blob: 2e28d369e11ee23994e43f76d10671e975a9f3ab [file] [log] [blame]
/*
* HTT/1 mux-demux for connections
*
* Copyright 2018 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <common/cfgparse.h>
#include <common/config.h>
#include <types/pipe.h>
#include <types/proxy.h>
#include <types/session.h>
#include <proto/connection.h>
#include <proto/h1.h>
#include <proto/http_htx.h>
#include <proto/htx.h>
#include <proto/log.h>
#include <proto/stream.h>
#include <proto/stream_interface.h>
/*
* H1 Connection flags (32 bits)
*/
#define H1C_F_NONE 0x00000000
/* Flags indicating why writing output data are blocked */
#define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */
#define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */
/* 0x00000004 - 0x00000008 unused */
/* Flags indicating why reading input data are blocked. */
#define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */
#define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */
/* 0x00000040 - 0x00000800 unused */
#define H1C_F_CS_ERROR 0x00001000 /* connection must be closed ASAP because an error occurred */
#define H1C_F_CS_SHUTW_NOW 0x00002000 /* connection must be shut down for writes ASAP */
#define H1C_F_CS_SHUTW 0x00004000 /* connection is already shut down */
#define H1C_F_CS_WAIT_CONN 0x00008000 /* waiting for the connection establishment */
#define H1C_F_WAIT_NEXT_REQ 0x00010000 /* waiting for the next request to start, use keep-alive timeout */
/*
* H1 Stream flags (32 bits)
*/
#define H1S_F_NONE 0x00000000
#define H1S_F_ERROR 0x00000001 /* An error occurred on the H1 stream */
#define H1S_F_REQ_ERROR 0x00000002 /* An error occurred during the request parsing/xfer */
#define H1S_F_RES_ERROR 0x00000004 /* An error occurred during the response parsing/xfer */
/* 0x00000008 unused */
#define H1S_F_WANT_KAL 0x00000010
#define H1S_F_WANT_TUN 0x00000020
#define H1S_F_WANT_CLO 0x00000040
#define H1S_F_WANT_MSK 0x00000070
#define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */
#define H1S_F_BUF_FLUSH 0x00000100 /* Flush input buffer and don't read more data */
#define H1S_F_SPLICED_DATA 0x00000200 /* Set when the kernel splicing is in used */
/* H1 connection descriptor */
struct h1c {
struct connection *conn;
struct proxy *px;
uint32_t flags; /* Connection flags: H1C_F_* */
struct buffer ibuf; /* Input buffer to store data before parsing */
struct buffer obuf; /* Output buffer to store data after reformatting */
struct buffer_wait buf_wait; /* Wait list for buffer allocation */
struct wait_event wait_event; /* To be used if we're waiting for I/Os */
struct h1s *h1s; /* H1 stream descriptor */
};
/* H1 stream descriptor */
struct h1s {
struct h1c *h1c;
struct conn_stream *cs;
uint32_t flags; /* Connection flags: H1S_F_* */
struct wait_event *recv_wait; /* Address of the wait_event the conn_stream associated is waiting on */
struct wait_event *send_wait; /* Address of the wait_event the conn_stream associated is waiting on */
struct h1m req;
struct h1m res;
enum http_meth_t meth; /* HTTP resquest method */
uint16_t status; /* HTTP response status */
};
/* the h1c and h1s pools */
static struct pool_head *pool_head_h1c;
static struct pool_head *pool_head_h1s;
static int h1_recv(struct h1c *h1c);
static int h1_send(struct h1c *h1c);
static int h1_process(struct h1c *h1c);
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short state);
static void h1_shutw_conn(struct connection *conn);
/*****************************************************/
/* functions below are for dynamic buffer management */
/*****************************************************/
/*
* Indicates whether or not the we may call the h1_recv() function to
* attempt to receive data into the buffer and/or parse pending data. The
* condition is a bit complex due to some API limits for now. The rules are the
* following :
* - if an error or a shutdown was detected on the connection and the buffer
* is empty, we must not attempt to receive
* - if the input buffer failed to be allocated, we must not try to receive
* and we know there is nothing pending
* - if no flag indicates a blocking condition, we may attempt to receive,
* regardless of whether the input buffer is full or not, so that only de
* receiving part decides whether or not to block. This is needed because
* the connection API indeed prevents us from re-enabling receipt that is
* already enabled in a polled state, so we must always immediately stop as
* soon as the mux can't proceed so as never to hit an end of read with data
* pending in the buffers.
* - otherwise must may not attempt to receive
*/
static inline int h1_recv_allowed(const struct h1c *h1c)
{
if (b_data(&h1c->ibuf) == 0 &&
(h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTW) ||
h1c->conn->flags & CO_FL_ERROR ||
conn_xprt_read0_pending(h1c->conn)))
return 0;
if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL)))
return 1;
return 0;
}
/*
* Tries to grab a buffer and to re-enables processing on mux <target>. The h1
* flags are used to figure what buffer was requested. It returns 1 if the
* allocation succeeds, in which case the connection is woken up, or 0 if it's
* impossible to wake up and we prefer to be woken up later.
*/
static int h1_buf_available(void *target)
{
struct h1c *h1c = target;
if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc_margin(&h1c->ibuf, 0)) {
h1c->flags &= ~H1C_F_IN_ALLOC;
if (h1_recv_allowed(h1c))
tasklet_wakeup(h1c->wait_event.task);
return 1;
}
if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc_margin(&h1c->obuf, 0)) {
h1c->flags &= ~H1C_F_OUT_ALLOC;
tasklet_wakeup(h1c->wait_event.task);
return 1;
}
return 0;
}
/*
* Allocate a buffer. If if fails, it adds the mux in buffer wait queue.
*/
static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(LIST_ISEMPTY(&h1c->buf_wait.list)) &&
unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) {
h1c->buf_wait.target = h1c;
h1c->buf_wait.wakeup_cb = h1_buf_available;
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
LIST_ADDQ(&buffer_wq, &h1c->buf_wait.list);
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
__conn_xprt_stop_recv(h1c->conn);
}
return buf;
}
/*
* Release a buffer, if any, and try to wake up entities waiting in the buffer
* wait queue.
