.len < 9) /* shortest possible line */
goto missing;
if (memcmp(line, "TCP4 ", 5) == 0) {
u32 src3, dst3, sport, dport;
line += 5;
src3 = inetaddr_host_lim_ret(line, end, &line);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
dst3 = inetaddr_host_lim_ret(line, end, &line);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
sport = read_uint((const char **)&line, end);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
dport = read_uint((const char **)&line, end);
if (line > end - 2)
goto missing;
if (*line++ != '\r')
goto bad_header;
if (*line++ != '\n')
goto bad_header;
/* update the session's addresses and mark them set */
((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = htonl(src3);
((struct sockaddr_in *)&conn->addr.from)->sin_port = htons(sport);
((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = htonl(dst3);
((struct sockaddr_in *)&conn->addr.to)->sin_port = htons(dport);
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
}
else if (memcmp(line, "TCP6 ", 5) == 0) {
u32 sport, dport;
char *src_s;
char *dst_s, *sport_s, *dport_s;
struct in6_addr src3, dst3;
line += 5;
src_s = line;
dst_s = sport_s = dport_s = NULL;
while (1) {
if (line > end - 2) {
goto missing;
}
else if (*line == '\r') {
*line = 0;
line++;
if (*line++ != '\n')
goto bad_header;
break;
}
if (*line == ' ') {
*line = 0;
if (!dst_s)
dst_s = line + 1;
else if (!sport_s)
sport_s = line + 1;
else if (!dport_s)
dport_s = line + 1;
}
line++;
}
if (!dst_s || !sport_s || !dport_s)
goto bad_header;
sport = read_uint((const char **)&sport_s,dport_s - 1);
if (*sport_s != 0)
goto bad_header;
dport = read_uint((const char **)&dport_s,line - 2);
if (*dport_s != 0)
goto bad_header;
if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1)
goto bad_header;
if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1)
goto bad_header;
/* update the session's addresses and mark them set */
((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, &src3, sizeof(struct in6_addr));
((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = htons(sport);
((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, &dst3, sizeof(struct in6_addr));
((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = htons(dport);
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
}
else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) {
/* This can be a UNIX socket forwarded by an haproxy upstream */
line += 9;
}
else {
/* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */
conn->err_code = CO_ER_PRX_BAD_PROTO;
goto fail;
}
trash.len = line - trash.str;
goto eat_header;
not_v1:
/* try PPv2 */
if (trash.len < PP2_HEADER_LEN)
goto missing;
hdr_v2 = (struct proxy_hdr_v2 *)trash.str;
if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 ||
(hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) {
conn->err_code = CO_ER_PRX_NOT_HDR;
goto fail;
}
if (trash.len < PP2_HEADER_LEN + ntohs(hdr_v2->len))
goto missing;
switch (hdr_v2->ver_cmd & PP2_CMD_MASK) {
case 0x01: /* PROXY command */
switch (hdr_v2->fam) {
case 0x11: /* TCPv4 */
if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET)
goto bad_header;
((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr;
((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_v2->addr.ip4.src_port;
((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr;
((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_v2->addr.ip4.dst_port;
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET;
tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET;
break;
case 0x21: /* TCPv6 */
if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6)
goto bad_header;
((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16);
((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_v2->addr.ip6.src_port;
((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16);
((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_v2->addr.ip6.dst_port;
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6;
tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET6;
break;
}
/* TLV parsing */
if (tlv_length > 0) {
while (tlv_offset + TLV_HEADER_SIZE <= trash.len) {
const struct tlv *tlv_packet = (struct tlv *) &trash.str[tlv_offset];
const int tlv_len = get_tlv_length(tlv_packet);
tlv_offset += tlv_len + TLV_HEADER_SIZE;
switch (tlv_packet->type) {
#ifdef CONFIG_HAP_NS
case PP2_TYPE_NETNS: {
const struct netns_entry *ns;
ns = netns_store_lookup((char*)tlv_packet->value, tlv_len);
if (ns)
conn->proxy_netns = ns;
break;
}
#endif
default:
break;
}
}
}
/* unsupported protocol, keep local connection address */
break;
case 0x00: /* LOCAL command */
/* keep local connection address for LOCAL */
break;
default:
goto bad_header; /* not a supported command */
}
trash.len = PP2_HEADER_LEN + ntohs(hdr_v2->len);
goto eat_header;
eat_header:
/* remove the PROXY line from the request. For this we re-read the
* exact line at once. If we don't get the exact same result, we
* fail.
