blob: 2b9b0d01ea3c3d9cd58214288afd6976119a42d6 [file] [log] [blame]
/*
* HTTP protocol analyzer
*
* Copyright 2000-2011 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <time.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <common/base64.h>
#include <common/chunk.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <common/uri_auth.h>
#include <common/version.h>
#include <types/capture.h>
#include <types/cli.h>
#include <types/filters.h>
#include <types/global.h>
#include <types/stats.h>
#include <proto/acl.h>
#include <proto/action.h>
#include <proto/arg.h>
#include <proto/auth.h>
#include <proto/backend.h>
#include <proto/channel.h>
#include <proto/checks.h>
#include <proto/cli.h>
#include <proto/compression.h>
#include <proto/stats.h>
#include <proto/fd.h>
#include <proto/filters.h>
#include <proto/frontend.h>
#include <proto/log.h>
#include <proto/hdr_idx.h>
#include <proto/pattern.h>
#include <proto/proto_tcp.h>
#include <proto/proto_http.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/sample.h>
#include <proto/server.h>
#include <proto/stream.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
#include <proto/pattern.h>
#include <proto/vars.h>
const char HTTP_100[] =
"HTTP/1.1 100 Continue\r\n\r\n";
const struct chunk http_100_chunk = {
.str = (char *)&HTTP_100,
.len = sizeof(HTTP_100)-1
};
/* Warning: no "connection" header is provided with the 3xx messages below */
const char *HTTP_301 =
"HTTP/1.1 301 Moved Permanently\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
const char *HTTP_302 =
"HTTP/1.1 302 Found\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 302 except that the browser MUST retry with the GET method */
const char *HTTP_303 =
"HTTP/1.1 303 See Other\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 302 except that the browser MUST retry with the same method */
const char *HTTP_307 =
"HTTP/1.1 307 Temporary Redirect\r\n"
"Cache-Control: no-cache\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 301 except that the browser MUST retry with the same method */
const char *HTTP_308 =
"HTTP/1.1 308 Permanent Redirect\r\n"
"Content-length: 0\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
const char *HTTP_401_fmt =
"HTTP/1.0 401 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"WWW-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const char *HTTP_407_fmt =
"HTTP/1.0 407 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"Proxy-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>407 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const int http_err_codes[HTTP_ERR_SIZE] = {
[HTTP_ERR_200] = 200, /* used by "monitor-uri" */
[HTTP_ERR_400] = 400,
[HTTP_ERR_403] = 403,
[HTTP_ERR_405] = 405,
[HTTP_ERR_408] = 408,
[HTTP_ERR_429] = 429,
[HTTP_ERR_500] = 500,
[HTTP_ERR_502] = 502,
[HTTP_ERR_503] = 503,
[HTTP_ERR_504] = 504,
};
static const char *http_err_msgs[HTTP_ERR_SIZE] = {
[HTTP_ERR_200] =
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>200 OK</h1>\nService ready.\n</body></html>\n",
[HTTP_ERR_400] =
"HTTP/1.0 400 Bad request\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n",
[HTTP_ERR_403] =
"HTTP/1.0 403 Forbidden\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n",
[HTTP_ERR_405] =
"HTTP/1.0 405 Method Not Allowed\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>405 Method Not Allowed</h1>\nA request was made of a resource using a request method not supported by that resource\n</body></html>\n",
[HTTP_ERR_408] =
"HTTP/1.0 408 Request Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n",
[HTTP_ERR_429] =
"HTTP/1.0 429 Too Many Requests\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>429 Too Many Requests</h1>\nYou have sent too many requests in a given amount of time.\n</body></html>\n",
[HTTP_ERR_500] =
"HTTP/1.0 500 Internal Server Error\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>500 Internal Server Error</h1>\nAn internal server error occured.\n</body></html>\n",
[HTTP_ERR_502] =
"HTTP/1.0 502 Bad Gateway\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n",
[HTTP_ERR_503] =
"HTTP/1.0 503 Service Unavailable\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n",
[HTTP_ERR_504] =
"HTTP/1.0 504 Gateway Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n",
};
/* status codes available for the stats admin page (strictly 4 chars length) */
const char *stat_status_codes[STAT_STATUS_SIZE] = {
[STAT_STATUS_DENY] = "DENY",
[STAT_STATUS_DONE] = "DONE",
[STAT_STATUS_ERRP] = "ERRP",
[STAT_STATUS_EXCD] = "EXCD",
[STAT_STATUS_NONE] = "NONE",
[STAT_STATUS_PART] = "PART",
[STAT_STATUS_UNKN] = "UNKN",
};
/* List head of all known action keywords for "http-request" */
struct action_kw_list http_req_keywords = {
.list = LIST_HEAD_INIT(http_req_keywords.list)
};
/* List head of all known action keywords for "http-response" */
struct action_kw_list http_res_keywords = {
.list = LIST_HEAD_INIT(http_res_keywords.list)
};
/* We must put the messages here since GCC cannot initialize consts depending
* on strlen().
*/
struct chunk http_err_chunks[HTTP_ERR_SIZE];
/* this struct is used between calls to smp_fetch_hdr() or smp_fetch_cookie() */
static struct hdr_ctx static_hdr_ctx;
#define FD_SETS_ARE_BITFIELDS
#ifdef FD_SETS_ARE_BITFIELDS
/*
* This map is used with all the FD_* macros to check whether a particular bit
* is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
* which should be encoded. When FD_ISSET() returns non-zero, it means that the
* byte should be encoded. Be careful to always pass bytes from 0 to 255
* exclusively to the macros.
*/
fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
fd_set http_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
#else
#error "Check if your OS uses bitfields for fd_sets"
#endif
static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn);
static inline int http_msg_forward_body(struct stream *s, struct http_msg *msg);
static inline int http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg);
/* This function returns a reason associated with the HTTP status.
* This function never fails, a message is always returned.
*/
const char *get_reason(unsigned int status)
{
switch (status) {
case 100: return "Continue";
case 101: return "Switching Protocols";
case 102: return "Processing";
case 200: return "OK";
case 201: return "Created";
case 202: return "Accepted";
case 203: return "Non-Authoritative Information";
case 204: return "No Content";
case 205: return "Reset Content";
case 206: return "Partial Content";
case 207: return "Multi-Status";
case 210: return "Content Different";
case 226: return "IM Used";
case 300: return "Multiple Choices";
case 301: return "Moved Permanently";
case 302: return "Moved Temporarily";
case 303: return "See Other";
case 304: return "Not Modified";
case 305: return "Use Proxy";
case 307: return "Temporary Redirect";
case 308: return "Permanent Redirect";
case 310: return "Too many Redirects";
case 400: return "Bad Request";
case 401: return "Unauthorized";
case 402: return "Payment Required";
case 403: return "Forbidden";
case 404: return "Not Found";
case 405: return "Method Not Allowed";
case 406: return "Not Acceptable";
case 407: return "Proxy Authentication Required";
case 408: return "Request Time-out";
case 409: return "Conflict";
case 410: return "Gone";
case 411: return "Length Required";
case 412: return "Precondition Failed";
case 413: return "Request Entity Too Large";
case 414: return "Request-URI Too Long";
case 415: return "Unsupported Media Type";
case 416: return "Requested range unsatisfiable";
case 417: return "Expectation failed";
case 418: return "I'm a teapot";
case 422: return "Unprocessable entity";
case 423: return "Locked";
case 424: return "Method failure";
case 425: return "Unordered Collection";
case 426: return "Upgrade Required";
case 428: return "Precondition Required";
case 429: return "Too Many Requests";
case 431: return "Request Header Fields Too Large";
case 449: return "Retry With";
case 450: return "Blocked by Windows Parental Controls";
case 451: return "Unavailable For Legal Reasons";
case 456: return "Unrecoverable Error";
case 499: return "client has closed connection";
case 500: return "Internal Server Error";
case 501: return "Not Implemented";
case 502: return "Bad Gateway or Proxy Error";
case 503: return "Service Unavailable";
case 504: return "Gateway Time-out";
case 505: return "HTTP Version not supported";
case 506: return "Variant also negociate";
case 507: return "Insufficient storage";
case 508: return "Loop detected";
case 509: return "Bandwidth Limit Exceeded";
case 510: return "Not extended";
case 511: return "Network authentication required";
case 520: return "Web server is returning an unknown error";
default:
switch (status) {
case 100 ... 199: return "Informational";
case 200 ... 299: return "Success";
case 300 ... 399: return "Redirection";
case 400 ... 499: return "Client Error";
case 500 ... 599: return "Server Error";
default: return "Other";
}
}
}
/* This function returns HTTP_ERR_<num> (enum) matching http status code.
* Returned value should match codes from http_err_codes.
*/
static const int http_get_status_idx(unsigned int status)
{
switch (status) {
case 200: return HTTP_ERR_200;
case 400: return HTTP_ERR_400;
case 403: return HTTP_ERR_403;
case 405: return HTTP_ERR_405;
case 408: return HTTP_ERR_408;
case 429: return HTTP_ERR_429;
case 500: return HTTP_ERR_500;
case 502: return HTTP_ERR_502;
case 503: return HTTP_ERR_503;
case 504: return HTTP_ERR_504;
default: return HTTP_ERR_500;
}
}
void init_proto_http()
{
int i;
char *tmp;
int msg;
for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
if (!http_err_msgs[msg]) {
Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
abort();
}
http_err_chunks[msg].str = (char *)http_err_msgs[msg];
http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
}
/* initialize the log header encoding map : '{|}"#' should be encoded with
* '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
* URL encoding only requires '"', '#' to be encoded as well as non-
* printable characters above.
*/
memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
memset(url_encode_map, 0, sizeof(url_encode_map));
memset(http_encode_map, 0, sizeof(url_encode_map));
for (i = 0; i < 32; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
for (i = 127; i < 256; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
tmp = "\"#{|}";
while (*tmp) {
FD_SET(*tmp, hdr_encode_map);
tmp++;
}
tmp = "\"#";
while (*tmp) {
FD_SET(*tmp, url_encode_map);
tmp++;
}
/* initialize the http header encoding map. The draft httpbis define the
* header content as:
*
* HTTP-message = start-line
* *( header-field CRLF )
* CRLF
* [ message-body ]
* header-field = field-name ":" OWS field-value OWS
* field-value = *( field-content / obs-fold )
* field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
* obs-fold = CRLF 1*( SP / HTAB )
* field-vchar = VCHAR / obs-text
* VCHAR = %x21-7E
* obs-text = %x80-FF
*
* All the chars are encoded except "VCHAR", "obs-text", SP and HTAB.
* The encoded chars are form 0x00 to 0x08, 0x0a to 0x1f and 0x7f. The
* "obs-fold" is volontary forgotten because haproxy remove this.
*/
memset(http_encode_map, 0, sizeof(http_encode_map));
for (i = 0x00; i <= 0x08; i++)
FD_SET(i, http_encode_map);
for (i = 0x0a; i <= 0x1f; i++)
FD_SET(i, http_encode_map);
FD_SET(0x7f, http_encode_map);
/* memory allocations */
pool2_http_txn = create_pool("http_txn", sizeof(struct http_txn), MEM_F_SHARED);
pool2_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED);
}
/*
* We have 26 list of methods (1 per first letter), each of which can have
* up to 3 entries (2 valid, 1 null).
*/
struct http_method_desc {
enum http_meth_t meth;
int len;
const char text[8];
};
const struct http_method_desc http_methods[26][3] = {
['C' - 'A'] = {
[0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
},
['D' - 'A'] = {
[0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" },
},
['G' - 'A'] = {
[0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" },
},
['H' - 'A'] = {
[0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" },
},
['O' - 'A'] = {
[0] = { .meth = HTTP_METH_OPTIONS , .len=7, .text="OPTIONS" },
},
['P' - 'A'] = {
[0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" },
[1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" },
},
['T' - 'A'] = {
[0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" },
},
/* rest is empty like this :
* [0] = { .meth = HTTP_METH_OTHER , .len=0, .text="" },
*/
};
const struct http_method_name http_known_methods[HTTP_METH_OTHER] = {
[HTTP_METH_OPTIONS] = { "OPTIONS", 7 },
[HTTP_METH_GET] = { "GET", 3 },
[HTTP_METH_HEAD] = { "HEAD", 4 },
[HTTP_METH_POST] = { "POST", 4 },
[HTTP_METH_PUT] = { "PUT", 3 },
[HTTP_METH_DELETE] = { "DELETE", 6 },
[HTTP_METH_TRACE] = { "TRACE", 5 },
[HTTP_METH_CONNECT] = { "CONNECT", 7 },
};
/* It is about twice as fast on recent architectures to lookup a byte in a
* table than to perform a boolean AND or OR between two tests. Refer to
* RFC2616/RFC5234/RFC7230 for those chars. A token is any ASCII char that is
* neither a separator nor a CTL char. An http ver_token is any ASCII which can
* be found in an HTTP version, which includes 'H', 'T', 'P', '/', '.' and any
* digit. Note: please do not overwrite values in assignment since gcc-2.95
* will not handle them correctly. It's worth noting that chars 128..255 are
* nothing, not even control chars.
*/
const unsigned char http_char_classes[256] = {
[ 0] = HTTP_FLG_CTL,
[ 1] = HTTP_FLG_CTL,
[ 2] = HTTP_FLG_CTL,
[ 3] = HTTP_FLG_CTL,
[ 4] = HTTP_FLG_CTL,
[ 5] = HTTP_FLG_CTL,
[ 6] = HTTP_FLG_CTL,
[ 7] = HTTP_FLG_CTL,
[ 8] = HTTP_FLG_CTL,
[ 9] = HTTP_FLG_SPHT | HTTP_FLG_LWS | HTTP_FLG_SEP | HTTP_FLG_CTL,
[ 10] = HTTP_FLG_CRLF | HTTP_FLG_LWS | HTTP_FLG_CTL,
[ 11] = HTTP_FLG_CTL,
[ 12] = HTTP_FLG_CTL,
[ 13] = HTTP_FLG_CRLF | HTTP_FLG_LWS | HTTP_FLG_CTL,
[ 14] = HTTP_FLG_CTL,
[ 15] = HTTP_FLG_CTL,
[ 16] = HTTP_FLG_CTL,
[ 17] = HTTP_FLG_CTL,
[ 18] = HTTP_FLG_CTL,
[ 19] = HTTP_FLG_CTL,
[ 20] = HTTP_FLG_CTL,
[ 21] = HTTP_FLG_CTL,
[ 22] = HTTP_FLG_CTL,
[ 23] = HTTP_FLG_CTL,
[ 24] = HTTP_FLG_CTL,
[ 25] = HTTP_FLG_CTL,
[ 26] = HTTP_FLG_CTL,
[ 27] = HTTP_FLG_CTL,
[ 28] = HTTP_FLG_CTL,
[ 29] = HTTP_FLG_CTL,
[ 30] = HTTP_FLG_CTL,
[ 31] = HTTP_FLG_CTL,
[' '] = HTTP_FLG_SPHT | HTTP_FLG_LWS | HTTP_FLG_SEP,
['!'] = HTTP_FLG_TOK,
['"'] = HTTP_FLG_SEP,
['#'] = HTTP_FLG_TOK,
['$'] = HTTP_FLG_TOK,
['%'] = HTTP_FLG_TOK,
['&'] = HTTP_FLG_TOK,
[ 39] = HTTP_FLG_TOK,
['('] = HTTP_FLG_SEP,
[')'] = HTTP_FLG_SEP,
['*'] = HTTP_FLG_TOK,
['+'] = HTTP_FLG_TOK,
[','] = HTTP_FLG_SEP,
['-'] = HTTP_FLG_TOK,
['.'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['/'] = HTTP_FLG_SEP | HTTP_FLG_VER,
['0'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['1'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['2'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['3'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['4'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['5'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['6'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['7'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['8'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['9'] = HTTP_FLG_TOK | HTTP_FLG_VER,
[':'] = HTTP_FLG_SEP,
[';'] = HTTP_FLG_SEP,
['<'] = HTTP_FLG_SEP,
['='] = HTTP_FLG_SEP,
['>'] = HTTP_FLG_SEP,
['?'] = HTTP_FLG_SEP,
['@'] = HTTP_FLG_SEP,
['A'] = HTTP_FLG_TOK,
['B'] = HTTP_FLG_TOK,
['C'] = HTTP_FLG_TOK,
['D'] = HTTP_FLG_TOK,
['E'] = HTTP_FLG_TOK,
['F'] = HTTP_FLG_TOK,
['G'] = HTTP_FLG_TOK,
['H'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['I'] = HTTP_FLG_TOK,
['J'] = HTTP_FLG_TOK,
['K'] = HTTP_FLG_TOK,
['L'] = HTTP_FLG_TOK,
['M'] = HTTP_FLG_TOK,
['N'] = HTTP_FLG_TOK,
['O'] = HTTP_FLG_TOK,
['P'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['Q'] = HTTP_FLG_TOK,
['R'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['S'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['T'] = HTTP_FLG_TOK | HTTP_FLG_VER,
['U'] = HTTP_FLG_TOK,
['V'] = HTTP_FLG_TOK,
['W'] = HTTP_FLG_TOK,
['X'] = HTTP_FLG_TOK,
['Y'] = HTTP_FLG_TOK,
['Z'] = HTTP_FLG_TOK,
['['] = HTTP_FLG_SEP,
[ 92] = HTTP_FLG_SEP,
[']'] = HTTP_FLG_SEP,
['^'] = HTTP_FLG_TOK,
['_'] = HTTP_FLG_TOK,
['`'] = HTTP_FLG_TOK,
['a'] = HTTP_FLG_TOK,
['b'] = HTTP_FLG_TOK,
['c'] = HTTP_FLG_TOK,
['d'] = HTTP_FLG_TOK,
['e'] = HTTP_FLG_TOK,
['f'] = HTTP_FLG_TOK,
['g'] = HTTP_FLG_TOK,
['h'] = HTTP_FLG_TOK,
['i'] = HTTP_FLG_TOK,
['j'] = HTTP_FLG_TOK,
['k'] = HTTP_FLG_TOK,
['l'] = HTTP_FLG_TOK,
['m'] = HTTP_FLG_TOK,
['n'] = HTTP_FLG_TOK,
['o'] = HTTP_FLG_TOK,
['p'] = HTTP_FLG_TOK,
['q'] = HTTP_FLG_TOK,
['r'] = HTTP_FLG_TOK,
['s'] = HTTP_FLG_TOK,
['t'] = HTTP_FLG_TOK,
['u'] = HTTP_FLG_TOK,
['v'] = HTTP_FLG_TOK,
['w'] = HTTP_FLG_TOK,
['x'] = HTTP_FLG_TOK,
['y'] = HTTP_FLG_TOK,
['z'] = HTTP_FLG_TOK,
['{'] = HTTP_FLG_SEP,
['|'] = HTTP_FLG_TOK,
['}'] = HTTP_FLG_SEP,
['~'] = HTTP_FLG_TOK,
[127] = HTTP_FLG_CTL,
};
/*
* Adds a header and its CRLF at the tail of the message's buffer, just before
* the last CRLF. Text length is measured first, so it cannot be NULL.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text)
{
int bytes, len;
len = strlen(text);
bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
if (!bytes)
return -1;
http_msg_move_end(msg, bytes);
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Adds a header and its CRLF at the tail of the message's buffer, just before
* the last CRLF. <len> bytes are copied, not counting the CRLF. If <text> is NULL, then
* the buffer is only opened and the space reserved, but nothing is copied.
* The header is also automatically added to the index <hdr_idx>, and the end
* of headers is automatically adjusted. The number of bytes added is returned
* on success, otherwise <0 is returned indicating an error.
*/
int http_header_add_tail2(struct http_msg *msg,
struct hdr_idx *hdr_idx, const char *text, int len)
{
int bytes;
bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
if (!bytes)
return -1;
http_msg_move_end(msg, bytes);
return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
}
/*
* Checks if <hdr> is exactly <name> for <len> chars, and ends with a colon.
* If so, returns the position of the first non-space character relative to
* <hdr>, or <end>-<hdr> if not found before. If no value is found, it tries
* to return a pointer to the place after the first space. Returns 0 if the
* header name does not match. Checks are case-insensitive.
*/
int http_header_match2(const char *hdr, const char *end,
const char *name, int len)
{
const char *val;
if (hdr + len >= end)
return 0;
if (hdr[len] != ':')
return 0;
if (strncasecmp(hdr, name, len) != 0)
return 0;
val = hdr + len + 1;
while (val < end && HTTP_IS_SPHT(*val))
val++;
if ((val >= end) && (len + 2 <= end - hdr))
return len + 2; /* we may replace starting from second space */
return val - hdr;
}
/* Find the first or next occurrence of header <name> in message buffer <sol>
* using headers index <idx>, and return it in the <ctx> structure. This
* structure holds everything necessary to use the header and find next
* occurrence. If its <idx> member is 0, the header is searched from the
* beginning. Otherwise, the next occurrence is returned. The function returns
* 1 when it finds a value, and 0 when there is no more. It is very similar to
* http_find_header2() except that it is designed to work with full-line headers
* whose comma is not a delimiter but is part of the syntax. As a special case,
* if ctx->val is NULL when searching for a new values of a header, the current
* header is rescanned. This allows rescanning after a header deletion.
*/
int http_find_full_header2(const char *name, int len,
char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
char *eol, *sov;
int cur_idx, old_idx;
cur_idx = ctx->idx;
if (cur_idx) {
/* We have previously returned a header, let's search another one */
sol = ctx->line;
eol = sol + idx->v[cur_idx].len;
goto next_hdr;
}
/* first request for this header */
sol += hdr_idx_first_pos(idx);
old_idx = 0;
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
if (len == 0) {
/* No argument was passed, we want any header.
* To achieve this, we simply build a fake request. */
while (sol + len < eol && sol[len] != ':')
len++;
name = sol;
}
if ((len < eol - sol) &&
(sol[len] == ':') &&
(strncasecmp(sol, name, len) == 0)) {
ctx->del = len;
sov = sol + len + 1;
while (sov < eol && HTTP_IS_LWS(*sov))
sov++;
ctx->line = sol;
ctx->prev = old_idx;
ctx->idx = cur_idx;
ctx->val = sov - sol;
ctx->tws = 0;
while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
eol--;
ctx->tws++;
}
ctx->vlen = eol - sov;
return 1;
}
next_hdr:
sol = eol + idx->v[cur_idx].cr + 1;
old_idx = cur_idx;
cur_idx = idx->v[cur_idx].next;
}
return 0;
}
/* Find the first or next header field in message buffer <sol> using headers
* index <idx>, and return it in the <ctx> structure. This structure holds
* everything necessary to use the header and find next occurrence. If its
* <idx> member is 0, the first header is retrieved. Otherwise, the next
* occurrence is returned. The function returns 1 when it finds a value, and
* 0 when there is no more. It is equivalent to http_find_full_header2() with
* no header name.
*/
int http_find_next_header(char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx)
{
char *eol, *sov;
int cur_idx, old_idx;
int len;
cur_idx = ctx->idx;
if (cur_idx) {
/* We have previously returned a header, let's search another one */
sol = ctx->line;
eol = sol + idx->v[cur_idx].len;
goto next_hdr;
}
/* first request for this header */
sol += hdr_idx_first_pos(idx);
old_idx = 0;
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
len = 0;
while (1) {
if (len >= eol - sol)
goto next_hdr;
if (sol[len] == ':')
break;
len++;
}
ctx->del = len;
sov = sol + len + 1;
while (sov < eol && HTTP_IS_LWS(*sov))
sov++;
ctx->line = sol;
ctx->prev = old_idx;
ctx->idx = cur_idx;
ctx->val = sov - sol;
ctx->tws = 0;
while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
eol--;
ctx->tws++;
}
ctx->vlen = eol - sov;
return 1;
next_hdr:
sol = eol + idx->v[cur_idx].cr + 1;
old_idx = cur_idx;
cur_idx = idx->v[cur_idx].next;
}
return 0;
}
/* Find the end of the header value contained between <s> and <e>. See RFC7230,
* par 3.2 for more information. Note that it requires a valid header to return
* a valid result. This works for headers defined as comma-separated lists.
*/
char *find_hdr_value_end(char *s, const char *e)
{
int quoted, qdpair;
quoted = qdpair = 0;
#if defined(__x86_64__) || \
defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
defined(__ARM_ARCH_7A__)
/* speedup: skip everything not a comma nor a double quote */
for (; s <= e - sizeof(int); s += sizeof(int)) {
unsigned int c = *(int *)s; // comma
unsigned int q = c; // quote
c ^= 0x2c2c2c2c; // contains one zero on a comma
q ^= 0x22222222; // contains one zero on a quote
c = (c - 0x01010101) & ~c; // contains 0x80 below a comma
q = (q - 0x01010101) & ~q; // contains 0x80 below a quote
if ((c | q) & 0x80808080)
break; // found a comma or a quote
}
#endif
for (; s < e; s++) {
if (qdpair) qdpair = 0;
else if (quoted) {
if (*s == '\\') qdpair = 1;
else if (*s == '"') quoted = 0;
}
else if (*s == '"') quoted = 1;
else if (*s == ',') return s;
}
return s;
}
/* Find the first or next occurrence of header <name> in message buffer <sol>
* using headers index <idx>, and return it in the <ctx> structure. This
* structure holds everything necessary to use the header and find next
* occurrence. If its <idx> member is 0, the header is searched from the
* beginning. Otherwise, the next occurrence is returned. The function returns
* 1 when it finds a value, and 0 when there is no more. It is designed to work
* with headers defined as comma-separated lists. As a special case, if ctx->val
* is NULL when searching for a new values of a header, the current header is
* rescanned. This allows rescanning after a header deletion.
*/
int http_find_header2(const char *name, int len,
char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
char *eol, *sov;
int cur_idx, old_idx;
cur_idx = ctx->idx;
if (cur_idx) {
/* We have previously returned a value, let's search
* another one on the same line.
*/
sol = ctx->line;
ctx->del = ctx->val + ctx->vlen + ctx->tws;
sov = sol + ctx->del;
eol = sol + idx->v[cur_idx].len;
if (sov >= eol)
/* no more values in this header */
goto next_hdr;
/* values remaining for this header, skip the comma but save it
* for later use (eg: for header deletion).
*/
sov++;
while (sov < eol && HTTP_IS_LWS((*sov)))
sov++;
goto return_hdr;
}
/* first request for this header */
sol += hdr_idx_first_pos(idx);
old_idx = 0;
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
if (len == 0) {
/* No argument was passed, we want any header.
* To achieve this, we simply build a fake request. */
while (sol + len < eol && sol[len] != ':')
len++;
name = sol;
}
if ((len < eol - sol) &&
(sol[len] == ':') &&
(strncasecmp(sol, name, len) == 0)) {
ctx->del = len;
sov = sol + len + 1;
while (sov < eol && HTTP_IS_LWS(*sov))
sov++;
ctx->line = sol;
ctx->prev = old_idx;
return_hdr:
ctx->idx = cur_idx;
ctx->val = sov - sol;
eol = find_hdr_value_end(sov, eol);
ctx->tws = 0;
while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
eol--;
ctx->tws++;
}
ctx->vlen = eol - sov;
return 1;
}
next_hdr:
sol = eol + idx->v[cur_idx].cr + 1;
old_idx = cur_idx;
cur_idx = idx->v[cur_idx].next;
}
return 0;
}
int http_find_header(const char *name,
char *sol, struct hdr_idx *idx,
struct hdr_ctx *ctx)
{
return http_find_header2(name, strlen(name), sol, idx, ctx);
}
/* Remove one value of a header. This only works on a <ctx> returned by one of
* the http_find_header functions. The value is removed, as well as surrounding
* commas if any. If the removed value was alone, the whole header is removed.
* The ctx is always updated accordingly, as well as the buffer and HTTP
* message <msg>. The new index is returned. If it is zero, it means there is
* no more header, so any processing may stop. The ctx is always left in a form
* that can be handled by http_find_header2() to find next occurrence.
*/
int http_remove_header2(struct http_msg *msg, struct hdr_idx *idx, struct hdr_ctx *ctx)
{
int cur_idx = ctx->idx;
char *sol = ctx->line;
struct hdr_idx_elem *hdr;
int delta, skip_comma;
if (!cur_idx)
return 0;
hdr = &idx->v[cur_idx];
if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) {
/* This was the only value of the header, we must now remove it entirely. */
delta = buffer_replace2(msg->chn->buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0);
http_msg_move_end(msg, delta);
idx->used--;
hdr->len = 0; /* unused entry */
idx->v[ctx->prev].next = idx->v[ctx->idx].next;
if (idx->tail == ctx->idx)
idx->tail = ctx->prev;
ctx->idx = ctx->prev; /* walk back to the end of previous header */
ctx->line -= idx->v[ctx->idx].len + idx->v[ctx->idx].cr + 1;
ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */
ctx->tws = ctx->vlen = 0;
return ctx->idx;
}
/* This was not the only value of this header. We have to remove between
* ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the
* last entry of the list, we remove the last separator.
*/
skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1;
delta = buffer_replace2(msg->chn->buf, sol + ctx->del + skip_comma,
sol + ctx->val + ctx->vlen + ctx->tws + skip_comma,
NULL, 0);
hdr->len += delta;
http_msg_move_end(msg, delta);
ctx->val = ctx->del;
ctx->tws = ctx->vlen = 0;
return ctx->idx;
}
/* This function handles a server error at the stream interface level. The
* stream interface is assumed to be already in a closed state. An optional
* message is copied into the input buffer.
* The error flags are set to the values in arguments. Any pending request
* in this buffer will be lost.
*/
static void http_server_error(struct stream *s, struct stream_interface *si,
int err, int finst, const struct chunk *msg)
{
FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg));
channel_auto_read(si_oc(si));
channel_abort(si_oc(si));
channel_auto_close(si_oc(si));
channel_erase(si_oc(si));
channel_auto_close(si_ic(si));
channel_auto_read(si_ic(si));
if (msg)
bo_inject(si_ic(si), msg->str, msg->len);
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= finst;
}
/* This function returns the appropriate error location for the given stream
* and message.
*/
struct chunk *http_error_message(struct stream *s)
{
const int msgnum = http_get_status_idx(s->txn->status);
if (s->be->errmsg[msgnum].str)
return &s->be->errmsg[msgnum];
else if (strm_fe(s)->errmsg[msgnum].str)
return &strm_fe(s)->errmsg[msgnum];
else
return &http_err_chunks[msgnum];
}
void
http_reply_and_close(struct stream *s, short status, struct chunk *msg)
{
s->txn->flags &= ~TX_WAIT_NEXT_RQ;
FLT_STRM_CB(s, flt_http_reply(s, status, msg));
stream_int_retnclose(&s->si[0], msg);
}
/*
* returns a known method among HTTP_METH_* or HTTP_METH_OTHER for all unknown
* ones.
*/
enum http_meth_t find_http_meth(const char *str, const int len)
{
unsigned char m;
const struct http_method_desc *h;
m = ((unsigned)*str - 'A');
if (m < 26) {
for (h = http_methods[m]; h->len > 0; h++) {
if (unlikely(h->len != len))
continue;
if (likely(memcmp(str, h->text, h->len) == 0))
return h->meth;
};
}
return HTTP_METH_OTHER;
}
/* Parse the URI from the given transaction (which is assumed to be in request
* phase) and look for the "/" beginning the PATH. If not found, return NULL.
* It is returned otherwise.
*/
char *http_get_path(struct http_txn *txn)
{
char *ptr, *end;
ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
end = ptr + txn->req.sl.rq.u_l;
if (ptr >= end)
return NULL;
/* RFC7230, par. 2.7 :
* Request-URI = "*" | absuri | abspath | authority
*/
if (*ptr == '*')
return NULL;
if (isalpha((unsigned char)*ptr)) {
/* this is a scheme as described by RFC3986, par. 3.1 */
ptr++;
while (ptr < end &&
(isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.'))
ptr++;
/* skip '://' */
if (ptr == end || *ptr++ != ':')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
if (ptr == end || *ptr++ != '/')
return NULL;
}
/* skip [user[:passwd]@]host[:[port]] */
while (ptr < end && *ptr != '/')
ptr++;
if (ptr == end)
return NULL;
/* OK, we got the '/' ! */
return ptr;
}
/* Parse the URI from the given string and look for the "/" beginning the PATH.
* If not found, return NULL. It is returned otherwise.
*/
static char *
http_get_path_from_string(char *str)
{
char *ptr = str;
/* RFC2616, par. 5.1.2 :
* Request-URI = "*" | absuri | abspath | authority
*/
if (*ptr == '*')
return NULL;
if (isalpha((unsigned char)*ptr)) {
/* this is a scheme as described by RFC3986, par. 3.1 */
ptr++;
while (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')
ptr++;
/* skip '://' */
if (*ptr == '\0' || *ptr++ != ':')
return NULL;
if (*ptr == '\0' || *ptr++ != '/')
return NULL;
if (*ptr == '\0' || *ptr++ != '/')
return NULL;
}
/* skip [user[:passwd]@]host[:[port]] */
while (*ptr != '\0' && *ptr != ' ' && *ptr != '/')
ptr++;
if (*ptr == '\0' || *ptr == ' ')
return NULL;
/* OK, we got the '/' ! */
return ptr;
}
/* Returns a 302 for a redirectable request that reaches a server working in
* in redirect mode. This may only be called just after the stream interface
* has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will
* follow normal proxy processing. NOTE: this function is designed to support
* being called once data are scheduled for forwarding.
*/
void http_perform_server_redirect(struct stream *s, struct stream_interface *si)
{
struct http_txn *txn;
struct server *srv;
char *path;
int len, rewind;
/* 1: create the response header */
trash.len = strlen(HTTP_302);
memcpy(trash.str, HTTP_302, trash.len);
srv = objt_server(s->target);
/* 2: add the server's prefix */
if (trash.len + srv->rdr_len > trash.size)
return;
/* special prefix "/" means don't change URL */
if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') {
memcpy(trash.str + trash.len, srv->rdr_pfx, srv->rdr_len);
trash.len += srv->rdr_len;
}
/* 3: add the request URI. Since it was already forwarded, we need
* to temporarily rewind the buffer.