*/
static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(h1c->buf_wait.target, tasks_run_queue);
}
}
static int h1_avail_streams(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
return h1c->h1s ? 0 : 1;
}
/*****************************************************************/
/* functions below are dedicated to the mux setup and management */
/*****************************************************************/
static struct conn_stream *h1s_new_cs(struct h1s *h1s)
{
struct conn_stream *cs;
cs = cs_new(h1s->h1c->conn);
if (!cs)
goto err;
h1s->cs = cs;
cs->ctx = h1s;
if (h1s->flags & H1S_F_NOT_FIRST)
cs->flags |= CS_FL_NOT_FIRST;
if (stream_create_from_cs(cs) < 0)
goto err;
return cs;
err:
cs_free(cs);
h1s->cs = NULL;
return NULL;
}
static struct h1s *h1s_create(struct h1c *h1c, struct conn_stream *cs)
{
struct h1s *h1s;
h1s = pool_alloc(pool_head_h1s);
if (!h1s)
goto fail;
h1s->h1c = h1c;
h1c->h1s = h1s;
h1s->cs = NULL;
h1s->flags = H1S_F_NONE;
h1s->recv_wait = NULL;
h1s->send_wait = NULL;
h1m_init_req(&h1s->req);
h1s->req.flags |= H1_MF_NO_PHDR;
h1m_init_res(&h1s->res);
h1s->res.flags |= H1_MF_NO_PHDR;
h1s->status = 0;
h1s->meth = HTTP_METH_OTHER;
if (h1c->flags & H1C_F_WAIT_NEXT_REQ)
h1s->flags |= H1S_F_NOT_FIRST;
h1c->flags &= ~H1C_F_WAIT_NEXT_REQ;
if (!conn_is_back(h1c->conn)) {
if (h1c->px->options2 & PR_O2_REQBUG_OK)
h1s->req.err_pos = -1;
}
else {
if (h1c->px->options2 & PR_O2_RSPBUG_OK)
h1s->res.err_pos = -1;
}
/* If a conn_stream already exists, attach it to this H1S. Otherwise we
* create a new one.
*/
if (cs) {
cs->ctx = h1s;
h1s->cs = cs;
}
else {
cs = h1s_new_cs(h1s);
if (!cs)
goto fail;
}
return h1s;
fail:
pool_free(pool_head_h1s, h1s);
return NULL;
}
static void h1s_destroy(struct h1s *h1s)
{
if (h1s) {
struct h1c *h1c = h1s->h1c;
h1c->h1s = NULL;
if (h1s->recv_wait != NULL)
h1s->recv_wait->wait_reason &= ~SUB_CAN_RECV;
if (h1s->send_wait != NULL)
h1s->send_wait->wait_reason &= ~SUB_CAN_SEND;
h1c->flags |= H1C_F_WAIT_NEXT_REQ;
if (h1s->flags & (H1S_F_REQ_ERROR|H1S_F_RES_ERROR))
h1c->flags |= H1C_F_CS_ERROR;
cs_free(h1s->cs);
pool_free(pool_head_h1s, h1s);
}
}
/*
* Initialize the mux once it's attached. It is expected that conn->mux_ctx
* points to the existing conn_stream (for outgoing connections) or NULL (for
* incoming ones). Returns < 0 on error.
*/
static int h1_init(struct connection *conn, struct proxy *proxy)
{
struct h1c *h1c;
h1c = pool_alloc(pool_head_h1c);
if (!h1c)
goto fail_h1c;
h1c->conn = conn;
h1c->px = proxy;
h1c->flags = H1C_F_NONE;
h1c->ibuf = BUF_NULL;
h1c->obuf = BUF_NULL;
h1c->h1s = NULL;
LIST_INIT(&h1c->buf_wait.list);
h1c->wait_event.task = tasklet_new();
if (!h1c->wait_event.task)
goto fail;
h1c->wait_event.task->process = h1_io_cb;
h1c->wait_event.task->context = h1c;
h1c->wait_event.wait_reason = 0;
if (!(conn->flags & CO_FL_CONNECTED))
h1c->flags |= H1C_F_CS_WAIT_CONN;
/* Always Create a new H1S */
if (!h1s_create(h1c, conn->mux_ctx))
goto fail;
conn->mux_ctx = h1c;
/* Try to read, if nothing is available yet we'll just subscribe */
if (h1_recv(h1c))
h1_process(h1c);
/* mux->wake will be called soon to complete the operation */
return 0;
fail:
if (h1c->wait_event.task)
tasklet_free(h1c->wait_event.task);
pool_free(pool_head_h1c, h1c);
fail_h1c:
return -1;
}
/* release function for a connection. This one should be called to free all
* resources allocated to the mux.
