blob: 255811ca647ebb4e44f7dda40488d1ed6a056eff [file] [log] [blame]
/*
* include/types/connection.h
* This file describes the connection struct and associated constants.
*
* Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _TYPES_CONNECTION_H
#define _TYPES_CONNECTION_H
#include <stdlib.h>
#include <sys/socket.h>
#include <common/config.h>
#include <types/listener.h>
#include <types/obj_type.h>
#include <types/port_range.h>
#include <types/protocol.h>
/* referenced below */
struct connection;
struct buffer;
struct pipe;
/* Polling flags that are manipulated by I/O callbacks and handshake callbacks
* indicate what they expect from a file descriptor at each layer. For each
* direction, we have 2 bits, one stating whether any suspected activity on the
* FD induce a call to the iocb, and another one indicating that the FD has
* already returned EAGAIN and that polling on it is essential before calling
* the iocb again :
* POL ENA state
* 0 0 STOPPED : any activity on this FD is ignored
* 0 1 ENABLED : any (suspected) activity may call the iocb
* 1 0 STOPPED : as above
* 1 1 POLLED : the FD is being polled for activity
*
* - Enabling an I/O event consists in ORing with 1.
* - Stopping an I/O event consists in ANDing with ~1.
* - Polling for an I/O event consists in ORing with ~3.
*
* The last ENA state is remembered in CO_FL_CURR_* so that differential
* changes can be applied. After bits are applied, the POLL status bits are
* cleared so that it is possible to detect when an EAGAIN was encountered. For
* pollers that do not support speculative I/O, POLLED is the same as ENABLED
* and the POL flag can safely be ignored. However it makes a difference for
* the connection handler.
*
* The ENA flags are per-layer (one pair for SOCK, another one for DATA). The
* POL flags are irrelevant to these layers and only reflect the fact that
* EAGAIN was encountered, they're materialised by the CO_FL_WAIT_* connection
* flags. POL flags always indicate a polling change because it is assumed that
* the poller uses a cache and does not always poll.
*/
/* flags for use in connection->flags */
enum {
CO_FL_NONE = 0x00000000, /* Just for initialization purposes */
/* Do not change these values without updating conn_*_poll_changes() ! */
CO_FL_SOCK_RD_ENA = 0x00000001, /* receiving handshakes is allowed */
CO_FL_DATA_RD_ENA = 0x00000002, /* receiving data is allowed */
CO_FL_CURR_RD_ENA = 0x00000004, /* receiving is currently allowed */
CO_FL_WAIT_RD = 0x00000008, /* receiving needs to poll first */
CO_FL_SOCK_WR_ENA = 0x00000010, /* sending handshakes is desired */
CO_FL_DATA_WR_ENA = 0x00000020, /* sending data is desired */
CO_FL_CURR_WR_ENA = 0x00000040, /* sending is currently desired */
CO_FL_WAIT_WR = 0x00000080, /* sending needs to poll first */
/* These flags are used by data layers to indicate they had to stop
* sending data because a buffer was empty (WAIT_DATA) or stop receiving
* data because a buffer was full (WAIT_ROOM). The connection handler
* clears them before first calling the I/O and data callbacks.
*/
CO_FL_WAIT_DATA = 0x00000400, /* data source is empty */
CO_FL_WAIT_ROOM = 0x00000800, /* data sink is full */
/* These flags are used to report whether the from/to addresses are set or not */
CO_FL_ADDR_FROM_SET = 0x00001000, /* addr.from is set */
CO_FL_ADDR_TO_SET = 0x00002000, /* addr.to is set */
/* flags indicating what event type the data layer is interested in */
CO_FL_INIT_DATA = 0x00004000, /* initialize the data layer before using it */
CO_FL_WAKE_DATA = 0x00008000, /* wake-up data layer upon activity at the transport layer */
/* flags used to remember what shutdown have been performed/reported */
CO_FL_DATA_RD_SH = 0x00010000, /* DATA layer was notified about shutr/read0 */
CO_FL_DATA_WR_SH = 0x00020000, /* DATA layer asked for shutw */
CO_FL_SOCK_RD_SH = 0x00040000, /* SOCK layer was notified about shutr/read0 */
CO_FL_SOCK_WR_SH = 0x00080000, /* SOCK layer asked for shutw */
/* flags used to report connection status and errors */
CO_FL_ERROR = 0x00100000, /* a fatal error was reported */
CO_FL_CONNECTED = 0x00200000, /* the connection is now established */
CO_FL_WAIT_L4_CONN = 0x00400000, /* waiting for L4 to be connected */
CO_FL_WAIT_L6_CONN = 0x00800000, /* waiting for L6 to be connected (eg: SSL) */
/* synthesis of the flags above */
CO_FL_CONN_STATE = 0x00FF0000, /* all shut/connected flags */
/*** All the flags below are used for connection handshakes. Any new
* handshake should be added after this point, and CO_FL_HANDSHAKE
* should be updated.