*/
txn = s->txn;
b_rew(s->req.buf, rewind = http_hdr_rewind(&txn->req));
path = http_get_path(txn);
len = buffer_count(s->req.buf, path, b_ptr(s->req.buf, txn->req.sl.rq.u + txn->req.sl.rq.u_l));
b_adv(s->req.buf, rewind);
if (!path)
return;
if (trash.len + len > trash.size - 4) /* 4 for CRLF-CRLF */
return;
memcpy(trash.str + trash.len, path, len);
trash.len += len;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29);
trash.len += 29;
} else {
memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23);
trash.len += 23;
}
/* prepare to return without error. */
si_shutr(si);
si_shutw(si);
si->err_type = SI_ET_NONE;
si->state = SI_ST_CLO;
/* send the message */
txn->status = 302;
http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, &trash);
/* FIXME: we should increase a counter of redirects per server and per backend. */
srv_inc_sess_ctr(srv);
srv_set_sess_last(srv);
}
/* Return the error message corresponding to si->err_type. It is assumed
* that the server side is closed. Note that err_type is actually a
* bitmask, where almost only aborts may be cumulated with other
* values. We consider that aborted operations are more important
* than timeouts or errors due to the fact that nobody else in the
* logs might explain incomplete retries. All others should avoid
* being cumulated. It should normally not be possible to have multiple
* aborts at once, but just in case, the first one in sequence is reported.
* Note that connection errors appearing on the second request of a keep-alive
* connection are not reported since this allows the client to retry.
*/
void http_return_srv_error(struct stream *s, struct stream_interface *si)
{
int err_type = si->err_type;
/* set s->txn->status for http_error_message(s) */
s->txn->status = 503;
if (err_type & SI_ET_QUEUE_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_QUEUE_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_QUEUE_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C,
(s->flags & SF_SRV_REUSED) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_RES)
http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else { /* SI_ET_CONN_OTHER and others */
s->txn->status = 500;
http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C,
http_error_message(s));
}
}
extern const char sess_term_cond[8];
extern const char sess_fin_state[8];
extern const char *monthname[12];
struct pool_head *pool2_http_txn;
struct pool_head *pool2_requri;
struct pool_head *pool2_capture = NULL;
struct pool_head *pool2_uniqueid;
/*
* Capture headers from message starting at <som> according to header list
* <cap_hdr>, and fill the <cap> pointers appropriately.
*/
void capture_headers(char *som, struct hdr_idx *idx,
char **cap, struct cap_hdr *cap_hdr)
{
char *eol, *sol, *col, *sov;
int cur_idx;
struct cap_hdr *h;
int len;
sol = som + hdr_idx_first_pos(idx);
cur_idx = hdr_idx_first_idx(idx);
while (cur_idx) {
eol = sol + idx->v[cur_idx].len;
col = sol;
while (col < eol && *col != ':')
col++;
sov = col + 1;
while (sov < eol && HTTP_IS_LWS(*sov))
sov++;
for (h = cap_hdr; h; h = h->next) {
if (h->namelen && (h->namelen == col - sol) &&
(strncasecmp(sol, h->name, h->namelen) == 0)) {
if (cap[h->index] == NULL)
cap[h->index] =
pool_alloc2(h->pool);
if (cap[h->index] == NULL) {
Alert("HTTP capture : out of memory.\n");
continue;
}
len = eol - sov;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], sov, len);
cap[h->index][len]=0;
}
}
sol = eol + idx->v[cur_idx].cr + 1;
cur_idx = idx->v[cur_idx].next;
}
}
/*
* This function parses a status line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP,
* HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the response.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_stsline(struct http_msg *msg,
enum ht_state state, const char *ptr, const char *end,
unsigned int *ret_ptr, enum ht_state *ret_state)
{
const char *msg_start = msg->chn->buf->p;
switch (state) {
case HTTP_MSG_RPVER:
http_msg_rpver:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpver, http_msg_ood, state, HTTP_MSG_RPVER);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.v_l = ptr - msg_start;
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpver_sp, http_msg_ood, state, HTTP_MSG_RPVER_SP);
}
msg->err_state = HTTP_MSG_RPVER;
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RPVER_SP:
http_msg_rpver_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.c = ptr - msg_start;
goto http_msg_rpcode;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpver_sp, http_msg_ood, state, HTTP_MSG_RPVER_SP);
/* so it's a CR/LF, this is invalid */
msg->err_state = HTTP_MSG_RPVER_SP;
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RPCODE:
http_msg_rpcode:
if (likely(!HTTP_IS_LWS(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpcode, http_msg_ood, state, HTTP_MSG_RPCODE);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpcode_sp, http_msg_ood, state, HTTP_MSG_RPCODE_SP);
}
/* so it's a CR/LF, so there is no reason phrase */
msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
http_msg_rsp_reason:
/* FIXME: should we support HTTP responses without any reason phrase ? */
msg->sl.st.r = ptr - msg_start;
msg->sl.st.r_l = 0;
goto http_msg_rpline_eol;
case HTTP_MSG_RPCODE_SP:
http_msg_rpcode_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.st.r = ptr - msg_start;
goto http_msg_rpreason;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpcode_sp, http_msg_ood, state, HTTP_MSG_RPCODE_SP);
/* so it's a CR/LF, so there is no reason phrase */
goto http_msg_rsp_reason;
case HTTP_MSG_RPREASON:
http_msg_rpreason:
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpreason, http_msg_ood, state, HTTP_MSG_RPREASON);
msg->sl.st.r_l = ptr - msg_start - msg->sl.st.r;
http_msg_rpline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the response would not be
* complete. We can then record the response length and return
* to the caller which will be able to register it.
*/
msg->sl.st.l = ptr - msg_start - msg->sol;
return ptr;
default:
#ifdef DEBUG_FULL
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
;
}
http_msg_ood:
/* out of valid data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = ptr - msg_start;
return NULL;
}
/*
* This function parses a request line between <ptr> and <end>, starting with
* parser state <state>. Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP,
* HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others
* will give undefined results.
* Note that it is upon the caller's responsibility to ensure that ptr < end,
* and that msg->sol points to the beginning of the request.
* If a complete line is found (which implies that at least one CR or LF is
* found before <end>, the updated <ptr> is returned, otherwise NULL is
* returned indicating an incomplete line (which does not mean that parts have
* not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
* non-NULL, they are fed with the new <ptr> and <state> values to be passed
* upon next call.
*
* This function was intentionally designed to be called from
* http_msg_analyzer() with the lowest overhead. It should integrate perfectly
* within its state machine and use the same macros, hence the need for same
* labels and variable names. Note that msg->sol is left unchanged.
*/
const char *http_parse_reqline(struct http_msg *msg,
enum ht_state state, const char *ptr, const char *end,
unsigned int *ret_ptr, enum ht_state *ret_state)
{
const char *msg_start = msg->chn->buf->p;
switch (state) {
case HTTP_MSG_RQMETH:
http_msg_rqmeth:
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqmeth, http_msg_ood, state, HTTP_MSG_RQMETH);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.m_l = ptr - msg_start;
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqmeth_sp, http_msg_ood, state, HTTP_MSG_RQMETH_SP);
}
if (likely(HTTP_IS_CRLF(*ptr))) {
/* HTTP 0.9 request */
msg->sl.rq.m_l = ptr - msg_start;
http_msg_req09_uri:
msg->sl.rq.u = ptr - msg_start;
http_msg_req09_uri_e:
msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
http_msg_req09_ver:
msg->sl.rq.v = ptr - msg_start;
msg->sl.rq.v_l = 0;
goto http_msg_rqline_eol;
}
msg->err_state = HTTP_MSG_RQMETH;
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RQMETH_SP:
http_msg_rqmeth_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.u = ptr - msg_start;
goto http_msg_rquri;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqmeth_sp, http_msg_ood, state, HTTP_MSG_RQMETH_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri;
case HTTP_MSG_RQURI:
http_msg_rquri:
#if defined(__x86_64__) || \
defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
defined(__ARM_ARCH_7A__)
/* speedup: skip bytes not between 0x21 and 0x7e inclusive */
while (ptr <= end - sizeof(int)) {
int x = *(int *)ptr - 0x21212121;
if (x & 0x80808080)
break;
x -= 0x5e5e5e5e;
if (!(x & 0x80808080))
break;
ptr += sizeof(int);
}
#endif
if (ptr >= end) {
state = HTTP_MSG_RQURI;
goto http_msg_ood;
}
http_msg_rquri2:
if (likely((unsigned char)(*ptr - 33) <= 93)) /* 33 to 126 included */
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rquri2, http_msg_ood, state, HTTP_MSG_RQURI);
if (likely(HTTP_IS_SPHT(*ptr))) {
msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rquri_sp, http_msg_ood, state, HTTP_MSG_RQURI_SP);
}
if (likely((unsigned char)*ptr >= 128)) {
/* non-ASCII chars are forbidden unless option
* accept-invalid-http-request is enabled in the frontend.
* In any case, we capture the faulty char.
*/
if (msg->err_pos < -1)
goto invalid_char;
if (msg->err_pos == -1)
msg->err_pos = ptr - msg_start;
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rquri, http_msg_ood, state, HTTP_MSG_RQURI);
}
if (likely(HTTP_IS_CRLF(*ptr))) {
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_uri_e;
}
/* OK forbidden chars, 0..31 or 127 */
invalid_char:
msg->err_pos = ptr - msg_start;
msg->err_state = HTTP_MSG_RQURI;
state = HTTP_MSG_ERROR;
break;
case HTTP_MSG_RQURI_SP:
http_msg_rquri_sp:
if (likely(!HTTP_IS_LWS(*ptr))) {
msg->sl.rq.v = ptr - msg_start;
goto http_msg_rqver;
}
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rquri_sp, http_msg_ood, state, HTTP_MSG_RQURI_SP);
/* so it's a CR/LF, meaning an HTTP 0.9 request */
goto http_msg_req09_ver;
case HTTP_MSG_RQVER:
http_msg_rqver:
if (likely(HTTP_IS_VER_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqver, http_msg_ood, state, HTTP_MSG_RQVER);
if (likely(HTTP_IS_CRLF(*ptr))) {
msg->sl.rq.v_l = ptr - msg_start - msg->sl.rq.v;
http_msg_rqline_eol:
/* We have seen the end of line. Note that we do not
* necessarily have the \n yet, but at least we know that we
* have EITHER \r OR \n, otherwise the request would not be
* complete. We can then record the request length and return
* to the caller which will be able to register it.
*/
msg->sl.rq.l = ptr - msg_start - msg->sol;
return ptr;
}
/* neither an HTTP_VER token nor a CRLF */
msg->err_state = HTTP_MSG_RQVER;
state = HTTP_MSG_ERROR;
break;
default:
#ifdef DEBUG_FULL
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
;
}
http_msg_ood:
/* out of valid data */
if (ret_state)
*ret_state = state;
if (ret_ptr)
*ret_ptr = ptr - msg_start;
return NULL;
}
/*
* Returns the data from Authorization header. Function may be called more
* than once so data is stored in txn->auth_data. When no header is found
* or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid
* searching again for something we are unable to find anyway. However, if
* the result if valid, the cache is not reused because we would risk to
* have the credentials overwritten by another stream in parallel.
*/
/* This bufffer is initialized in the file 'src/haproxy.c'. This length is
* set according to global.tune.bufsize.
*/
char *get_http_auth_buff;
int
get_http_auth(struct stream *s)
{
struct http_txn *txn = s->txn;
struct chunk auth_method;
struct hdr_ctx ctx;
char *h, *p;
int len;
#ifdef DEBUG_AUTH
printf("Auth for stream %p: %d\n", s, txn->auth.method);
#endif
if (txn->auth.method == HTTP_AUTH_WRONG)
return 0;
txn->auth.method = HTTP_AUTH_WRONG;
ctx.idx = 0;
if (txn->flags & TX_USE_PX_CONN) {
h = "Proxy-Authorization";
len = strlen(h);
} else {
h = "Authorization";
len = strlen(h);
}
if (!http_find_header2(h, len, s->req.buf->p, &txn->hdr_idx, &ctx))
return 0;
h = ctx.line + ctx.val;
p = memchr(h, ' ', ctx.vlen);
len = p - h;
if (!p || len <= 0)
return 0;
if (chunk_initlen(&auth_method, h, 0, len) != 1)
return 0;
chunk_initlen(&txn->auth.method_data, p + 1, 0, ctx.vlen - len - 1);
if (!strncasecmp("Basic", auth_method.str, auth_method.len)) {
len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len,
get_http_auth_buff, global.tune.bufsize - 1);
if (len < 0)
return 0;
get_http_auth_buff[len] = '\0';
p = strchr(get_http_auth_buff, ':');
if (!p)
return 0;
txn->auth.user = get_http_auth_buff;
*p = '\0';
txn->auth.pass = p+1;
txn->auth.method = HTTP_AUTH_BASIC;
return 1;
}
return 0;
}
/*
* This function parses an HTTP message, either a request or a response,
* depending on the initial msg->msg_state. The caller is responsible for
* ensuring that the message does not wrap. The function can be preempted
* everywhere when data are missing and recalled at the exact same location
* with no information loss. The message may even be realigned between two
* calls. The header index is re-initialized when switching from
* MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other
* fields. Note that msg->sol will be initialized after completing the first
* state, so that none of the msg pointers has to be initialized prior to the
* first call.
*/
void http_msg_analyzer(struct http_msg *msg, struct hdr_idx *idx)
{
enum ht_state state; /* updated only when leaving the FSM */
register char *ptr, *end; /* request pointers, to avoid dereferences */
struct buffer *buf;
state = msg->msg_state;
buf = msg->chn->buf;
ptr = buf->p + msg->next;
end = buf->p + buf->i;
if (unlikely(ptr >= end))
goto http_msg_ood;
switch (state) {
/*
* First, states that are specific to the response only.
* We check them first so that request and headers are
* closer to each other (accessed more often).
*/
case HTTP_MSG_RPBEFORE:
http_msg_rpbefore:
if (likely(HTTP_IS_TOKEN(*ptr))) {
/* we have a start of message, but we have to check
* first if we need to remove some CRLF. We can only
* do this when o=0.
*/
if (unlikely(ptr != buf->p)) {
if (buf->o)
goto http_msg_ood;
/* Remove empty leading lines, as recommended by RFC2616. */
bi_fast_delete(buf, ptr - buf->p);
}
msg->sol = 0;
msg->sl.st.l = 0; /* used in debug mode */
hdr_idx_init(idx);
state = HTTP_MSG_RPVER;
goto http_msg_rpver;
}
if (unlikely(!HTTP_IS_CRLF(*ptr))) {
state = HTTP_MSG_RPBEFORE;
goto http_msg_invalid;
}
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpbefore, http_msg_ood, state, HTTP_MSG_RPBEFORE);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpbefore_cr, http_msg_ood, state, HTTP_MSG_RPBEFORE_CR);
/* stop here */
case HTTP_MSG_RPBEFORE_CR:
http_msg_rpbefore_cr:
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_RPBEFORE_CR);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpbefore, http_msg_ood, state, HTTP_MSG_RPBEFORE);
/* stop here */
case HTTP_MSG_RPVER:
http_msg_rpver:
case HTTP_MSG_RPVER_SP:
case HTTP_MSG_RPCODE:
case HTTP_MSG_RPCODE_SP:
case HTTP_MSG_RPREASON:
ptr = (char *)http_parse_stsline(msg,
state, ptr, end,
&msg->next, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full response and we know that we have either a CR
* or an LF at <ptr>.
*/
hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r');
msg->sol = ptr - buf->p;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rpline_end, http_msg_ood, state, HTTP_MSG_RPLINE_END);
goto http_msg_rpline_end;
case HTTP_MSG_RPLINE_END:
http_msg_rpline_end:
/* msg->sol must point to the first of CR or LF. */
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_RPLINE_END);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_first, http_msg_ood, state, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Second, states that are specific to the request only
*/
case HTTP_MSG_RQBEFORE:
http_msg_rqbefore:
if (likely(HTTP_IS_TOKEN(*ptr))) {
/* we have a start of message, but we have to check
* first if we need to remove some CRLF. We can only
* do this when o=0.
*/
if (likely(ptr != buf->p)) {
if (buf->o)
goto http_msg_ood;
/* Remove empty leading lines, as recommended by RFC2616. */
bi_fast_delete(buf, ptr - buf->p);
}
msg->sol = 0;
msg->sl.rq.l = 0; /* used in debug mode */
state = HTTP_MSG_RQMETH;
goto http_msg_rqmeth;
}
if (unlikely(!HTTP_IS_CRLF(*ptr))) {
state = HTTP_MSG_RQBEFORE;
goto http_msg_invalid;
}
if (unlikely(*ptr == '\n'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqbefore, http_msg_ood, state, HTTP_MSG_RQBEFORE);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqbefore_cr, http_msg_ood, state, HTTP_MSG_RQBEFORE_CR);
/* stop here */
case HTTP_MSG_RQBEFORE_CR:
http_msg_rqbefore_cr:
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_RQBEFORE_CR);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqbefore, http_msg_ood, state, HTTP_MSG_RQBEFORE);
/* stop here */
case HTTP_MSG_RQMETH:
http_msg_rqmeth:
case HTTP_MSG_RQMETH_SP:
case HTTP_MSG_RQURI:
case HTTP_MSG_RQURI_SP:
case HTTP_MSG_RQVER:
ptr = (char *)http_parse_reqline(msg,
state, ptr, end,
&msg->next, &msg->msg_state);
if (unlikely(!ptr))
return;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r');
msg->sol = ptr - buf->p;
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_rqline_end, http_msg_ood, state, HTTP_MSG_RQLINE_END);
goto http_msg_rqline_end;
case HTTP_MSG_RQLINE_END:
http_msg_rqline_end:
/* check for HTTP/0.9 request : no version information available.
* msg->sol must point to the first of CR or LF.
*/
if (unlikely(msg->sl.rq.v_l == 0))
goto http_msg_last_lf;
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_RQLINE_END);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_first, http_msg_ood, state, HTTP_MSG_HDR_FIRST);
/* stop here */
/*
* Common states below
*/
case HTTP_MSG_HDR_FIRST:
http_msg_hdr_first:
msg->sol = ptr - buf->p;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_last_lf, http_msg_ood, state, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
case HTTP_MSG_HDR_NAME:
http_msg_hdr_name:
/* assumes msg->sol points to the first char */
if (likely(HTTP_IS_TOKEN(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_name, http_msg_ood, state, HTTP_MSG_HDR_NAME);
if (likely(*ptr == ':'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l1_sp, http_msg_ood, state, HTTP_MSG_HDR_L1_SP);
if (likely(msg->err_pos < -1) || *ptr == '\n') {
state = HTTP_MSG_HDR_NAME;
goto http_msg_invalid;
}
if (msg->err_pos == -1) /* capture error pointer */
msg->err_pos = ptr - buf->p; /* >= 0 now */
/* and we still accept this non-token character */
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_name, http_msg_ood, state, HTTP_MSG_HDR_NAME);
case HTTP_MSG_HDR_L1_SP:
http_msg_hdr_l1_sp:
/* assumes msg->sol points to the first char */
if (likely(HTTP_IS_SPHT(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l1_sp, http_msg_ood, state, HTTP_MSG_HDR_L1_SP);
/* header value can be basically anything except CR/LF */
msg->sov = ptr - buf->p;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_val;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l1_lf, http_msg_ood, state, HTTP_MSG_HDR_L1_LF);
goto http_msg_hdr_l1_lf;
case HTTP_MSG_HDR_L1_LF:
http_msg_hdr_l1_lf:
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_HDR_L1_LF);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l1_lws, http_msg_ood, state, HTTP_MSG_HDR_L1_LWS);
case HTTP_MSG_HDR_L1_LWS:
http_msg_hdr_l1_lws:
if (likely(HTTP_IS_SPHT(*ptr))) {
/* replace HT,CR,LF with spaces */
for (; buf->p + msg->sov < ptr; msg->sov++)
buf->p[msg->sov] = ' ';
goto http_msg_hdr_l1_sp;
}
/* we had a header consisting only in spaces ! */
msg->eol = msg->sov;
goto http_msg_complete_header;
case HTTP_MSG_HDR_VAL:
http_msg_hdr_val:
/* assumes msg->sol points to the first char, and msg->sov
* points to the first character of the value.
*/
/* speedup: we'll skip packs of 4 or 8 bytes not containing bytes 0x0D
* and lower. In fact since most of the time is spent in the loop, we
* also remove the sign bit test so that bytes 0x8e..0x0d break the
* loop, but we don't care since they're very rare in header values.
*/
#if defined(__x86_64__)
while (ptr <= end - sizeof(long)) {
if ((*(long *)ptr - 0x0e0e0e0e0e0e0e0eULL) & 0x8080808080808080ULL)
goto http_msg_hdr_val2;
ptr += sizeof(long);
}
#endif
#if defined(__x86_64__) || \
defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
defined(__ARM_ARCH_7A__)
while (ptr <= end - sizeof(int)) {
if ((*(int*)ptr - 0x0e0e0e0e) & 0x80808080)
goto http_msg_hdr_val2;
ptr += sizeof(int);
}
#endif
if (ptr >= end) {
state = HTTP_MSG_HDR_VAL;
goto http_msg_ood;
}
http_msg_hdr_val2:
if (likely(!HTTP_IS_CRLF(*ptr)))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_val2, http_msg_ood, state, HTTP_MSG_HDR_VAL);
msg->eol = ptr - buf->p;
/* Note: we could also copy eol into ->eoh so that we have the
* real header end in case it ends with lots of LWS, but is this
* really needed ?
*/
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l2_lf, http_msg_ood, state, HTTP_MSG_HDR_L2_LF);
goto http_msg_hdr_l2_lf;
case HTTP_MSG_HDR_L2_LF:
http_msg_hdr_l2_lf:
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_HDR_L2_LF);
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_hdr_l2_lws, http_msg_ood, state, HTTP_MSG_HDR_L2_LWS);
case HTTP_MSG_HDR_L2_LWS:
http_msg_hdr_l2_lws:
if (unlikely(HTTP_IS_SPHT(*ptr))) {
/* LWS: replace HT,CR,LF with spaces */
for (; buf->p + msg->eol < ptr; msg->eol++)
buf->p[msg->eol] = ' ';
goto http_msg_hdr_val;
}
http_msg_complete_header:
/*
* It was a new header, so the last one is finished.
* Assumes msg->sol points to the first char, msg->sov points
* to the first character of the value and msg->eol to the
* first CR or LF so we know how the line ends. We insert last
* header into the index.
*/
if (unlikely(hdr_idx_add(msg->eol - msg->sol, buf->p[msg->eol] == '\r',
idx, idx->tail) < 0)) {
state = HTTP_MSG_HDR_L2_LWS;
goto http_msg_invalid;
}
msg->sol = ptr - buf->p;
if (likely(!HTTP_IS_CRLF(*ptr))) {
goto http_msg_hdr_name;
}
if (likely(*ptr == '\r'))
EAT_AND_JUMP_OR_RETURN(ptr, end, http_msg_last_lf, http_msg_ood, state, HTTP_MSG_LAST_LF);
goto http_msg_last_lf;
case HTTP_MSG_LAST_LF:
http_msg_last_lf:
/* Assumes msg->sol points to the first of either CR or LF.
* Sets ->sov and ->next to the total header length, ->eoh to
* the last CRLF, and ->eol to the last CRLF length (1 or 2).
*/
EXPECT_LF_HERE(ptr, http_msg_invalid, state, HTTP_MSG_LAST_LF);
ptr++;
msg->sov = msg->next = ptr - buf->p;
msg->eoh = msg->sol;
msg->sol = 0;
msg->eol = msg->sov - msg->eoh;
msg->msg_state = HTTP_MSG_BODY;
return;
case HTTP_MSG_ERROR:
/* this may only happen if we call http_msg_analyser() twice with an error */
break;
default:
#ifdef DEBUG_FULL
fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
exit(1);
#endif
;
}
http_msg_ood:
/* out of data */
msg->msg_state = state;
msg->next = ptr - buf->p;
return;
http_msg_invalid:
/* invalid message */
msg->err_state = state;
msg->msg_state = HTTP_MSG_ERROR;
msg->next = ptr - buf->p;
return;
}
/* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the
* conversion succeeded, 0 in case of error. If the request was already 1.X,
* nothing is done and 1 is returned.
*/
static int http_upgrade_v09_to_v10(struct http_txn *txn)
{
int delta;
char *cur_end;
struct http_msg *msg = &txn->req;
if (msg->sl.rq.v_l != 0)
return 1;
/* RFC 1945 allows only GET for HTTP/0.9 requests */
if (txn->meth != HTTP_METH_GET)
return 0;
cur_end = msg->chn->buf->p + msg->sl.rq.l;
if (msg->sl.rq.u_l == 0) {
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
return 0;
}
/* add HTTP version */
delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11);
http_msg_move_end(msg, delta);
cur_end += delta;
cur_end = (char *)http_parse_reqline(msg,
HTTP_MSG_RQMETH,
msg->chn->buf->p, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return 0;
/* we have a full HTTP/1.0 request now and we know that
* we have either a CR or an LF at <ptr>.
*/
hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
return 1;
}
/* Parse the Connection: header of an HTTP request, looking for both "close"
* and "keep-alive" values. If we already know that some headers may safely
* be removed, we remove them now. The <to_del> flags are used for that :
* - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses)
* - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1).
* Presence of the "Upgrade" token is also checked and reported.
* The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was
* found, and TX_CON_*_SET is adjusted depending on what is left so only
* harmless combinations may be removed. Do not call that after changes have
* been processed.
*/
void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del)
{
struct hdr_ctx ctx;
const char *hdr_val = "Connection";
int hdr_len = 10;
if (txn->flags & TX_HDR_CONN_PRS)
return;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection";
hdr_len = 16;
}
ctx.idx = 0;
txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET);
while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
txn->flags |= TX_HDR_CONN_KAL;
if (to_del & 2)
http_remove_header2(msg, &txn->hdr_idx, &ctx);
else
txn->flags |= TX_CON_KAL_SET;
}
else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
txn->flags |= TX_HDR_CONN_CLO;
if (to_del & 1)
http_remove_header2(msg, &txn->hdr_idx, &ctx);
else
txn->flags |= TX_CON_CLO_SET;
}
else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) {
txn->flags |= TX_HDR_CONN_UPG;
}
}
txn->flags |= TX_HDR_CONN_PRS;
return;
}
/* Apply desired changes on the Connection: header. Values may be removed and/or
* added depending on the <wanted> flags, which are exclusively composed of
* TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The
* TX_CON_*_SET flags are adjusted in txn->flags depending on what is left.
*/
void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted)
{
struct hdr_ctx ctx;
const char *hdr_val = "Connection";
int hdr_len = 10;
ctx.idx = 0;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection";
hdr_len = 16;
}
txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET);
while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
if (wanted & TX_CON_KAL_SET)
txn->flags |= TX_CON_KAL_SET;
else
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
if (wanted & TX_CON_CLO_SET)
txn->flags |= TX_CON_CLO_SET;
else
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
}
if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
return;
if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) {
txn->flags |= TX_CON_CLO_SET;
hdr_val = "Connection: close";
hdr_len = 17;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection: close";
hdr_len = 23;
}
http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
}
if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) {
txn->flags |= TX_CON_KAL_SET;
hdr_val = "Connection: keep-alive";
hdr_len = 22;
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
hdr_val = "Proxy-Connection: keep-alive";
hdr_len = 28;
}
http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
}
return;
}
/* Parse the chunk size at msg->next. Once done, caller should adjust ->next to
* point to the first byte of data after the chunk size, so that we know we can
* forward exactly msg->next bytes. msg->sol contains the exact number of bytes
* forming the chunk size. That way it is always possible to differentiate
* between the start of the body and the start of the data. Return the number
* of byte parsed on success, 0 when some data is missing, <0 on error. Note:
* this function is designed to parse wrapped CRLF at the end of the buffer.
*/
static inline int http_parse_chunk_size(struct http_msg *msg)
{
const struct buffer *buf = msg->chn->buf;
const char *ptr = b_ptr(buf, msg->next);
const char *ptr_old = ptr;
const char *end = buf->data + buf->size;
const char *stop = bi_end(buf);
unsigned int chunk = 0;
/* The chunk size is in the following form, though we are only
* interested in the size and CRLF :
* 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF
*/
while (1) {
int c;
if (ptr == stop)
return 0;
c = hex2i(*ptr);
if (c < 0) /* not a hex digit anymore */
break;
if (unlikely(++ptr >= end))
ptr = buf->data;
if (chunk & 0xF8000000) /* integer overflow will occur if result >= 2GB */
goto error;
chunk = (chunk << 4) + c;
}
/* empty size not allowed */
if (unlikely(ptr == ptr_old))
goto error;
while (HTTP_IS_SPHT(*ptr)) {
if (++ptr >= end)
ptr = buf->data;
if (unlikely(ptr == stop))
return 0;
}
/* Up to there, we know that at least one byte is present at *ptr. Check
* for the end of chunk size.
*/
while (1) {
if (likely(HTTP_IS_CRLF(*ptr))) {
/* we now have a CR or an LF at ptr */
if (likely(*ptr == '\r')) {
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
}
if (*ptr != '\n')
goto error;
if (++ptr >= end)
ptr = buf->data;
/* done */
break;
}
else if (*ptr == ';') {
/* chunk extension, ends at next CRLF */
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
while (!HTTP_IS_CRLF(*ptr)) {
if (++ptr >= end)
ptr = buf->data;
if (ptr == stop)
return 0;
}
/* we have a CRLF now, loop above */
continue;
}
else
goto error;
}
/* OK we found our CRLF and now <ptr> points to the next byte, which may
* or may not be present. We save the number of bytes parsed into
* msg->sol.
*/
msg->sol = ptr - ptr_old;
if (unlikely(ptr < ptr_old))
msg->sol += buf->size;
msg->chunk_len = chunk;
msg->body_len += chunk;
return msg->sol;
error:
msg->err_pos = buffer_count(buf, buf->p, ptr);
return -1;
}
/* This function skips trailers in the buffer associated with HTTP message
* <msg>. The first visited position is msg->next. If the end of the trailers is
* found, the function returns >0. So, the caller can automatically schedul it
* to be forwarded, and switch msg->msg_state to HTTP_MSG_DONE. If not enough
* data are available, the function does not change anything except maybe
* msg->sol if it could parse some lines, and returns zero. If a parse error
* is encountered, the function returns < 0 and does not change anything except
* maybe msg->sol. Note that the message must already be in HTTP_MSG_TRAILERS
* state before calling this function, which implies that all non-trailers data
* have already been scheduled for forwarding, and that msg->next exactly
* matches the length of trailers already parsed and not forwarded. It is also
* important to note that this function is designed to be able to parse wrapped
* headers at end of buffer.
*/
static int http_forward_trailers(struct http_msg *msg)
{
const struct buffer *buf = msg->chn->buf;
/* we have msg->next which points to next line. Look for CRLF. But
* first, we reset msg->sol */
msg->sol = 0;
while (1) {
const char *p1 = NULL, *p2 = NULL;
const char *start = b_ptr(buf, msg->next + msg->sol);
const char *stop = bi_end(buf);
const char *ptr = start;
int bytes = 0;
/* scan current line and stop at LF or CRLF */
while (1) {
if (ptr == stop)
return 0;
if (*ptr == '\n') {
if (!p1)
p1 = ptr;
p2 = ptr;
break;
}
if (*ptr == '\r') {
if (p1) {
msg->err_pos = buffer_count(buf, buf->p, ptr);
return -1;
}
p1 = ptr;
}
ptr++;
if (ptr >= buf->data + buf->size)
ptr = buf->data;
}
/* after LF; point to beginning of next line */
p2++;
if (p2 >= buf->data + buf->size)
p2 = buf->data;
bytes = p2 - start;
if (bytes < 0)
bytes += buf->size;
msg->sol += bytes;
/* LF/CRLF at beginning of line => end of trailers at p2.
* Everything was scheduled for forwarding, there's nothing left
* from this message. */
if (p1 == start)
return 1;
/* OK, next line then */
}
}
/* This function may be called only in HTTP_MSG_CHUNK_CRLF. It reads the CRLF or
* a possible LF alone at the end of a chunk. The caller should adjust msg->next
* in order to include this part into the next forwarding phase. Note that the
* caller must ensure that ->p points to the first byte to parse. It returns
* the number of bytes parsed on success, so the caller can set msg_state to
* HTTP_MSG_CHUNK_SIZE. If not enough data are available, the function does not
* change anything and returns zero. If a parse error is encountered, the
* function returns < 0. Note: this function is designed to parse wrapped CRLF
* at the end of the buffer.
*/
static inline int http_skip_chunk_crlf(struct http_msg *msg)
{
const struct buffer *buf = msg->chn->buf;
const char *ptr;
int bytes;
/* NB: we'll check data availabilty at the end. It's not a
* problem because whatever we match first will be checked
* against the correct length.
*/
bytes = 1;
ptr = b_ptr(buf, msg->next);
if (*ptr == '\r') {
bytes++;
ptr++;
if (ptr >= buf->data + buf->size)
ptr = buf->data;
}
if (msg->next + bytes > buf->i)
return 0;
if (*ptr != '\n') {
msg->err_pos = buffer_count(buf, buf->p, ptr);
return -1;
}
return bytes;
}
/* Parses a qvalue and returns it multipled by 1000, from 0 to 1000. If the
* value is larger than 1000, it is bound to 1000. The parser consumes up to
* 1 digit, one dot and 3 digits and stops on the first invalid character.
* Unparsable qvalues return 1000 as "q=1.000".
*/
int parse_qvalue(const char *qvalue, const char **end)
{
int q = 1000;
if (!isdigit((unsigned char)*qvalue))
goto out;
q = (*qvalue++ - '0') * 1000;
if (*qvalue++ != '.')
goto out;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 100;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 10;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 1;
out:
if (q > 1000)
q = 1000;
if (end)
*end = qvalue;
return q;
}
void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg)
{
struct proxy *fe = strm_fe(s);
int tmp = TX_CON_WANT_KAL;
if (!((fe->options2|s->be->options2) & PR_O2_FAKE_KA)) {
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
tmp = TX_CON_WANT_TUN;
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
tmp = TX_CON_WANT_TUN;
}
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) {
/* option httpclose + server_close => forceclose */
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
tmp = TX_CON_WANT_CLO;
else
tmp = TX_CON_WANT_SCL;
}
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL)
tmp = TX_CON_WANT_CLO;
if ((txn->flags & TX_CON_WANT_MSK) < tmp)
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp;
if (!(txn->flags & TX_HDR_CONN_PRS) &&
(txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) {
/* parse the Connection header and possibly clean it */
int to_del = 0;
if ((msg->flags & HTTP_MSGF_VER_11) ||
((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL &&
!((fe->options2|s->be->options2) & PR_O2_FAKE_KA)))
to_del |= 2; /* remove "keep-alive" */
if (!(msg->flags & HTTP_MSGF_VER_11))
to_del |= 1; /* remove "close" */
http_parse_connection_header(txn, msg, to_del);
}
/* check if client or config asks for explicit close in KAL/SCL */
if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) &&
((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */
(!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */
!(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */
fe->state == PR_STSTOPPED)) /* frontend is stopping */
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
}
/* This stream analyser waits for a complete HTTP request. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the request (eg: timeout, error, ...). It
* is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_request(struct stream *s, struct channel *req, int an_bit)
{
/*
* We will parse the partial (or complete) lines.