*/
static void h1_release(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
LIST_DEL(&conn->list);
if (h1c) {
if (!LIST_ISEMPTY(&h1c->buf_wait.list)) {
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
LIST_DEL(&h1c->buf_wait.list);
LIST_INIT(&h1c->buf_wait.list);
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
}
h1_release_buf(h1c, &h1c->ibuf);
h1_release_buf(h1c, &h1c->obuf);
if (h1c->wait_event.task)
tasklet_free(h1c->wait_event.task);
h1s_destroy(h1c->h1s);
if (h1c->wait_event.wait_reason != 0)
conn->xprt->unsubscribe(conn, h1c->wait_event.wait_reason,
&h1c->wait_event);
pool_free(pool_head_h1c, h1c);
}
conn->mux = NULL;
conn->mux_ctx = NULL;
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
/******************************************************/
/* functions below are for the H1 protocol processing */
/******************************************************/
/* Parse the request version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_req_vsn(struct h1m *h1m, const union htx_sl *sl)
{
const char *p = sl->rq.l + sl->rq.m_len + sl->rq.u_len;
if ((sl->rq.v_len == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/* Parse the response version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_res_vsn(struct h1m *h1m, const union htx_sl *sl)
{
const char *p = sl->rq.l;
if ((sl->st.v_len == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/*
* Check the validity of the request version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_req_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
{
struct h1c *h1c = h1s->h1c;
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(h1c->px->options2 & PR_O2_REQBUG_OK)) {
if (sl.rq.v.len != 8)
return 0;
if (*(sl.rq.v.ptr + 4) != '/' ||
!isdigit((unsigned char)*(sl.rq.v.ptr + 5)) ||
*(sl.rq.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl.rq.v.ptr + 7)))
return 0;
}
else if (!sl.rq.v.len) {
/* try to convert HTTP/0.9 requests to HTTP/1.0 */
/* RFC 1945 allows only GET for HTTP/0.9 requests */
if (sl.rq.meth != HTTP_METH_GET)
return 0;
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
if (!sl.rq.u.len)
return 0;
/* Add HTTP version */
sl.rq.v = ist("HTTP/1.0");
}
return 1;
}
/*
* Check the validity of the response version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_res_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
{
struct h1c *h1c = h1s->h1c;
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(h1c->px->options2 & PR_O2_RSPBUG_OK)) {
if (sl.st.v.len != 8)
return 0;
if (*(sl.st.v.ptr + 4) != '/' ||
!isdigit((unsigned char)*(sl.st.v.ptr + 5)) ||
*(sl.st.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl.st.v.ptr + 7)))
return 0;
}
return 1;
}
/* Remove all "Connection:" headers from the HTX message <htx> */
static void h1_remove_conn_hdrs(struct h1m *h1m, struct htx *htx)
{
struct ist hdr = {.ptr = "Connection", .len = 10};
struct http_hdr_ctx ctx;
while (http_find_header(htx, hdr, &ctx, 1))
http_remove_header(htx, &ctx);
h1m->flags &= ~(H1_MF_CONN_KAL|H1_MF_CONN_CLO);
}
/* Add a "Connection:" header with the value <value> into the HTX message
* <htx>.
*/
static void h1_add_conn_hdr(struct h1m *h1m, struct htx *htx, struct ist value)
{
struct ist hdr = {.ptr = "Connection", .len = 10};
http_add_header(htx, hdr, value);
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct proxy *fe = h1s->h1c->px;
int flag = H1S_F_WANT_KAL; /* For client connection: server-close == keepalive */
/* Tunnel mode can only by set on the frontend */
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
flag = H1S_F_WANT_TUN;
else if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)
flag = H1S_F_WANT_CLO;
/* flags order: CLO > SCL > TUN > KAL */
if ((h1s->flags & H1S_F_WANT_MSK) < flag)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | flag;
if (h1m->flags & H1_MF_RESP) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
h1s->status == 101)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
else if (!(h1m->flags & H1_MF_XFER_LEN)) /* no length known => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
else {
if (h1s->flags & H1S_F_WANT_KAL &&
(!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || /* no KA in HTTP/1.0 */
h1m->flags & H1_MF_CONN_CLO)) /* explicit close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
/* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && fe->state == PR_STSTOPPED)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct proxy *be = h1s->h1c->px;
struct proxy *fe = strm_fe(si_strm(h1s->cs->data));
int flag = H1S_F_WANT_KAL;
/* Tunnel mode can only by set on the frontend */
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
flag = H1S_F_WANT_TUN;
/* For the server connection: server-close == httpclose */
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)
flag = H1S_F_WANT_CLO;
/* flags order: CLO > SCL > TUN > KAL */
if ((h1s->flags & H1S_F_WANT_MSK) < flag)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | flag;
if (h1m->flags & H1_MF_RESP) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
h1s->status == 101)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
else if (!(h1m->flags & H1_MF_XFER_LEN)) /* no length known => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
else if (h1s->flags & H1S_F_WANT_KAL &&
(!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || /* no KA in HTTP/1.0 */
h1m->flags & H1_MF_CONN_CLO)) /* explicit close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
/* If KAL, check if the backend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && be->state == PR_STSTOPPED)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
static void h1_update_req_conn_hdr(struct h1s *h1s, struct h1m *h1m,
struct htx *htx, struct ist *conn_val)
{
struct proxy *px = h1s->h1c->px;
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) {
if (h1m->flags & H1_MF_CONN_CLO) {
if (conn_val)
*conn_val = ist("");
if (htx)
h1_remove_conn_hdrs(h1m, htx);
}
if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))) {
if (conn_val)
*conn_val = ist("keep-alive");
if (htx)
h1_add_conn_hdr(h1m, htx, ist("keep-alive"));
}
}
else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */
if (h1m->flags & H1_MF_CONN_KAL) {
if (conn_val)
*conn_val = ist("");
if (htx)
h1_remove_conn_hdrs(h1m, htx);
}
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_VER_11) {
if (conn_val)
*conn_val = ist("close");
if (htx)
h1_add_conn_hdr(h1m, htx, ist("close"));
}
}
}
static void h1_update_res_conn_hdr(struct h1s *h1s, struct h1m *h1m,
struct htx *htx, struct ist *conn_val)
{
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL) {
if (h1m->flags & H1_MF_CONN_CLO) {
if (conn_val)
*conn_val = ist("");
if (htx)
h1_remove_conn_hdrs(h1m, htx);
}
if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))) {
if (conn_val)
*conn_val = ist("keep-alive");
if (htx)
h1_add_conn_hdr(h1m, htx, ist("keep-alive"));
}
}
else { /* H1S_F_WANT_CLO */
if (h1m->flags & H1_MF_CONN_KAL) {
if (conn_val)
*conn_val = ist("");
if (htx)
h1_remove_conn_hdrs(h1m, htx);
}
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_VER_11) {
if (conn_val)
*conn_val = ist("close");
if (htx)
h1_add_conn_hdr(h1m, htx, ist("close"));
}
}
}
/* Set the right connection mode and update "Connection:" header if
* needed. <htx> and <conn_val> can be NULL. When <htx> is not NULL, the HTX
* message is updated accordingly. When <conn_val> is not NULL, it is set with
* the new header value.