*/
do {
int len2 = recv(conn->handle.fd, trash.str, trash.len, 0);
if (len2 < 0 && errno == EINTR)
continue;
if (len2 != trash.len)
goto recv_abort;
} while (0);
conn->flags &= ~flag;
conn->flags |= CO_FL_RCVD_PROXY;
return 1;
missing:
/* Missing data. Since we're using MSG_PEEK, we can only poll again if
* we have not read anything. Otherwise we need to fail because we won't
* be able to poll anymore.
*/
conn->err_code = CO_ER_PRX_TRUNCATED;
goto fail;
bad_header:
/* This is not a valid proxy protocol header */
conn->err_code = CO_ER_PRX_BAD_HDR;
goto fail;
recv_abort:
conn->err_code = CO_ER_PRX_ABORT;
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto fail;
fail:
__conn_sock_stop_both(conn);
conn->flags |= CO_FL_ERROR;
return 0;
}
/* This handshake handler waits a NetScaler Client IP insertion header
* at the beginning of the raw data stream. The header looks like this:
*
* 4 bytes: CIP magic number
* 4 bytes: Header length
* 20+ bytes: Header of the last IP packet sent by the client during
* TCP handshake.
* 20+ bytes: Header of the last TCP packet sent by the client during
* TCP handshake.
*
* This line MUST be at the beginning of the buffer and MUST NOT be
* fragmented.
*
* The header line is small and in all cases smaller than the smallest normal
* TCP MSS. So it MUST always be delivered as one segment, which ensures we
* can safely use MSG_PEEK and avoid buffering.
*
* Once the data is fetched, the values are set in the connection's address
* fields, and data are removed from the socket's buffer. The function returns
* zero if it needs to wait for more data or if it fails, or 1 if it completed
* and removed itself.
*/
int conn_recv_netscaler_cip(struct connection *conn, int flag)
{
char *line;
uint32_t cip_magic;
uint32_t cip_len;
uint8_t ip_v;
/* we might have been called just after an asynchronous shutr */
if (conn->flags & CO_FL_SOCK_RD_SH)
goto fail;
if (!conn_ctrl_ready(conn))
goto fail;
if (!fd_recv_ready(conn->handle.fd))
return 0;
do {
trash.len = recv(conn->handle.fd, trash.str, trash.size, MSG_PEEK);
if (trash.len < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN) {
fd_cant_recv(conn->handle.fd);
return 0;
}
goto recv_abort;
}
} while (0);
if (!trash.len) {
/* client shutdown */
conn->err_code = CO_ER_CIP_EMPTY;
goto fail;
}
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length */
if (trash.len < 8)
goto missing;
line = trash.str;
cip_magic = ntohl(*(uint32_t *)line);
cip_len = ntohl(*(uint32_t *)(line+4));
/* Decode a possible NetScaler Client IP request, fail early if
* it does not match */
if (cip_magic != objt_listener(conn->target)->bind_conf->ns_cip_magic)
goto bad_magic;
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length, minimal IP header */
if (trash.len < 28)
goto missing;
line += 8;
/* Get IP version from the first four bits */
ip_v = (*line & 0xf0) >> 4;
if (ip_v == 4) {
struct ip *hdr_ip4;
struct my_tcphdr *hdr_tcp;
hdr_ip4 = (struct ip *)line;
if (trash.len < (8 + ntohs(hdr_ip4->ip_len))) {
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length, IPv4 header */
goto missing;
} else if (hdr_ip4->ip_p != IPPROTO_TCP) {
/* The protocol does not include a TCP header */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
} else if (trash.len < (28 + ntohs(hdr_ip4->ip_len))) {
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length, IPv4 header, TCP header */
goto missing;
}
hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4));
/* update the session's addresses and mark them set */
((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr;
((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_tcp->source;
((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET;
((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr;
((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_tcp->dest;
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
}
else if (ip_v == 6) {
struct ip6_hdr *hdr_ip6;
struct my_tcphdr *hdr_tcp;
hdr_ip6 = (struct ip6_hdr *)line;
if (trash.len < 28) {
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length, IPv6 header */
goto missing;
} else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) {
/* The protocol does not include a TCP header */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
} else if (trash.len < 48) {
/* Fail if buffer length is not large enough to contain
* CIP magic, CIP length, IPv6 header, TCP header */
goto missing;
}
hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr));
/* update the session's addresses and mark them set */
((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr = hdr_ip6->ip6_src;
((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_tcp->source;
((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr = hdr_ip6->ip6_dst;
((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_tcp->dest;
conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
}
else {
/* The protocol does not match something known (IPv4/IPv6) */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
}
line += cip_len;
trash.len = line - trash.str;
/* remove the NetScaler Client IP header from the request. For this
* we re-read the exact line at once. If we don't get the exact same
* result, we fail.