* We will check the request syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* req->buf->p = beginning of request
* req->buf->p + msg->eoh = end of processed headers / start of current one
* req->buf->p + req->buf->i = end of input data
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
*
* At end of parsing, we may perform a capture of the error (if any), and
* we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE).
* We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and
* finally headers capture.
*/
int cur_idx;
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct hdr_ctx ctx;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/* we're speaking HTTP here, so let's speak HTTP to the client */
s->srv_error = http_return_srv_error;
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) {
/* This point is executed when some data is avalaible for analysis,
* so we log the end of the idle time. */
if (s->logs.t_idle == -1)
s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake;
if (txn->flags & TX_NOT_FIRST) {
if (unlikely(!channel_is_rewritable(req))) {
if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
goto failed_keep_alive;
/* some data has still not left the buffer, wake us once that's done */
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
req->flags |= CF_WAKE_WRITE;
return 0;
}
if (unlikely(bi_end(req->buf) < b_ptr(req->buf, msg->next) ||
bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite))
buffer_slow_realign(req->buf);
}
if (likely(msg->next < req->buf->i)) /* some unparsed data are available */
http_msg_analyzer(msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->msg_state >= HTTP_MSG_BODY)) {
char *eol, *sol;
sol = req->buf->p;
/* this is a bit complex : in case of error on the request line,
* we know that rq.l is still zero, so we display only the part
* up to the end of the line (truncated by debug_hdr).
*/
eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i);
debug_hdr("clireq", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("clihdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* requests are checked first. When waiting for a second request
* on a keep-alive stream, if we encounter and error, close, t/o,
* we note the error in the stream flags but don't set any state.
* Since the error will be noted there, it will not be counted by
* process_stream() as a frontend error.
* Last, we may increase some tracked counters' http request errors on
* the cases that are deliberately the client's fault. For instance,
* a timeout or connection reset is not counted as an error. However
* a bad request is.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/*
* First, let's catch bad requests.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
stream_inc_http_req_ctr(s);
stream_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
goto return_bad_req;
}
/* 1: Since we are in header mode, if there's no space
* left for headers, we won't be able to free more
* later, so the stream will never terminate. We
* must terminate it now.
*/
if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) {
/* FIXME: check if URI is set and return Status
* 414 Request URI too long instead.
*/
stream_inc_http_req_ctr(s);
stream_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
if (msg->err_pos < 0)
msg->err_pos = req->buf->i;
goto return_bad_req;
}
/* 2: have we encountered a read error ? */
else if (req->flags & CF_READ_ERROR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
/* we cannot return any message on error */
if (msg->err_pos >= 0) {
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
stream_inc_http_err_ctr(s);
}
txn->status = 400;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, NULL);
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 3: has the read timeout expired ? */
else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLITO;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
/* read timeout : give up with an error message. */
if (msg->err_pos >= 0) {
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
stream_inc_http_err_ctr(s);
}
txn->status = 408;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 4: have we encountered a close ? */
else if (req->flags & CF_SHUTR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
if (msg->err_pos >= 0)
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
txn->status = 400;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_err_ctr(s);
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
#ifdef TCP_QUICKACK
if (sess->listener->options & LI_O_NOQUICKACK && req->buf->i &&
objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) {
/* We need more data, we have to re-enable quick-ack in case we
* previously disabled it, otherwise we might cause the client
* to delay next data.
*/
setsockopt(__objt_conn(sess->origin)->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
}
#endif
if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) {
/* If the client starts to talk, let's fall back to
* request timeout processing.
*/
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp)) {
if ((msg->msg_state == HTTP_MSG_RQBEFORE) &&
(txn->flags & TX_WAIT_NEXT_RQ) &&
tick_isset(s->be->timeout.httpka))
req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
else
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
}
/* we're not ready yet */
return 0;
failed_keep_alive:
/* Here we process low-level errors for keep-alive requests. In
* short, if the request is not the first one and it experiences
* a timeout, read error or shutdown, we just silently close so
* that the client can try again.
*/
txn->status = 0;
msg->msg_state = HTTP_MSG_RQBEFORE;
req->analysers &= AN_REQ_FLT_END;
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
http_reply_and_close(s, txn->status, NULL);
return 0;
}
/* OK now we have a complete HTTP request with indexed headers. Let's
* complete the request parsing by setting a few fields we will need
* later. At this point, we have the last CRLF at req->buf->data + msg->eoh.
* If the request is in HTTP/0.9 form, the rule is still true, and eoh
* points to the CRLF of the request line. msg->next points to the first
* byte after the last LF. msg->sov points to the first byte of data.
* msg->eol cannot be trusted because it may have been left uninitialized
* (for instance in the absence of headers).
*/
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */
if (txn->flags & TX_WAIT_NEXT_RQ) {
/* kill the pending keep-alive timeout */
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* Maybe we found in invalid header name while we were configured not
* to block on that, so we have to capture it now.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
/*
* 1: identify the method
*/
txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l);
/* we can make use of server redirect on GET and HEAD */
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SF_REDIRECTABLE;
/*
* 2: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend.
*/
if (unlikely((sess->fe->monitor_uri_len != 0) &&
(sess->fe->monitor_uri_len == msg->sl.rq.u_l) &&
!memcmp(req->buf->p + msg->sl.rq.u,
sess->fe->monitor_uri,
sess->fe->monitor_uri_len))) {
/*
* We have found the monitor URI
*/
struct acl_cond *cond;
s->flags |= SF_MONITOR;
sess->fe->fe_counters.intercepted_req++;
/* Check if we want to fail this monitor request or not */
list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) {
int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
/* we fail this request, let's return 503 service unavail */
txn->status = 503;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
}
/* nothing to fail, let's reply normaly */
txn->status = 200;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
/*
* 3: Maybe we have to copy the original REQURI for the logs ?
* Note: we cannot log anymore if the request has been
* classified as invalid.
*/
if (unlikely(s->logs.logwait & LW_REQ)) {
/* we have a complete HTTP request that we must log */
if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) {
int urilen = msg->sl.rq.l;
if (urilen >= global.tune.requri_len )
urilen = global.tune.requri_len - 1;
memcpy(txn->uri, req->buf->p, urilen);
txn->uri[urilen] = 0;
if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT)))
s->do_log(s);
} else {
Alert("HTTP logging : out of memory.\n");
}
}
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) {
if (msg->sl.rq.v_l != 8) {
msg->err_pos = msg->sl.rq.v;
goto return_bad_req;
}
if (req->buf->p[msg->sl.rq.v + 4] != '/' ||
!isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 5]) ||
req->buf->p[msg->sl.rq.v + 6] != '.' ||
!isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 7])) {
msg->err_pos = msg->sl.rq.v + 4;
goto return_bad_req;
}
}
else {
/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
goto return_bad_req;
}
/* ... and check if the request is HTTP/1.1 or above */
if ((msg->sl.rq.v_l == 8) &&
((req->buf->p[msg->sl.rq.v + 5] > '1') ||
((req->buf->p[msg->sl.rq.v + 5] == '1') &&
(req->buf->p[msg->sl.rq.v + 7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG);
/* if the frontend has "option http-use-proxy-header", we'll check if
* we have what looks like a proxied connection instead of a connection,
* and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
* Note that this is *not* RFC-compliant, however browsers and proxies
* happen to do that despite being non-standard :-(
* We consider that a request not beginning with either '/' or '*' is
* a proxied connection, which covers both "scheme://location" and
* CONNECT ip:port.
*/
if ((sess->fe->options2 & PR_O2_USE_PXHDR) &&
req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*')
txn->flags |= TX_USE_PX_CONN;
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
/* 5: we may need to capture headers */
if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap))
capture_headers(req->buf->p, &txn->hdr_idx,
s->req_cap, sess->fe->req_cap);
/* 6: determine the transfer-length according to RFC2616 #4.4, updated
* by RFC7230#3.3.3 :
*
* The length of a message body is determined by one of the following
* (in order of precedence):
*
* 1. Any response to a HEAD request and any response with a 1xx
* (Informational), 204 (No Content), or 304 (Not Modified) status
* code is always terminated by the first empty line after the
* header fields, regardless of the header fields present in the
* message, and thus cannot contain a message body.
*
* 2. Any 2xx (Successful) response to a CONNECT request implies that
* the connection will become a tunnel immediately after the empty
* line that concludes the header fields. A client MUST ignore any
* Content-Length or Transfer-Encoding header fields received in
* such a message.
*
* 3. If a Transfer-Encoding header field is present and the chunked
* transfer coding (Section 4.1) is the final encoding, the message
* body length is determined by reading and decoding the chunked
* data until the transfer coding indicates the data is complete.
*
* If a Transfer-Encoding header field is present in a response and
* the chunked transfer coding is not the final encoding, the
* message body length is determined by reading the connection until
* it is closed by the server. If a Transfer-Encoding header field
* is present in a request and the chunked transfer coding is not
* the final encoding, the message body length cannot be determined
* reliably; the server MUST respond with the 400 (Bad Request)
* status code and then close the connection.
*
* If a message is received with both a Transfer-Encoding and a
* Content-Length header field, the Transfer-Encoding overrides the
* Content-Length. Such a message might indicate an attempt to
* perform request smuggling (Section 9.5) or response splitting
* (Section 9.4) and ought to be handled as an error. A sender MUST
* remove the received Content-Length field prior to forwarding such
* a message downstream.
*
* 4. If a message is received without Transfer-Encoding and with
* either multiple Content-Length header fields having differing
* field-values or a single Content-Length header field having an
* invalid value, then the message framing is invalid and the
* recipient MUST treat it as an unrecoverable error. If this is a
* request message, the server MUST respond with a 400 (Bad Request)
* status code and then close the connection. If this is a response
* message received by a proxy, the proxy MUST close the connection
* to the server, discard the received response, and send a 502 (Bad
* Gateway) response to the client. If this is a response message
* received by a user agent, the user agent MUST close the
* connection to the server and discard the received response.
*
* 5. If a valid Content-Length header field is present without
* Transfer-Encoding, its decimal value defines the expected message
* body length in octets. If the sender closes the connection or
* the recipient times out before the indicated number of octets are
* received, the recipient MUST consider the message to be
* incomplete and close the connection.
*
* 6. If this is a request message and none of the above are true, then
* the message body length is zero (no message body is present).
*
* 7. Otherwise, this is a response message without a declared message
* body length, so the message body length is determined by the
* number of octets received prior to the server closing the
* connection.
*/
ctx.idx = 0;
/* set TE_CHNK and XFER_LEN only if "chunked" is seen last */
while (http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= HTTP_MSGF_TE_CHNK;
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* chunked not last, return badreq */
goto return_bad_req;
}
}
/* Chunked requests must have their content-length removed */
ctx.idx = 0;
if (msg->flags & HTTP_MSGF_TE_CHNK) {
while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx))
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
else while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN;
msg->body_len = msg->chunk_len = cl;
}
/* even bodyless requests have a known length */
msg->flags |= HTTP_MSGF_XFER_LEN;
/* Until set to anything else, the connection mode is set as Keep-Alive. It will
* only change if both the request and the config reference something else.
* Option httpclose by itself sets tunnel mode where headers are mangled.
* However, if another mode is set, it will affect it (eg: server-close/
* keep-alive + httpclose = close). Note that we avoid to redo the same work
* if FE and BE have the same settings (common). The method consists in
* checking if options changed between the two calls (implying that either
* one is non-null, or one of them is non-null and we are there for the first
* time.
*/
if (!(txn->flags & TX_HDR_CONN_PRS) ||
((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE)))
http_adjust_conn_mode(s, txn, msg);
/* we may have to wait for the request's body */
if ((s->be->options & PR_O_WREQ_BODY) &&
(msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK)))
req->analysers |= AN_REQ_HTTP_BODY;
/* end of job, return OK */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_bad_req:
/* We centralize bad requests processing here */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
}
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
return_prx_cond:
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
return 0;
}
/* This function prepares an applet to handle the stats. It can deal with the
* "100-continue" expectation, check that admin rules are met for POST requests,
* and program a response message if something was unexpected. It cannot fail
* and always relies on the stats applet to complete the job. It does not touch
* analysers nor counters, which are left to the caller. It does not touch
* s->target which is supposed to already point to the stats applet. The caller
* is expected to have already assigned an appctx to the stream.
*/
int http_handle_stats(struct stream *s, struct channel *req)
{
struct stats_admin_rule *stats_admin_rule;
struct stream_interface *si = &s->si[1];
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct uri_auth *uri_auth = s->be->uri_auth;
const char *uri, *h, *lookup;
struct appctx *appctx;
appctx = si_appctx(si);
memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats));
appctx->st1 = appctx->st2 = 0;
appctx->ctx.stats.st_code = STAT_STATUS_INIT;
appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */
if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD))
appctx->ctx.stats.flags |= STAT_CHUNKED;
uri = msg->chn->buf->p + msg->sl.rq.u;
lookup = uri + uri_auth->uri_len;
for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) {
if (memcmp(h, ";up", 3) == 0) {
appctx->ctx.stats.flags |= STAT_HIDE_DOWN;
break;
}
}
if (uri_auth->refresh) {
for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) {
if (memcmp(h, ";norefresh", 10) == 0) {
appctx->ctx.stats.flags |= STAT_NO_REFRESH;
break;
}
}
}
for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) {
if (memcmp(h, ";csv", 4) == 0) {
appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
break;
}
}
for (h = lookup; h <= uri + msg->sl.rq.u_l - 6; h++) {
if (memcmp(h, ";typed", 6) == 0) {
appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
appctx->ctx.stats.flags |= STAT_FMT_TYPED;
break;
}
}
for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
if (memcmp(h, ";st=", 4) == 0) {
int i;
h += 4;
appctx->ctx.stats.st_code = STAT_STATUS_UNKN;
for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) {
if (strncmp(stat_status_codes[i], h, 4) == 0) {
appctx->ctx.stats.st_code = i;
break;
}
}
break;
}
}
appctx->ctx.stats.scope_str = 0;
appctx->ctx.stats.scope_len = 0;
for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) {
int itx = 0;
const char *h2;
char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1];
const char *err;
h += strlen(STAT_SCOPE_INPUT_NAME) + 1;
h2 = h;
appctx->ctx.stats.scope_str = h2 - msg->chn->buf->p;
while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') {
itx++;
h++;
}
if (itx > STAT_SCOPE_TXT_MAXLEN)
itx = STAT_SCOPE_TXT_MAXLEN;
appctx->ctx.stats.scope_len = itx;
/* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */
memcpy(scope_txt, h2, itx);
scope_txt[itx] = '\0';
err = invalid_char(scope_txt);
if (err) {
/* bad char in search text => clear scope */
appctx->ctx.stats.scope_str = 0;
appctx->ctx.stats.scope_len = 0;
}
break;
}
}
/* now check whether we have some admin rules for this request */
list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) {
int ret = 1;
if (stats_admin_rule->cond) {
ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (stats_admin_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
appctx->ctx.stats.flags |= STAT_ADMIN;
break;
}
}
/* Was the status page requested with a POST ? */
if (unlikely(txn->meth == HTTP_METH_POST && txn->req.body_len > 0)) {
if (appctx->ctx.stats.flags & STAT_ADMIN) {
/* we'll need the request body, possibly after sending 100-continue */
if (msg->msg_state < HTTP_MSG_CHUNK_SIZE)
req->analysers |= AN_REQ_HTTP_BODY;
appctx->st0 = STAT_HTTP_POST;
}
else {
appctx->ctx.stats.st_code = STAT_STATUS_DENY;
appctx->st0 = STAT_HTTP_LAST;
}
}
else {
/* So it was another method (GET/HEAD) */
appctx->st0 = STAT_HTTP_HEAD;
}
s->task->nice = -32; /* small boost for HTTP statistics */
return 1;
}
/* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets
* (as per RFC3260 #4 and BCP37 #4.2 and #5.2).
*/
void inet_set_tos(int fd, const struct sockaddr_storage *from, int tos)
{
#ifdef IP_TOS
if (from->ss_family == AF_INET)
setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
#endif
#ifdef IPV6_TCLASS
if (from->ss_family == AF_INET6) {
if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)from)->sin6_addr))
/* v4-mapped addresses need IP_TOS */
setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
else
setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
}
#endif
}
int http_transform_header_str(struct stream* s, struct http_msg *msg,
const char* name, unsigned int name_len,
const char *str, struct my_regex *re,
int action)
{
struct hdr_ctx ctx;
char *buf = msg->chn->buf->p;
struct hdr_idx *idx = &s->txn->hdr_idx;
int (*http_find_hdr_func)(const char *name, int len, char *sol,
struct hdr_idx *idx, struct hdr_ctx *ctx);
struct chunk *output = get_trash_chunk();
ctx.idx = 0;
/* Choose the header browsing function. */
switch (action) {
case ACT_HTTP_REPLACE_VAL:
http_find_hdr_func = http_find_header2;
break;
case ACT_HTTP_REPLACE_HDR:
http_find_hdr_func = http_find_full_header2;
break;
default: /* impossible */
return -1;
}
while (http_find_hdr_func(name, name_len, buf, idx, &ctx)) {
struct hdr_idx_elem *hdr = idx->v + ctx.idx;
int delta;
char *val = ctx.line + ctx.val;
char* val_end = val + ctx.vlen;
if (!regex_exec_match2(re, val, val_end-val, MAX_MATCH, pmatch, 0))
continue;
output->len = exp_replace(output->str, output->size, val, str, pmatch);
if (output->len == -1)
return -1;
delta = buffer_replace2(msg->chn->buf, val, val_end, output->str, output->len);
hdr->len += delta;
http_msg_move_end(msg, delta);
/* Adjust the length of the current value of the index. */
ctx.vlen += delta;
}
return 0;
}
static int http_transform_header(struct stream* s, struct http_msg *msg,
const char* name, unsigned int name_len,
struct list *fmt, struct my_regex *re,
int action)
{
struct chunk *replace;
int ret = -1;
replace = alloc_trash_chunk();
if (!replace)
goto leave;
replace->len = build_logline(s, replace->str, replace->size, fmt);
if (replace->len >= replace->size - 1)
goto leave;
ret = http_transform_header_str(s, msg, name, name_len, replace->str, re, action);
leave:
free_trash_chunk(replace);
return ret;
}
/* Executes the http-request rules <rules> for stream <s>, proxy <px> and
* transaction <txn>. Returns the verdict of the first rule that prevents
* further processing of the request (auth, deny, ...), and defaults to
* HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or
* HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT
* on txn->flags if it encounters a tarpit rule. If <deny_status> is not NULL
* and a deny/tarpit rule is matched, it will be filled with this rule's deny
* status.
*/
enum rule_result
http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status)
{
struct session *sess = strm_sess(s);
struct http_txn *txn = s->txn;
struct connection *cli_conn;
struct act_rule *rule;
struct hdr_ctx ctx;
const char *auth_realm;
int act_flags = 0;
int len;
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == rules)
goto resume_execution;
}
s->current_rule_list = rules;
list_for_each_entry(rule, rules, list) {
/* check optional condition */
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret) /* condition not matched */
continue;
}
act_flags |= ACT_FLAG_FIRST;
resume_execution:
switch (rule->action) {
case ACT_ACTION_ALLOW:
return HTTP_RULE_RES_STOP;
case ACT_ACTION_DENY:
if (deny_status)
*deny_status = rule->deny_status;
return HTTP_RULE_RES_DENY;
case ACT_HTTP_REQ_TARPIT:
txn->flags |= TX_CLTARPIT;
if (deny_status)
*deny_status = rule->deny_status;
return HTTP_RULE_RES_DENY;
case ACT_HTTP_REQ_AUTH:
/* Auth might be performed on regular http-req rules as well as on stats */
auth_realm = rule->arg.auth.realm;
if (!auth_realm) {
if (px->uri_auth && rules == &px->uri_auth->http_req_rules)
auth_realm = STATS_DEFAULT_REALM;
else
auth_realm = px->id;
}
/* send 401/407 depending on whether we use a proxy or not. We still
* count one error, because normal browsing won't significantly
* increase the counter but brute force attempts will.
*/
chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm);
txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401;
http_reply_and_close(s, txn->status, &trash);
stream_inc_http_err_ctr(s);
return HTTP_RULE_RES_ABRT;
case ACT_HTTP_REDIR:
if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
return HTTP_RULE_RES_BADREQ;
return HTTP_RULE_RES_DONE;
case ACT_HTTP_SET_NICE:
s->task->nice = rule->arg.nice;
break;
case ACT_HTTP_SET_TOS:
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
inet_set_tos(cli_conn->t.sock.fd, &cli_conn->addr.from, rule->arg.tos);
break;
case ACT_HTTP_SET_MARK:
#ifdef SO_MARK
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
#endif
break;
case ACT_HTTP_SET_LOGL:
s->logs.level = rule->arg.loglevel;
break;
case ACT_HTTP_REPLACE_HDR:
case ACT_HTTP_REPLACE_VAL:
if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name,
rule->arg.hdr_add.name_len,
&rule->arg.hdr_add.fmt,
&rule->arg.hdr_add.re, rule->action))
return HTTP_RULE_RES_BADREQ;
break;
case ACT_HTTP_DEL_HDR:
ctx.idx = 0;
/* remove all occurrences of the header */
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
}
break;
case ACT_HTTP_SET_HDR:
case ACT_HTTP_ADD_HDR:
/* The scope of the trash buffer must be limited to this function. The
* build_logline() function can execute a lot of other function which
* can use the trash buffer. So for limiting the scope of this global
* buffer, we build first the header value using build_logline, and
* after we store the header name.
*/
len = rule->arg.hdr_add.name_len + 2,
len += build_logline(s, trash.str + len, trash.size - len, &rule->arg.hdr_add.fmt);
memcpy(trash.str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
trash.str[rule->arg.hdr_add.name_len] = ':';
trash.str[rule->arg.hdr_add.name_len + 1] = ' ';
trash.len = len;
if (rule->action == ACT_HTTP_SET_HDR) {
/* remove all occurrences of the header */
ctx.idx = 0;
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
}
}
http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len);
break;
case ACT_HTTP_DEL_ACL:
case ACT_HTTP_DEL_MAP: {
struct pat_ref *ref;
char *key;
int len;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash.str, trash.size, &rule->arg.map.key);
key = trash.str;
key[len] = '\0';
/* perform update */
/* returned code: 1=ok, 0=ko */
pat_ref_delete(ref, key);
break;
}
case ACT_HTTP_ADD_ACL: {
struct pat_ref *ref;
char *key;
struct chunk *trash_key;
int len;
trash_key = get_trash_chunk();
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key);
key = trash_key->str;
key[len] = '\0';
/* perform update */
/* add entry only if it does not already exist */
if (pat_ref_find_elt(ref, key) == NULL)
pat_ref_add(ref, key, NULL, NULL);
break;
}
case ACT_HTTP_SET_MAP: {
struct pat_ref *ref;
char *key, *value;
struct chunk *trash_key, *trash_value;
int len;
trash_key = get_trash_chunk();
trash_value = get_trash_chunk();
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key);
key = trash_key->str;
key[len] = '\0';
/* collect value */
len = build_logline(s, trash_value->str, trash_value->size, &rule->arg.map.value);
value = trash_value->str;
value[len] = '\0';
/* perform update */
if (pat_ref_find_elt(ref, key) != NULL)
/* update entry if it exists */
pat_ref_set(ref, key, value, NULL);
else
/* insert a new entry */
pat_ref_add(ref, key, value, NULL);
break;
}
case ACT_CUSTOM:
if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR)))
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
break;
case ACT_RET_STOP:
return HTTP_RULE_RES_DONE;
case ACT_RET_YIELD:
s->current_rule = rule;
return HTTP_RULE_RES_YIELD;
}
break;
case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
/* Note: only the first valid tracking parameter of each
* applies.
*/
if (stkctr_entry(&s->stkctr[http_trk_idx(rule->action)]) == NULL) {
struct stktable *t;
struct stksess *ts;
struct stktable_key *key;
void *ptr;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[http_trk_idx(rule->action)], t, ts);
/* let's count a new HTTP request as it's the first time we do it */
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
if (ptr)
stktable_data_cast(ptr, http_req_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
}
}
break;
/* other flags exists, but normaly, they never be matched. */
default:
break;
}
}
/* we reached the end of the rules, nothing to report */
return HTTP_RULE_RES_CONT;
}
/* Executes the http-response rules <rules> for stream <s> and proxy <px>. It
* returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP,
* HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT
* is returned, the process can continue the evaluation of next rule list. If
* *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ
* is returned, it means the operation could not be processed and a server error
* must be returned. It may set the TX_SVDENY on txn->flags if it encounters a
* deny rule. If *YIELD is returned, the caller must call again the function
* with the same context.
*/
static enum rule_result
http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s)
{
struct session *sess = strm_sess(s);
struct http_txn *txn = s->txn;
struct connection *cli_conn;
struct act_rule *rule;
struct hdr_ctx ctx;
int act_flags = 0;
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == rules)
goto resume_execution;
}
s->current_rule_list = rules;
list_for_each_entry(rule, rules, list) {
/* check optional condition */
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret) /* condition not matched */
continue;
}
act_flags |= ACT_FLAG_FIRST;
resume_execution:
switch (rule->action) {
case ACT_ACTION_ALLOW:
return HTTP_RULE_RES_STOP; /* "allow" rules are OK */
case ACT_ACTION_DENY:
txn->flags |= TX_SVDENY;
return HTTP_RULE_RES_STOP;
case ACT_HTTP_SET_NICE:
s->task->nice = rule->arg.nice;
break;
case ACT_HTTP_SET_TOS:
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
inet_set_tos(cli_conn->t.sock.fd, &cli_conn->addr.from, rule->arg.tos);
break;
case ACT_HTTP_SET_MARK:
#ifdef SO_MARK
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
#endif
break;
case ACT_HTTP_SET_LOGL:
s->logs.level = rule->arg.loglevel;
break;
case ACT_HTTP_REPLACE_HDR:
case ACT_HTTP_REPLACE_VAL:
if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name,
rule->arg.hdr_add.name_len,
&rule->arg.hdr_add.fmt,
&rule->arg.hdr_add.re, rule->action))
return HTTP_RULE_RES_BADREQ;
break;
case ACT_HTTP_DEL_HDR:
ctx.idx = 0;
/* remove all occurrences of the header */
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
}
break;
case ACT_HTTP_SET_HDR:
case ACT_HTTP_ADD_HDR:
chunk_printf(&trash, "%s: ", rule->arg.hdr_add.name);
memcpy(trash.str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
trash.len = rule->arg.hdr_add.name_len;
trash.str[trash.len++] = ':';
trash.str[trash.len++] = ' ';
trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.hdr_add.fmt);
if (rule->action == ACT_HTTP_SET_HDR) {
/* remove all occurrences of the header */
ctx.idx = 0;
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
}
}
http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len);
break;
case ACT_HTTP_DEL_ACL:
case ACT_HTTP_DEL_MAP: {
struct pat_ref *ref;
char *key;
int len;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash.str, trash.size, &rule->arg.map.key);
key = trash.str;
key[len] = '\0';
/* perform update */
/* returned code: 1=ok, 0=ko */
pat_ref_delete(ref, key);
break;
}
case ACT_HTTP_ADD_ACL: {
struct pat_ref *ref;
char *key;
struct chunk *trash_key;
int len;
trash_key = get_trash_chunk();
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key);
key = trash_key->str;
key[len] = '\0';
/* perform update */
/* check if the entry already exists */
if (pat_ref_find_elt(ref, key) == NULL)
pat_ref_add(ref, key, NULL, NULL);
break;
}
case ACT_HTTP_SET_MAP: {
struct pat_ref *ref;
char *key, *value;
struct chunk *trash_key, *trash_value;
int len;
trash_key = get_trash_chunk();
trash_value = get_trash_chunk();
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* collect key */
len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key);
key = trash_key->str;
key[len] = '\0';
/* collect value */
len = build_logline(s, trash_value->str, trash_value->size, &rule->arg.map.value);
value = trash_value->str;
value[len] = '\0';
/* perform update */
if (pat_ref_find_elt(ref, key) != NULL)
/* update entry if it exists */
pat_ref_set(ref, key, value, NULL);
else
/* insert a new entry */
pat_ref_add(ref, key, value, NULL);
break;
}
case ACT_HTTP_REDIR:
if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
return HTTP_RULE_RES_BADREQ;
return HTTP_RULE_RES_DONE;
case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
/* Note: only the first valid tracking parameter of each
* applies.
*/
if (stkctr_entry(&s->stkctr[http_trk_idx(rule->action)]) == NULL) {
struct stktable *t;
struct stksess *ts;
struct stktable_key *key;
void *ptr;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[http_trk_idx(rule->action)], t, ts);
/* let's count a new HTTP request as it's the first time we do it */
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
if (ptr)
stktable_data_cast(ptr, http_req_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
/* When the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan. Normally this is done when receiving the response
* but here we're tracking after this ought to have been done so we have
* to do it on purpose.
*/
if ((unsigned)(txn->status - 400) < 100) {
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT);
if (ptr)
stktable_data_cast(ptr, http_err_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1);
}
}
}
break;
case ACT_CUSTOM:
if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR)))
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
break;
case ACT_RET_STOP:
return HTTP_RULE_RES_STOP;
case ACT_RET_YIELD:
s->current_rule = rule;
return HTTP_RULE_RES_YIELD;
}
break;
/* other flags exists, but normaly, they never be matched. */
default:
break;
}
}
/* we reached the end of the rules, nothing to report */
return HTTP_RULE_RES_CONT;
}
/* Perform an HTTP redirect based on the information in <rule>. The function
* returns non-zero on success, or zero in case of a, irrecoverable error such
* as too large a request to build a valid response.
*/
static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn)
{
struct http_msg *req = &txn->req;
struct http_msg *res = &txn->rsp;
const char *msg_fmt;
struct chunk *chunk;
int ret = 0;
chunk = alloc_trash_chunk();
if (!chunk)
goto leave;
/* build redirect message */
switch(rule->code) {
case 308:
msg_fmt = HTTP_308;
break;
case 307:
msg_fmt = HTTP_307;
break;
case 303:
msg_fmt = HTTP_303;
break;
case 301:
msg_fmt = HTTP_301;
break;
case 302:
default:
msg_fmt = HTTP_302;
break;
}
if (unlikely(!chunk_strcpy(chunk, msg_fmt)))
goto leave;
switch(rule->type) {
case REDIRECT_TYPE_SCHEME: {
const char *path;
const char *host;
struct hdr_ctx ctx;
int pathlen;
int hostlen;
host = "";
hostlen = 0;
ctx.idx = 0;
if (http_find_header2("Host", 4, req->chn->buf->p, &txn->hdr_idx, &ctx)) {
host = ctx.line + ctx.val;
hostlen = ctx.vlen;
}
path = http_get_path(txn);
/* build message using path */
if (path) {
pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
if (rule->flags & REDIRECT_FLAG_DROP_QS) {
int qs = 0;
while (qs < pathlen) {
if (path[qs] == '?') {
pathlen = qs;
break;
}
qs++;
}
}
} else {
path = "/";
pathlen = 1;
}
if (rule->rdr_str) { /* this is an old "redirect" rule */
/* check if we can add scheme + "://" + host + path */
if (chunk->len + rule->rdr_len + 3 + hostlen + pathlen > chunk->size - 4)
goto leave;
/* add scheme */
memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
chunk->len += rule->rdr_len;
}
else {
/* add scheme with executing log format */
chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
/* check if we can add scheme + "://" + host + path */
if (chunk->len + 3 + hostlen + pathlen > chunk->size - 4)
goto leave;
}
/* add "://" */
memcpy(chunk->str + chunk->len, "://", 3);
chunk->len += 3;
/* add host */
memcpy(chunk->str + chunk->len, host, hostlen);
chunk->len += hostlen;
/* add path */
memcpy(chunk->str + chunk->len, path, pathlen);
chunk->len += pathlen;
/* append a slash at the end of the location if needed and missing */
if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
(rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
if (chunk->len > chunk->size - 5)
goto leave;
chunk->str[chunk->len] = '/';
chunk->len++;
}
break;
}
case REDIRECT_TYPE_PREFIX: {
const char *path;
int pathlen;
path = http_get_path(txn);
/* build message using path */
if (path) {
pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
if (rule->flags & REDIRECT_FLAG_DROP_QS) {
int qs = 0;
while (qs < pathlen) {
if (path[qs] == '?') {
pathlen = qs;
break;
}
qs++;
}
}
} else {
path = "/";
pathlen = 1;
}
if (rule->rdr_str) { /* this is an old "redirect" rule */
if (chunk->len + rule->rdr_len + pathlen > chunk->size - 4)
goto leave;
/* add prefix. Note that if prefix == "/", we don't want to
* add anything, otherwise it makes it hard for the user to
* configure a self-redirection.