*/
static void h1_process_conn_mode(struct h1s *h1s, struct h1m *h1m,
struct htx *htx, struct ist *conn_val)
{
if (!conn_is_back(h1s->h1c->conn)) {
h1_set_cli_conn_mode(h1s, h1m);
if (h1m->flags & H1_MF_RESP)
h1_update_res_conn_hdr(h1s, h1m, htx, conn_val);
}
else {
h1_set_srv_conn_mode(h1s, h1m);
if (!(h1m->flags & H1_MF_RESP))
h1_update_req_conn_hdr(h1s, h1m, htx, conn_val);
}
}
/*
* Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if
* it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR
* flag and filling h1s->err_pos and h1s->err_state fields. This functions is
* responsibile to update the parser state <h1m>.
*/
static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max)
{
struct http_hdr hdrs[MAX_HTTP_HDR];
union h1_sl sl;
int ret = 0;
if (!max)
goto end;
/* Realing input buffer if necessary */
if (b_head(buf) + b_data(buf) > b_wrap(buf))
b_slow_realign(buf, trash.area, 0);
ret = h1_headers_to_hdr_list(b_peek(buf, *ofs), b_peek(buf, *ofs) + max,
hdrs, sizeof(hdrs)/sizeof(hdrs[0]), h1m, &sl);
if (ret <= 0) {
/* Incomplete or invalid message. If the buffer is full, it's an
* error because headers are too large to be handled by the
* parser. */
if (ret < 0 || (!ret && b_full(buf)))
goto error;
goto end;
}
/* messages headers fully parsed, do some checks to prepare the body
* parsing.
*/
/* Be sure to keep some space to do headers rewritting */
if (ret > (b_size(buf) - global.tune.maxrewrite))
goto error;
/* Save the request's method or the response's status, check if the body
* length is known and check the VSN validity */
if (!(h1m->flags & H1_MF_RESP)) {
h1s->meth = sl.rq.meth;
/* Request have always a known length */
h1m->flags |= H1_MF_XFER_LEN;
if (!(h1m->flags & H1_MF_CHNK) && !h1m->body_len)
h1m->state = H1_MSG_DONE;
if (!h1_process_req_vsn(h1s, h1m, sl)) {
h1m->err_pos = sl.rq.v.ptr - b_head(buf);
h1m->err_state = h1m->state;
goto vsn_error;
}
}
else {
h1s->status = sl.st.status;
if ((h1s->meth == HTTP_METH_HEAD) ||
(h1s->status >= 100 && h1s->status < 200) ||
(h1s->status == 204) || (h1s->status == 304) ||
(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200)) {
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
h1m->flags |= H1_MF_XFER_LEN;
h1m->curr_len = h1m->body_len = 0;
h1m->state = H1_MSG_DONE;
}
else if (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) {
h1m->flags |= H1_MF_XFER_LEN;
if ((h1m->flags & H1_MF_CLEN) && !h1m->body_len)
h1m->state = H1_MSG_DONE;
}
else
h1m->state = H1_MSG_TUNNEL;
if (!h1_process_res_vsn(h1s, h1m, sl)) {
h1m->err_pos = sl.st.v.ptr - b_head(buf);
h1m->err_state = h1m->state;
goto vsn_error;
}
}
if (!(h1m->flags & H1_MF_RESP)) {
if (!htx_add_reqline(htx, sl) || !htx_add_all_headers(htx, hdrs))
goto error;
}
else {
if (!htx_add_resline(htx, sl) || !htx_add_all_headers(htx, hdrs))
goto error;
}
if (h1m->state == H1_MSG_DONE)
if (!htx_add_endof(htx, HTX_BLK_EOM))
goto error;
h1_process_conn_mode(h1s, h1m, htx, NULL);
/* If body length cannot be determined, set htx->extra to
* ULLONG_MAX. This value is impossible in other cases.
*/
htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX);
/* Recheck there is enough space to do headers rewritting */
if (htx_used_space(htx) > b_size(buf) - global.tune.maxrewrite)
goto error;
*ofs += ret;
end:
return ret;
error:
h1m->err_state = h1m->state;
h1m->err_pos = h1m->next;
vsn_error:
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
ret = 0;
goto end;
}
/*
* Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it
* couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag
* and filling h1s->err_pos and h1s->err_state fields. This functions is
* responsibile to update the parser state <h1m>.
*/
static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max)
{
uint32_t data_space = htx_free_data_space(htx);
size_t total = 0;
int ret = 0;
if (h1m->flags & H1_MF_XFER_LEN) {
if (h1m->flags & H1_MF_CLEN) {
/* content-length: read only h2m->body_len */
ret = max;
if (ret > data_space)
ret = data_space;
if ((uint64_t)ret > h1m->curr_len)
ret = h1m->curr_len;
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
goto end;
h1m->curr_len -= ret;
*ofs += ret;
total += ret;
}
if (!h1m->curr_len) {
if (!htx_add_endof(htx, HTX_BLK_EOM))
goto end;
h1m->state = H1_MSG_DONE;
}
}
else if (h1m->flags & H1_MF_CHNK) {
new_chunk:
/* te:chunked : parse chunks */
if (h1m->state == H1_MSG_CHUNK_CRLF) {
ret = h1_skip_chunk_crlf(buf, *ofs, *ofs + max);
if (ret <= 0)
goto end;
h1m->state = H1_MSG_CHUNK_SIZE;
max -= ret;
*ofs += ret;
total += ret;
}
if (h1m->state == H1_MSG_CHUNK_SIZE) {
unsigned int chksz;
ret = h1_parse_chunk_size(buf, *ofs, *ofs + max, &chksz);
if (ret <= 0)
goto end;
if (!chksz) {
if (!htx_add_endof(htx, HTX_BLK_EOD))
goto end;
h1m->state = H1_MSG_TRAILERS;
}
else
h1m->state = H1_MSG_DATA;
h1m->curr_len = chksz;
h1m->body_len += chksz;
max -= ret;
*ofs += ret;
total += ret;
}
if (h1m->state == H1_MSG_DATA) {
ret = max;
if (ret > data_space)
ret = data_space;
if ((uint64_t)ret > h1m->curr_len)
ret = h1m->curr_len;
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
goto end;
h1m->curr_len -= ret;
max -= ret;
*ofs += ret;
total += ret;
}
if (!h1m->curr_len) {
h1m->state = H1_MSG_CHUNK_CRLF;
goto new_chunk;
}
goto end;
}
if (h1m->state == H1_MSG_TRAILERS) {
ret = h1_measure_trailers(buf, *ofs, *ofs + max);
if (ret > data_space)
ret = (htx_is_empty(htx) ? -1 : 0);
if (ret <= 0)
goto end;
/* Realing input buffer if tailers wrap. For now
* this is a workaroung. Because trailers are
* not split on CRLF, like headers, there is no
* way to know where to split it when trailers
* wrap. This is a limitation of
* h1_measure_trailers.