*/
do {
int len2 = recv(conn->handle.fd, trash.str, trash.len, 0);
if (len2 < 0 && errno == EINTR)
continue;
if (len2 != trash.len)
goto recv_abort;
} while (0);
conn->flags &= ~flag;
return 1;
missing:
/* Missing data. Since we're using MSG_PEEK, we can only poll again if
* we have not read anything. Otherwise we need to fail because we won't
* be able to poll anymore.
*/
conn->err_code = CO_ER_CIP_TRUNCATED;
goto fail;
bad_magic:
conn->err_code = CO_ER_CIP_BAD_MAGIC;
goto fail;
recv_abort:
conn->err_code = CO_ER_CIP_ABORT;
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto fail;
fail:
__conn_sock_stop_both(conn);
conn->flags |= CO_FL_ERROR;
return 0;
}
int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote)
{
int ret = 0;
if (srv && (srv->pp_opts & SRV_PP_V2)) {
ret = make_proxy_line_v2(buf, buf_len, srv, remote);
}
else {
if (remote)
ret = make_proxy_line_v1(buf, buf_len, &remote->addr.from, &remote->addr.to);
else
ret = make_proxy_line_v1(buf, buf_len, NULL, NULL);
}
return ret;
}
/* Makes a PROXY protocol line from the two addresses. The output is sent to
* buffer <buf> for a maximum size of <buf_len> (including the trailing zero).
* It returns the number of bytes composing this line (including the trailing
* LF), or zero in case of failure (eg: not enough space). It supports TCP4,
* TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is
* emitted as well.
*/
int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst)
{
int ret = 0;
if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) {
ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP4 ");
if (ret >= buf_len)
return 0;
/* IPv4 src */
if (!inet_ntop(src->ss_family, &((struct sockaddr_in *)src)->sin_addr, buf + ret, buf_len - ret))
return 0;
ret += strlen(buf + ret);
if (ret >= buf_len)
return 0;
buf[ret++] = ' ';
/* IPv4 dst */
if (!inet_ntop(dst->ss_family, &((struct sockaddr_in *)dst)->sin_addr, buf + ret, buf_len - ret))
return 0;
ret += strlen(buf + ret);
if (ret >= buf_len)
return 0;
/* source and destination ports */
ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n",
ntohs(((struct sockaddr_in *)src)->sin_port),
ntohs(((struct sockaddr_in *)dst)->sin_port));
if (ret >= buf_len)
return 0;
}
else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) {
ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP6 ");
if (ret >= buf_len)
return 0;
/* IPv6 src */
if (!inet_ntop(src->ss_family, &((struct sockaddr_in6 *)src)->sin6_addr, buf + ret, buf_len - ret))
return 0;
ret += strlen(buf + ret);
if (ret >= buf_len)
return 0;
buf[ret++] = ' ';
/* IPv6 dst */
if (!inet_ntop(dst->ss_family, &((struct sockaddr_in6 *)dst)->sin6_addr, buf + ret, buf_len - ret))
return 0;
ret += strlen(buf + ret);
if (ret >= buf_len)
return 0;
/* source and destination ports */
ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n",
ntohs(((struct sockaddr_in6 *)src)->sin6_port),
ntohs(((struct sockaddr_in6 *)dst)->sin6_port));
if (ret >= buf_len)
return 0;
}
else {
/* unknown family combination */
ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n");
if (ret >= buf_len)
return 0;
}
return ret;
}
#if defined(USE_OPENSSL) || defined(CONFIG_HAP_NS)
static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value)
{
struct tlv *tlv;
if (!dest || (length + sizeof(*tlv) > dest_len))
return 0;
tlv = (struct tlv *)dest;
tlv->type = type;
tlv->length_hi = length >> 8;
tlv->length_lo = length & 0x00ff;
memcpy(tlv->value, value, length);
return length + sizeof(*tlv);
}
#endif
int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote)
{