*/
if (rule->rdr_len != 1 || *rule->rdr_str != '/') {
memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
chunk->len += rule->rdr_len;
}
}
else {
/* add prefix with executing log format */
chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
/* Check length */
if (chunk->len + pathlen > chunk->size - 4)
goto leave;
}
/* add path */
memcpy(chunk->str + chunk->len, path, pathlen);
chunk->len += pathlen;
/* append a slash at the end of the location if needed and missing */
if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
(rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
if (chunk->len > chunk->size - 5)
goto leave;
chunk->str[chunk->len] = '/';
chunk->len++;
}
break;
}
case REDIRECT_TYPE_LOCATION:
default:
if (rule->rdr_str) { /* this is an old "redirect" rule */
if (chunk->len + rule->rdr_len > chunk->size - 4)
goto leave;
/* add location */
memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
chunk->len += rule->rdr_len;
}
else {
/* add location with executing log format */
chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
/* Check left length */
if (chunk->len > chunk->size - 4)
goto leave;
}
break;
}
if (rule->cookie_len) {
memcpy(chunk->str + chunk->len, "\r\nSet-Cookie: ", 14);
chunk->len += 14;
memcpy(chunk->str + chunk->len, rule->cookie_str, rule->cookie_len);
chunk->len += rule->cookie_len;
}
/* add end of headers and the keep-alive/close status. */
txn->status = rule->code;
/* let's log the request time */
s->logs.tv_request = now;
if (((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) &&
((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
/* keep-alive possible */
if (!(req->flags & HTTP_MSGF_VER_11)) {
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: keep-alive", 30);
chunk->len += 30;
} else {
memcpy(chunk->str + chunk->len, "\r\nConnection: keep-alive", 24);
chunk->len += 24;
}
}
memcpy(chunk->str + chunk->len, "\r\n\r\n", 4);
chunk->len += 4;
FLT_STRM_CB(s, flt_http_reply(s, txn->status, chunk));
bo_inject(res->chn, chunk->str, chunk->len);
/* "eat" the request */
bi_fast_delete(req->chn->buf, req->sov);
req->next -= req->sov;
req->sov = 0;
s->req.analysers = AN_REQ_HTTP_XFER_BODY | (s->req.analysers & AN_REQ_FLT_END);
s->res.analysers = AN_RES_HTTP_XFER_BODY | (s->res.analysers & AN_RES_FLT_END);
req->msg_state = HTTP_MSG_CLOSED;
res->msg_state = HTTP_MSG_DONE;
/* Trim any possible response */
res->chn->buf->i = 0;
res->next = res->sov = 0;
/* If not already done, don't perform any connection establishment */
channel_dont_connect(req->chn);
} else {
/* keep-alive not possible */
if (unlikely(txn->flags & TX_USE_PX_CONN)) {
memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: close\r\n\r\n", 29);
chunk->len += 29;
} else {
memcpy(chunk->str + chunk->len, "\r\nConnection: close\r\n\r\n", 23);
chunk->len += 23;
}
http_reply_and_close(s, txn->status, chunk);
req->chn->analysers &= AN_REQ_FLT_END;
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
ret = 1;
leave:
free_trash_chunk(chunk);
return ret;
}
/* This stream analyser runs all HTTP request processing which is common to
* frontends and backends, which means blocking ACLs, filters, connection-close,
* reqadd, stats and redirects. This is performed for the designated proxy.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request (eg: deny,
* error, ...).
*/
int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct redirect_rule *rule;
struct cond_wordlist *wl;
enum rule_result verdict;
int deny_status = HTTP_ERR_403;
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
goto return_prx_yield;
}
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/* just in case we have some per-backend tracking */
stream_inc_be_http_req_ctr(s);
/* evaluate http-request rules */
if (!LIST_ISEMPTY(&px->http_req_rules)) {
verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status);
switch (verdict) {
case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */
goto return_prx_yield;
case HTTP_RULE_RES_CONT:
case HTTP_RULE_RES_STOP: /* nothing to do */
break;
case HTTP_RULE_RES_DENY: /* deny or tarpit */
if (txn->flags & TX_CLTARPIT)
goto tarpit;
goto deny;
case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */
goto return_prx_cond;
case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */
goto done;
case HTTP_RULE_RES_BADREQ: /* failed with a bad request */
goto return_bad_req;
}
}
/* OK at this stage, we know that the request was accepted according to
* the http-request rules, we can check for the stats. Note that the
* URI is detected *before* the req* rules in order not to be affected
* by a possible reqrep, while they are processed *after* so that a
* reqdeny can still block them. This clearly needs to change in 1.6!
*/
if (stats_check_uri(&s->si[1], txn, px)) {
s->target = &http_stats_applet.obj_type;
if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) {
txn->status = 500;
s->logs.tv_request = now;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
goto return_prx_cond;
}
/* parse the whole stats request and extract the relevant information */
http_handle_stats(s, req);
verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status);
/* not all actions implemented: deny, allow, auth */
if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */
goto deny;
if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */
goto return_prx_cond;
}
/* evaluate the req* rules except reqadd */
if (px->req_exp != NULL) {
if (apply_filters_to_request(s, req, px) < 0)
goto return_bad_req;
if (txn->flags & TX_CLDENY)
goto deny;
if (txn->flags & TX_CLTARPIT) {
deny_status = HTTP_ERR_500;
goto tarpit;
}
}
/* add request headers from the rule sets in the same order */
list_for_each_entry(wl, &px->req_add, list) {
if (wl->cond) {
int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (unlikely(http_header_add_tail(&txn->req, &txn->hdr_idx, wl->s) < 0))
goto return_bad_req;
}
/* Proceed with the stats now. */
if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
/* process the stats request now */
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
sess->fe->fe_counters.intercepted_req++;
if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is
s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
/* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */
req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END);
req->analysers &= ~AN_REQ_FLT_XFER_DATA;
req->analysers |= AN_REQ_HTTP_XFER_BODY;
goto done;
}
/* check whether we have some ACLs set to redirect this request */
list_for_each_entry(rule, &px->redirect_rules, list) {
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (!http_apply_redirect_rule(rule, s, txn))
goto return_bad_req;
goto done;
}
/* POST requests may be accompanied with an "Expect: 100-Continue" header.
* If this happens, then the data will not come immediately, so we must
* send all what we have without waiting. Note that due to the small gain
* in waiting for the body of the request, it's easier to simply put the
* CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove
* itself once used.
*/
req->flags |= CF_SEND_DONTWAIT;
done: /* done with this analyser, continue with next ones that the calling
* points will have set, if any.
*/
req->analyse_exp = TICK_ETERNITY;
done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */
req->analysers &= ~an_bit;
return 1;
tarpit:
/* Allow cookie logging
*/
if (s->be->cookie_name || sess->fe->capture_name)
manage_client_side_cookies(s, req);
/* When a connection is tarpitted, we use the tarpit timeout,
* which may be the same as the connect timeout if unspecified.
* If unset, then set it to zero because we really want it to
* eventually expire. We build the tarpit as an analyser.
*/
channel_erase(&s->req);
/* wipe the request out so that we can drop the connection early
* if the client closes first.
*/
channel_dont_connect(req);
txn->status = http_err_codes[deny_status];
req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */
req->analysers |= AN_REQ_HTTP_TARPIT;
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit);
if (!req->analyse_exp)
req->analyse_exp = tick_add(now_ms, 0);
stream_inc_http_err_ctr(s);
sess->fe->fe_counters.denied_req++;
if (sess->fe != s->be)
s->be->be_counters.denied_req++;
if (sess->listener->counters)
sess->listener->counters->denied_req++;
goto done_without_exp;
deny: /* this request was blocked (denied) */
/* Allow cookie logging
*/
if (s->be->cookie_name || sess->fe->capture_name)
manage_client_side_cookies(s, req);
txn->flags |= TX_CLDENY;
txn->status = http_err_codes[deny_status];
s->logs.tv_request = now;
http_reply_and_close(s, txn->status, http_error_message(s));
stream_inc_http_err_ctr(s);
sess->fe->fe_counters.denied_req++;
if (sess->fe != s->be)
s->be->be_counters.denied_req++;
if (sess->listener->counters)
sess->listener->counters->denied_req++;
goto return_prx_cond;
return_bad_req:
/* We centralize bad requests processing here */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
}
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
return_prx_cond:
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
return 0;
return_prx_yield:
channel_dont_connect(req);
return 0;
}
/* This function performs all the processing enabled for the current request.
* It returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* request. It relies on buffers flags, and updates s->req.analysers.
*/
int http_process_request(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct connection *cli_conn = objt_conn(strm_sess(s)->origin);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
channel_dont_connect(req);
return 0;
}
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/*
* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want with the remaining request. Also, now we
* may have separate values for ->fe, ->be.
*/
/*
* If HTTP PROXY is set we simply get remote server address parsing
* incoming request. Note that this requires that a connection is
* allocated on the server side.
*/
if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) {
struct connection *conn;
char *path;
/* Note that for now we don't reuse existing proxy connections */
if (unlikely((conn = si_alloc_conn(&s->si[1])) == NULL)) {
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 500;
req->analysers &= AN_REQ_FLT_END;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
path = http_get_path(txn);
url2sa(req->buf->p + msg->sl.rq.u,
path ? path - (req->buf->p + msg->sl.rq.u) : msg->sl.rq.u_l,
&conn->addr.to, NULL);
/* if the path was found, we have to remove everything between
* req->buf->p + msg->sl.rq.u and path (excluded). If it was not
* found, we need to replace from req->buf->p + msg->sl.rq.u for
* u_l characters by a single "/".
*/
if (path) {
char *cur_ptr = req->buf->p;
char *cur_end = cur_ptr + txn->req.sl.rq.l;
int delta;
delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u, path, NULL, 0);
http_msg_move_end(&txn->req, delta);
cur_end += delta;
if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL)
goto return_bad_req;
}
else {
char *cur_ptr = req->buf->p;
char *cur_end = cur_ptr + txn->req.sl.rq.l;
int delta;
delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u,
req->buf->p + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1);
http_msg_move_end(&txn->req, delta);
cur_end += delta;
if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL)
goto return_bad_req;
}
}
/*
* 7: Now we can work with the cookies.
* Note that doing so might move headers in the request, but
* the fields will stay coherent and the URI will not move.
* This should only be performed in the backend.
*/
if (s->be->cookie_name || sess->fe->capture_name)
manage_client_side_cookies(s, req);
/* add unique-id if "header-unique-id" is specified */
if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) {
if ((s->unique_id = pool_alloc2(pool2_uniqueid)) == NULL)
goto return_bad_req;
s->unique_id[0] = '\0';
build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id);
}
if (sess->fe->header_unique_id && s->unique_id) {
chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id);
if (trash.len < 0)
goto return_bad_req;
if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len) < 0))
goto return_bad_req;
}
/*
* 9: add X-Forwarded-For if either the frontend or the backend
* asks for it.
*/
if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) {
struct hdr_ctx ctx = { .idx = 0 };
if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) &&
http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name,
s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len,
req->buf->p, &txn->hdr_idx, &ctx)) {
/* The header is set to be added only if none is present
* and we found it, so don't do anything.
*/
}
else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) {
/* Add an X-Forwarded-For header unless the source IP is
* in the 'except' network range.
*/
if ((!sess->fe->except_mask.s_addr ||
(((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr)
!= sess->fe->except_net.s_addr) &&
(!s->be->except_mask.s_addr ||
(((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr)
!= s->be->except_net.s_addr)) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->fwdfor_hdr_len) {
len = s->be->fwdfor_hdr_len;
memcpy(trash.str, s->be->fwdfor_hdr_name, len);
} else {
len = sess->fe->fwdfor_hdr_len;
memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
}
len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
goto return_bad_req;
}
}
else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) {
/* FIXME: for the sake of completeness, we should also support
* 'except' here, although it is mostly useless in this case.
*/
int len;
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr,
pn, sizeof(pn));
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->fwdfor_hdr_len) {
len = s->be->fwdfor_hdr_len;
memcpy(trash.str, s->be->fwdfor_hdr_name, len);
} else {
len = sess->fe->fwdfor_hdr_len;
memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
}
len += snprintf(trash.str + len, trash.size - len, ": %s", pn);
if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
goto return_bad_req;
}
}
/*
* 10: add X-Original-To if either the frontend or the backend
* asks for it.
*/
if ((sess->fe->options | s->be->options) & PR_O_ORGTO) {
/* FIXME: don't know if IPv6 can handle that case too. */
if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) {
/* Add an X-Original-To header unless the destination IP is
* in the 'except' network range.
*/
conn_get_to_addr(cli_conn);
if (cli_conn->addr.to.ss_family == AF_INET &&
((!sess->fe->except_mask_to.s_addr ||
(((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr)
!= sess->fe->except_to.s_addr) &&
(!s->be->except_mask_to.s_addr ||
(((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr)
!= s->be->except_to.s_addr))) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-original-to, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->orgto_hdr_len) {
len = s->be->orgto_hdr_len;
memcpy(trash.str, s->be->orgto_hdr_name, len);
} else {
len = sess->fe->orgto_hdr_len;
memcpy(trash.str, sess->fe->orgto_hdr_name, len);
}
len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
goto return_bad_req;
}
}
}
/* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set.
* If an "Upgrade" token is found, the header is left untouched in order not to have
* to deal with some servers bugs : some of them fail an Upgrade if anything but
* "Upgrade" is present in the Connection header.
*/
if (!(txn->flags & TX_HDR_CONN_UPG) &&
(((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
unsigned int want_flags = 0;
if (msg->flags & HTTP_MSGF_VER_11) {
if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL ||
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)) &&
!((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
want_flags |= TX_CON_CLO_SET;
} else {
if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
((sess->fe->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL &&
(s->be->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL)) ||
((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
want_flags |= TX_CON_KAL_SET;
}
if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
http_change_connection_header(txn, msg, want_flags);
}
/* If we have no server assigned yet and we're balancing on url_param
* with a POST request, we may be interested in checking the body for
* that parameter. This will be done in another analyser.
*/
if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) &&
s->txn->meth == HTTP_METH_POST && s->be->url_param_name != NULL &&
(msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) {
channel_dont_connect(req);
req->analysers |= AN_REQ_HTTP_BODY;
}
req->analysers &= ~AN_REQ_FLT_XFER_DATA;
req->analysers |= AN_REQ_HTTP_XFER_BODY;
#ifdef TCP_QUICKACK
/* We expect some data from the client. Unless we know for sure
* we already have a full request, we have to re-enable quick-ack
* in case we previously disabled it, otherwise we might cause
* the client to delay further data.
*/
if ((sess->listener->options & LI_O_NOQUICKACK) &&
cli_conn && conn_ctrl_ready(cli_conn) &&
((msg->flags & HTTP_MSGF_TE_CHNK) ||
(msg->body_len > req->buf->i - txn->req.eoh - 2)))
setsockopt(cli_conn->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
#endif
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
req->analyse_exp = TICK_ETERNITY;
req->analysers &= ~an_bit;
s->logs.tv_request = now;
/* OK let's go on with the BODY now */
return 1;
return_bad_req: /* let's centralize all bad requests */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
}
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
req->analysers &= AN_REQ_FLT_END;
http_reply_and_close(s, txn->status, http_error_message(s));
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* This function is an analyser which processes the HTTP tarpit. It always
* returns zero, at the beginning because it prevents any other processing
* from occurring, and at the end because it terminates the request.
*/
int http_process_tarpit(struct stream *s, struct channel *req, int an_bit)
{
struct http_txn *txn = s->txn;
/* This connection is being tarpitted. The CLIENT side has
* already set the connect expiration date to the right
* timeout. We just have to check that the client is still
* there and that the timeout has not expired.
*/
channel_dont_connect(req);
if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 &&
!tick_is_expired(req->analyse_exp, now_ms))
return 0;
/* We will set the queue timer to the time spent, just for
* logging purposes. We fake a 500 server error, so that the
* attacker will not suspect his connection has been tarpitted.
* It will not cause trouble to the logs because we can exclude
* the tarpitted connections by filtering on the 'PT' status flags.
*/
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
if (!(req->flags & CF_READ_ERROR))
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_T;
return 0;
}
/* This function is an analyser which waits for the HTTP request body. It waits
* for either the buffer to be full, or the full advertised contents to have
* reached the buffer. It must only be called after the standard HTTP request
* processing has occurred, because it expects the request to be parsed and will
* look for the Expect header. It may send a 100-Continue interim response. It
* takes in input any state starting from HTTP_MSG_BODY and leaves with one of
* HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it
* needs to read more data, or 1 once it has completed its analysis.
*/
int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->req;
/* We have to parse the HTTP request body to find any required data.
* "balance url_param check_post" should have been the only way to get
* into this. We were brought here after HTTP header analysis, so all
* related structures are ready.
*/
if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
/* This is the first call */
if (msg->msg_state < HTTP_MSG_BODY)
goto missing_data;
if (msg->msg_state < HTTP_MSG_100_SENT) {
/* If we have HTTP/1.1 and Expect: 100-continue, then we must
* send an HTTP/1.1 100 Continue intermediate response.
*/
if (msg->flags & HTTP_MSGF_VER_11) {
struct hdr_ctx ctx;
ctx.idx = 0;
/* Expect is allowed in 1.1, look for it */
if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) &&
unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) {
bo_inject(&s->res, http_100_chunk.str, http_100_chunk.len);
http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
}
}
msg->msg_state = HTTP_MSG_100_SENT;
}
/* we have msg->sov which points to the first byte of message body.
* req->buf->p still points to the beginning of the message. We
* must save the body in msg->next because it survives buffer
* re-alignments.
*/
msg->next = msg->sov;
if (msg->flags & HTTP_MSGF_TE_CHNK)
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
else
msg->msg_state = HTTP_MSG_DATA;
}
if (!(msg->flags & HTTP_MSGF_TE_CHNK)) {
/* We're in content-length mode, we just have to wait for enough data. */
if (http_body_bytes(msg) < msg->body_len)
goto missing_data;
/* OK we have everything we need now */
goto http_end;
}
/* OK here we're parsing a chunked-encoded message */
if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
/* read the chunk size and assign it to ->chunk_len, then
* set ->sov and ->next to point to the body and switch to DATA or
* TRAILERS state.
*/
int ret = http_parse_chunk_size(msg);
if (!ret)
goto missing_data;
else if (ret < 0) {
stream_inc_http_err_ctr(s);
goto return_bad_req;
}
msg->next += ret;
msg->msg_state = msg->chunk_len ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS;
}
/* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state.
* We have the first data byte is in msg->sov + msg->sol. We're waiting
* for at least a whole chunk or the whole content length bytes after
* msg->sov + msg->sol.
*/
if (msg->msg_state == HTTP_MSG_TRAILERS)
goto http_end;
if (http_body_bytes(msg) >= msg->body_len) /* we have enough bytes now */
goto http_end;
missing_data:
/* we get here if we need to wait for more data. If the buffer is full,
* we have the maximum we can expect.
*/
if (buffer_full(req->buf, global.tune.maxrewrite))
goto http_end;
if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) {
txn->status = 408;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLITO;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
goto return_err_msg;
}
/* we get here if we need to wait for more data */
if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) {
/* Not enough data. We'll re-use the http-request
* timeout here. Ideally, we should set the timeout
* relative to the accept() date. We just set the
* request timeout once at the beginning of the
* request.
*/
channel_dont_connect(req);
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
return 0;
}
http_end:
/* The situation will not evolve, so let's give up on the analysis. */
s->logs.tv_request = now; /* update the request timer to reflect full request */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_bad_req: /* let's centralize all bad requests */
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return_err_msg:
req->analysers &= AN_REQ_FLT_END;
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
return 0;
}
/* send a server's name with an outgoing request over an established connection.
* Note: this function is designed to be called once the request has been scheduled
* for being forwarded. This is the reason why it rewinds the buffer before
* proceeding.
*/
int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) {
struct hdr_ctx ctx;
char *hdr_name = be->server_id_hdr_name;
int hdr_name_len = be->server_id_hdr_len;
struct channel *chn = txn->req.chn;
char *hdr_val;
unsigned int old_o, old_i;
ctx.idx = 0;
old_o = http_hdr_rewind(&txn->req);
if (old_o) {
/* The request was already skipped, let's restore it */
b_rew(chn->buf, old_o);
txn->req.next += old_o;
txn->req.sov += old_o;
}
old_i = chn->buf->i;
while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
/* remove any existing values from the header */
http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
}
/* Add the new header requested with the server value */
hdr_val = trash.str;
memcpy(hdr_val, hdr_name, hdr_name_len);
hdr_val += hdr_name_len;
*hdr_val++ = ':';
*hdr_val++ = ' ';
hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val);
http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str);
if (old_o) {
/* If this was a forwarded request, we must readjust the amount of
* data to be forwarded in order to take into account the size
* variations. Note that the current state is >= HTTP_MSG_BODY,
* so we don't have to adjust ->sol.
*/
old_o += chn->buf->i - old_i;
b_adv(chn->buf, old_o);
txn->req.next -= old_o;
txn->req.sov -= old_o;
}
return 0;
}
/* Terminate current transaction and prepare a new one. This is very tricky
* right now but it works.
*/
void http_end_txn_clean_session(struct stream *s)
{
int prev_status = s->txn->status;
struct proxy *fe = strm_fe(s);
struct proxy *be = s->be;
struct connection *srv_conn;
struct server *srv;
unsigned int prev_flags = s->txn->flags;
/* FIXME: We need a more portable way of releasing a backend's and a
* server's connections. We need a safer way to reinitialize buffer
* flags. We also need a more accurate method for computing per-request
* data.
*/
srv_conn = objt_conn(s->si[1].end);
/* unless we're doing keep-alive, we want to quickly close the connection
* to the server.
*/
if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
!si_conn_ready(&s->si[1])) {
s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF;
si_shutr(&s->si[1]);
si_shutw(&s->si[1]);
}
if (s->flags & SF_BE_ASSIGNED) {
be->beconn--;
if (unlikely(s->srv_conn))
sess_change_server(s, NULL);
}
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
stream_process_counters(s);
if (s->txn->status) {
int n;
n = s->txn->status / 100;
if (n < 1 || n > 5)
n = 0;
if (fe->mode == PR_MODE_HTTP) {
fe->fe_counters.p.http.rsp[n]++;
}
if ((s->flags & SF_BE_ASSIGNED) &&
(be->mode == PR_MODE_HTTP)) {
be->be_counters.p.http.rsp[n]++;
be->be_counters.p.http.cum_req++;
}
}
/* don't count other requests' data */
s->logs.bytes_in -= s->req.buf->i;
s->logs.bytes_out -= s->res.buf->i;
/* let's do a final log if we need it */
if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait &&
!(s->flags & SF_MONITOR) &&
(!(fe->options & PR_O_NULLNOLOG) || s->req.total)) {
s->do_log(s);
}
/* stop tracking content-based counters */
stream_stop_content_counters(s);
stream_update_time_stats(s);
s->logs.accept_date = date; /* user-visible date for logging */
s->logs.tv_accept = now; /* corrected date for internal use */
s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */
s->logs.t_idle = -1;
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_size = 0; /* we will get this number soon */
s->logs.bytes_in = s->req.total = s->req.buf->i;
s->logs.bytes_out = s->res.total = s->res.buf->i;
if (s->pend_pos)
pendconn_free(s->pend_pos);
if (objt_server(s->target)) {
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
objt_server(s->target)->cur_sess--;
}
if (may_dequeue_tasks(objt_server(s->target), be))
process_srv_queue(objt_server(s->target));
}
s->target = NULL;
/* only release our endpoint if we don't intend to reuse the
* connection.
*/
if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
!si_conn_ready(&s->si[1])) {
si_release_endpoint(&s->si[1]);
srv_conn = NULL;
}
s->si[1].state = s->si[1].prev_state = SI_ST_INI;
s->si[1].err_type = SI_ET_NONE;
s->si[1].conn_retries = 0; /* used for logging too */
s->si[1].exp = TICK_ETERNITY;
s->si[1].flags &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */
s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA);
s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA);
s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST);
s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED);
s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP);
s->txn->meth = 0;
http_reset_txn(s);
s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ;
if (prev_status == 401 || prev_status == 407) {
/* In HTTP keep-alive mode, if we receive a 401, we still have
* a chance of being able to send the visitor again to the same
* server over the same connection. This is required by some
* broken protocols such as NTLM, and anyway whenever there is
* an opportunity for sending the challenge to the proper place,
* it's better to do it (at least it helps with debugging).
*/
s->txn->flags |= TX_PREFER_LAST;
if (srv_conn)
srv_conn->flags |= CO_FL_PRIVATE;
}
/* Never ever allow to reuse a connection from a non-reuse backend */
if (srv_conn && (be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
srv_conn->flags |= CO_FL_PRIVATE;
if (fe->options2 & PR_O2_INDEPSTR)
s->si[1].flags |= SI_FL_INDEP_STR;
if (fe->options2 & PR_O2_NODELAY) {
s->req.flags |= CF_NEVER_WAIT;
s->res.flags |= CF_NEVER_WAIT;
}
/* we're removing the analysers, we MUST re-enable events detection.
* We don't enable close on the response channel since it's either
* already closed, or in keep-alive with an idle connection handler.
*/
channel_auto_read(&s->req);
channel_auto_close(&s->req);
channel_auto_read(&s->res);
/* we're in keep-alive with an idle connection, monitor it if not already done */
if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) {
srv = objt_server(srv_conn->target);
if (!srv)
si_idle_conn(&s->si[1], NULL);
else if (srv_conn->flags & CO_FL_PRIVATE)
si_idle_conn(&s->si[1], &srv->priv_conns);
else if (prev_flags & TX_NOT_FIRST)
/* note: we check the request, not the connection, but
* this is valid for strategies SAFE and AGGR, and in
* case of ALWS, we don't care anyway.
*/
si_idle_conn(&s->si[1], &srv->safe_conns);
else
si_idle_conn(&s->si[1], &srv->idle_conns);
}
s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0;
s->res.analysers = 0;
}
/* This function updates the request state machine according to the response
* state machine and buffer flags. It returns 1 if it changes anything (flag
* or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
* it is only used to find when a request/response couple is complete. Both
* this function and its equivalent should loop until both return zero. It
* can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
*/
int http_sync_req_state(struct stream *s)
{
struct channel *chn = &s->req;
struct http_txn *txn = s->txn;
unsigned int old_flags = chn->flags;
unsigned int old_state = txn->req.msg_state;
if (unlikely(txn->req.msg_state < HTTP_MSG_DONE))
return 0;
if (txn->req.msg_state == HTTP_MSG_DONE) {
/* No need to read anymore, the request was completely parsed.
* We can shut the read side unless we want to abort_on_close,
* or we have a POST request. The issue with POST requests is
* that some browsers still send a CRLF after the request, and
* this CRLF must be read so that it does not remain in the kernel
* buffers, otherwise a close could cause an RST on some systems
* (eg: Linux).
* Note that if we're using keep-alive on the client side, we'd
* rather poll now and keep the polling enabled for the whole
* stream's life than enabling/disabling it between each
* response and next request.
*/
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
!(s->be->options & PR_O_ABRT_CLOSE) &&
txn->meth != HTTP_METH_POST)
channel_dont_read(chn);
/* if the server closes the connection, we want to immediately react
* and close the socket to save packets and syscalls.
*/
s->si[1].flags |= SI_FL_NOHALF;
/* In any case we've finished parsing the request so we must
* disable Nagle when sending data because 1) we're not going
* to shut this side, and 2) the server is waiting for us to
* send pending data.
*/
chn->flags |= CF_NEVER_WAIT;
if (txn->rsp.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->rsp.msg_state < HTTP_MSG_DONE) {
/* The server has not finished to respond, so we
* don't want to move in order not to upset it.
*/
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : queue a connection close to the server */
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW)))
channel_shutw_now(chn);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the stream is complete
* once both states are CLOSED.
*
* However, there is an exception if the response
* length is undefined. In this case, we need to wait
* the close from the server. The response will be
* switched in TUNNEL mode until the end.
*/
if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) &&
txn->rsp.msg_state != HTTP_MSG_CLOSED)
goto check_channel_flags;
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Tunnel mode
* will not have any analyser so it needs to poll for reads.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) {
channel_auto_read(chn);
txn->req.msg_state = HTTP_MSG_TUNNEL;
}
}
goto check_channel_flags;
}
if (txn->req.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->req.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
}
goto wait_other_side;
}
if (txn->req.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* see above in MSG_DONE why we only do this in these states */
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
!(s->be->options & PR_O_ABRT_CLOSE))
channel_dont_read(chn);
goto wait_other_side;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */
txn->req.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
wait_other_side:
return txn->req.msg_state != old_state || chn->flags != old_flags;
}
/* This function updates the response state machine according to the request
* state machine and buffer flags. It returns 1 if it changes anything (flag
* or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
* it is only used to find when a request/response couple is complete. Both
* this function and its equivalent should loop until both return zero. It
* can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
*/
int http_sync_res_state(struct stream *s)
{
struct channel *chn = &s->res;
struct http_txn *txn = s->txn;
unsigned int old_flags = chn->flags;
unsigned int old_state = txn->rsp.msg_state;
if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE))
return 0;
if (txn->rsp.msg_state == HTTP_MSG_DONE) {
/* In theory, we don't need to read anymore, but we must
* still monitor the server connection for a possible close
* while the request is being uploaded, so we don't disable
* reading.
*/
/* channel_dont_read(chn); */
if (txn->req.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->req.msg_state < HTTP_MSG_DONE) {
/* The client seems to still be sending data, probably
* because we got an error response during an upload.
* We have the choice of either breaking the connection
* or letting it pass through. Let's do the later.
*/
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : shut read and wait for the request
* side to close its output buffer. The caller will detect
* when we're in DONE and the other is in CLOSED and will
* catch that for the final cleanup.
*/
if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW)))
channel_shutr_now(chn);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the stream is complete
* once both states are CLOSED.
*
* However, there is an exception if the response length
* is undefined. In this case, we switch in TUNNEL mode.
*/
if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN)) {
channel_auto_read(chn);
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
chn->flags |= CF_NEVER_WAIT;
}
else if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Tunnel will
* need to forward remaining data. Keep-alive will need to monitor
* for connection closing.
*/
channel_auto_read(chn);
chn->flags |= CF_NEVER_WAIT;
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN)
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
}
goto check_channel_flags;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->rsp.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
s->be->be_counters.cli_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.cli_aborts++;
}
goto wait_other_side;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* drop any pending data */
channel_truncate(chn);
channel_auto_close(chn);
channel_auto_read(chn);
goto wait_other_side;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
txn->rsp.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
wait_other_side:
/* We force the response to leave immediately if we're waiting for the
* other side, since there is no pending shutdown to push it out.
*/
if (!channel_is_empty(chn))
chn->flags |= CF_SEND_DONTWAIT;
return txn->rsp.msg_state != old_state || chn->flags != old_flags;
}
/* Resync the request and response state machines. */
void http_resync_states(struct stream *s)
{
struct http_txn *txn = s->txn;
#ifdef DEBUG_FULL
int old_req_state = txn->req.msg_state;
int old_res_state = txn->rsp.msg_state;
#endif
http_sync_req_state(s);
while (1) {
if (!http_sync_res_state(s))
break;
if (!http_sync_req_state(s))
break;
}
DPRINTF(stderr,"[%u] %s: stream=%p old=%s,%s cur=%s,%s "
"req->analysers=0x%08x res->analysers=0x%08x\n",
now_ms, __FUNCTION__, s,
http_msg_state_str(old_req_state), http_msg_state_str(old_res_state),
http_msg_state_str(txn->req.msg_state), http_msg_state_str(txn->rsp.msg_state),
s->req.analysers, s->res.analysers);
/* OK, both state machines agree on a compatible state.
* There are a few cases we're interested in :
* - HTTP_MSG_CLOSED on both sides means we've reached the end in both
* directions, so let's simply disable both analysers.
* - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either
* means we must abort the request.
* - HTTP_MSG_TUNNEL on either means we have to disable analyser on
* corresponding channel.
* - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE
* on the response with server-close mode means we've completed one
* request and we must re-initialize the server connection.
*/
if (txn->req.msg_state == HTTP_MSG_CLOSED &&
txn->rsp.msg_state == HTTP_MSG_CLOSED) {
s->req.analysers &= AN_REQ_FLT_END;
channel_auto_close(&s->req);
channel_auto_read(&s->req);
s->res.analysers &= AN_RES_FLT_END;
channel_auto_close(&s->res);
channel_auto_read(&s->res);
}
else if (txn->rsp.msg_state == HTTP_MSG_CLOSED ||
txn->rsp.msg_state == HTTP_MSG_ERROR ||
txn->req.msg_state == HTTP_MSG_ERROR) {
s->res.analysers &= AN_RES_FLT_END;
channel_auto_close(&s->res);
channel_auto_read(&s->res);
s->req.analysers &= AN_REQ_FLT_END;
channel_abort(&s->req);
channel_auto_close(&s->req);
channel_auto_read(&s->req);
channel_truncate(&s->req);
}
else if (txn->req.msg_state == HTTP_MSG_TUNNEL ||
txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
if (txn->req.msg_state == HTTP_MSG_TUNNEL) {
s->req.analysers &= AN_REQ_FLT_END;
if (HAS_REQ_DATA_FILTERS(s))
s->req.analysers |= AN_REQ_FLT_XFER_DATA;
}
if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
s->res.analysers &= AN_RES_FLT_END;
if (HAS_RSP_DATA_FILTERS(s))
s->res.analysers |= AN_RES_FLT_XFER_DATA;
}
channel_auto_close(&s->req);
channel_auto_read(&s->req);
channel_auto_close(&s->res);
channel_auto_read(&s->res);
}
else if ((txn->req.msg_state == HTTP_MSG_DONE ||
txn->req.msg_state == HTTP_MSG_CLOSED) &&
txn->rsp.msg_state == HTTP_MSG_DONE &&
((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
/* server-close/keep-alive: terminate this transaction,
* possibly killing the server connection and reinitialize
* a fresh-new transaction, but only once we're sure there's
* enough room in the request and response buffer to process
* another request. They must not hold any pending output data
* and the response buffer must realigned
* (realign is done is http_end_txn_clean_session).
*/
if (s->req.buf->o)
s->req.flags |= CF_WAKE_WRITE;
else if (s->res.buf->o)
s->res.flags |= CF_WAKE_WRITE;
else {
s->req.analysers = AN_REQ_FLT_END;
s->res.analysers = AN_RES_FLT_END;
txn->flags |= TX_WAIT_CLEANUP;
}
}
}
/* This function is an analyser which forwards request body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the stream.
* When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
* bytes of pending data + the headers if not already done.
*/
int http_request_forward_body(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->req;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* Note that we don't have to send 100-continue back because we don't
* need the data to complete our job, and it's up to the server to
* decide whether to return 100, 417 or anything else in return of
* an "Expect: 100-continue" header.
*/
if (msg->msg_state == HTTP_MSG_BODY) {
msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
? HTTP_MSG_CHUNK_SIZE
: HTTP_MSG_DATA);
/* TODO/filters: when http-buffer-request option is set or if a
* rule on url_param exists, the first chunk size could be
* already parsed. In that case, msg->next is after the chunk
* size (including the CRLF after the size). So this case should
* be handled to */
}
/* Some post-connect processing might want us to refrain from starting to
* forward data. Currently, the only reason for this is "balance url_param"
* whichs need to parse/process the request after we've enabled forwarding.