*/
if (b_peek(buf, *ofs) > b_peek(buf, *ofs + ret))
b_slow_realign(buf, trash.area, 0);
if (!htx_add_trailer(htx, ist2(b_peek(buf, *ofs), ret)))
goto end;
max -= ret;
*ofs += ret;
total += ret;
/* FIXME: if it fails here, this is a problem,
* because there is no way to return here. */
if (!htx_add_endof(htx, HTX_BLK_EOM))
goto end;
h1m->state = H1_MSG_DONE;
}
}
else {
/* XFER_LEN is set but not CLEN nor CHNK, it means there
* is no body. Switch the message in DONE state
*/
if (!htx_add_endof(htx, HTX_BLK_EOM))
goto end;
h1m->state = H1_MSG_DONE;
}
}
else {
/* no content length, read till SHUTW */
ret = max;
if (ret > data_space)
ret = data_space;
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
goto end;
*ofs += max;
total = max;
}
}
end:
if (ret < 0) {
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
h1m->err_state = h1m->state;
h1m->err_pos = *ofs + max + ret;
return 0;
}
/* update htx->extra, only when the body length is known */
if (h1m->flags & H1_MF_XFER_LEN)
htx->extra = h1m->curr_len;
return total;
}
/*
* Synchronize the request and the response before reseting them. Except for 1xx
* responses, we wait that the request and the response are in DONE state and
* that all data are forwarded for both. For 1xx responses, only the response is
* reset, waiting the final one. Many 1xx messages can be sent.
*/
static void h1_sync_messages(struct h1c *h1c)
{
struct h1s *h1s = h1c->h1s;
if (!h1s)
return;
if (h1s->res.state == H1_MSG_DONE &&
(h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) &&
(conn_is_back(h1c->conn) || !b_data(&h1c->obuf))) {
/* For 100-Continue response or any other informational 1xx
* response which is non-final, don't reset the request, the
* transaction is not finished. We take care the response was
* transferred before.
*/
h1m_init_res(&h1s->res);
h1s->res.flags |= H1_MF_NO_PHDR;
}
else if (!b_data(&h1c->obuf) &&
h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE) {
if (h1s->flags & H1S_F_WANT_TUN) {
h1m_init_req(&h1s->req);
h1m_init_res(&h1s->res);
h1s->req.state = H1_MSG_TUNNEL;
h1s->res.state = H1_MSG_TUNNEL;
}
}
}
/*
* Process incoming data. It parses data and transfer them from h1c->ibuf into
* <buf>. It returns the number of bytes parsed and transferred if > 0, or 0 if
* it couldn't proceed.
*/
static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, int flags)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *htx;
size_t total = 0;
size_t ret = 0;
size_t count, max;
int errflag;
htx = htx_from_buf(buf);
count = b_data(&h1c->ibuf);
max = htx_free_space(htx);
if (flags & CO_RFL_KEEP_RSV) {
if (max < global.tune.maxrewrite)
goto end;
max -= global.tune.maxrewrite;
}
if (count > max)
count = max;
if (!conn_is_back(h1c->conn)) {
h1m = &h1s->req;
errflag = H1S_F_REQ_ERROR;
}
else {
h1m = &h1s->res;
errflag = H1S_F_RES_ERROR;
}
do {
if (h1m->state <= H1_MSG_LAST_LF) {
ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret)
break;
}
else if (h1m->state <= H1_MSG_TRAILERS) {
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret)
break;
}
else if (h1m->state == H1_MSG_DONE)
break;
else if (h1m->state == H1_MSG_TUNNEL) {
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret)
break;
}
else {
h1s->flags |= errflag;
break;
}
count -= ret;
} while (!(h1s->flags & errflag) && count);
if (h1s->flags & errflag)
goto parsing_err;
b_del(&h1c->ibuf, total);
end:
if (htx_is_not_empty(htx))
b_set_data(buf, b_size(buf));
else {
htx_reset(htx);
b_set_data(buf, 0);
}
if (h1c->flags & H1C_F_IN_FULL && b_room(&h1c->ibuf)) {
h1c->flags &= ~H1C_F_IN_FULL;
tasklet_wakeup(h1c->wait_event.task);
}
if (b_data(&h1c->ibuf)) {
if (!htx_is_empty(htx))
h1s->cs->flags |= CS_FL_RCV_MORE;
}
else {
h1_release_buf(h1c, &h1c->ibuf);
h1_sync_messages(h1c);
h1s->cs->flags &= ~CS_FL_RCV_MORE;
if (h1s->cs->flags & CS_FL_REOS)
h1s->cs->flags |= CS_FL_EOS;
}
return total;
parsing_err:
// FIXME: create an error snapshot here
b_reset(&h1c->ibuf);
htx->flags |= HTX_FL_PARSING_ERROR;
b_set_data(buf, b_size(buf));
h1s->cs->flags |= CS_FL_EOS;
return 0;
}
/*
* Process outgoing data. It parses data and transfer them from the channel buffer into
* h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or
* 0 if it couldn't proceed.