*/
CO_FL_SI_SEND_PROXY = 0x01000000, /* send a valid PROXY protocol header */
CO_FL_SSL_WAIT_HS = 0x02000000, /* wait for an SSL handshake to complete */
CO_FL_ACCEPT_PROXY = 0x04000000, /* receive a valid PROXY protocol header */
CO_FL_LOCAL_SPROXY = 0x08000000, /* send a valid local PROXY protocol header */
/* below we have all handshake flags grouped into one */
CO_FL_HANDSHAKE = CO_FL_SI_SEND_PROXY | CO_FL_SSL_WAIT_HS | CO_FL_ACCEPT_PROXY | CO_FL_LOCAL_SPROXY,
/* when any of these flags is set, polling is defined by socket-layer
* operations, as opposed to data-layer. Transport is explicitly not
* mentionned here to avoid any confusion, since it can be the same
* as DATA or SOCK on some implementations.
*/
CO_FL_POLL_SOCK = CO_FL_HANDSHAKE | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN,
/* This last flag indicates that the transport layer is used (for instance
* by logs) and must not be cleared yet. The last call to conn_xprt_close()
* must be done after clearing this flag.
*/
CO_FL_XPRT_TRACKED = 0x80000000,
};
/* possible connection error codes */
enum {
CO_ER_NONE, /* no error */
CO_ER_PRX_EMPTY, /* nothing received in PROXY protocol header */
CO_ER_PRX_ABORT, /* client abort during PROXY protocol header */
CO_ER_PRX_TIMEOUT, /* timeout while waiting for a PROXY header */
CO_ER_PRX_TRUNCATED, /* truncated PROXY protocol header */
CO_ER_PRX_NOT_HDR, /* not a PROXY protocol header */
CO_ER_PRX_BAD_HDR, /* bad PROXY protocol header */
CO_ER_PRX_BAD_PROTO, /* unsupported protocol in PROXY header */
CO_ER_SSL_EMPTY, /* client closed during SSL handshake */
CO_ER_SSL_ABORT, /* client abort during SSL handshake */
CO_ER_SSL_TIMEOUT, /* timeout during SSL handshake */
CO_ER_SSL_TOO_MANY, /* too many SSL connections */
CO_ER_SSL_NO_MEM, /* no more memory to allocate an SSL connection */
CO_ER_SSL_RENEG, /* forbidden client renegociation */
CO_ER_SSL_CA_FAIL, /* client cert verification failed in the CA chain */
CO_ER_SSL_CRT_FAIL, /* client cert verification failed on the certificate */
CO_ER_SSL_HANDSHAKE, /* SSL error during handshake */
CO_ER_SSL_NO_TARGET, /* unkonwn target (not client nor server) */
};
/* source address settings for outgoing connections */
enum {
/* Tproxy exclusive values from 0 to 7 */
CO_SRC_TPROXY_ADDR = 0x0001, /* bind to this non-local address when connecting */
CO_SRC_TPROXY_CIP = 0x0002, /* bind to the client's IP address when connecting */
CO_SRC_TPROXY_CLI = 0x0003, /* bind to the client's IP+port when connecting */
CO_SRC_TPROXY_DYN = 0x0004, /* bind to a dynamically computed non-local address */
CO_SRC_TPROXY_MASK = 0x0007, /* bind to a non-local address when connecting */
CO_SRC_BIND = 0x0008, /* bind to a specific source address when connecting */
};
/* xprt_ops describes transport-layer operations for a connection. They
* generally run over a socket-based control layer, but not always. Some
* of them are used for data transfer with the upper layer (rcv_*, snd_*)
* and the other ones are used to setup and release the transport layer.