*/
if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) {
if (!(s->res.flags & CF_READ_ATTACHED)) {
channel_auto_connect(req);
req->flags |= CF_WAKE_CONNECT;
goto missing_data_or_waiting;
}
msg->flags &= ~HTTP_MSGF_WAIT_CONN;
}
/* in most states, we should abort in case of early close */
channel_auto_close(req);
if (req->to_forward) {
/* We can't process the buffer's contents yet */
req->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
if (msg->msg_state < HTTP_MSG_DONE) {
ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
? http_msg_forward_chunked_body(s, msg)
: http_msg_forward_body(s, msg));
if (!ret)
goto missing_data_or_waiting;
if (ret < 0)
goto return_bad_req;
}
/* other states, DONE...TUNNEL */
/* we don't want to forward closes on DONE except in tunnel mode. */
if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
channel_dont_close(req);
http_resync_states(s);
if (!(req->analysers & an_bit)) {
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (req->flags & CF_SHUTW) {
/* request errors are most likely due to the
* server aborting the transfer. */
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, s->be);
goto return_bad_req;
}
return 1;
}
/* If "option abortonclose" is set on the backend, we want to monitor
* the client's connection and forward any shutdown notification to the
* server, which will decide whether to close or to go on processing the
* request. We only do that in tunnel mode, and not in other modes since
* it can be abused to exhaust source ports. */
if (s->be->options & PR_O_ABRT_CLOSE) {
channel_auto_read(req);
if ((req->flags & (CF_SHUTR|CF_READ_NULL)) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN))
s->si[1].flags |= SI_FL_NOLINGER;
channel_auto_close(req);
}
else if (s->txn->meth == HTTP_METH_POST) {
/* POST requests may require to read extra CRLF sent by broken
* browsers and which could cause an RST to be sent upon close
* on some systems (eg: Linux). */
channel_auto_read(req);
}
return 0;
missing_data_or_waiting:
/* stop waiting for data if the input is closed before the end */
if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
sess->fe->fe_counters.cli_aborts++;
s->be->be_counters.cli_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.cli_aborts++;
goto return_bad_req_stats_ok;
}
/* waiting for the last bits to leave the buffer */
if (req->flags & CF_SHUTW)
goto aborted_xfer;
/* When TE: chunked is used, we need to get there again to parse remaining
* chunks even if the client has closed, so we don't want to set CF_DONTCLOSE.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
channel_dont_close(req);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
req->flags |= CF_EXPECT_MORE;
return 0;
return_bad_req: /* let's centralize all bad requests */
sess->fe->fe_counters.failed_req++;
if (sess->listener->counters)
sess->listener->counters->failed_req++;
return_bad_req_stats_ok:
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
http_reply_and_close(s, txn->status, NULL);
} else {
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
}
req->analysers &= AN_REQ_FLT_END;
s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
return 0;
aborted_xfer:
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
http_reply_and_close(s, txn->status, NULL);
} else {
txn->status = 502;
http_reply_and_close(s, txn->status, http_error_message(s));
}
req->analysers &= AN_REQ_FLT_END;
s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
sess->fe->fe_counters.srv_aborts++;
s->be->be_counters.srv_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.srv_aborts++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
return 0;
}
/* This stream analyser waits for a complete HTTP response. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the response (eg: timeout, error, ...). It
* is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct hdr_ctx ctx;
int use_close_only;
int cur_idx;
int n;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->buf->i,
rep->analysers);
/*
* Now parse the partial (or complete) lines.
* We will check the response syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* rep->buf->p = beginning of response
* rep->buf->p + msg->eoh = end of processed headers / start of current one
* rep->buf->p + rep->buf->i = end of input data
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
*/
next_one:
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) {
if (unlikely(!channel_is_rewritable(rep))) {
/* some data has still not left the buffer, wake us once that's done */
if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
goto abort_response;
channel_dont_close(rep);
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
rep->flags |= CF_WAKE_WRITE;
return 0;
}
if (unlikely(bi_end(rep->buf) < b_ptr(rep->buf, msg->next) ||
bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite))
buffer_slow_realign(rep->buf);
if (likely(msg->next < rep->buf->i))
http_msg_analyzer(msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->msg_state >= HTTP_MSG_BODY)) {
char *eol, *sol;
sol = rep->buf->p;
eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i);
debug_hdr("srvrep", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("srvhdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid response.
* If not so, we check the FD and buffer states before leaving.
* A full response is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* responses are checked first.
*
* Depending on whether the client is still there or not, we
* may send an error response back or not. Note that normally
* we should only check for HTTP status there, and check I/O
* errors somewhere else.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* Invalid response */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
/* we detected a parsing error. We want to archive this response
* in the dedicated proxy area for later troubleshooting.
*/
hdr_response_bad:
if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
s->be->be_counters.failed_resp++;
if (objt_server(s->target)) {
objt_server(s->target)->counters.failed_resp++;
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
}
abort_response:
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* too large response does not fit in buffer. */
else if (buffer_full(rep->buf, global.tune.maxrewrite)) {
if (msg->err_pos < 0)
msg->err_pos = rep->buf->i;
goto hdr_response_bad;
}
/* read error */
else if (rep->flags & CF_READ_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
s->be->be_counters.failed_resp++;
if (objt_server(s->target)) {
objt_server(s->target)->counters.failed_resp++;
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* read timeout : return a 504 to the client. */
else if (rep->flags & CF_READ_TIMEOUT) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
s->be->be_counters.failed_resp++;
if (objt_server(s->target)) {
objt_server(s->target)->counters.failed_resp++;
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 504;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVTO;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* client abort with an abortonclose */
else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) {
sess->fe->fe_counters.cli_aborts++;
s->be->be_counters.cli_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.cli_aborts++;
rep->analysers &= AN_RES_FLT_END;
channel_auto_close(rep);
txn->status = 400;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
/* close from server, capture the response if the server has started to respond */
else if (rep->flags & CF_SHUTR) {
if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
s->be->be_counters.failed_resp++;
if (objt_server(s->target)) {
objt_server(s->target)->counters.failed_resp++;
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* write error to client (we don't send any message then) */
else if (rep->flags & CF_WRITE_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
s->be->be_counters.failed_resp++;
rep->analysers &= AN_RES_FLT_END;
channel_auto_close(rep);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
channel_dont_close(rep);
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
return 0;
}
/* More interesting part now : we know that we have a complete
* response which at least looks like HTTP. We have an indicator
* of each header's length, so we can parse them quickly.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
/*
* 1: get the status code
*/
n = rep->buf->p[msg->sl.st.c] - '0';
if (n < 1 || n > 5)
n = 0;
/* when the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan.
*/
if (n == 4)
stream_inc_http_err_ctr(s);
if (objt_server(s->target))
objt_server(s->target)->counters.p.http.rsp[n]++;
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-response.
*/
if (!(s->be->options2 & PR_O2_RSPBUG_OK)) {
if (msg->sl.st.v_l != 8) {
msg->err_pos = 0;
goto hdr_response_bad;
}
if (rep->buf->p[4] != '/' ||
!isdigit((unsigned char)rep->buf->p[5]) ||
rep->buf->p[6] != '.' ||
!isdigit((unsigned char)rep->buf->p[7])) {
msg->err_pos = 4;
goto hdr_response_bad;
}
}
/* check if the response is HTTP/1.1 or above */
if ((msg->sl.st.v_l == 8) &&
((rep->buf->p[5] > '1') ||
((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET);
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l);
/* Adjust server's health based on status code. Note: status codes 501
* and 505 are triggered on demand by client request, so we must not
* count them as server failures.
*/
if (objt_server(s->target)) {
if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_OK);
else
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_STS);
}
/*
* We may be facing a 100-continue response, or any other informational
* 1xx response which is non-final, in which case this is not the right
* response, and we're waiting for the next one. Let's allow this response
* to go to the client and wait for the next one. There's an exception for
* 101 which is used later in the code to switch protocols.
*/
if (txn->status < 200 &&
(txn->status == 100 || txn->status >= 102)) {
hdr_idx_init(&txn->hdr_idx);
msg->next -= channel_forward(rep, msg->next);
msg->msg_state = HTTP_MSG_RPBEFORE;
txn->status = 0;
s->logs.t_data = -1; /* was not a response yet */
FLT_STRM_CB(s, flt_http_reset(s, msg));
goto next_one;
}
/*
* 2: check for cacheability.
*/
switch (txn->status) {
case 200:
case 203:
case 206:
case 300:
case 301:
case 410:
/* RFC2616 @13.4:
* "A response received with a status code of
* 200, 203, 206, 300, 301 or 410 MAY be stored
* by a cache (...) unless a cache-control
* directive prohibits caching."
*
* RFC2616 @9.5: POST method :
* "Responses to this method are not cacheable,
* unless the response includes appropriate
* Cache-Control or Expires header fields."
*/
if (likely(txn->meth != HTTP_METH_POST) &&
((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
break;
default:
break;
}
/*
* 3: we may need to capture headers
*/
s->logs.logwait &= ~LW_RESP;
if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap))
capture_headers(rep->buf->p, &txn->hdr_idx,
s->res_cap, sess->fe->rsp_cap);
/* 4: determine the transfer-length according to RFC2616 #4.4, updated
* by RFC7230#3.3.3 :
*
* The length of a message body is determined by one of the following
* (in order of precedence):
*
* 1. Any 2xx (Successful) response to a CONNECT request implies that
* the connection will become a tunnel immediately after the empty
* line that concludes the header fields. A client MUST ignore
* any Content-Length or Transfer-Encoding header fields received
* in such a message. Any 101 response (Switching Protocols) is
* managed in the same manner.
*
* 2. Any response to a HEAD request and any response with a 1xx
* (Informational), 204 (No Content), or 304 (Not Modified) status
* code is always terminated by the first empty line after the
* header fields, regardless of the header fields present in the
* message, and thus cannot contain a message body.
*
* 3. If a Transfer-Encoding header field is present and the chunked
* transfer coding (Section 4.1) is the final encoding, the message
* body length is determined by reading and decoding the chunked
* data until the transfer coding indicates the data is complete.
*
* If a Transfer-Encoding header field is present in a response and
* the chunked transfer coding is not the final encoding, the
* message body length is determined by reading the connection until
* it is closed by the server. If a Transfer-Encoding header field
* is present in a request and the chunked transfer coding is not
* the final encoding, the message body length cannot be determined
* reliably; the server MUST respond with the 400 (Bad Request)
* status code and then close the connection.
*
* If a message is received with both a Transfer-Encoding and a
* Content-Length header field, the Transfer-Encoding overrides the
* Content-Length. Such a message might indicate an attempt to
* perform request smuggling (Section 9.5) or response splitting
* (Section 9.4) and ought to be handled as an error. A sender MUST
* remove the received Content-Length field prior to forwarding such
* a message downstream.
*
* 4. If a message is received without Transfer-Encoding and with
* either multiple Content-Length header fields having differing
* field-values or a single Content-Length header field having an
* invalid value, then the message framing is invalid and the
* recipient MUST treat it as an unrecoverable error. If this is a
* request message, the server MUST respond with a 400 (Bad Request)
* status code and then close the connection. If this is a response
* message received by a proxy, the proxy MUST close the connection
* to the server, discard the received response, and send a 502 (Bad
* Gateway) response to the client. If this is a response message
* received by a user agent, the user agent MUST close the
* connection to the server and discard the received response.
*
* 5. If a valid Content-Length header field is present without
* Transfer-Encoding, its decimal value defines the expected message
* body length in octets. If the sender closes the connection or
* the recipient times out before the indicated number of octets are
* received, the recipient MUST consider the message to be
* incomplete and close the connection.
*
* 6. If this is a request message and none of the above are true, then
* the message body length is zero (no message body is present).
*
* 7. Otherwise, this is a response message without a declared message
* body length, so the message body length is determined by the
* number of octets received prior to the server closing the
* connection.
*/
/* Skip parsing if no content length is possible. The response flags
* remain 0 as well as the chunk_len, which may or may not mirror
* the real header value, and we note that we know the response's length.
* FIXME: should we parse anyway and return an error on chunked encoding ?
*/
if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
txn->status == 101)) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely
* to understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement specific
* parsers for such protocols, we'll want to check the Upgrade
* header which contains information about that protocol for
* responses with status 101 (eg: see RFC2817 about TLS).
*/
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN;
msg->flags |= HTTP_MSGF_XFER_LEN;
goto end;
}
if (txn->meth == HTTP_METH_HEAD ||
(txn->status >= 100 && txn->status < 200) ||
txn->status == 204 || txn->status == 304) {
msg->flags |= HTTP_MSGF_XFER_LEN;
goto skip_content_length;
}
use_close_only = 0;
ctx.idx = 0;
while (http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* bad transfer-encoding (chunked followed by something else) */
use_close_only = 1;
msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
break;
}
}
/* Chunked responses must have their content-length removed */
ctx.idx = 0;
if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) {
while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx))
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
else while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
msg->body_len = msg->chunk_len = cl;
}
skip_content_length:
/* Now we have to check if we need to modify the Connection header.
* This is more difficult on the response than it is on the request,
* because we can have two different HTTP versions and we don't know
* how the client will interprete a response. For instance, let's say
* that the client sends a keep-alive request in HTTP/1.0 and gets an
* HTTP/1.1 response without any header. Maybe it will bound itself to
* HTTP/1.0 because it only knows about it, and will consider the lack
* of header as a close, or maybe it knows HTTP/1.1 and can consider
* the lack of header as a keep-alive. Thus we will use two flags
* indicating how a request MAY be understood by the client. In case
* of multiple possibilities, we'll fix the header to be explicit. If
* ambiguous cases such as both close and keepalive are seen, then we
* will fall back to explicit close. Note that we won't take risks with
* HTTP/1.0 clients which may not necessarily understand keep-alive.
* See doc/internals/connection-header.txt for the complete matrix.
*/
if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN ||
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
int to_del = 0;
/* this situation happens when combining pretend-keepalive with httpclose. */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
/* on unknown transfer length, we must close */
if (!(msg->flags & HTTP_MSGF_XFER_LEN) &&
(txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
/* now adjust header transformations depending on current state */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
to_del |= 2; /* remove "keep-alive" on any response */
if (!(msg->flags & HTTP_MSGF_VER_11))
to_del |= 1; /* remove "close" for HTTP/1.0 responses */
}
else { /* SCL / KAL */
to_del |= 1; /* remove "close" on any response */
if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11)
to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */
}
/* Parse and remove some headers from the connection header */
http_parse_connection_header(txn, msg, to_del);
/* Some keep-alive responses are converted to Server-close if
* the server wants to close.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) {
if ((txn->flags & TX_HDR_CONN_CLO) ||
(!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11)))
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL;
}
}
end:
/* we want to have the response time before we start processing it */
s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* end of job, return OK */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
channel_auto_close(rep);
return 1;
abort_keep_alive:
/* A keep-alive request to the server failed on a network error.
* The client is required to retry. We need to close without returning
* any other information so that the client retries.
*/
txn->status = 0;
rep->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END;
channel_auto_close(rep);
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
channel_truncate(rep);
http_reply_and_close(s, txn->status, NULL);
return 0;
}
/* This function performs all the processing enabled for the current response.
* It normally returns 1 unless it wants to break. It relies on buffers flags,
* and updates s->res.analysers. It might make sense to explode it into several
* other functions. It works like process_request (see indications above).
*/
int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct proxy *cur_proxy;
struct cond_wordlist *wl;
enum rule_result ret = HTTP_RULE_RES_CONT;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->buf->i,
rep->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */
return 0;
/* The stats applet needs to adjust the Connection header but we don't
* apply any filter there.
*/
if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
goto skip_filters;
}
/*
* We will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* Filters are tried with ->be first, then with ->fe if it is
* different from ->be.
*
* Maybe we are in resume condiion. In this case I choose the
* "struct proxy" which contains the rule list matching the resume
* pointer. If none of theses "struct proxy" match, I initialise
* the process with the first one.
*
* In fact, I check only correspondance betwwen the current list
* pointer and the ->fe rule list. If it doesn't match, I initialize
* the loop with the ->be.
*/
if (s->current_rule_list == &sess->fe->http_res_rules)
cur_proxy = sess->fe;
else
cur_proxy = s->be;
while (1) {
struct proxy *rule_set = cur_proxy;
/* evaluate http-response rules */
if (ret == HTTP_RULE_RES_CONT) {
ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s);
if (ret == HTTP_RULE_RES_BADREQ)
goto return_srv_prx_502;
if (ret == HTTP_RULE_RES_DONE) {
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
return 1;
}
}
/* we need to be called again. */
if (ret == HTTP_RULE_RES_YIELD) {
channel_dont_close(rep);
return 0;
}
/* try headers filters */
if (rule_set->rsp_exp != NULL) {
if (apply_filters_to_response(s, rep, rule_set) < 0) {
return_bad_resp:
if (objt_server(s->target)) {
objt_server(s->target)->counters.failed_resp++;
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_RSP);
}
s->be->be_counters.failed_resp++;
return_srv_prx_502:
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->logs.t_data = -1; /* was not a valid response */
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
}
/* has the response been denied ? */
if (txn->flags & TX_SVDENY) {
if (objt_server(s->target))
objt_server(s->target)->counters.failed_secu++;
s->be->be_counters.denied_resp++;
sess->fe->fe_counters.denied_resp++;
if (sess->listener->counters)
sess->listener->counters->denied_resp++;
goto return_srv_prx_502;
}
/* add response headers from the rule sets in the same order */
list_for_each_entry(wl, &rule_set->rsp_add, list) {
if (txn->status < 200 && txn->status != 101)
break;
if (wl->cond) {
int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (unlikely(http_header_add_tail(&txn->rsp, &txn->hdr_idx, wl->s) < 0))
goto return_bad_resp;
}
/* check whether we're already working on the frontend */
if (cur_proxy == sess->fe)
break;
cur_proxy = sess->fe;
}
/* After this point, this anayzer can't return yield, so we can
* remove the bit corresponding to this analyzer from the list.
*
* Note that the intermediate returns and goto found previously
* reset the analyzers.
*/
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
/* OK that's all we can do for 1xx responses */
if (unlikely(txn->status < 200 && txn->status != 101))
goto skip_header_mangling;
/*
* Now check for a server cookie.
*/
if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE))
manage_server_side_cookies(s, rep);
/*
* Check for cache-control or pragma headers if required.
*/
if (((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) && txn->status != 101)
check_response_for_cacheability(s, rep);
/*
* Add server cookie in the response if needed
*/
if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) &&
!((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) &&
(!(s->flags & SF_DIRECT) ||
((s->be->cookie_maxidle || txn->cookie_last_date) &&
(!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) ||
(s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date
(!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date
(!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) &&
!(s->flags & SF_IGNORE_PRST)) {
/* the server is known, it's not the one the client requested, or the
* cookie's last seen date needs to be refreshed. We have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
if (!objt_server(s->target)->cookie) {
chunk_printf(&trash,
"Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/",
s->be->cookie_name);
}
else {
chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie);
if (s->be->cookie_maxidle || s->be->cookie_maxlife) {
/* emit last_date, which is mandatory */
trash.str[trash.len++] = COOKIE_DELIM_DATE;
s30tob64((date.tv_sec+3) >> 2, trash.str + trash.len);
trash.len += 5;
if (s->be->cookie_maxlife) {
/* emit first_date, which is either the original one or
* the current date.
*/
trash.str[trash.len++] = COOKIE_DELIM_DATE;
s30tob64(txn->cookie_first_date ?
txn->cookie_first_date >> 2 :
(date.tv_sec+3) >> 2, trash.str + trash.len);
trash.len += 5;
}
}
chunk_appendf(&trash, "; path=/");
}
if (s->be->cookie_domain)
chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain);
if (s->be->ck_opts & PR_CK_HTTPONLY)
chunk_appendf(&trash, "; HttpOnly");
if (s->be->ck_opts & PR_CK_SECURE)
chunk_appendf(&trash, "; Secure");
if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len) < 0))
goto return_bad_resp;
txn->flags &= ~TX_SCK_MASK;
if (objt_server(s->target)->cookie && (s->flags & SF_DIRECT))
/* the server did not change, only the date was updated */
txn->flags |= TX_SCK_UPDATED;
else
txn->flags |= TX_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx,
"Cache-control: private", 22) < 0))
goto return_bad_resp;
}
}
/*
* Check if result will be cacheable with a cookie.
* We'll block the response if security checks have caught
* nasty things such as a cacheable cookie.
*/
if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) ==
(TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) &&
(s->be->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
if (objt_server(s->target))
objt_server(s->target)->counters.failed_secu++;
s->be->be_counters.denied_resp++;
sess->fe->fe_counters.denied_resp++;
if (sess->listener->counters)
sess->listener->counters->denied_resp++;
Alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
send_log(s->be, LOG_ALERT,
"Blocking cacheable cookie in response from instance %s, server %s.\n",
s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
goto return_srv_prx_502;
}
skip_filters:
/*
* Adjust "Connection: close" or "Connection: keep-alive" if needed.
* If an "Upgrade" token is found, the header is left untouched in order
* not to have to deal with some client bugs : some of them fail an upgrade
* if anything but "Upgrade" is present in the Connection header. We don't
* want to touch any 101 response either since it's switching to another
* protocol.
*/
if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) &&
(((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
unsigned int want_flags = 0;
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* we want a keep-alive response here. Keep-alive header
* required if either side is not 1.1.
*/
if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11))
want_flags |= TX_CON_KAL_SET;
}
else {
/* we want a close response here. Close header required if
* the server is 1.1, regardless of the client.
*/
if (msg->flags & HTTP_MSGF_VER_11)
want_flags |= TX_CON_CLO_SET;
}
if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
http_change_connection_header(txn, msg, want_flags);
}
skip_header_mangling:
/* Always enter in the body analyzer */
rep->analysers &= ~AN_RES_FLT_XFER_DATA;
rep->analysers |= AN_RES_HTTP_XFER_BODY;
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. We have
* to temporarily assign bytes_out to log what we currently have.
*/
if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) {
s->logs.t_close = s->logs.t_data; /* to get a valid end date */
s->logs.bytes_out = txn->rsp.eoh;
s->do_log(s);
s->logs.bytes_out = 0;
}
return 1;
}
/* This function is an analyser which forwards response body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the stream.
*
* It is capable of compressing response data both in content-length mode and
* in chunked mode. The state machines follows different flows depending on
* whether content-length and chunked modes are used, since there are no
* trailers in content-length :
*
* chk-mode cl-mode
* ,----- BODY -----.
* / \
* V size > 0 V chk-mode
* .--> SIZE -------------> DATA -------------> CRLF
* | | size == 0 | last byte |
* | v final crlf v inspected |
* | TRAILERS -----------> DONE |
* | |
* `----------------------------------------------'
*
* Compression only happens in the DATA state, and must be flushed in final
* states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding
* is performed at once on final states for all bytes parsed, or when leaving
* on missing data.
*/
int http_response_forward_body(struct stream *s, struct channel *res, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->rsp;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
res,
res->rex, res->wex,
res->flags,
res->buf->i,
res->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) ||
!s->req.analysers) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* in most states, we should abort in case of early close */
channel_auto_close(res);
if (msg->msg_state == HTTP_MSG_BODY) {
msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
? HTTP_MSG_CHUNK_SIZE
: HTTP_MSG_DATA);
}
if (res->to_forward) {
/* We can't process the buffer's contents yet */
res->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
if (msg->msg_state < HTTP_MSG_DONE) {
ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
? http_msg_forward_chunked_body(s, msg)
: http_msg_forward_body(s, msg));
if (!ret)
goto missing_data_or_waiting;
if (ret < 0)
goto return_bad_res;
}
/* other states, DONE...TUNNEL */
/* for keep-alive we don't want to forward closes on DONE */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
channel_dont_close(res);
http_resync_states(s);
if (!(res->analysers & an_bit)) {
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (res->flags & CF_SHUTW) {
/* response errors are most likely due to the
* client aborting the transfer. */
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, strm_fe(s));
goto return_bad_res;
}
return 1;
}
return 0;
missing_data_or_waiting:
if (res->flags & CF_SHUTW)
goto aborted_xfer;
/* stop waiting for data if the input is closed before the end. If the
* client side was already closed, it means that the client has aborted,
* so we don't want to count this as a server abort. Otherwise it's a
* server abort.
*/
if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) {
if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))
goto aborted_xfer;
/* If we have some pending data, we continue the processing */
if (!buffer_pending(res->buf)) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
s->be->be_counters.srv_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.srv_aborts++;
goto return_bad_res_stats_ok;
}
}
/* we need to obey the req analyser, so if it leaves, we must too */
if (!s->req.analysers)
goto return_bad_res;
/* When TE: chunked is used, we need to get there again to parse
* remaining chunks even if the server has closed, so we don't want to
* set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side
* or if there are filters registered on the stream, we don't want to
* forward a close
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) ||
HAS_DATA_FILTERS(s, res) ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
channel_dont_close(res);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING))
res->flags |= CF_EXPECT_MORE;
/* the stream handler will take care of timeouts and errors */
return 0;
return_bad_res: /* let's centralize all bad responses */
s->be->be_counters.failed_resp++;
if (objt_server(s->target))
objt_server(s->target)->counters.failed_resp++;
return_bad_res_stats_ok:
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
http_reply_and_close(s, txn->status, NULL);
res->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
if (objt_server(s->target))
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
aborted_xfer:
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
http_reply_and_close(s, txn->status, NULL);
res->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
sess->fe->fe_counters.cli_aborts++;
s->be->be_counters.cli_aborts++;
if (objt_server(s->target))
objt_server(s->target)->counters.cli_aborts++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
}
static inline int
http_msg_forward_body(struct stream *s, struct http_msg *msg)
{
struct channel *chn = msg->chn;
int ret;
/* Here we have the guarantee to be in HTTP_MSG_DATA or HTTP_MSG_ENDING state */
if (msg->msg_state == HTTP_MSG_ENDING)
goto ending;
/* Neither content-length, nor transfer-encoding was found, so we must
* read the body until the server connection is closed. In that case, we
* eat data as they come. Of course, this happens for response only. */
if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
unsigned long long len = (chn->buf->i - msg->next);
msg->chunk_len += len;
msg->body_len += len;
}
ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
/* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
/* on_error */ goto error);
msg->next += ret;
msg->chunk_len -= ret;
if (msg->chunk_len) {
/* input empty or output full */
if (chn->buf->i > msg->next)
chn->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
/* This check can only be true for a response. HTTP_MSGF_XFER_LEN is
* always set for a request. */
if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
/* The server still sending data that should be filtered */
if (!(chn->flags & CF_SHUTR) && HAS_DATA_FILTERS(s, chn))
goto missing_data_or_waiting;
}
msg->msg_state = HTTP_MSG_ENDING;
ending:
/* we may have some pending data starting at res->buf->p such as a last
* chunk of data or trailers. */
ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
/* default_ret */ msg->next,
/* on_error */ goto error);
b_adv(chn->buf, ret);
msg->next -= ret;
if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
msg->sov -= ret;
if (msg->next)
goto waiting;
FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
/* default_ret */ 1,
/* on_error */ goto error,
/* on_wait */ goto waiting);
msg->msg_state = HTTP_MSG_DONE;
return 1;
missing_data_or_waiting:
/* we may have some pending data starting at chn->buf->p */
ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
/* default_ret */ msg->next,
/* on_error */ goto error);
b_adv(chn->buf, ret);
msg->next -= ret;
if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
msg->sov -= ret;
if (!HAS_DATA_FILTERS(s, chn))
msg->chunk_len -= channel_forward(chn, msg->chunk_len);
waiting:
return 0;
error:
return -1;
}
static inline int
http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg)
{
struct channel *chn = msg->chn;
int ret;
/* Here we have the guarantee to be in one of the following state:
* HTTP_MSG_DATA, HTTP_MSG_CHUNK_SIZE, HTTP_MSG_CHUNK_CRLF,
* HTTP_MSG_TRAILERS or HTTP_MSG_ENDING. */
switch_states:
switch (msg->msg_state) {
case HTTP_MSG_DATA:
ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
/* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
/* on_error */ goto error);
msg->next += ret;
msg->chunk_len -= ret;
if (msg->chunk_len) {
/* input empty or output full */
if (chn->buf->i > msg->next)
chn->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
/* nothing left to forward for this chunk*/
msg->msg_state = HTTP_MSG_CHUNK_CRLF;
/* fall through for HTTP_MSG_CHUNK_CRLF */
case HTTP_MSG_CHUNK_CRLF:
/* we want the CRLF after the data */
ret = http_skip_chunk_crlf(msg);
if (ret == 0)
goto missing_data_or_waiting;
if (ret < 0)
goto chunk_parsing_error;
msg->next += ret;
msg->msg_state = HTTP_MSG_CHUNK_SIZE;
/* fall through for HTTP_MSG_CHUNK_SIZE */
case HTTP_MSG_CHUNK_SIZE:
/* read the chunk size and assign it to ->chunk_len,
* then set ->next to point to the body and switch to
* DATA or TRAILERS state.
*/
ret = http_parse_chunk_size(msg);
if (ret == 0)
goto missing_data_or_waiting;
if (ret < 0)
goto chunk_parsing_error;
msg->next += ret;
if (msg->chunk_len) {
msg->msg_state = HTTP_MSG_DATA;
goto switch_states;
}
msg->msg_state = HTTP_MSG_TRAILERS;
/* fall through for HTTP_MSG_TRAILERS */
case HTTP_MSG_TRAILERS:
ret = http_forward_trailers(msg);
if (ret < 0)
goto chunk_parsing_error;
FLT_STRM_DATA_CB(s, chn, flt_http_chunk_trailers(s, msg),
/* default_ret */ 1,
/* on_error */ goto error);
msg->next += msg->sol;
if (!ret)
goto missing_data_or_waiting;
break;
case HTTP_MSG_ENDING:
goto ending;
default:
/* This should no happen in this function */
goto error;
}
msg->msg_state = HTTP_MSG_ENDING;
ending:
/* we may have some pending data starting at res->buf->p such as a last
* chunk of data or trailers. */
ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
/* default_ret */ msg->next,
/* on_error */ goto error);
b_adv(chn->buf, ret);
msg->next -= ret;
if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
msg->sov -= ret;
if (msg->next)
goto waiting;
FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
/* default_ret */ 1,
/* on_error */ goto error,
/* on_wait */ goto waiting);
msg->msg_state = HTTP_MSG_DONE;
return 1;
missing_data_or_waiting:
/* we may have some pending data starting at chn->buf->p */
ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
/* default_ret */ msg->next,
/* on_error */ goto error);
b_adv(chn->buf, ret);
msg->next -= ret;
if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
msg->sov -= ret;
if (!HAS_DATA_FILTERS(s, chn))
msg->chunk_len -= channel_forward(chn, msg->chunk_len);
waiting:
return 0;
chunk_parsing_error:
if (msg->err_pos >= 0) {
if (chn->flags & CF_ISRESP)
http_capture_bad_message(&s->be->invalid_rep, s, msg,
msg->msg_state, strm_fe(s));
else
http_capture_bad_message(&strm_fe(s)->invalid_req, s,
msg, msg->msg_state, s->be);
}
error:
return -1;
}
/* Iterate the same filter through all request headers.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp)
{
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = s->txn;
struct hdr_idx_elem *cur_hdr;
int delta;
last_hdr = 0;
cur_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
last_hdr = 1;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
last_hdr = 1;
break;
case ACT_REPLACE:
trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
if (trash.len < 0)
return -1;
delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
break;
case ACT_REMOVE:
delta = buffer_replace2(req->buf, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
http_msg_move_end(&txn->req, delta);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
cur_idx = old_idx;
break;
}
}
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the request line.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid request line.
* Since it can manage the switch to another backend, it updates the per-proxy
* DENY stats.
*/
int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp)
{
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = s->txn;
int delta;
if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
return 1;
else if (unlikely(txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY ||
exp->action == ACT_TARPIT))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = req->buf->p;
cur_end = cur_ptr + txn->req.sl.rq.l;
/* Now we have the request line between cur_ptr and cur_end */
if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_CLALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_CLDENY;
done = 1;
break;
case ACT_TARPIT:
txn->flags |= TX_CLTARPIT;
done = 1;
break;
case ACT_REPLACE:
trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
if (trash.len < 0)
return -1;
delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
http_msg_move_end(&txn->req, delta);
cur_end += delta;
cur_end = (char *)http_parse_reqline(&txn->req,
HTTP_MSG_RQMETH,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full request and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l);
hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
return done;
}
/*
* Apply all the req filters of proxy <px> to all headers in buffer <req> of stream <s>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable request. Since it can manage the switch to another backend, it
* updates the per-proxy DENY stats.
*/
int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct hdr_exp *exp;
for (exp = px->req_exp; exp; exp = exp->next) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if (txn->flags & (TX_CLDENY|TX_CLTARPIT))
break;
if ((txn->flags & TX_CLALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_TARPIT || exp->action == ACT_PASS))
continue;
/* if this filter had a condition, evaluate it now and skip to
* next filter if the condition does not match.
*/
if (exp->cond) {
ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
/* Apply the filter to the request line. */
ret = apply_filter_to_req_line(s, req, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the request, it can be
* iterated through all headers.
*/
if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0))
return -1;
}
}
return 0;
}
/* Find the end of a cookie value contained between <s> and <e>. It works the
* same way as with headers above except that the semi-colon also ends a token.
* See RFC2965 for more information. Note that it requires a valid header to
* return a valid result.
*/
char *find_cookie_value_end(char *s, const char *e)
{
int quoted, qdpair;
quoted = qdpair = 0;
for (; s < e; s++) {
if (qdpair) qdpair = 0;
else if (quoted) {
if (*s == '\\') qdpair = 1;
else if (*s == '"') quoted = 0;
}
else if (*s == '"') quoted = 1;
else if (*s == ',' || *s == ';') return s;
}
return s;
}
/* Delete a value in a header between delimiters <from> and <next> in buffer
* <buf>. The number of characters displaced is returned, and the pointer to
* the first delimiter is updated if required. The function tries as much as
* possible to respect the following principles :
* - replace <from> delimiter by the <next> one unless <from> points to a
* colon, in which case <next> is simply removed
* - set exactly one space character after the new first delimiter, unless
* there are not enough characters in the block being moved to do so.
* - remove unneeded spaces before the previous delimiter and after the new
* one.
*
* It is the caller's responsibility to ensure that :
* - <from> points to a valid delimiter or the colon ;
* - <next> points to a valid delimiter or the final CR/LF ;
* - there are non-space chars before <from> ;
* - there is a CR/LF at or after <next>.
*/
int del_hdr_value(struct buffer *buf, char **from, char *next)
{
char *prev = *from;
if (*prev == ':') {
/* We're removing the first value, preserve the colon and add a
* space if possible.
*/
if (!HTTP_IS_CRLF(*next))
next++;
prev++;
if (prev < next)
*prev++ = ' ';
while (HTTP_IS_SPHT(*next))
next++;
} else {
/* Remove useless spaces before the old delimiter. */
while (HTTP_IS_SPHT(*(prev-1)))
prev--;
*from = prev;
/* copy the delimiter and if possible a space if we're
* not at the end of the line.