*/
static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *chn_htx;
struct htx_blk *blk;
struct buffer *tmp;
size_t total = 0;
int errflag;
if (!count)
goto end;
chn_htx = htx_from_buf(buf);
if (!h1_get_buf(h1c, &h1c->obuf)) {
h1c->flags |= H1C_F_OUT_ALLOC;
goto end;
}
if (!conn_is_back(h1c->conn)) {
h1m = &h1s->res;
errflag = H1S_F_RES_ERROR;
}
else {
h1m = &h1s->req;
errflag = H1S_F_REQ_ERROR;
}
tmp = get_trash_chunk();
tmp->size = b_room(&h1c->obuf);
blk = htx_get_head_blk(chn_htx);
while (!(h1s->flags & errflag) && blk) {
union htx_sl *sl;
struct ist n, v;
uint32_t sz = htx_get_blksz(blk);
if (total + sz > count)
goto copy;
switch (htx_get_blk_type(blk)) {
case HTX_BLK_UNUSED:
break;
case HTX_BLK_REQ_SL:
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->meth = sl->rq.meth;
h1_parse_req_vsn(h1m, sl);
if (!htx_reqline_to_str(sl, tmp))
goto copy;
h1m->flags |= H1_MF_XFER_LEN;
h1m->state = H1_MSG_HDR_FIRST;
break;
case HTX_BLK_RES_SL:
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->status = sl->st.status;
h1_parse_res_vsn(h1m, sl);
if (!htx_stline_to_str(sl, tmp))
goto copy;
if (chn_htx->extra != ULLONG_MAX)
h1m->flags |= H1_MF_XFER_LEN;
h1m->state = H1_MSG_HDR_FIRST;
break;
case HTX_BLK_HDR:
if (h1m->state == H1_MSG_HDR_FIRST) {
struct http_hdr_ctx ctx;
n = ist("Connection");
v = ist("");
/* If there is no "Connection:" header,
* process conn_mode now and add the
* right one.
*/
ctx.blk = blk;
if (http_find_header(chn_htx, n, &ctx, 1))
goto process_hdr;
h1_process_conn_mode(h1s, h1m, NULL, &v);
if (!v.len)
goto process_hdr;
if (!htx_hdr_to_str(n, v, tmp))
goto copy;
}
process_hdr:
h1m->state = H1_MSG_HDR_NAME;
n = htx_get_blk_name(chn_htx, blk);
v = htx_get_blk_value(chn_htx, blk);
if (isteqi(n, ist("transfer-encoding")))
h1_parse_xfer_enc_header(h1m, v);
else if (isteqi(n, ist("connection"))) {
h1_parse_connection_header(h1m, v);
h1_process_conn_mode(h1s, h1m, NULL, &v);
if (!v.len)
goto skip_hdr;
}
if (!htx_hdr_to_str(n, v, tmp))
goto copy;
skip_hdr:
h1m->state = H1_MSG_HDR_L2_LWS;
break;
case HTX_BLK_PHDR:
/* not implemented yet */
h1m->flags |= errflag;
break;
case HTX_BLK_EOH:
h1m->state = H1_MSG_LAST_LF;
if (!chunk_memcat(tmp, "\r\n", 2))
goto copy;
h1m->state = H1_MSG_DATA;
break;
case HTX_BLK_DATA:
v = htx_get_blk_value(chn_htx, blk);
if (!htx_data_to_str(v, tmp, !!(h1m->flags & H1_MF_CHNK)))
goto copy;
break;
case HTX_BLK_EOD:
if (!chunk_memcat(tmp, "0\r\n", 3))
goto copy;
h1m->state = H1_MSG_TRAILERS;
break;
case HTX_BLK_TLR:
v = htx_get_blk_value(chn_htx, blk);
if (!htx_trailer_to_str(v, tmp))
goto copy;
break;
case HTX_BLK_EOM:
/* if ((h1m->flags & H1_MF_CHNK) && !chunk_memcat(tmp, "\r\n", 2)) */
/* goto copy; */
h1m->state = H1_MSG_DONE;
break;
case HTX_BLK_OOB:
v = htx_get_blk_value(chn_htx, blk);
if (!chunk_memcat(tmp, v.ptr, v.len))
goto copy;
break;
default:
h1m->flags |= errflag;
break;
}
total += sz;
blk = htx_remove_blk(chn_htx, blk);
}
copy:
b_putblk(&h1c->obuf, tmp->area, tmp->data);
if (b_full(&h1c->obuf))
h1c->flags |= H1C_F_OUT_FULL;
if (htx_is_empty(chn_htx)) {
htx_reset(chn_htx);
b_set_data(buf, 0);
}
end:
return total;
}
/*********************************************************/
/* functions below are I/O callbacks from the connection */
/*********************************************************/
/*
* Attempt to read data, and subscribe if none available
*/
static int h1_recv(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
size_t ret, max;
int rcvd = 0;
if (h1c->wait_event.wait_reason & SUB_CAN_RECV)
return 0;
if (!h1_recv_allowed(h1c))
goto end;
if (h1c->h1s && (h1c->h1s->flags & (H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA))) {
rcvd = 1;
goto end;
}
if (!h1_get_buf(h1c, &h1c->ibuf)) {
h1c->flags |= H1C_F_IN_ALLOC;
goto end;
}
ret = 0;
max = b_room(&h1c->ibuf);
if (max) {
h1c->flags &= ~H1C_F_IN_FULL;