const char pp2_signature[] = PP2_SIGNATURE;
int ret = 0;
struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf;
struct sockaddr_storage null_addr = { .ss_family = 0 };
struct sockaddr_storage *src = &null_addr;
struct sockaddr_storage *dst = &null_addr;
#ifdef USE_OPENSSL
char *value = NULL;
struct tlv_ssl *tlv;
int ssl_tlv_len = 0;
struct chunk *cn_trash;
#endif
if (buf_len < PP2_HEADER_LEN)
return 0;
memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN);
if (remote) {
src = &remote->addr.from;
dst = &remote->addr.to;
}
if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) {
if (buf_len < PP2_HDR_LEN_INET)
return 0;
hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY;
hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM;
hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr;
hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr;
hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port;
hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port;
ret = PP2_HDR_LEN_INET;
}
else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) {
if (buf_len < PP2_HDR_LEN_INET6)
return 0;
hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY;
hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM;
memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16);
memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16);
hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port;
hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port;
ret = PP2_HDR_LEN_INET6;
}
else {
if (buf_len < PP2_HDR_LEN_UNSPEC)
return 0;
hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL;
hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC;
ret = PP2_HDR_LEN_UNSPEC;
}
#ifdef USE_OPENSSL
if (srv->pp_opts & SRV_PP_V2_SSL) {
if ((buf_len - ret) < sizeof(struct tlv_ssl))
return 0;
tlv = (struct tlv_ssl *)&buf[ret];
memset(tlv, 0, sizeof(struct tlv_ssl));
ssl_tlv_len += sizeof(struct tlv_ssl);
tlv->tlv.type = PP2_TYPE_SSL;
if (ssl_sock_is_ssl(remote)) {
tlv->client |= PP2_CLIENT_SSL;
value = ssl_sock_get_version(remote);
if (value) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_TYPE_SSL_VERSION, strlen(value), value);
}
if (ssl_sock_get_cert_used_sess(remote)) {
tlv->client |= PP2_CLIENT_CERT_SESS;
tlv->verify = htonl(ssl_sock_get_verify_result(remote));
if (ssl_sock_get_cert_used_conn(remote))
tlv->client |= PP2_CLIENT_CERT_CONN;
}
if (srv->pp_opts & SRV_PP_V2_SSL_CN) {
cn_trash = get_trash_chunk();
if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_TYPE_SSL_CN, cn_trash->len, cn_trash->str);
}
}
}
tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8;
tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff;
ret += ssl_tlv_len;
}
#endif
#ifdef CONFIG_HAP_NS
if (remote && (remote->proxy_netns)) {
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
ret += make_tlv(&buf[ret], buf_len, PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key);
}
#endif
hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN));
return ret;
}
/* fetch if the received connection used a PROXY protocol header */
int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
conn = objt_conn(smp->sess->origin);
if (!conn)
return 0;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types must be declared as the lowest
* common denominator, the type that can be casted into all other ones. For
* instance v4/v6 must be declared v4.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI },
{ /* END */ },
}};
__attribute__((constructor))
static void __connection_init(void)
{
sample_register_fetches(&sample_fetch_keywords);
}