*/
if (!HTTP_IS_CRLF(*next)) {
*prev++ = *next++;
if (prev + 1 < next)
*prev++ = ' ';
while (HTTP_IS_SPHT(*next))
next++;
}
}
return buffer_replace2(buf, prev, next, NULL, 0);
}
/*
* Manage client-side cookie. It can impact performance by about 2% so it is
* desirable to call it only when needed. This code is quite complex because
* of the multiple very crappy and ambiguous syntaxes we have to support. it
* highly recommended not to touch this part without a good reason !
*/
void manage_client_side_cookies(struct stream *s, struct channel *req)
{
struct http_txn *txn = s->txn;
struct session *sess = s->sess;
int preserve_hdr;
int cur_idx, old_idx;
char *hdr_beg, *hdr_end, *hdr_next, *del_from;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers, we start with the start line. */
old_idx = 0;
hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6);
if (!val) {
old_idx = cur_idx;
continue;
}
del_from = NULL; /* nothing to be deleted */
preserve_hdr = 0; /* assume we may kill the whole header */
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it.
*
* Note: RFC2965 is unclear about the processing of spaces around
* the equal sign in the ATTR=VALUE form. A careful inspection of
* the RFC explicitly allows spaces before it, and not within the
* tokens (attrs or values). An inspection of RFC2109 allows that
* too but section 10.1.3 lets one think that spaces may be allowed
* after the equal sign too, resulting in some (rare) buggy
* implementations trying to do that. So let's do what servers do.
* Latest ietf draft forbids spaces all around. Also, earlier RFCs
* allowed quoted strings in values, with any possible character
* after a backslash, including control chars and delimitors, which
* causes parsing to become ambiguous. Browsers also allow spaces
* within values even without quotes.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header. All of these headers are valid :
*
* Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n
* Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n
* Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
* | | | | | | | | |
* | | | | | | | | hdr_end <--+
* | | | | | | | +--> next
* | | | | | | +----> val_end
* | | | | | +-----------> val_beg
* | | | | +--------------> equal
* | | | +----------------> att_end
* | | +---------------------> att_beg
* | +--------------------------> prev
* +--------------------------------> hdr_beg
*/
for (prev = hdr_beg + 6; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ',' || *equal == ';')
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
} else {
val_beg = val_end = next = equal;
}
/* We have nothing to do with attributes beginning with '$'. However,
* they will automatically be removed if a header before them is removed,
* since they're supposed to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next) {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req->buf, &del_from, prev);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
continue;
}
/* if there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->req, stripped_before);
}
/* now everything is as on the diagram above */
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a client side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
} else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->cli_cookie, att_beg, log_len);
txn->cli_cookie[log_len] = 0;
}
}
/* Persistence cookies in passive, rewrite or insert mode have the
* following form :
*
* Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
*
* For cookies in prefix mode, the form is :
*
* Cookie: NAME=SRV~VALUE
*/
if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
struct server *srv = s->be->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID between val_beg and delim, and the original cookie between
* delim+1 and val_end. Otherwise, delim==val_end :
*
* Cookie: NAME=SRV; # in all but prefix modes
* Cookie: NAME=SRV~OPAQUE ; # in prefix mode
* | || || | |+-> next
* | || || | +--> val_end
* | || || +---------> delim
* | || |+------------> val_beg
* | || +-------------> att_end = equal
* | |+-----------------> att_beg
* | +------------------> prev
* +-------------------------> hdr_beg
*/
if (s->be->ck_opts & PR_CK_PFX) {
for (delim = val_beg; delim < val_end; delim++)
if (*delim == COOKIE_DELIM)
break;
} else {
char *vbar1;
delim = val_end;
/* Now check if the cookie contains a date field, which would
* appear after a vertical bar ('|') just after the server name
* and before the delimiter.
*/
vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
if (vbar1) {
/* OK, so left of the bar is the server's cookie and
* right is the last seen date. It is a base64 encoded
* 30-bit value representing the UNIX date since the
* epoch in 4-second quantities.
*/
int val;
delim = vbar1++;
if (val_end - vbar1 >= 5) {
val = b64tos30(vbar1);
if (val > 0)
txn->cookie_last_date = val << 2;
}
/* look for a second vertical bar */
vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
if (vbar1 && (val_end - vbar1 > 5)) {
val = b64tos30(vbar1 + 1);
if (val > 0)
txn->cookie_first_date = val << 2;
}
}
}
/* if the cookie has an expiration date and the proxy wants to check
* it, then we do that now. We first check if the cookie is too old,
* then only if it has expired. We detect strict overflow because the
* time resolution here is not great (4 seconds). Cookies with dates
* in the future are ignored if their offset is beyond one day. This
* allows an admin to fix timezone issues without expiring everyone
* and at the same time avoids keeping unwanted side effects for too
* long.
*/
if (txn->cookie_first_date && s->be->cookie_maxlife &&
(((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) ||
((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_OLD;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
else if (txn->cookie_last_date && s->be->cookie_maxidle &&
(((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) ||
((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_EXPIRED;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
* The same behaviour is applied when persistence must be ignored.
*/
if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
srv = NULL;
while (srv) {
if (srv->cookie && (srv->cklen == delim - val_beg) &&
!memcmp(val_beg, srv->cookie, delim - val_beg)) {
if ((srv->state != SRV_ST_STOPPED) ||
(s->be->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
/* we found the server and we can use it */
txn->flags &= ~TX_CK_MASK;
txn->flags |= (srv->state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN;
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
} else {
/* we found a server, but it's down,
* mark it as such and go on in case
* another one is available.
*/
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
/* no server matched this cookie or we deliberately skipped it */
txn->flags &= ~TX_CK_MASK;
if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
txn->flags |= TX_CK_UNUSED;
else
txn->flags |= TX_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) {
int delta; /* negative */
delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
del_from = NULL;
preserve_hdr = 1; /* we want to keep this cookie */
}
else if (del_from == NULL &&
(s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) {
del_from = prev;
}
} else {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req->buf, &del_from, prev);
if (att_beg >= del_from)
att_beg += delta;
if (att_end >= del_from)
att_end += delta;
val_beg += delta;
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
}
/* continue with next cookie on this header line */
att_beg = next;
} /* for each cookie */
/* There are no more cookies on this line.
* We may still have one (or several) marked for deletion at the
* end of the line. We must do this now in two ways :
* - if some cookies must be preserved, we only delete from the
* mark to the end of line ;
* - if nothing needs to be preserved, simply delete the whole header
*/
if (del_from) {
int delta;
if (preserve_hdr) {
delta = del_hdr_value(req->buf, &del_from, hdr_end);
hdr_end = del_from;
cur_hdr->len += delta;
} else {
delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0);
/* FIXME: this should be a separate function */
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
}
hdr_next += delta;
http_msg_move_end(&txn->req, delta);
}
/* check next header */
old_idx = cur_idx;
}
}
/* Iterate the same filter through all response headers contained in <rtr>.
* Returns 1 if this filter can be stopped upon return, otherwise 0.
*/
int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
{
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, last_hdr;
struct http_txn *txn = s->txn;
struct hdr_idx_elem *cur_hdr;
int delta;
last_hdr = 0;
cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
old_idx = 0;
while (!last_hdr) {
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
cur_idx = txn->hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
last_hdr = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
last_hdr = 1;
break;
case ACT_REPLACE:
trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
if (trash.len < 0)
return -1;
delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
break;
case ACT_REMOVE:
delta = buffer_replace2(rtr->buf, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
http_msg_move_end(&txn->rsp, delta);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
cur_idx = old_idx;
break;
}
}
/* keep the link from this header to next one in case of later
* removal of next header.
*/
old_idx = cur_idx;
}
return 0;
}
/* Apply the filter to the status line in the response buffer <rtr>.
* Returns 0 if nothing has been done, 1 if the filter has been applied,
* or -1 if a replacement resulted in an invalid status line.
*/
int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
{
char *cur_ptr, *cur_end;
int done;
struct http_txn *txn = s->txn;
int delta;
if (unlikely(txn->flags & TX_SVDENY))
return 1;
else if (unlikely(txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW ||
exp->action == ACT_DENY))
return 0;
else if (exp->action == ACT_REMOVE)
return 0;
done = 0;
cur_ptr = rtr->buf->p;
cur_end = cur_ptr + txn->rsp.sl.st.l;
/* Now we have the status line between cur_ptr and cur_end */
if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
switch (exp->action) {
case ACT_ALLOW:
txn->flags |= TX_SVALLOW;
done = 1;
break;
case ACT_DENY:
txn->flags |= TX_SVDENY;
done = 1;
break;
case ACT_REPLACE:
trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
if (trash.len < 0)
return -1;
delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted as a new header.
*/
http_msg_move_end(&txn->rsp, delta);
cur_end += delta;
cur_end = (char *)http_parse_stsline(&txn->rsp,
HTTP_MSG_RPVER,
cur_ptr, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return -1;
/* we have a full respnse and we know that we have either a CR
* or an LF at <ptr>.
*/
txn->status = strl2ui(rtr->buf->p + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l);
hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r');
/* there is no point trying this regex on headers */
return 1;
}
}
return done;
}
/*
* Apply all the resp filters of proxy <px> to all headers in buffer <rtr> of stream <s>.
* Returns 0 if everything is alright, or -1 in case a replacement lead to an
* unparsable response.
*/
int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct hdr_exp *exp;
for (exp = px->rsp_exp; exp; exp = exp->next) {
int ret;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if (txn->flags & TX_SVDENY)
break;
if ((txn->flags & TX_SVALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_PASS)) {
exp = exp->next;
continue;
}
/* if this filter had a condition, evaluate it now and skip to
* next filter if the condition does not match.
*/
if (exp->cond) {
ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
/* Apply the filter to the status line. */
ret = apply_filter_to_sts_line(s, rtr, exp);
if (unlikely(ret < 0))
return -1;
if (likely(ret == 0)) {
/* The filter did not match the response, it can be
* iterated through all headers.
*/
if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0))
return -1;
}
}
return 0;
}
/*
* Manage server-side cookies. It can impact performance by about 2% so it is
* desirable to call it only when needed. This function is also used when we
* just need to know if there is a cookie (eg: for check-cache).
*/
void manage_server_side_cookies(struct stream *s, struct channel *res)
{
struct http_txn *txn = s->txn;
struct session *sess = s->sess;
struct server *srv;
int is_cookie2;
int cur_idx, old_idx, delta;
char *hdr_beg, *hdr_end, *hdr_next;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = 0;
hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Set-Cookie" and "Set-Cookie2" headers.
*/
is_cookie2 = 0;
prev = hdr_beg + 10;
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10);
if (!val) {
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11);
if (!val) {
old_idx = cur_idx;
continue;
}
is_cookie2 = 1;
prev = hdr_beg + 11;
}
/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
* <prev> points to the colon.
*/
txn->flags |= TX_SCK_PRESENT;
/* Maybe we only wanted to see if there was a Set-Cookie (eg:
* check-cache is enabled) and we are not interested in checking
* them. Warning, the cookie capture is declared in the frontend.
*/
if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL)
return;
/* OK so now we know we have to process this response cookie.
* The format of the Set-Cookie header is slightly different
* from the format of the Cookie header in that it does not
* support the comma as a cookie delimiter (thus the header
* cannot be folded) because the Expires attribute described in
* the original Netscape's spec may contain an unquoted date
* with a comma inside. We have to live with this because
* many browsers don't support Max-Age and some browsers don't
* support quoted strings. However the Set-Cookie2 header is
* clean.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header (in case of set-cookie2). A special
* pointer, <scav> points to the beginning of the set-cookie-av
* fields after the first semi-colon. The <next> pointer points
* either to the end of line (set-cookie) or next unquoted comma
* (set-cookie2). All of these headers are valid :
*
* Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n
* Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n
* | | | | | | | | | |
* | | | | | | | | +-> next hdr_end <--+
* | | | | | | | +------------> scav
* | | | | | | +--------------> val_end
* | | | | | +--------------------> val_beg
* | | | | +----------------------> equal
* | | | +------------------------> att_end
* | | +----------------------------> att_beg
* | +------------------------------> prev
* +-----------------------------------------> hdr_beg
*/
for (; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
} else {
/* <equal> points to next comma, semi-colon or EOL */
val_beg = val_end = next = equal;
}
if (next < hdr_end) {
/* Set-Cookie2 supports multiple cookies, and <next> points to
* a colon or semi-colon before the end. So skip all attr-value
* pairs and look for the next comma. For Set-Cookie, since
* commas are permitted in values, skip to the end.
*/
if (is_cookie2)
next = find_hdr_value_end(next, hdr_end);
else
next = hdr_end;
}
/* Now everything is as on the diagram above */
/* Ignore cookies with no equal sign */
if (equal == val_end)
continue;
/* If there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->rsp, stripped_before);
}
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a server side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL &&
txn->srv_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
}
else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->srv_cookie, att_beg, log_len);
txn->srv_cookie[log_len] = 0;
}
}
srv = objt_server(s->target);
/* now check if we need to process it for persistence */
if (!(s->flags & SF_IGNORE_PRST) &&
(att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
/* assume passive cookie by default */
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_FOUND;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access.
*/
if (s->be->ck_opts & PR_CK_PSV) {
/* The "preserve" flag was set, we don't want to touch the
* server's cookie.
*/
}
else if ((srv && (s->be->ck_opts & PR_CK_INS)) ||
((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) {
/* this cookie must be deleted */
if (*prev == ':' && next == hdr_end) {
/* whole header */
delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
hdr_next += delta;
http_msg_move_end(&txn->rsp, delta);
/* note: while both invalid now, <next> and <hdr_end>
* are still equal, so the for() will stop as expected.
*/
} else {
/* just remove the value */
int delta = del_hdr_value(res->buf, &prev, next);
next = prev;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
}
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_DELETED;
/* and go on with next cookie */
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) {
/* replace bytes val_beg->val_end with the cookie name associated
* with this server since we know it.
*/
delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimiter between them..
*/
delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
val_beg[srv->cklen] = COOKIE_DELIM;
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
}
/* that's done for this cookie, check the next one on the same
* line when next != hdr_end (only if is_cookie2).
*/
}
/* check next header */
old_idx = cur_idx;
}
}
/*
* Check if response is cacheable or not. Updates s->flags.
*/
void check_response_for_cacheability(struct stream *s, struct channel *rtr)
{
struct http_txn *txn = s->txn;
char *p1, *p2;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx;
if (!(txn->flags & TX_CACHEABLE))
return;
/* Iterate through the headers.
* we start with the start line.
*/
cur_idx = 0;
cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
if (val) {
if ((cur_end - (cur_ptr + val) >= 8) &&
strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
}
val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
if (!val)
continue;
/* OK, right now we know we have a cache-control header at cur_ptr */
p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
if (p1 >= cur_end) /* no more info */
continue;
/* p1 is at the beginning of the value */
p2 = p1;
while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
p2++;
/* we have a complete value between p1 and p2 */
if (p2 < cur_end && *p2 == '=') {
/* we have something of the form no-cache="set-cookie" */
if ((cur_end - p1 >= 21) &&
strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0
&& (p1[20] == '"' || p1[20] == ','))
txn->flags &= ~TX_CACHE_COOK;
continue;
}
/* OK, so we know that either p2 points to the end of string or to a comma */
if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) ||
((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) ||
((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) ||
((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) ||
((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) {
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
continue;
}
}
}
/*
* In a GET, HEAD or POST request, check if the requested URI matches the stats uri
* for the current backend.
*
* It is assumed that the request is either a HEAD, GET, or POST and that the
* uri_auth field is valid.
*
* Returns 1 if stats should be provided, otherwise 0.
*/
int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend)
{
struct uri_auth *uri_auth = backend->uri_auth;
struct http_msg *msg = &txn->req;
const char *uri = msg->chn->buf->p+ msg->sl.rq.u;
if (!uri_auth)
return 0;
if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
return 0;
/* check URI size */
if (uri_auth->uri_len > msg->sl.rq.u_l)
return 0;
if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
return 1;
}
/*
* Capture a bad request or response and archive it in the proxy's structure.
* By default it tries to report the error position as msg->err_pos. However if
* this one is not set, it will then report msg->next, which is the last known
* parsing point. The function is able to deal with wrapping buffers. It always
* displays buffers as a contiguous area starting at buf->p.
*/
void http_capture_bad_message(struct error_snapshot *es, struct stream *s,
struct http_msg *msg,
enum ht_state state, struct proxy *other_end)
{
struct session *sess = strm_sess(s);
struct channel *chn = msg->chn;
int len1, len2;
es->len = MIN(chn->buf->i, global.tune.bufsize);
len1 = chn->buf->data + chn->buf->size - chn->buf->p;
len1 = MIN(len1, es->len);
len2 = es->len - len1; /* remaining data if buffer wraps */
if (!es->buf)
es->buf = malloc(global.tune.bufsize);
if (es->buf) {
memcpy(es->buf, chn->buf->p, len1);
if (len2)
memcpy(es->buf + len1, chn->buf->data, len2);
}
if (msg->err_pos >= 0)
es->pos = msg->err_pos;
else
es->pos = msg->next;
es->when = date; // user-visible date
es->sid = s->uniq_id;
es->srv = objt_server(s->target);
es->oe = other_end;
if (objt_conn(sess->origin))
es->src = __objt_conn(sess->origin)->addr.from;
else
memset(&es->src, 0, sizeof(es->src));
es->state = state;
es->ev_id = error_snapshot_id++;
es->b_flags = chn->flags;
es->s_flags = s->flags;
es->t_flags = s->txn->flags;
es->m_flags = msg->flags;
es->b_out = chn->buf->o;
es->b_wrap = chn->buf->data + chn->buf->size - chn->buf->p;
es->b_tot = chn->total;
es->m_clen = msg->chunk_len;
es->m_blen = msg->body_len;
}
/* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
* header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
* performed over the whole headers. Otherwise it must contain a valid header
* context, initialised with ctx->idx=0 for the first lookup in a series. If
* <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
* is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
* than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
* -1. The value fetch stops at commas, so this function is suited for use with
* list headers.
* The return value is 0 if nothing was found, or non-zero otherwise.
*/
unsigned int http_get_hdr(const struct http_msg *msg, const char *hname, int hlen,
struct hdr_idx *idx, int occ,
struct hdr_ctx *ctx, char **vptr, int *vlen)
{
struct hdr_ctx local_ctx;
char *ptr_hist[MAX_HDR_HISTORY];
int len_hist[MAX_HDR_HISTORY];
unsigned int hist_ptr;
int found;
if (!ctx) {
local_ctx.idx = 0;
ctx = &local_ctx;
}
if (occ >= 0) {
/* search from the beginning */
while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
occ--;
if (occ <= 0) {
*vptr = ctx->line + ctx->val;
*vlen = ctx->vlen;
return 1;
}
}
return 0;
}
/* negative occurrence, we scan all the list then walk back */
if (-occ > MAX_HDR_HISTORY)
return 0;
found = hist_ptr = 0;
while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
ptr_hist[hist_ptr] = ctx->line + ctx->val;
len_hist[hist_ptr] = ctx->vlen;
if (++hist_ptr >= MAX_HDR_HISTORY)
hist_ptr = 0;
found++;
}
if (-occ > found)
return 0;
/* OK now we have the last occurrence in [hist_ptr-1], and we need to
* find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
* -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
* to remain in the 0..9 range.
*/
hist_ptr += occ + MAX_HDR_HISTORY;
if (hist_ptr >= MAX_HDR_HISTORY)
hist_ptr -= MAX_HDR_HISTORY;
*vptr = ptr_hist[hist_ptr];
*vlen = len_hist[hist_ptr];
return 1;
}
/* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
* header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
* performed over the whole headers. Otherwise it must contain a valid header
* context, initialised with ctx->idx=0 for the first lookup in a series. If
* <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
* is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
* than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
* -1. This function differs from http_get_hdr() in that it only returns full
* line header values and does not stop at commas.
* The return value is 0 if nothing was found, or non-zero otherwise.
*/
unsigned int http_get_fhdr(const struct http_msg *msg, const char *hname, int hlen,
struct hdr_idx *idx, int occ,
struct hdr_ctx *ctx, char **vptr, int *vlen)
{
struct hdr_ctx local_ctx;
char *ptr_hist[MAX_HDR_HISTORY];
int len_hist[MAX_HDR_HISTORY];
unsigned int hist_ptr;
int found;
if (!ctx) {
local_ctx.idx = 0;
ctx = &local_ctx;
}
if (occ >= 0) {
/* search from the beginning */
while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
occ--;
if (occ <= 0) {
*vptr = ctx->line + ctx->val;
*vlen = ctx->vlen;
return 1;
}
}
return 0;
}
/* negative occurrence, we scan all the list then walk back */
if (-occ > MAX_HDR_HISTORY)
return 0;
found = hist_ptr = 0;
while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
ptr_hist[hist_ptr] = ctx->line + ctx->val;
len_hist[hist_ptr] = ctx->vlen;
if (++hist_ptr >= MAX_HDR_HISTORY)
hist_ptr = 0;
found++;
}
if (-occ > found)
return 0;
/* OK now we have the last occurrence in [hist_ptr-1], and we need to
* find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
* -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
* to remain in the 0..9 range.
*/
hist_ptr += occ + MAX_HDR_HISTORY;
if (hist_ptr >= MAX_HDR_HISTORY)
hist_ptr -= MAX_HDR_HISTORY;
*vptr = ptr_hist[hist_ptr];
*vlen = len_hist[hist_ptr];
return 1;
}
/*
* Print a debug line with a header. Always stop at the first CR or LF char,
* so it is safe to pass it a full buffer if needed. If <err> is not NULL, an
* arrow is printed after the line which contains the pointer.
*/
void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end)
{
struct session *sess = strm_sess(s);
int max;
chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id,
dir,
objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->t.sock.fd : -1,
objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1);
for (max = 0; start + max < end; max++)
if (start[max] == '\r' || start[max] == '\n')
break;
UBOUND(max, trash.size - trash.len - 3);
trash.len += strlcpy2(trash.str + trash.len, start, max + 1);
trash.str[trash.len++] = '\n';
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
}
/* Allocate a new HTTP transaction for stream <s> unless there is one already.
* The hdr_idx is allocated as well. In case of allocation failure, everything
* allocated is freed and NULL is returned. Otherwise the new transaction is
* assigned to the stream and returned.
*/
struct http_txn *http_alloc_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
if (txn)
return txn;
txn = pool_alloc2(pool2_http_txn);
if (!txn)
return txn;
txn->hdr_idx.size = global.tune.max_http_hdr;
txn->hdr_idx.v = pool_alloc2(pool2_hdr_idx);
if (!txn->hdr_idx.v) {
pool_free2(pool2_http_txn, txn);
return NULL;
}
s->txn = txn;
return txn;
}
void http_txn_reset_req(struct http_txn *txn)
{
txn->req.flags = 0;
txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */
txn->req.next = 0;
txn->req.chunk_len = 0LL;
txn->req.body_len = 0LL;
txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
}
void http_txn_reset_res(struct http_txn *txn)
{
txn->rsp.flags = 0;
txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */
txn->rsp.next = 0;
txn->rsp.chunk_len = 0LL;
txn->rsp.body_len = 0LL;
txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
}
/*
* Initialize a new HTTP transaction for stream <s>. It is assumed that all
* the required fields are properly allocated and that we only need to (re)init
* them. This should be used before processing any new request.
*/
void http_init_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
struct proxy *fe = strm_fe(s);
txn->flags = 0;
txn->status = -1;
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
txn->uri = NULL;
http_txn_reset_req(txn);
http_txn_reset_res(txn);
txn->req.chn = &s->req;
txn->rsp.chn = &s->res;
txn->auth.method = HTTP_AUTH_UNKNOWN;
txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */
if (fe->options2 & PR_O2_REQBUG_OK)
txn->req.err_pos = -1; /* let buggy requests pass */
if (txn->hdr_idx.v)
hdr_idx_init(&txn->hdr_idx);
vars_init(&s->vars_txn, SCOPE_TXN);
vars_init(&s->vars_reqres, SCOPE_REQ);
}
/* to be used at the end of a transaction */
void http_end_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
struct proxy *fe = strm_fe(s);
/* these ones will have been dynamically allocated */
pool_free2(pool2_requri, txn->uri);
pool_free2(pool2_capture, txn->cli_cookie);
pool_free2(pool2_capture, txn->srv_cookie);
pool_free2(pool2_uniqueid, s->unique_id);
s->unique_id = NULL;
txn->uri = NULL;
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
if (s->req_cap) {
struct cap_hdr *h;
for (h = fe->req_cap; h; h = h->next)
pool_free2(h->pool, s->req_cap[h->index]);
memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *));
}
if (s->res_cap) {
struct cap_hdr *h;
for (h = fe->rsp_cap; h; h = h->next)
pool_free2(h->pool, s->res_cap[h->index]);
memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *));
}
vars_prune(&s->vars_txn, s->sess, s);
vars_prune(&s->vars_reqres, s->sess, s);
}
/* to be used at the end of a transaction to prepare a new one */
void http_reset_txn(struct stream *s)
{
http_end_txn(s);
http_init_txn(s);
/* reinitialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->be = strm_fe(s);
s->logs.logwait = strm_fe(s)->to_log;
s->logs.level = 0;
stream_del_srv_conn(s);
s->target = NULL;
/* re-init store persistence */
s->store_count = 0;
s->uniq_id = global.req_count++;
s->pend_pos = NULL;
s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
/* We must trim any excess data from the response buffer, because we
* may have blocked an invalid response from a server that we don't
* want to accidentely forward once we disable the analysers, nor do
* we want those data to come along with next response. A typical
* example of such data would be from a buggy server responding to
* a HEAD with some data, or sending more than the advertised
* content-length.
*/
if (unlikely(s->res.buf->i))
s->res.buf->i = 0;
/* Now we can realign the response buffer */
buffer_realign(s->res.buf);
s->req.rto = strm_fe(s)->timeout.client;
s->req.wto = TICK_ETERNITY;
s->res.rto = TICK_ETERNITY;
s->res.wto = strm_fe(s)->timeout.client;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->si[1].hcto = TICK_ETERNITY;
}
void free_http_res_rules(struct list *r)
{
struct act_rule *tr, *pr;
list_for_each_entry_safe(pr, tr, r, list) {
LIST_DEL(&pr->list);
regex_free(&pr->arg.hdr_add.re);
free(pr);
}
}
void free_http_req_rules(struct list *r)
{
struct act_rule *tr, *pr;
list_for_each_entry_safe(pr, tr, r, list) {
LIST_DEL(&pr->list);
if (pr->action == ACT_HTTP_REQ_AUTH)
free(pr->arg.auth.realm);
regex_free(&pr->arg.hdr_add.re);
free(pr);
}
}
/* parse an "http-request" rule */
struct act_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
{
struct act_rule *rule;
struct action_kw *custom = NULL;
int cur_arg;
char *error;
rule = calloc(1, sizeof(*rule));
if (!rule) {
Alert("parsing [%s:%d]: out of memory.\n", file, linenum);
goto out_err;
}
if (!strcmp(args[0], "allow")) {
rule->action = ACT_ACTION_ALLOW;
cur_arg = 1;
} else if (!strcmp(args[0], "deny") || !strcmp(args[0], "block") || !strcmp(args[0], "tarpit")) {
int code;
int hc;
if (!strcmp(args[0], "tarpit")) {
rule->action = ACT_HTTP_REQ_TARPIT;
rule->deny_status = HTTP_ERR_500;
}
else {
rule->action = ACT_ACTION_DENY;
rule->deny_status = HTTP_ERR_403;
}
cur_arg = 1;
if (strcmp(args[cur_arg], "deny_status") == 0) {
cur_arg++;
if (!args[cur_arg]) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing status code.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
goto out_err;
}
code = atol(args[cur_arg]);
cur_arg++;
for (hc = 0; hc < HTTP_ERR_SIZE; hc++) {
if (http_err_codes[hc] == code) {
rule->deny_status = hc;
break;
}
}
if (hc >= HTTP_ERR_SIZE) {
Warning("parsing [%s:%d] : status code %d not handled, using default code %d.\n",
file, linenum, code, http_err_codes[rule->deny_status]);
}
}
} else if (!strcmp(args[0], "auth")) {
rule->action = ACT_HTTP_REQ_AUTH;
cur_arg = 1;
while(*args[cur_arg]) {
if (!strcmp(args[cur_arg], "realm")) {
rule->arg.auth.realm = strdup(args[cur_arg + 1]);
cur_arg+=2;
continue;
} else
break;
}
} else if (!strcmp(args[0], "set-nice")) {
rule->action = ACT_HTTP_SET_NICE;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.nice = atoi(args[cur_arg]);
if (rule->arg.nice < -1024)
rule->arg.nice = -1024;
else if (rule->arg.nice > 1024)
rule->arg.nice = 1024;
cur_arg++;
} else if (!strcmp(args[0], "set-tos")) {
#ifdef IP_TOS
char *err;
rule->action = ACT_HTTP_SET_TOS;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.tos = strtol(args[cur_arg], &err, 0);
if (err && *err != '\0') {
Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
#else
Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-mark")) {
#ifdef SO_MARK
char *err;
rule->action = ACT_HTTP_SET_MARK;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.mark = strtoul(args[cur_arg], &err, 0);
if (err && *err != '\0') {
Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
global.last_checks |= LSTCHK_NETADM;
#else
Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-log-level")) {
rule->action = ACT_HTTP_SET_LOGL;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
bad_log_level:
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (log level name or 'silent').\n",
file, linenum, args[0]);
goto out_err;
}
if (strcmp(args[cur_arg], "silent") == 0)
rule->arg.loglevel = -1;
else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
goto bad_log_level;
cur_arg++;
} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
(*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 3 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
error = NULL;
if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
args[cur_arg + 1], error);
free(error);
goto out_err;
}
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 3;
} else if (strcmp(args[0], "del-header") == 0) {
rule->action = ACT_HTTP_DEL_HDR;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
proxy->conf.args.ctx = ARGC_HRQ;
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "track-sc", 8) == 0 &&
args[0][9] == '\0' && args[0][8] >= '0' &&
args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
struct sample_expr *expr;
unsigned int where;
char *err = NULL;
cur_arg = 1;
proxy->conf.args.ctx = ARGC_TRK;
expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
if (!expr) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
free(err);
goto out_err;
}
where = 0;
if (proxy->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRQ_HDR;
if (proxy->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRQ_HDR;
if (!(expr->fetch->val & where)) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :"
" fetch method '%s' extracts information from '%s', none of which is available here.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0],
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
goto out_err;
}
if (strcmp(args[cur_arg], "table") == 0) {
cur_arg++;
if (!args[cur_arg]) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing table name.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
free(expr);
goto out_err;
}
/* we copy the table name for now, it will be resolved later */
rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
cur_arg++;
}
rule->arg.trk_ctr.expr = expr;
rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
} else if (strcmp(args[0], "redirect") == 0) {
struct redirect_rule *redir;
char *errmsg = NULL;
if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 0)) == NULL) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
goto out_err;
}
/* this redirect rule might already contain a parsed condition which
* we'll pass to the http-request rule.
*/
rule->action = ACT_HTTP_REDIR;
rule->arg.redir = redir;
rule->cond = redir->cond;
redir->cond = NULL;
cur_arg = 2;
return rule;
} else if (strncmp(args[0], "add-acl", 7) == 0) {
/* http-request add-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_ADD_ACL;
/*
* '+ 8' for 'add-acl('
* '- 9' for 'add-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-acl", 7) == 0) {
/* http-request del-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_ACL;
/*
* '+ 8' for 'del-acl('
* '- 9' for 'del-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-map", 7) == 0) {
/* http-request del-map(<reference (map name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_MAP;
/*
* '+ 8' for 'del-map('
* '- 9' for 'del-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "set-map", 7) == 0) {
/* http-request set-map(<reference (map name)>) <key pattern> <value pattern> */
rule->action = ACT_HTTP_SET_MAP;
/*
* '+ 8' for 'set-map('
* '- 9' for 'set-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
LIST_INIT(&rule->arg.map.value);
proxy->conf.args.ctx = ARGC_HRQ;
/* key pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s' key: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
/* value pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-request %s' pattern: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (((custom = action_http_req_custom(args[0])) != NULL)) {
char *errmsg = NULL;
cur_arg = 1;
/* try in the module list */
rule->from = ACT_F_HTTP_REQ;
rule->kw = custom;
if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
free(errmsg);
goto out_err;
}
} else {
action_build_list(&http_req_keywords.list, &trash);
Alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', "
"'tarpit', 'add-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
"'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
"%s%s, but got '%s'%s.\n",
file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
goto out_err;
}
if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
struct acl_cond *cond;
char *errmsg = NULL;
if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) {
Alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n",
file, linenum, args[0], errmsg);
free(errmsg);
goto out_err;
}
rule->cond = cond;
}
else if (*args[cur_arg]) {
Alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth' or"
" either 'if' or 'unless' followed by a condition but found '%s'.\n",
file, linenum, args[0], args[cur_arg]);
goto out_err;
}
return rule;
out_err:
free(rule);
return NULL;
}
/* parse an "http-respose" rule */
struct act_rule *parse_http_res_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
{
struct act_rule *rule;
struct action_kw *custom = NULL;
int cur_arg;
char *error;
rule = calloc(1, sizeof(*rule));
if (!rule) {
Alert("parsing [%s:%d]: out of memory.\n", file, linenum);
goto out_err;
}
if (!strcmp(args[0], "allow")) {
rule->action = ACT_ACTION_ALLOW;
cur_arg = 1;
} else if (!strcmp(args[0], "deny")) {
rule->action = ACT_ACTION_DENY;
cur_arg = 1;
} else if (!strcmp(args[0], "set-nice")) {
rule->action = ACT_HTTP_SET_NICE;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.nice = atoi(args[cur_arg]);
if (rule->arg.nice < -1024)
rule->arg.nice = -1024;
else if (rule->arg.nice > 1024)
rule->arg.nice = 1024;
cur_arg++;
} else if (!strcmp(args[0], "set-tos")) {
#ifdef IP_TOS
char *err;
rule->action = ACT_HTTP_SET_TOS;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.tos = strtol(args[cur_arg], &err, 0);
if (err && *err != '\0') {
Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
#else
Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-mark")) {
#ifdef SO_MARK
char *err;
rule->action = ACT_HTTP_SET_MARK;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.mark = strtoul(args[cur_arg], &err, 0);
if (err && *err != '\0') {
Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
global.last_checks |= LSTCHK_NETADM;
#else
Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-log-level")) {
rule->action = ACT_HTTP_SET_LOGL;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
bad_log_level:
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (log level name or 'silent').\n",
file, linenum, args[0]);
goto out_err;
}
if (strcmp(args[cur_arg], "silent") == 0)
rule->arg.loglevel = -1;
else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
goto bad_log_level;
cur_arg++;
} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
(*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 3 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
error = NULL;
if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
args[cur_arg + 1], error);
free(error);
goto out_err;
}
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 3;
} else if (strcmp(args[0], "del-header") == 0) {
rule->action = ACT_HTTP_DEL_HDR;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
proxy->conf.args.ctx = ARGC_HRS;
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "add-acl", 7) == 0) {
/* http-request add-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_ADD_ACL;
/*
* '+ 8' for 'add-acl('
* '- 9' for 'add-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-acl", 7) == 0) {
/* http-response del-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_ACL;
/*
* '+ 8' for 'del-acl('
* '- 9' for 'del-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-map", 7) == 0) {
/* http-response del-map(<reference (map name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_MAP;
/*
* '+ 8' for 'del-map('
* '- 9' for 'del-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s' %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "set-map", 7) == 0) {
/* http-response set-map(<reference (map name)>) <key pattern> <value pattern> */
rule->action = ACT_HTTP_SET_MAP;
/*
* '+ 8' for 'set-map('
* '- 9' for 'set-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
LIST_INIT(&rule->arg.map.value);
proxy->conf.args.ctx = ARGC_HRS;
/* key pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s' name: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
/* value pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
Alert("parsing [%s:%d]: 'http-response %s' value: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "redirect") == 0) {
struct redirect_rule *redir;
char *errmsg = NULL;
if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 1)) == NULL) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
goto out_err;
}
/* this redirect rule might already contain a parsed condition which
* we'll pass to the http-request rule.