ret = conn->xprt->rcv_buf(conn, &h1c->ibuf, max, 0);
}
if (ret > 0) {
rcvd = 1;
if (h1c->h1s && h1c->h1s->cs)
h1c->h1s->cs->flags |= CS_FL_READ_PARTIAL;
}
if (h1_recv_allowed(h1c))
conn->xprt->subscribe(conn, SUB_CAN_RECV, &h1c->wait_event);
else
rcvd = 1;
end:
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
else if (b_full(&h1c->ibuf))
h1c->flags |= H1C_F_IN_FULL;
return rcvd;
}
/*
* Try to send data if possible
*/
static int h1_send(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
unsigned int flags = 0;
size_t ret;
int sent = 0;
if (conn->flags & CO_FL_ERROR)
return 0;
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
if (!(h1c->wait_event.wait_reason & SUB_CAN_SEND))
conn->xprt->subscribe(conn, SUB_CAN_SEND, &h1c->wait_event);
return 0;
}
if (!b_data(&h1c->obuf))
goto end;
if (h1c->flags & H1C_F_OUT_FULL)
flags |= CO_SFL_MSG_MORE;
ret = conn->xprt->snd_buf(conn, &h1c->obuf, b_data(&h1c->obuf), flags);
if (ret > 0) {
h1c->flags &= ~H1C_F_OUT_FULL;
b_del(&h1c->obuf, ret);
sent = 1;
}
end:
/* We're done, no more to send */
if (!b_data(&h1c->obuf)) {
h1_release_buf(h1c, &h1c->obuf);
h1_sync_messages(h1c);
if (h1c->flags & H1C_F_CS_SHUTW_NOW)
h1_shutw_conn(conn);
}
else if (!(h1c->wait_event.wait_reason & SUB_CAN_SEND))
conn->xprt->subscribe(conn, SUB_CAN_SEND, &h1c->wait_event);
return sent;
}
static void h1_wake_stream(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
struct h1s *h1s = h1c->h1s;
uint32_t flags = 0;
int dont_wake = 0;
if (!h1s || !h1s->cs)
return;
if ((h1c->flags & H1C_F_CS_ERROR) || (conn->flags & CO_FL_ERROR))
flags |= CS_FL_ERROR;
if (conn_xprt_read0_pending(conn))
flags |= CS_FL_REOS;
h1s->cs->flags |= flags;
if (h1s->recv_wait) {
h1s->recv_wait->wait_reason &= ~SUB_CAN_RECV;
tasklet_wakeup(h1s->recv_wait->task);
h1s->recv_wait = NULL;
dont_wake = 1;
}
if (h1s->send_wait) {
h1s->send_wait->wait_reason &= ~SUB_CAN_SEND;
tasklet_wakeup(h1s->send_wait->task);
h1s->send_wait = NULL;
dont_wake = 1;
}
if (!dont_wake && h1s->cs->data_cb->wake)
h1s->cs->data_cb->wake(h1s->cs);
}
/* callback called on any event by the connection handler.
* It applies changes and returns zero, or < 0 if it wants immediate
* destruction of the connection.
*/
static int h1_process(struct h1c * h1c)
{
struct connection *conn = h1c->conn;
if (!conn->mux_ctx)
return -1;
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
if (!(conn->flags & (CO_FL_CONNECTED|CO_FL_ERROR)))
goto end;
h1c->flags &= ~H1C_F_CS_WAIT_CONN;
}
if (!h1c->h1s) {
if (h1c->flags & H1C_F_CS_ERROR ||
conn->flags & CO_FL_ERROR ||
conn_xprt_read0_pending(conn))
goto release;
if (!conn_is_back(conn) && !(h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTW))) {
if (!h1s_create(h1c, NULL))
goto release;
}
}
h1_wake_stream(h1c);
end:
return 0;
release:
h1_release(conn);
return -1;
}
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short status)
{
struct h1c *h1c = ctx;
int ret = 0;
if (!(h1c->wait_event.wait_reason & SUB_CAN_SEND))
ret = h1_send(h1c);
if (!(h1c->wait_event.wait_reason & SUB_CAN_RECV))
ret |= h1_recv(h1c);
if (ret || !h1c->h1s)
h1_process(h1c);
return NULL;
}
static int h1_wake(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
h1_send(h1c);
return h1_process(h1c);
}
/*******************************************/
/* functions below are used by the streams */
/*******************************************/
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static struct conn_stream *h1_attach(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
struct conn_stream *cs = NULL;
struct h1s *h1s;
if (h1c->flags & H1C_F_CS_ERROR)
goto end;
cs = cs_new(h1c->conn);
if (!cs)
goto end;
h1s = h1s_create(h1c, cs);
if (h1s == NULL)
goto end;
return cs;
end:
cs_free(cs);
return NULL;
}
/* Retrieves a valid conn_stream from this connection, or returns NULL. For
* this mux, it's easy as we can only store a single conn_stream.