*/
struct xprt_ops {
int (*rcv_buf)(struct connection *conn, struct buffer *buf, int count); /* recv callback */
int (*snd_buf)(struct connection *conn, struct buffer *buf, int flags); /* send callback */
int (*rcv_pipe)(struct connection *conn, struct pipe *pipe, unsigned int count); /* recv-to-pipe callback */
int (*snd_pipe)(struct connection *conn, struct pipe *pipe); /* send-to-pipe callback */
void (*shutr)(struct connection *, int); /* shutr function */
void (*shutw)(struct connection *, int); /* shutw function */
void (*close)(struct connection *); /* close the transport layer */
int (*init)(struct connection *conn); /* initialize the transport layer */
};
/* data_cb describes the data layer's recv and send callbacks which are called
* when I/O activity was detected after the transport layer is ready. These
* callbacks are supposed to make use of the xprt_ops above to exchange data
* from/to buffers and pipes. The <wake> callback is used to report activity
* at the transport layer, which can be a connection opening/close, or any
* data movement. The <init> callback may be called by the connection handler
* at the end of a transport handshake, when it is about to transfer data and
* the data layer is not ready yet. Both <wake> and <init> may abort a connection
* by returning < 0.
*/
struct data_cb {
void (*recv)(struct connection *conn); /* data-layer recv callback */
void (*send)(struct connection *conn); /* data-layer send callback */
int (*wake)(struct connection *conn); /* data-layer callback to report activity */
int (*init)(struct connection *conn); /* data-layer initialization */
};
/* a connection source profile defines all the parameters needed to properly
* bind an outgoing connection for a server or proxy.
*/
struct conn_src {
unsigned int opts; /* CO_SRC_* */
int iface_len; /* bind interface name length */
char *iface_name; /* bind interface name or NULL */
struct port_range *sport_range; /* optional per-server TCP source ports */
struct sockaddr_storage source_addr; /* the address to which we want to bind for connect() */
#if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY)
struct sockaddr_storage tproxy_addr; /* non-local address we want to bind to for connect() */
char *bind_hdr_name; /* bind to this header name if defined */
int bind_hdr_len; /* length of the name of the header above */
int bind_hdr_occ; /* occurrence number of header above: >0 = from first, <0 = from end, 0=disabled */
#endif
};
/* This structure describes a connection with its methods and data.
* A connection may be performed to proxy or server via a local or remote
* socket, and can also be made to an internal applet. It can support
* several transport schemes (applet, raw, ssl, ...). It can support several
* connection control schemes, generally a protocol for socket-oriented
* connections, but other methods for applets.
*/
struct connection {
const struct protocol *ctrl; /* operations at the socket layer */
const struct xprt_ops *xprt; /* operations at the transport layer */
const struct data_cb *data; /* data layer callbacks */
unsigned int flags; /* CO_FL_* */
int xprt_st; /* transport layer state, initialized to zero */
void *xprt_ctx; /* general purpose pointer, initialized to NULL */
void *owner; /* pointer to upper layer's entity (eg: stream interface) */
union { /* definitions which depend on connection type */
struct { /*** information used by socket-based connections ***/
int fd; /* file descriptor for a stream driver when known */
} sock;
} t;
unsigned int err_code; /* CO_ER_* */
enum obj_type *target; /* the target to connect to (server, proxy, applet, ...) */
struct {
struct sockaddr_storage from; /* client address, or address to spoof when connecting to the server */
struct sockaddr_storage to; /* address reached by the client, or address to connect to */
} addr; /* addresses of the remote side, client for producer and server for consumer */
};
#endif /* _TYPES_CONNECTION_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/