*/
rule->action = ACT_HTTP_REDIR;
rule->arg.redir = redir;
rule->cond = redir->cond;
redir->cond = NULL;
cur_arg = 2;
return rule;
} else if (strncmp(args[0], "track-sc", 8) == 0 &&
args[0][9] == '\0' && args[0][8] >= '0' &&
args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
struct sample_expr *expr;
unsigned int where;
char *err = NULL;
cur_arg = 1;
proxy->conf.args.ctx = ARGC_TRK;
expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
if (!expr) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
free(err);
goto out_err;
}
where = 0;
if (proxy->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRS_HDR;
if (proxy->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRS_HDR;
if (!(expr->fetch->val & where)) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule :"
" fetch method '%s' extracts information from '%s', none of which is available here.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0],
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
goto out_err;
}
if (strcmp(args[cur_arg], "table") == 0) {
cur_arg++;
if (!args[cur_arg]) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : missing table name.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
free(expr);
goto out_err;
}
/* we copy the table name for now, it will be resolved later */
rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
cur_arg++;
}
rule->arg.trk_ctr.expr = expr;
rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
} else if (((custom = action_http_res_custom(args[0])) != NULL)) {
char *errmsg = NULL;
cur_arg = 1;
/* try in the module list */
rule->from = ACT_F_HTTP_RES;
rule->kw = custom;
if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
free(errmsg);
goto out_err;
}
} else {
action_build_list(&http_res_keywords.list, &trash);
Alert("parsing [%s:%d]: 'http-response' expects 'allow', 'deny', 'redirect', "
"'add-header', 'del-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
"'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
"%s%s, but got '%s'%s.\n",
file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
goto out_err;
}
if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
struct acl_cond *cond;
char *errmsg = NULL;
if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) {
Alert("parsing [%s:%d] : error detected while parsing an 'http-response %s' condition : %s.\n",
file, linenum, args[0], errmsg);
free(errmsg);
goto out_err;
}
rule->cond = cond;
}
else if (*args[cur_arg]) {
Alert("parsing [%s:%d]: 'http-response %s' expects"
" either 'if' or 'unless' followed by a condition but found '%s'.\n",
file, linenum, args[0], args[cur_arg]);
goto out_err;
}
return rule;
out_err:
free(rule);
return NULL;
}
/* Parses a redirect rule. Returns the redirect rule on success or NULL on error,
* with <err> filled with the error message. If <use_fmt> is not null, builds a
* dynamic log-format rule instead of a static string. Parameter <dir> indicates
* the direction of the rule, and equals 0 for request, non-zero for responses.
*/
struct redirect_rule *http_parse_redirect_rule(const char *file, int linenum, struct proxy *curproxy,
const char **args, char **errmsg, int use_fmt, int dir)
{
struct redirect_rule *rule;
int cur_arg;
int type = REDIRECT_TYPE_NONE;
int code = 302;
const char *destination = NULL;
const char *cookie = NULL;
int cookie_set = 0;
unsigned int flags = REDIRECT_FLAG_NONE;
struct acl_cond *cond = NULL;
cur_arg = 0;
while (*(args[cur_arg])) {
if (strcmp(args[cur_arg], "location") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
type = REDIRECT_TYPE_LOCATION;
cur_arg++;
destination = args[cur_arg];
}
else if (strcmp(args[cur_arg], "prefix") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
type = REDIRECT_TYPE_PREFIX;
cur_arg++;
destination = args[cur_arg];
}
else if (strcmp(args[cur_arg], "scheme") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
type = REDIRECT_TYPE_SCHEME;
cur_arg++;
destination = args[cur_arg];
}
else if (strcmp(args[cur_arg], "set-cookie") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
cur_arg++;
cookie = args[cur_arg];
cookie_set = 1;
}
else if (strcmp(args[cur_arg], "clear-cookie") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
cur_arg++;
cookie = args[cur_arg];
cookie_set = 0;
}
else if (strcmp(args[cur_arg], "code") == 0) {
if (!*args[cur_arg + 1])
goto missing_arg;
cur_arg++;
code = atol(args[cur_arg]);
if (code < 301 || code > 308 || (code > 303 && code < 307)) {
memprintf(errmsg,
"'%s': unsupported HTTP code '%s' (must be one of 301, 302, 303, 307 or 308)",
args[cur_arg - 1], args[cur_arg]);
return NULL;
}
}
else if (!strcmp(args[cur_arg],"drop-query")) {
flags |= REDIRECT_FLAG_DROP_QS;
}
else if (!strcmp(args[cur_arg],"append-slash")) {
flags |= REDIRECT_FLAG_APPEND_SLASH;
}
else if (strcmp(args[cur_arg], "if") == 0 ||
strcmp(args[cur_arg], "unless") == 0) {
cond = build_acl_cond(file, linenum, curproxy, (const char **)args + cur_arg, errmsg);
if (!cond) {
memprintf(errmsg, "error in condition: %s", *errmsg);
return NULL;
}
break;
}
else {
memprintf(errmsg,
"expects 'code', 'prefix', 'location', 'scheme', 'set-cookie', 'clear-cookie', 'drop-query' or 'append-slash' (was '%s')",
args[cur_arg]);
return NULL;
}
cur_arg++;
}
if (type == REDIRECT_TYPE_NONE) {
memprintf(errmsg, "redirection type expected ('prefix', 'location', or 'scheme')");
return NULL;
}
if (dir && type != REDIRECT_TYPE_LOCATION) {
memprintf(errmsg, "response only supports redirect type 'location'");
return NULL;
}
rule = calloc(1, sizeof(*rule));
rule->cond = cond;
LIST_INIT(&rule->rdr_fmt);
if (!use_fmt) {
/* old-style static redirect rule */
rule->rdr_str = strdup(destination);
rule->rdr_len = strlen(destination);
}
else {
/* log-format based redirect rule */
/* Parse destination. Note that in the REDIRECT_TYPE_PREFIX case,
* if prefix == "/", we don't want to add anything, otherwise it
* makes it hard for the user to configure a self-redirection.
*/
curproxy->conf.args.ctx = ARGC_RDR;
if (!(type == REDIRECT_TYPE_PREFIX && destination[0] == '/' && destination[1] == '\0')) {
if (!parse_logformat_string(destination, curproxy, &rule->rdr_fmt, LOG_OPT_HTTP,
dir ? (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRS_HDR : SMP_VAL_BE_HRS_HDR
: (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR,
errmsg)) {
return NULL;
}
free(curproxy->conf.lfs_file);
curproxy->conf.lfs_file = strdup(curproxy->conf.args.file);
curproxy->conf.lfs_line = curproxy->conf.args.line;
}
}
if (cookie) {
/* depending on cookie_set, either we want to set the cookie, or to clear it.
* a clear consists in appending "; path=/; Max-Age=0;" at the end.
*/
rule->cookie_len = strlen(cookie);
if (cookie_set) {
rule->cookie_str = malloc(rule->cookie_len + 10);
memcpy(rule->cookie_str, cookie, rule->cookie_len);
memcpy(rule->cookie_str + rule->cookie_len, "; path=/;", 10);
rule->cookie_len += 9;
} else {
rule->cookie_str = malloc(rule->cookie_len + 21);
memcpy(rule->cookie_str, cookie, rule->cookie_len);
memcpy(rule->cookie_str + rule->cookie_len, "; path=/; Max-Age=0;", 21);
rule->cookie_len += 20;
}
}
rule->type = type;
rule->code = code;
rule->flags = flags;
LIST_INIT(&rule->list);
return rule;
missing_arg:
memprintf(errmsg, "missing argument for '%s'", args[cur_arg]);
return NULL;
}
/************************************************************************/
/* The code below is dedicated to ACL parsing and matching */
/************************************************************************/
/* This function ensures that the prerequisites for an L7 fetch are ready,
* which means that a request or response is ready. If some data is missing,
* a parsing attempt is made. This is useful in TCP-based ACLs which are able
* to extract data from L7. If <req_vol> is non-null during a request prefetch,
* another test is made to ensure the required information is not gone.
*
* The function returns :
* 0 with SMP_F_MAY_CHANGE in the sample flags if some data is missing to
* decide whether or not an HTTP message is present ;
* 0 if the requested data cannot be fetched or if it is certain that
* we'll never have any HTTP message there ;
* 1 if an HTTP message is ready
*/
int smp_prefetch_http(struct proxy *px, struct stream *s, unsigned int opt,
const struct arg *args, struct sample *smp, int req_vol)
{
struct http_txn *txn;
struct http_msg *msg;
/* Note: it is possible that <s> is NULL when called before stream
* initialization (eg: tcp-request connection), so this function is the
* one responsible for guarding against this case for all HTTP users.
*/
if (!s)
return 0;
if (!s->txn) {
if (unlikely(!http_alloc_txn(s)))
return 0; /* not enough memory */
http_init_txn(s);
}
txn = s->txn;
msg = &txn->req;
/* Check for a dependency on a request */
smp->data.type = SMP_T_BOOL;
if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
/* If the buffer does not leave enough free space at the end,
* we must first realign it.
*/
if (s->req.buf->p > s->req.buf->data &&
s->req.buf->i + s->req.buf->p > s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)
buffer_slow_realign(s->req.buf);
if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) {
if (msg->msg_state == HTTP_MSG_ERROR)
return 0;
/* Try to decode HTTP request */
if (likely(msg->next < s->req.buf->i))
http_msg_analyzer(msg, &txn->hdr_idx);
/* Still no valid request ? */
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
if ((msg->msg_state == HTTP_MSG_ERROR) ||
buffer_full(s->req.buf, global.tune.maxrewrite)) {
return 0;
}
/* wait for final state */
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* OK we just got a valid HTTP request. We have some minor
* preparation to perform so that further checks can rely
* on HTTP tests.
*/
/* If the request was parsed but was too large, we must absolutely
* return an error so that it is not processed. At the moment this
* cannot happen, but if the parsers are to change in the future,
* we want this check to be maintained.
*/
if (unlikely(s->req.buf->i + s->req.buf->p >
s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)) {
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
smp->data.u.sint = 1;
return 1;
}
txn->meth = find_http_meth(msg->chn->buf->p, msg->sl.rq.m_l);
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SF_REDIRECTABLE;
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
return 0;
}
if (req_vol && txn->rsp.msg_state != HTTP_MSG_RPBEFORE) {
return 0; /* data might have moved and indexes changed */
}
/* otherwise everything's ready for the request */
}
else {
/* Check for a dependency on a response */
if (txn->rsp.msg_state < HTTP_MSG_BODY) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
}
/* everything's OK */
smp->data.u.sint = 1;
return 1;
}
/* 1. Check on METHOD
* We use the pre-parsed method if it is known, and store its number as an
* integer. If it is unknown, we use the pointer and the length.
*/
static int pat_parse_meth(const char *text, struct pattern *pattern, int mflags, char **err)
{
int len, meth;
len = strlen(text);
meth = find_http_meth(text, len);
pattern->val.i = meth;
if (meth == HTTP_METH_OTHER) {
pattern->ptr.str = (char *)text;
pattern->len = len;
}
else {
pattern->ptr.str = NULL;
pattern->len = 0;
}
return 1;
}
/* This function fetches the method of current HTTP request and stores
* it in the global pattern struct as a chunk. There are two possibilities :
* - if the method is known (not HTTP_METH_OTHER), its identifier is stored
* in <len> and <ptr> is NULL ;
* - if the method is unknown (HTTP_METH_OTHER), <ptr> points to the text and
* <len> to its length.
* This is intended to be used with pat_match_meth() only.
*/
static int
smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int meth;
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST_PERM();
txn = smp->strm->txn;
meth = txn->meth;
smp->data.type = SMP_T_METH;
smp->data.u.meth.meth = meth;
if (meth == HTTP_METH_OTHER) {
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
smp->flags |= SMP_F_CONST;
smp->data.u.meth.str.len = txn->req.sl.rq.m_l;
smp->data.u.meth.str.str = txn->req.chn->buf->p;
}
smp->flags |= SMP_F_VOL_1ST;
return 1;
}
/* See above how the method is stored in the global pattern */
static struct pattern *pat_match_meth(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
/* well-known method */
if (pattern->val.i != HTTP_METH_OTHER) {
if (smp->data.u.meth.meth == pattern->val.i)
return pattern;
else
continue;
}
/* Other method, we must compare the strings */
if (pattern->len != smp->data.u.meth.str.len)
continue;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0))
return pattern;
}
return NULL;
}
static int
smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
len = txn->req.sl.rq.v_l;
ptr = txn->req.chn->buf->p + txn->req.sl.rq.v;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
static int
smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.v_l;
ptr = txn->rsp.chn->buf->p;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
/* 3. Check on Status Code. We manipulate integers here. */
static int
smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.c_l;
ptr = txn->rsp.chn->buf->p + txn->rsp.sl.st.c;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = __strl2ui(ptr, len);
smp->flags = SMP_F_VOL_1ST;
return 1;
}
static int
smp_fetch_uniqueid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (LIST_ISEMPTY(&smp->sess->fe->format_unique_id))
return 0;
if (!smp->strm->unique_id) {
if ((smp->strm->unique_id = pool_alloc2(pool2_uniqueid)) == NULL)
return 0;
smp->strm->unique_id[0] = '\0';
}
smp->data.u.str.len = build_logline(smp->strm, smp->strm->unique_id,
UNIQUEID_LEN, &smp->sess->fe->format_unique_id);
smp->data.type = SMP_T_STR;
smp->data.u.str.str = smp->strm->unique_id;
smp->flags = SMP_F_CONST;
return 1;
}
/* Returns a string block containing all headers including the
* empty line wich separes headers from the body. This is useful
* form some headers analysis.
*/
static int
smp_fetch_hdrs(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
struct hdr_idx *idx;
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &txn->hdr_idx;
msg = &txn->req;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = msg->chn->buf->p + hdr_idx_first_pos(idx);
smp->data.u.str.len = msg->eoh - hdr_idx_first_pos(idx) + 1 +
(msg->chn->buf->p[msg->eoh] == '\r');
return 1;
}
/* Returns the header request in a length/value encoded format.
* This is useful for exchanges with the SPOE.
*
* A "length value" is a multibyte code encoding numbers. It uses the
* SPOE format. The encoding is the following:
*
* Each couple "header name" / "header value" is composed
* like this:
* "length value" "header name bytes"
* "length value" "header value bytes"
* When the last header is reached, the header name and the header
* value are empty. Their length are 0
*/
static int
smp_fetch_hdrs_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
struct chunk *temp;
struct hdr_idx *idx;
const char *cur_ptr, *cur_next, *p;
int old_idx, cur_idx;
struct hdr_idx_elem *cur_hdr;
const char *hn, *hv;
int hnl, hvl;
int ret;
struct http_txn *txn;
char *buf;
char *end;
CHECK_HTTP_MESSAGE_FIRST();
temp = get_trash_chunk();
buf = temp->str;
end = temp->str + temp->size;
txn = smp->strm->txn;
idx = &txn->hdr_idx;
msg = &txn->req;
/* Build array of headers. */
old_idx = 0;
cur_next = msg->chn->buf->p + hdr_idx_first_pos(idx);
while (1) {
cur_idx = idx->v[old_idx].next;
if (!cur_idx)
break;
old_idx = cur_idx;
cur_hdr = &idx->v[cur_idx];
cur_ptr = cur_next;
cur_next = cur_ptr + cur_hdr->len + cur_hdr->cr + 1;
/* Now we have one full header at cur_ptr of len cur_hdr->len,
* and the next header starts at cur_next. We'll check
* this header in the list as well as against the default
* rule.
*/
/* look for ': *'. */
hn = cur_ptr;
for (p = cur_ptr; p < cur_ptr + cur_hdr->len && *p != ':'; p++);
if (p >= cur_ptr+cur_hdr->len)
continue;
hnl = p - hn;
p++;
while (p < cur_ptr + cur_hdr->len && (*p == ' ' || *p == '\t'))
p++;
if (p >= cur_ptr + cur_hdr->len)
continue;
hv = p;
hvl = cur_ptr + cur_hdr->len-p;
/* encode the header name. */
ret = encode_varint(hnl, &buf, end);
if (ret == -1)
return 0;
if (buf + hnl > end)
return 0;
memcpy(buf, hn, hnl);
buf += hnl;
/* encode and copy the value. */
ret = encode_varint(hvl, &buf, end);
if (ret == -1)
return 0;
if (buf + hvl > end)
return 0;
memcpy(buf, hv, hvl);
buf += hvl;
}
/* encode the end of the header list with empty
* header name and header value.
*/
ret = encode_varint(0, &buf, end);
if (ret == -1)
return 0;
ret = encode_varint(0, &buf, end);
if (ret == -1)
return 0;
/* Initialise sample data which will be filled. */
smp->data.type = SMP_T_BIN;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = buf - temp->str;
smp->data.u.str.size = temp->size;
return 1;
}
/* returns the longest available part of the body. This requires that the body
* has been waited for using http-buffer-request.
*/
static int
smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
unsigned long len;
unsigned long block1;
char *body;
struct chunk *temp;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
len = http_body_bytes(msg);
body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
block1 = len;
if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
block1 = msg->chn->buf->data + msg->chn->buf->size - body;
if (block1 == len) {
/* buffer is not wrapped (or empty) */
smp->data.type = SMP_T_BIN;
smp->data.u.str.str = body;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
}
else {
/* buffer is wrapped, we need to defragment it */
temp = get_trash_chunk();
memcpy(temp->str, body, block1);
memcpy(temp->str + block1, msg->chn->buf->data, len - block1);
smp->data.type = SMP_T_BIN;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_TEST;
}
return 1;
}
/* returns the available length of the body. This requires that the body
* has been waited for using http-buffer-request.
*/
static int
smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = http_body_bytes(msg);
smp->flags = SMP_F_VOL_TEST;
return 1;
}
/* returns the advertised length of the body, or the advertised size of the
* chunks available in the buffer. This requires that the body has been waited
* for using http-buffer-request.
*/
static int
smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = msg->body_len;
smp->flags = SMP_F_VOL_TEST;
return 1;
}
/* 4. Check on URL/URI. A pointer to the URI is stored. */
static int
smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
smp->data.type = SMP_T_STR;
smp->data.u.str.len = txn->req.sl.rq.u_l;
smp->data.u.str.str = txn->req.chn->buf->p + txn->req.sl.rq.u;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
static int
smp_fetch_url_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct sockaddr_storage addr;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
return 0;
smp->data.type = SMP_T_IPV4;
smp->data.u.ipv4 = ((struct sockaddr_in *)&addr)->sin_addr;
smp->flags = 0;
return 1;
}
static int
smp_fetch_url_port(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct sockaddr_storage addr;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ntohs(((struct sockaddr_in *)&addr)->sin_port);
smp->flags = 0;
return 1;
}
/* Fetch an HTTP header. A pointer to the beginning of the value is returned.
* Accepts an optional argument of type string containing the header field name,
* and an optional argument of type signed or unsigned integer to request an
* explicit occurrence of the header. Note that in the event of a missing name,
* headers are considered from the first one. It does not stop on commas and
* returns full lines instead (useful for User-Agent or Date for example).
*/
static int
smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx *ctx = smp->ctx.a[0];
const struct http_msg *msg;
int occ = 0;
const char *name_str = NULL;
int name_len = 0;
if (!ctx) {
/* first call */
ctx = &static_hdr_ctx;
ctx->idx = 0;
smp->ctx.a[0] = ctx;
}
if (args) {
if (args[0].type != ARGT_STR)
return 0;
name_str = args[0].data.str.str;
name_len = args[0].data.str.len;
if (args[1].type == ARGT_SINT)
occ = args[1].data.sint;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
if (ctx && !(smp->flags & SMP_F_NOT_LAST))
/* search for header from the beginning */
ctx->idx = 0;
if (!occ && !(smp->opt & SMP_OPT_ITERATE))
/* no explicit occurrence and single fetch => last header by default */
occ = -1;
if (!occ)
/* prepare to report multiple occurrences for ACL fetches */
smp->flags |= SMP_F_NOT_LAST;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
if (http_get_fhdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
return 1;
smp->flags &= ~SMP_F_NOT_LAST;
return 0;
}
/* 6. Check on HTTP header count. The number of occurrences is returned.
* Accepts exactly 1 argument of type string. It does not stop on commas and
* returns full lines instead (useful for User-Agent or Date for example).
*/
static int
smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
int cnt;
const char *name = NULL;
int len = 0;
if (args && args->type == ARGT_STR) {
name = args->data.str.str;
len = args->data.str.len;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
ctx.idx = 0;
cnt = 0;
while (http_find_full_header2(name, len, msg->chn->buf->p, idx, &ctx))
cnt++;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
static int
smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
struct chunk *temp;
char del = ',';
if (args && args->type == ARGT_STR)
del = *args[0].data.str.str;
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
temp = get_trash_chunk();
ctx.idx = 0;
while (http_find_next_header(msg->chn->buf->p, idx, &ctx)) {
if (temp->len)
temp->str[temp->len++] = del;
memcpy(temp->str + temp->len, ctx.line, ctx.del);
temp->len += ctx.del;
}
smp->data.type = SMP_T_STR;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = temp->len;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
/* Fetch an HTTP header. A pointer to the beginning of the value is returned.
* Accepts an optional argument of type string containing the header field name,
* and an optional argument of type signed or unsigned integer to request an
* explicit occurrence of the header. Note that in the event of a missing name,
* headers are considered from the first one.
*/
static int
smp_fetch_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx *ctx = smp->ctx.a[0];
const struct http_msg *msg;
int occ = 0;
const char *name_str = NULL;
int name_len = 0;
if (!ctx) {
/* first call */
ctx = &static_hdr_ctx;
ctx->idx = 0;
smp->ctx.a[0] = ctx;
}
if (args) {
if (args[0].type != ARGT_STR)
return 0;
name_str = args[0].data.str.str;
name_len = args[0].data.str.len;
if (args[1].type == ARGT_SINT)
occ = args[1].data.sint;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
if (ctx && !(smp->flags & SMP_F_NOT_LAST))
/* search for header from the beginning */
ctx->idx = 0;
if (!occ && !(smp->opt & SMP_OPT_ITERATE))
/* no explicit occurrence and single fetch => last header by default */
occ = -1;
if (!occ)
/* prepare to report multiple occurrences for ACL fetches */
smp->flags |= SMP_F_NOT_LAST;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
if (http_get_hdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
return 1;
smp->flags &= ~SMP_F_NOT_LAST;
return 0;
}
/* 6. Check on HTTP header count. The number of occurrences is returned.
* Accepts exactly 1 argument of type string.
*/
static int
smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
int cnt;
const char *name = NULL;
int len = 0;
if (args && args->type == ARGT_STR) {
name = args->data.str.str;
len = args->data.str.len;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
ctx.idx = 0;
cnt = 0;
while (http_find_header2(name, len, msg->chn->buf->p, idx, &ctx))
cnt++;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
/* Fetch an HTTP header's integer value. The integer value is returned. It
* takes a mandatory argument of type string and an optional one of type int
* to designate a specific occurrence. It returns an unsigned integer, which
* may or may not be appropriate for everything.
*/
static int
smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_hdr(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
/* Fetch an HTTP header's IP value. takes a mandatory argument of type string
* and an optional one of type int to designate a specific occurrence.
* It returns an IPv4 or IPv6 address.
*/
static int
smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret;
while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) {
if (url2ipv4((char *)smp->data.u.str.str, &smp->data.u.ipv4)) {
smp->data.type = SMP_T_IPV4;
break;
} else {
struct chunk *temp = get_trash_chunk();
if (smp->data.u.str.len < temp->size - 1) {
memcpy(temp->str, smp->data.u.str.str, smp->data.u.str.len);
temp->str[smp->data.u.str.len] = '\0';
if (inet_pton(AF_INET6, temp->str, &smp->data.u.ipv6)) {
smp->data.type = SMP_T_IPV6;
break;
}
}
}
/* if the header doesn't match an IP address, fetch next one */
if (!(smp->flags & SMP_F_NOT_LAST))
return 0;
}
return ret;
}
/* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at
* the first '/' after the possible hostname, and ends before the possible '?'.
*/
static int
smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
ptr = http_get_path(txn);
if (!ptr)
return 0;
/* OK, we got the '/' ! */
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
while (ptr < end && *ptr != '?')
ptr++;
smp->data.u.str.len = ptr - smp->data.u.str.str;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
/* This produces a concatenation of the first occurrence of the Host header
* followed by the path component if it begins with a slash ('/'). This means
* that '*' will not be added, resulting in exactly the first Host entry.
* If no Host header is found, then the path is returned as-is. The returned
* value is stored in the trash so it does not need to be marked constant.
* The returned sample is of type string.
*/
static int
smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end, *beg;
struct hdr_ctx ctx;
struct chunk *temp;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ctx.idx = 0;
if (!http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx) || !ctx.vlen)
return smp_fetch_path(args, smp, kw, private);
/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
temp = get_trash_chunk();
memcpy(temp->str, ctx.line + ctx.val, ctx.vlen);
smp->data.type = SMP_T_STR;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = ctx.vlen;
/* now retrieve the path */
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
beg = http_get_path(txn);
if (!beg)
beg = end;
for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
if (beg < ptr && *beg == '/') {
memcpy(smp->data.u.str.str + smp->data.u.str.len, beg, ptr - beg);
smp->data.u.str.len += ptr - beg;
}
smp->flags = SMP_F_VOL_1ST;
return 1;
}
/* This produces a 32-bit hash of the concatenation of the first occurrence of
* the Host header followed by the path component if it begins with a slash ('/').
* This means that '*' will not be added, resulting in exactly the first Host
* entry. If no Host header is found, then the path is used. The resulting value
* is hashed using the path hash followed by a full avalanche hash and provides a
* 32-bit integer value. This fetch is useful for tracking per-path activity on
* high-traffic sites without having to store whole paths.
*/
int
smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_ctx ctx;
unsigned int hash = 0;
char *ptr, *beg, *end;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ctx.idx = 0;
if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
ptr = ctx.line + ctx.val;
len = ctx.vlen;
while (len--)
hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
}
/* now retrieve the path */
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
beg = http_get_path(txn);
if (!beg)
beg = end;
for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
if (beg < ptr && *beg == '/') {
while (beg < ptr)
hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
}
hash = full_hash(hash);
smp->data.type = SMP_T_SINT;
smp->data.u.sint = hash;
smp->flags = SMP_F_VOL_1ST;
return 1;
}
/* This concatenates the source address with the 32-bit hash of the Host and
* path as returned by smp_fetch_base32(). The idea is to have per-source and
* per-path counters. The result is a binary block from 8 to 20 bytes depending
* on the source address length. The path hash is stored before the address so
* that in environments where IPv6 is insignificant, truncating the output to
* 8 bytes would still work.
*/
static int
smp_fetch_base32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
if (!smp_fetch_base32(args, smp, kw, private))
return 0;
temp = get_trash_chunk();
*(unsigned int *)temp->str = htonl(smp->data.u.sint);
temp->len += sizeof(unsigned int);
switch (cli_conn->addr.from.ss_family) {
case AF_INET:
memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
temp->len += 4;
break;
case AF_INET6:
memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
temp->len += 16;
break;
default:
return 0;
}
smp->data.u.str = *temp;
smp->data.type = SMP_T_BIN;
return 1;
}
/* Extracts the query string, which comes after the question mark '?'. If no
* question mark is found, nothing is returned. Otherwise it returns a sample
* of type string carrying the whole query string.
*/
static int
smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
end = ptr + txn->req.sl.rq.u_l;
/* look up the '?' */
do {
if (ptr == end)
return 0;
} while (*ptr++ != '?');
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = end - ptr;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
static int
smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
/* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged
* as a layer7 ACL, which involves automatic allocation of hdr_idx.
*/
CHECK_HTTP_MESSAGE_FIRST_PERM();
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
}
/* return a valid test if the current request is the first one on the connection */
static int
smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST);
return 1;
}
/* Accepts exactly 1 argument of type userlist */
static int
smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!args || args->type != ARGT_USR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
if (!get_http_auth(smp->strm))
return 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user,
smp->strm->txn->auth.pass);
return 1;
}
/* Accepts exactly 1 argument of type userlist */
static int
smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!args || args->type != ARGT_USR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
if (!get_http_auth(smp->strm))
return 0;
/* if the user does not belong to the userlist or has a wrong password,
* report that it unconditionally does not match. Otherwise we return
* a string containing the username.
*/
if (!check_user(args->data.usr, smp->strm->txn->auth.user,
smp->strm->txn->auth.pass))
return 0;
/* pat_match_auth() will need the user list */
smp->ctx.a[0] = args->data.usr;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.str = smp->strm->txn->auth.user;
smp->data.u.str.len = strlen(smp->strm->txn->auth.user);
return 1;
}
/* Try to find the next occurrence of a cookie name in a cookie header value.
* The lookup begins at <hdr>. The pointer and size of the next occurrence of
* the cookie value is returned into *value and *value_l, and the function
* returns a pointer to the next pointer to search from if the value was found.
* Otherwise if the cookie was not found, NULL is returned and neither value
* nor value_l are touched. The input <hdr> string should first point to the
* header's value, and the <hdr_end> pointer must point to the first character
* not part of the value. <list> must be non-zero if value may represent a list
* of values (cookie headers). This makes it faster to abort parsing when no
* list is expected.
*/
char *
extract_cookie_value(char *hdr, const char *hdr_end,
char *cookie_name, size_t cookie_name_l, int list,
char **value, int *value_l)
{
char *equal, *att_end, *att_beg, *val_beg, *val_end;
char *next;
/* we search at least a cookie name followed by an equal, and more
* generally something like this :
* Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
*/
for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) {
/* Iterate through all cookies on this line */
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (list && *equal == ','))
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
} else {
val_beg = val_end = next = equal;
}
/* We have nothing to do with attributes beginning with '$'. However,
* they will automatically be removed if a header before them is removed,
* since they're supposed to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next)
continue;
/* Now we have the cookie name between att_beg and att_end, and
* its value between val_beg and val_end.
*/
if (att_end - att_beg == cookie_name_l &&
memcmp(att_beg, cookie_name, cookie_name_l) == 0) {
/* let's return this value and indicate where to go on from */
*value = val_beg;
*value_l = val_end - val_beg;
return next + 1;
}
/* Set-Cookie headers only have the name in the first attr=value part */
if (!list)
break;
}
return NULL;
}
/* Fetch a captured HTTP request header. The index is the position of
* the "capture" option in the configuration file
*/
static int
smp_fetch_capture_header_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.str = smp->strm->req_cap[idx];
smp->data.u.str.len = strlen(smp->strm->req_cap[idx]);
return 1;
}
/* Fetch a captured HTTP response header. The index is the position of
* the "capture" option in the configuration file
*/
static int
smp_fetch_capture_header_res(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.str = smp->strm->res_cap[idx];
smp->data.u.str.len = strlen(smp->strm->res_cap[idx]);
return 1;
}
/* Extracts the METHOD in the HTTP request, the txn->uri should be filled before the call */
static int
smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct http_txn *txn = smp->strm->txn;
char *ptr;
if (!txn || !txn->uri)
return 0;
ptr = txn->uri;
while (*ptr != ' ' && *ptr != '\0') /* find first space */
ptr++;
temp = get_trash_chunk();
temp->str = txn->uri;
temp->len = ptr - txn->uri;
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
/* Extracts the path in the HTTP request, the txn->uri should be filled before the call */
static int
smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct http_txn *txn = smp->strm->txn;
char *ptr;
if (!txn || !txn->uri)
return 0;
ptr = txn->uri;
while (*ptr != ' ' && *ptr != '\0') /* find first space */
ptr++;
if (!*ptr)
return 0;
ptr++; /* skip the space */
temp = get_trash_chunk();
ptr = temp->str = http_get_path_from_string(ptr);
if (!ptr)
return 0;
while (*ptr != ' ' && *ptr != '\0') /* find space after URI */
ptr++;
smp->data.u.str = *temp;
smp->data.u.str.len = ptr - temp->str;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
/* Retrieves the HTTP version from the request (either 1.0 or 1.1) and emits it
* as a string (either "HTTP/1.0" or "HTTP/1.1").
*/
static int
smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn = smp->strm->txn;
if (!txn || txn->req.msg_state < HTTP_MSG_HDR_FIRST)
return 0;
if (txn->req.flags & HTTP_MSGF_VER_11)
smp->data.u.str.str = "HTTP/1.1";
else
smp->data.u.str.str = "HTTP/1.0";
smp->data.u.str.len = 8;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
/* Retrieves the HTTP version from the response (either 1.0 or 1.1) and emits it
* as a string (either "HTTP/1.0" or "HTTP/1.1").