*/
static const struct conn_stream *h1_get_first_cs(const struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
struct h1s *h1s = h1c->h1s;
if (h1s)
return h1s->cs;
return NULL;
}
static void h1_destroy(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
if (!h1c->h1s)
h1_release(conn);
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void h1_detach(struct conn_stream *cs)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
cs->ctx = NULL;
if (!h1s)
return;
h1c = h1s->h1c;
h1s->cs = NULL;
h1s_destroy(h1s);
/* We don't want to close right now unless the connection is in error */
if ((h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTW)) ||
(h1c->conn->flags & CO_FL_ERROR))
h1_release(h1c->conn);
else
tasklet_wakeup(h1c->wait_event.task);
}
static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
struct h1s *h1s = cs->ctx;
if (!h1s)
return;
if ((h1s->flags & H1S_F_WANT_KAL) && !(cs->flags & (CS_FL_REOS|CS_FL_EOS)))
return;
/* NOTE: Be sure to handle abort (cf. h2_shutr) */
if (cs->flags & CS_FL_SHR)
return;
if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr)
cs->conn->xprt->shutr(cs->conn, (mode == CS_SHR_DRAIN));
if (cs->flags & CS_FL_SHW) {
h1s->h1c->flags = (h1s->h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTW;
conn_full_close(cs->conn);
}
}
static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return;
h1c = h1s->h1c;
if ((h1s->flags & H1S_F_WANT_KAL) &&
!(cs->flags & (CS_FL_REOS|CS_FL_EOS)) &&
h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE)
return;
h1c->flags |= H1C_F_CS_SHUTW_NOW;
if ((cs->flags & CS_FL_SHW) || b_data(&h1c->obuf))
return;
h1_shutw_conn(cs->conn);
}
static void h1_shutw_conn(struct connection *conn)
{
struct h1c *h1c = conn->mux_ctx;
if (conn_xprt_ready(conn) && conn->xprt->shutw)
conn->xprt->shutw(conn, 1);
if (!(conn->flags & CO_FL_SOCK_RD_SH))
conn_sock_shutw(conn, 1);
else {
h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTW;
conn_full_close(conn);
}
}
/* Called from the upper layer, to unsubscribe to events */
static int h1_unsubscribe(struct conn_stream *cs, int event_type, void *param)
{
struct wait_event *sw;
struct h1s *h1s = cs->ctx;
if (!h1s)
return 0;
if (event_type & SUB_CAN_RECV) {
sw = param;
if (h1s->recv_wait == sw) {
sw->wait_reason &= ~SUB_CAN_RECV;
h1s->recv_wait = NULL;
}
}
if (event_type & SUB_CAN_SEND) {
sw = param;
if (h1s->send_wait == sw) {
sw->wait_reason &= ~SUB_CAN_SEND;
h1s->send_wait = NULL;
}
}
return 0;
}
/* Called from the upper layer, to subscribe to events, such as being able to send */
static int h1_subscribe(struct conn_stream *cs, int event_type, void *param)
{
struct wait_event *sw;
struct h1s *h1s = cs->ctx;
if (!h1s)
return -1;
switch (event_type) {
case SUB_CAN_RECV:
sw = param;
if (!(sw->wait_reason & SUB_CAN_RECV)) {
sw->wait_reason |= SUB_CAN_RECV;
sw->handle = h1s;
h1s->recv_wait = sw;
}
return 0;
case SUB_CAN_SEND:
sw = param;
if (!(sw->wait_reason & SUB_CAN_SEND)) {
sw->wait_reason |= SUB_CAN_SEND;
sw->handle = h1s;
h1s->send_wait = sw;
}
return 0;
default:
break;
}
return -1;
}
/* Called from the upper layer, to receive data */
static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c = h1s->h1c;
size_t ret = 0;
if (!(h1c->flags & H1C_F_IN_ALLOC))
ret = h1_process_input(h1c, buf, flags);
if (flags & CO_RFL_BUF_FLUSH)
h1s->flags |= H1S_F_BUF_FLUSH;
else if (ret > 0 || (h1s->flags & H1S_F_SPLICED_DATA)) {
h1s->flags &= ~H1S_F_SPLICED_DATA;
if (!(h1c->wait_event.wait_reason & SUB_CAN_RECV))
tasklet_wakeup(h1c->wait_event.task);
}
return ret;
}
/* Called from the upper layer, to send data */
static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
size_t ret = 0;
if (!h1s)
return ret;
h1c = h1s->h1c;
if (h1c->flags & H1C_F_CS_WAIT_CONN)
return 0;
if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC)))
ret = h1_process_output(h1c, buf, count);
if (ret > 0) {
h1_send(h1c);
/* We need to do that because of the infinite forwarding. <buf>
* contains HTX messages so when infinite forwarding is enabled,
* count is equal to the buffer size. From outside, the buffer
* appears as full.
*/
if (!b_data(buf))
ret = count;
}
return ret;
}
#if defined(CONFIG_HAP_LINUX_SPLICE)
/* Send and get, using splicing */
static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count)
{
struct h1s *h1s = cs->ctx;
struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res);
int ret = 0;
if (b_data(&h1s->h1c->ibuf)) {
h1s->flags |= H1S_F_BUF_FLUSH;
goto end;
}
h1s->flags &= ~H1S_F_BUF_FLUSH;
h1s->flags |= H1S_F_SPLICED_DATA;
if (h1m->state == H1_MSG_DATA && count > h1m->curr_len)
count = h1m->curr_len;
ret = cs->conn->xprt->rcv_pipe(cs->conn, pipe, count);
if (h1m->state == H1_MSG_DATA && ret > 0)
h1m->curr_len -= ret;
end:
return ret;
}
static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe)
{
struct h1s *h1s = cs->ctx;
int ret = 0;
if (b_data(&h1s->h1c->obuf))
goto end;
ret = cs->conn->xprt->snd_pipe(cs->conn, pipe);
end:
if (pipe->data) {
if (!(h1s->h1c->wait_event.wait_reason & SUB_CAN_SEND))
cs->conn->xprt->subscribe(cs->conn, SUB_CAN_SEND, &h1s->h1c->wait_event);
}
return ret;
}
#endif
/****************************************/
/* MUX initialization and instanciation */
/****************************************/
/* The mux operations */
const struct mux_ops mux_h1_ops = {
.init = h1_init,
.wake = h1_wake,
.attach = h1_attach,
.get_first_cs = h1_get_first_cs,
.detach = h1_detach,
.destroy = h1_destroy,
.avail_streams = h1_avail_streams,
.rcv_buf = h1_rcv_buf,
.snd_buf = h1_snd_buf,
#if defined(CONFIG_HAP_LINUX_SPLICE)
.rcv_pipe = h1_rcv_pipe,
.snd_pipe = h1_snd_pipe,
#endif
.subscribe = h1_subscribe,
.unsubscribe = h1_unsubscribe,
.shutr = h1_shutr,
.shutw = h1_shutw,
.flags = MX_FL_NONE,
.name = "h1",
};
/* this mux registers default HTX proto */
static struct mux_proto_list mux_proto_htx =
{ .token = IST(""), .mode = PROTO_MODE_HTX, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops };
static void __h1_deinit(void)
{
pool_destroy(pool_head_h1c);
pool_destroy(pool_head_h1s);
}
__attribute__((constructor))
static void __h1_init(void)
{
register_mux_proto(&mux_proto_htx);
hap_register_post_deinit(__h1_deinit);
pool_head_h1c = create_pool("h1c", sizeof(struct h1c), MEM_F_SHARED);
pool_head_h1s = create_pool("h1s", sizeof(struct h1s), MEM_F_SHARED);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/