*/
static int
smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn = smp->strm->txn;
if (!txn || txn->rsp.msg_state < HTTP_MSG_HDR_FIRST)
return 0;
if (txn->rsp.flags & HTTP_MSGF_VER_11)
smp->data.u.str.str = "HTTP/1.1";
else
smp->data.u.str.str = "HTTP/1.0";
smp->data.u.str.len = 8;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
/* Iterate over all cookies present in a message. The context is stored in
* smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the
* end-of-header-value, and smp->ctx.a[2] for the hdr_ctx. Depending on
* the direction, multiple cookies may be parsed on the same line or not.
* The cookie name is in args and the name length in args->data.str.len.
* Accepts exactly 1 argument of type string. If the input options indicate
* that no iterating is desired, then only last value is fetched if any.
* The returned sample is of type CSTR. Can be used to parse cookies in other
* files.
*/
int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_idx *idx;
struct hdr_ctx *ctx = smp->ctx.a[2];
const struct http_msg *msg;
const char *hdr_name;
int hdr_name_len;
char *sol;
int occ = 0;
int found = 0;
if (!args || args->type != ARGT_STR)
return 0;
if (!ctx) {
/* first call */
ctx = &static_hdr_ctx;
ctx->idx = 0;
smp->ctx.a[2] = ctx;
}
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &smp->strm->txn->hdr_idx;
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
msg = &txn->req;
hdr_name = "Cookie";
hdr_name_len = 6;
} else {
msg = &txn->rsp;
hdr_name = "Set-Cookie";
hdr_name_len = 10;
}
if (!occ && !(smp->opt & SMP_OPT_ITERATE))
/* no explicit occurrence and single fetch => last cookie by default */
occ = -1;
/* OK so basically here, either we want only one value and it's the
* last one, or we want to iterate over all of them and we fetch the
* next one.
*/
sol = msg->chn->buf->p;
if (!(smp->flags & SMP_F_NOT_LAST)) {
/* search for the header from the beginning, we must first initialize
* the search parameters.
*/
smp->ctx.a[0] = NULL;
ctx->idx = 0;
}
smp->flags |= SMP_F_VOL_HDR;
while (1) {
/* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */
if (!smp->ctx.a[0]) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx))
goto out;
if (ctx->vlen < args->data.str.len + 1)
continue;
smp->ctx.a[0] = ctx->line + ctx->val;
smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1],
args->data.str.str, args->data.str.len,
(smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
&smp->data.u.str.str,
&smp->data.u.str.len);
if (smp->ctx.a[0]) {
found = 1;
if (occ >= 0) {
/* one value was returned into smp->data.u.str.{str,len} */
smp->flags |= SMP_F_NOT_LAST;
return 1;
}
}
/* if we're looking for last occurrence, let's loop */
}
/* all cookie headers and values were scanned. If we're looking for the
* last occurrence, we may return it now.
*/
out:
smp->flags &= ~SMP_F_NOT_LAST;
return found;
}
/* Iterate over all cookies present in a request to count how many occurrences
* match the name in args and args->data.str.len. If <multi> is non-null, then
* multiple cookies may be parsed on the same line. The returned sample is of
* type UINT. Accepts exactly 1 argument of type string.
*/
static int
smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
const char *hdr_name;
int hdr_name_len;
int cnt;
char *val_beg, *val_end;
char *sol;
if (!args || args->type != ARGT_STR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &smp->strm->txn->hdr_idx;
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
msg = &txn->req;
hdr_name = "Cookie";
hdr_name_len = 6;
} else {
msg = &txn->rsp;
hdr_name = "Set-Cookie";
hdr_name_len = 10;
}
sol = msg->chn->buf->p;
val_end = val_beg = NULL;
ctx.idx = 0;
cnt = 0;
while (1) {
/* Note: val_beg == NULL every time we need to fetch a new header */
if (!val_beg) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx))
break;
if (ctx.vlen < args->data.str.len + 1)
continue;
val_beg = ctx.line + ctx.val;
val_end = val_beg + ctx.vlen;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
while ((val_beg = extract_cookie_value(val_beg, val_end,
args->data.str.str, args->data.str.len,
(smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
&smp->data.u.str.str,
&smp->data.u.str.len))) {
cnt++;
}
}
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags |= SMP_F_VOL_HDR;
return 1;
}
/* Fetch an cookie's integer value. The integer value is returned. It
* takes a mandatory argument of type string. It relies on smp_fetch_cookie().
*/
static int
smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_cookie(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
/************************************************************************/
/* The code below is dedicated to sample fetches */
/************************************************************************/
/*
* Given a path string and its length, find the position of beginning of the
* query string. Returns NULL if no query string is found in the path.
*
* Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22:
*
* find_query_string(path, n, '?') points to "yo=mama;ye=daddy" string.
*/
static inline char *find_param_list(char *path, size_t path_l, char delim)
{
char *p;
p = memchr(path, delim, path_l);
return p ? p + 1 : NULL;
}
static inline int is_param_delimiter(char c, char delim)
{
return c == '&' || c == ';' || c == delim;
}
/* after increasing a pointer value, it can exceed the first buffer
* size. This function transform the value of <ptr> according with
* the expected position. <chunks> is an array of the one or two
* avalaible chunks. The first value is the start of the first chunk,
* the second value if the end+1 of the first chunks. The third value
* is NULL or the start of the second chunk and the fourth value is
* the end+1 of the second chunk. The function returns 1 if does a
* wrap, else returns 0.
*/
static inline int fix_pointer_if_wrap(const char **chunks, const char **ptr)
{
if (*ptr < chunks[1])
return 0;
if (!chunks[2])
return 0;
*ptr = chunks[2] + ( *ptr - chunks[1] );
return 1;
}
/*
* Given a url parameter, find the starting position of the first occurence,
* or NULL if the parameter is not found.
*
* Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye",
* the function will return query_string+8.
*
* Warning: this function returns a pointer that can point to the first chunk
* or the second chunk. The caller must be check the position before using the
* result.
*/
static const char *
find_url_param_pos(const char **chunks,
const char* url_param_name, size_t url_param_name_l,
char delim)
{
const char *pos, *last, *equal;
const char **bufs = chunks;
int l1, l2;
pos = bufs[0];
last = bufs[1];
while (pos < last) {
/* Check the equal. */
equal = pos + url_param_name_l;
if (fix_pointer_if_wrap(chunks, &equal)) {
if (equal >= chunks[3])
return NULL;
} else {
if (equal >= chunks[1])
return NULL;
}
if (*equal == '=') {
if (pos + url_param_name_l > last) {
/* process wrap case, we detect a wrap. In this case, the
* comparison is performed in two parts.
*/
/* This is the end, we dont have any other chunk. */
if (bufs != chunks || !bufs[2])
return NULL;
/* Compute the length of each part of the comparison. */
l1 = last - pos;
l2 = url_param_name_l - l1;
/* The second buffer is too short to contain the compared string. */
if (bufs[2] + l2 > bufs[3])
return NULL;
if (memcmp(pos, url_param_name, l1) == 0 &&
memcmp(bufs[2], url_param_name+l1, l2) == 0)
return pos;
/* Perform wrapping and jump the string who fail the comparison. */
bufs += 2;
pos = bufs[0] + l2;
last = bufs[1];
} else {
/* process a simple comparison. */
if (memcmp(pos, url_param_name, url_param_name_l) == 0)
return pos;
pos += url_param_name_l + 1;
if (fix_pointer_if_wrap(chunks, &pos))
last = bufs[2];
}
}
while (1) {
/* Look for the next delimiter. */
while (pos < last && !is_param_delimiter(*pos, delim))
pos++;
if (pos < last)
break;
/* process buffer wrapping. */
if (bufs != chunks || !bufs[2])
return NULL;
bufs += 2;
pos = bufs[0];
last = bufs[1];
}
pos++;
}
return NULL;
}
/*
* Given a url parameter name and a query string, find the next value.
* An empty url_param_name matches the first available parameter.
* If the parameter is found, 1 is returned and *vstart / *vend are updated to
* respectively provide a pointer to the value and its end.
* Otherwise, 0 is returned and vstart/vend are not modified.
*/
static int
find_next_url_param(const char **chunks,
const char* url_param_name, size_t url_param_name_l,
const char **vstart, const char **vend, char delim)
{
const char *arg_start, *qs_end;
const char *value_start, *value_end;
arg_start = chunks[0];
qs_end = chunks[1];
if (url_param_name_l) {
/* Looks for an argument name. */
arg_start = find_url_param_pos(chunks,
url_param_name, url_param_name_l,
delim);
/* Check for wrapping. */
if (arg_start >= qs_end)
qs_end = chunks[3];
}
if (!arg_start)
return 0;
if (!url_param_name_l) {
while (1) {
/* looks for the first argument. */
value_start = memchr(arg_start, '=', qs_end - arg_start);
if (!value_start) {
/* Check for wrapping. */
if (arg_start >= chunks[0] &&
arg_start < chunks[1] &&
chunks[2]) {
arg_start = chunks[2];
qs_end = chunks[3];
continue;
}
return 0;
}
break;
}
value_start++;
}
else {
/* Jump the argument length. */
value_start = arg_start + url_param_name_l + 1;
/* Check for pointer wrapping. */
if (fix_pointer_if_wrap(chunks, &value_start)) {
/* Update the end pointer. */
qs_end = chunks[3];
/* Check for overflow. */
if (value_start >= qs_end)
return 0;
}
}
value_end = value_start;
while (1) {
while ((value_end < qs_end) && !is_param_delimiter(*value_end, delim))
value_end++;
if (value_end < qs_end)
break;
/* process buffer wrapping. */
if (value_end >= chunks[0] &&
value_end < chunks[1] &&
chunks[2]) {
value_end = chunks[2];
qs_end = chunks[3];
continue;
}
break;
}
*vstart = value_start;
*vend = value_end;
return 1;
}
/* This scans a URL-encoded query string. It takes an optionally wrapping
* string whose first contigous chunk has its beginning in ctx->a[0] and end
* in ctx->a[1], and the optional second part in (ctx->a[2]..ctx->a[3]). The
* pointers are updated for next iteration before leaving.
*/
static int
smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private)
{
const char *vstart, *vend;
struct chunk *temp;
const char **chunks = (const char **)smp->ctx.a;
if (!find_next_url_param(chunks,
name, name_len,
&vstart, &vend,
delim))
return 0;
/* Create sample. If the value is contiguous, return the pointer as CONST,
* if the value is wrapped, copy-it in a buffer.
*/
smp->data.type = SMP_T_STR;
if (chunks[2] &&
vstart >= chunks[0] && vstart <= chunks[1] &&
vend >= chunks[2] && vend <= chunks[3]) {
/* Wrapped case. */
temp = get_trash_chunk();
memcpy(temp->str, vstart, chunks[1] - vstart);
memcpy(temp->str + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]);
smp->data.u.str.str = temp->str;
smp->data.u.str.len = ( chunks[1] - vstart ) + ( vend - chunks[2] );
} else {
/* Contiguous case. */
smp->data.u.str.str = (char *)vstart;
smp->data.u.str.len = vend - vstart;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
}
/* Update context, check wrapping. */
chunks[0] = vend;
if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) {
chunks[1] = chunks[3];
chunks[2] = NULL;
}
if (chunks[0] < chunks[1])
smp->flags |= SMP_F_NOT_LAST;
return 1;
}
/* This function iterates over each parameter of the query string. It uses
* ctx->a[0] and ctx->a[1] to store the beginning and end of the current
* parameter. Since it uses smp_fetch_param(), ctx->a[2..3] are both NULL.
* An optional parameter name is passed in args[0], otherwise any parameter is
* considered. It supports an optional delimiter argument for the beginning of
* the string in args[1], which defaults to "?".
*/
static int
smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
char delim = '?';
const char *name;
int name_len;
if (!args ||
(args[0].type && args[0].type != ARGT_STR) ||
(args[1].type && args[1].type != ARGT_STR))
return 0;
name = "";
name_len = 0;
if (args->type == ARGT_STR) {
name = args->data.str.str;
name_len = args->data.str.len;
}
if (args[1].type)
delim = *args[1].data.str.str;
if (!smp->ctx.a[0]) { // first call, find the query string
CHECK_HTTP_MESSAGE_FIRST();
msg = &smp->strm->txn->req;
smp->ctx.a[0] = find_param_list(msg->chn->buf->p + msg->sl.rq.u,
msg->sl.rq.u_l, delim);
if (!smp->ctx.a[0])
return 0;
smp->ctx.a[1] = msg->chn->buf->p + msg->sl.rq.u + msg->sl.rq.u_l;
/* Assume that the context is filled with NULL pointer
* before the first call.
* smp->ctx.a[2] = NULL;
* smp->ctx.a[3] = NULL;
*/
}
return smp_fetch_param(delim, name, name_len, args, smp, kw, private);
}
/* This function iterates over each parameter of the body. This requires
* that the body has been waited for using http-buffer-request. It uses
* ctx->a[0] and ctx->a[1] to store the beginning and end of the first
* contigous part of the body, and optionally ctx->a[2..3] to reference the
* optional second part if the body wraps at the end of the buffer. An optional
* parameter name is passed in args[0], otherwise any parameter is considered.
*/
static int
smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
unsigned long len;
unsigned long block1;
char *body;
const char *name;
int name_len;
if (!args || (args[0].type && args[0].type != ARGT_STR))
return 0;
name = "";
name_len = 0;
if (args[0].type == ARGT_STR) {
name = args[0].data.str.str;
name_len = args[0].data.str.len;
}
if (!smp->ctx.a[0]) { // first call, find the query string
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
len = http_body_bytes(msg);
body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
block1 = len;
if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
block1 = msg->chn->buf->data + msg->chn->buf->size - body;
if (block1 == len) {
/* buffer is not wrapped (or empty) */
smp->ctx.a[0] = body;
smp->ctx.a[1] = body + len;
/* Assume that the context is filled with NULL pointer
* before the first call.
* smp->ctx.a[2] = NULL;
* smp->ctx.a[3] = NULL;
*/
}
else {
/* buffer is wrapped, we need to defragment it */
smp->ctx.a[0] = body;
smp->ctx.a[1] = body + block1;
smp->ctx.a[2] = msg->chn->buf->data;
smp->ctx.a[3] = msg->chn->buf->data + ( len - block1 );
}
}
return smp_fetch_param('&', name, name_len, args, smp, kw, private);
}
/* Return the signed integer value for the specified url parameter (see url_param
* above).
*/
static int
smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_url_param(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
/* This produces a 32-bit hash of the concatenation of the first occurrence of
* the Host header followed by the path component if it begins with a slash ('/').
* This means that '*' will not be added, resulting in exactly the first Host
* entry. If no Host header is found, then the path is used. The resulting value
* is hashed using the url hash followed by a full avalanche hash and provides a
* 32-bit integer value. This fetch is useful for tracking per-URL activity on
* high-traffic sites without having to store whole paths.
* this differs from the base32 functions in that it includes the url parameters
* as well as the path
*/
static int
smp_fetch_url32(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_ctx ctx;
unsigned int hash = 0;
char *ptr, *beg, *end;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ctx.idx = 0;
if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
ptr = ctx.line + ctx.val;
len = ctx.vlen;
while (len--)
hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
}
/* now retrieve the path */
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
beg = http_get_path(txn);
if (!beg)
beg = end;
for (ptr = beg; ptr < end ; ptr++);
if (beg < ptr && *beg == '/') {
while (beg < ptr)
hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
}
hash = full_hash(hash);
smp->data.type = SMP_T_SINT;
smp->data.u.sint = hash;
smp->flags = SMP_F_VOL_1ST;
return 1;
}
/* This concatenates the source address with the 32-bit hash of the Host and
* URL as returned by smp_fetch_base32(). The idea is to have per-source and
* per-url counters. The result is a binary block from 8 to 20 bytes depending
* on the source address length. The URL hash is stored before the address so
* that in environments where IPv6 is insignificant, truncating the output to
* 8 bytes would still work.
*/
static int
smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
if (!smp_fetch_url32(args, smp, kw, private))
return 0;
temp = get_trash_chunk();
*(unsigned int *)temp->str = htonl(smp->data.u.sint);
temp->len += sizeof(unsigned int);
switch (cli_conn->addr.from.ss_family) {
case AF_INET:
memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
temp->len += 4;
break;
case AF_INET6:
memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
temp->len += 16;
break;
default:
return 0;
}
smp->data.u.str = *temp;
smp->data.type = SMP_T_BIN;
return 1;
}
/* This function is used to validate the arguments passed to any "hdr" fetch
* keyword. These keywords support an optional positive or negative occurrence
* number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It
* is assumed that the types are already the correct ones. Returns 0 on error,
* non-zero if OK. If <err> is not NULL, it will be filled with a pointer to an
* error message in case of error, that the caller is responsible for freeing.
* The initial location must either be freeable or NULL.
*/
int val_hdr(struct arg *arg, char **err_msg)
{
if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) {
memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY);
return 0;
}
return 1;
}
/* takes an UINT value on input supposed to represent the time since EPOCH,
* adds an optional offset found in args[0] and emits a string representing
* the date in RFC-1123/5322 format.
*/
static int sample_conv_http_date(const struct arg *args, struct sample *smp, void *private)
{
const char day[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
const char mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
struct chunk *temp;
struct tm *tm;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
/* add offset */
if (args && (args[0].type == ARGT_SINT))
curr_date += args[0].data.sint;
tm = gmtime(&curr_date);
if (!tm)
return 0;
temp = get_trash_chunk();
temp->len = snprintf(temp->str, temp->size - temp->len,
"%s, %02d %s %04d %02d:%02d:%02d GMT",
day[tm->tm_wday], tm->tm_mday, mon[tm->tm_mon], 1900+tm->tm_year,
tm->tm_hour, tm->tm_min, tm->tm_sec);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* Match language range with language tag. RFC2616 14.4:
*
* A language-range matches a language-tag if it exactly equals
* the tag, or if it exactly equals a prefix of the tag such
* that the first tag character following the prefix is "-".
*
* Return 1 if the strings match, else return 0.
*/
static inline int language_range_match(const char *range, int range_len,
const char *tag, int tag_len)
{
const char *end = range + range_len;
const char *tend = tag + tag_len;
while (range < end) {
if (*range == '-' && tag == tend)
return 1;
if (*range != *tag || tag == tend)
return 0;
range++;
tag++;
}
/* Return true only if the last char of the tag is matched. */
return tag == tend;
}
/* Arguments: The list of expected value, the number of parts returned and the separator */
static int sample_conv_q_prefered(const struct arg *args, struct sample *smp, void *private)
{
const char *al = smp->data.u.str.str;
const char *end = al + smp->data.u.str.len;
const char *token;
int toklen;
int qvalue;
const char *str;
const char *w;
int best_q = 0;
/* Set the constant to the sample, because the output of the
* function will be peek in the constant configuration string.
*/
smp->flags |= SMP_F_CONST;
smp->data.u.str.size = 0;
smp->data.u.str.str = "";
smp->data.u.str.len = 0;
/* Parse the accept language */
while (1) {
/* Jump spaces, quit if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
break;
/* Start of the fisrt word. */
token = al;
/* Look for separator: isspace(), ',' or ';'. Next value if 0 length word. */
while (al < end && *al != ';' && *al != ',' && !isspace((unsigned char)*al))
al++;
if (al == token)
goto expect_comma;
/* Length of the token. */
toklen = al - token;
qvalue = 1000;
/* Check if the token exists in the list. If the token not exists,
* jump to the next token.
*/
str = args[0].data.str.str;
w = str;
while (1) {
if (*str == ';' || *str == '\0') {
if (language_range_match(token, toklen, w, str-w))
goto look_for_q;
if (*str == '\0')
goto expect_comma;
w = str + 1;
}
str++;
}
goto expect_comma;
look_for_q:
/* Jump spaces, quit if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* If ',' is found, process the result */
if (*al == ',')
goto process_value;
/* If the character is different from ';', look
* for the end of the header part in best effort.
*/
if (*al != ';')
goto expect_comma;
/* Assumes that the char is ';', now expect "q=". */
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Expect 'q'. If no 'q', continue in best effort */
if (*al != 'q')
goto process_value;
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Expect '='. If no '=', continue in best effort */
if (*al != '=')
goto process_value;
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Parse the q value. */
qvalue = parse_qvalue(al, &al);
process_value:
/* If the new q value is the best q value, then store the associated
* language in the response. If qvalue is the biggest value (1000),
* break the process.
*/
if (qvalue > best_q) {
smp->data.u.str.str = (char *)w;
smp->data.u.str.len = str - w;
if (qvalue >= 1000)
break;
best_q = qvalue;
}
expect_comma:
/* Expect comma or end. If the end is detected, quit the loop. */
while (al < end && *al != ',')
al++;
if (al >= end)
break;
/* Comma is found, jump it and restart the analyzer. */
al++;
}
/* Set default value if required. */
if (smp->data.u.str.len == 0 && args[1].type == ARGT_STR) {
smp->data.u.str.str = args[1].data.str.str;
smp->data.u.str.len = args[1].data.str.len;
}
/* Return true only if a matching language was found. */
return smp->data.u.str.len != 0;
}
/* This fetch url-decode any input string. */
static int sample_conv_url_dec(const struct arg *args, struct sample *smp, void *private)
{
/* If the constant flag is set or if not size is avalaible at
* the end of the buffer, copy the string in other buffer
* before decoding.
*/
if (smp->flags & SMP_F_CONST || smp->data.u.str.size <= smp->data.u.str.len) {
struct chunk *str = get_trash_chunk();
memcpy(str->str, smp->data.u.str.str, smp->data.u.str.len);
smp->data.u.str.str = str->str;
smp->data.u.str.size = str->size;
smp->flags &= ~SMP_F_CONST;
}
/* Add final \0 required by url_decode(), and convert the input string. */
smp->data.u.str.str[smp->data.u.str.len] = '\0';
smp->data.u.str.len = url_decode(smp->data.u.str.str);
return 1;
}
static int smp_conv_req_capture(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx, i;
struct cap_hdr *hdr;
int len;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
/* Check the availibity of the capture id. */
if (idx > fe->nb_req_cap - 1)
return 0;
/* Look for the original configuration. */
for (hdr = fe->req_cap, i = fe->nb_req_cap - 1;
hdr != NULL && i != idx ;
i--, hdr = hdr->next);
if (!hdr)
return 0;
/* check for the memory allocation */
if (smp->strm->req_cap[hdr->index] == NULL)
smp->strm->req_cap[hdr->index] = pool_alloc2(hdr->pool);
if (smp->strm->req_cap[hdr->index] == NULL)
return 0;
/* Check length. */
len = smp->data.u.str.len;
if (len > hdr->len)
len = hdr->len;
/* Capture input data. */
memcpy(smp->strm->req_cap[idx], smp->data.u.str.str, len);
smp->strm->req_cap[idx][len] = '\0';
return 1;
}
static int smp_conv_res_capture(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx, i;
struct cap_hdr *hdr;
int len;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
/* Check the availibity of the capture id. */
if (idx > fe->nb_rsp_cap - 1)
return 0;
/* Look for the original configuration. */
for (hdr = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
hdr != NULL && i != idx ;
i--, hdr = hdr->next);
if (!hdr)
return 0;
/* check for the memory allocation */
if (smp->strm->res_cap[hdr->index] == NULL)
smp->strm->res_cap[hdr->index] = pool_alloc2(hdr->pool);
if (smp->strm->res_cap[hdr->index] == NULL)
return 0;
/* Check length. */
len = smp->data.u.str.len;
if (len > hdr->len)
len = hdr->len;
/* Capture input data. */
memcpy(smp->strm->res_cap[idx], smp->data.u.str.str, len);
smp->strm->res_cap[idx][len] = '\0';
return 1;
}
/* This function executes one of the set-{method,path,query,uri} actions. It
* takes the string from the variable 'replace' with length 'len', then modifies
* the relevant part of the request line accordingly. Then it updates various
* pointers to the next elements which were moved, and the total buffer length.
* It finds the action to be performed in p[2], previously filled by function
* parse_set_req_line(). It returns 0 in case of success, -1 in case of internal
* error, though this can be revisited when this code is finally exploited.
*
* 'action' can be '0' to replace method, '1' to replace path, '2' to replace
* query string and 3 to replace uri.
*
* In query string case, the mark question '?' must be set at the start of the
* string by the caller, event if the replacement query string is empty.
*/
int http_replace_req_line(int action, const char *replace, int len,
struct proxy *px, struct stream *s)
{
struct http_txn *txn = s->txn;
char *cur_ptr, *cur_end;
int offset = 0;
int delta;
switch (action) {
case 0: // method
cur_ptr = s->req.buf->p;
cur_end = cur_ptr + txn->req.sl.rq.m_l;
/* adjust req line offsets and lengths */
delta = len - offset - (cur_end - cur_ptr);
txn->req.sl.rq.m_l += delta;
txn->req.sl.rq.u += delta;
txn->req.sl.rq.v += delta;
break;
case 1: // path
cur_ptr = http_get_path(txn);
if (!cur_ptr)
cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
cur_end = cur_ptr;
while (cur_end < s->req.buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?')
cur_end++;
/* adjust req line offsets and lengths */
delta = len - offset - (cur_end - cur_ptr);
txn->req.sl.rq.u_l += delta;
txn->req.sl.rq.v += delta;
break;
case 2: // query
offset = 1;
cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
cur_end = cur_ptr + txn->req.sl.rq.u_l;
while (cur_ptr < cur_end && *cur_ptr != '?')
cur_ptr++;
/* skip the question mark or indicate that we must insert it
* (but only if the format string is not empty then).
*/
if (cur_ptr < cur_end)
cur_ptr++;
else if (len > 1)
offset = 0;
/* adjust req line offsets and lengths */
delta = len - offset - (cur_end - cur_ptr);
txn->req.sl.rq.u_l += delta;
txn->req.sl.rq.v += delta;
break;
case 3: // uri
cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
cur_end = cur_ptr + txn->req.sl.rq.u_l;
/* adjust req line offsets and lengths */
delta = len - offset - (cur_end - cur_ptr);
txn->req.sl.rq.u_l += delta;
txn->req.sl.rq.v += delta;
break;
default:
return -1;
}
/* commit changes and adjust end of message */
delta = buffer_replace2(s->req.buf, cur_ptr, cur_end, replace + offset, len - offset);
txn->req.sl.rq.l += delta;
txn->hdr_idx.v[0].len += delta;
http_msg_move_end(&txn->req, delta);
return 0;
}
/* This function replace the HTTP status code and the associated message. The
* variable <status> contains the new status code. This function never fails.
*/
void http_set_status(unsigned int status, const char *reason, struct stream *s)
{
struct http_txn *txn = s->txn;
char *cur_ptr, *cur_end;
int delta;
char *res;
int c_l;
const char *msg = reason;
int msg_len;
chunk_reset(&trash);
res = ultoa_o(status, trash.str, trash.size);
c_l = res - trash.str;
trash.str[c_l] = ' ';
trash.len = c_l + 1;
/* Do we have a custom reason format string? */
if (msg == NULL)
msg = get_reason(status);
msg_len = strlen(msg);
strncpy(&trash.str[trash.len], msg, trash.size - trash.len);
trash.len += msg_len;
cur_ptr = s->res.buf->p + txn->rsp.sl.st.c;
cur_end = s->res.buf->p + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l;
/* commit changes and adjust message */
delta = buffer_replace2(s->res.buf, cur_ptr, cur_end, trash.str, trash.len);
/* adjust res line offsets and lengths */
txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l;
txn->rsp.sl.st.c_l = c_l;
txn->rsp.sl.st.r_l = msg_len;
delta = trash.len - (cur_end - cur_ptr);
txn->rsp.sl.st.l += delta;
txn->hdr_idx.v[0].len += delta;
http_msg_move_end(&txn->rsp, delta);
}
/* This function executes one of the set-{method,path,query,uri} actions. It
* builds a string in the trash from the specified format string. It finds
* the action to be performed in <http.action>, previously filled by function
* parse_set_req_line(). The replacement action is excuted by the function
* http_action_set_req_line(). It always returns ACT_RET_CONT. If an error
* occurs the action is canceled, but the rule processing continue.
*/
enum act_return http_action_set_req_line(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
chunk_reset(&trash);
/* If we have to create a query string, prepare a '?'. */
if (rule->arg.http.action == 2)
trash.str[trash.len++] = '?';
trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.http.logfmt);
http_replace_req_line(rule->arg.http.action, trash.str, trash.len, px, s);
return ACT_RET_CONT;
}
/* This function is just a compliant action wrapper for "set-status". */
enum act_return action_http_set_status(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
http_set_status(rule->arg.status.code, rule->arg.status.reason, s);
return ACT_RET_CONT;
}
/* parse an http-request action among :
* set-method
* set-path
* set-query
* set-uri
*
* All of them accept a single argument of type string representing a log-format.
* The resulting rule makes use of arg->act.p[0..1] to store the log-format list
* head, and p[2] to store the action as an int (0=method, 1=path, 2=query, 3=uri).
* It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
enum act_parse_ret parse_set_req_line(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int cur_arg = *orig_arg;
rule->action = ACT_CUSTOM;
switch (args[0][4]) {
case 'm' :
rule->arg.http.action = 0;
rule->action_ptr = http_action_set_req_line;
break;
case 'p' :
rule->arg.http.action = 1;
rule->action_ptr = http_action_set_req_line;
break;
case 'q' :
rule->arg.http.action = 2;
rule->action_ptr = http_action_set_req_line;
break;
case 'u' :
rule->arg.http.action = 3;
rule->action_ptr = http_action_set_req_line;
break;
default:
memprintf(err, "internal error: unhandled action '%s'", args[0]);
return ACT_RET_PRS_ERR;
}
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
memprintf(err, "expects exactly 1 argument <format>");
return ACT_RET_PRS_ERR;
}
LIST_INIT(&rule->arg.http.logfmt);
proxy->conf.args.ctx = ARGC_HRQ;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.http.logfmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, err)) {
return ACT_RET_PRS_ERR;
}
(*orig_arg)++;
return ACT_RET_PRS_OK;
}
/* parse set-status action:
* This action accepts a single argument of type int representing
* an http status code. It returns ACT_RET_PRS_OK on success,
* ACT_RET_PRS_ERR on error.
*/
enum act_parse_ret parse_http_set_status(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
char *error;
rule->action = ACT_CUSTOM;
rule->action_ptr = action_http_set_status;
/* Check if an argument is available */
if (!*args[*orig_arg]) {
memprintf(err, "expects 1 argument: <status>; or 3 arguments: <status> reason <fmt>");
return ACT_RET_PRS_ERR;
}
/* convert status code as integer */
rule->arg.status.code = strtol(args[*orig_arg], &error, 10);
if (*error != '\0' || rule->arg.status.code < 100 || rule->arg.status.code > 999) {
memprintf(err, "expects an integer status code between 100 and 999");
return ACT_RET_PRS_ERR;
}
(*orig_arg)++;
/* set custom reason string */
rule->arg.status.reason = NULL; // If null, we use the default reason for the status code.
if (*args[*orig_arg] && strcmp(args[*orig_arg], "reason") == 0 &&
(*args[*orig_arg + 1] && strcmp(args[*orig_arg + 1], "if") != 0 && strcmp(args[*orig_arg + 1], "unless") != 0)) {
(*orig_arg)++;
rule->arg.status.reason = strdup(args[*orig_arg]);
(*orig_arg)++;
}
return ACT_RET_PRS_OK;
}
/* This function executes the "capture" action. It executes a fetch expression,
* turns the result into a string and puts it in a capture slot. It always
* returns 1. If an error occurs the action is cancelled, but the rule
* processing continues.
*/
enum act_return http_action_req_capture(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct sample *key;
struct cap_hdr *h = rule->arg.cap.hdr;
char **cap = s->req_cap;
int len;
key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.cap.expr, SMP_T_STR);
if (!key)
return ACT_RET_CONT;
if (cap[h->index] == NULL)
cap[h->index] = pool_alloc2(h->pool);
if (cap[h->index] == NULL) /* no more capture memory */
return ACT_RET_CONT;
len = key->data.u.str.len;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], key->data.u.str.str, len);
cap[h->index][len] = 0;
return ACT_RET_CONT;
}
/* This function executes the "capture" action and store the result in a
* capture slot if exists. It executes a fetch expression, turns the result
* into a string and puts it in a capture slot. It always returns 1. If an
* error occurs the action is cancelled, but the rule processing continues.
*/
enum act_return http_action_req_capture_by_id(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct sample *key;
struct cap_hdr *h;
char **cap = s->req_cap;
struct proxy *fe = strm_fe(s);
int len;
int i;
/* Look for the original configuration. */
for (h = fe->req_cap, i = fe->nb_req_cap - 1;
h != NULL && i != rule->arg.capid.idx ;
i--, h = h->next);
if (!h)
return ACT_RET_CONT;
key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
if (!key)
return ACT_RET_CONT;
if (cap[h->index] == NULL)
cap[h->index] = pool_alloc2(h->pool);
if (cap[h->index] == NULL) /* no more capture memory */
return ACT_RET_CONT;
len = key->data.u.str.len;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], key->data.u.str.str, len);
cap[h->index][len] = 0;
return ACT_RET_CONT;
}
/* parse an "http-request capture" action. It takes a single argument which is
* a sample fetch expression. It stores the expression into arg->act.p[0] and
* the allocated hdr_cap struct or the preallocated "id" into arg->act.p[1].
* It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
enum act_parse_ret parse_http_req_capture(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
struct sample_expr *expr;
struct cap_hdr *hdr;
int cur_arg;
int len = 0;
for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
if (strcmp(args[cur_arg], "if") == 0 ||
strcmp(args[cur_arg], "unless") == 0)
break;
if (cur_arg < *orig_arg + 3) {
memprintf(err, "expects <expression> [ 'len' <length> | id <idx> ]");
return ACT_RET_PRS_ERR;
}
cur_arg = *orig_arg;
expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
if (!expr)
return ACT_RET_PRS_ERR;
if (!(expr->fetch->val & SMP_VAL_FE_HRQ_HDR)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
return ACT_RET_PRS_ERR;
}
if (!args[cur_arg] || !*args[cur_arg]) {
memprintf(err, "expects 'len or 'id'");
free(expr);
return ACT_RET_PRS_ERR;
}
if (strcmp(args[cur_arg], "len") == 0) {
cur_arg++;
if (!(px->cap & PR_CAP_FE)) {
memprintf(err, "proxy '%s' has no frontend capability", px->id);
return ACT_RET_PRS_ERR;
}
proxy->conf.args.ctx = ARGC_CAP;
if (!args[cur_arg]) {
memprintf(err, "missing length value");
free(expr);
return ACT_RET_PRS_ERR;
}
/* we copy the table name for now, it will be resolved later */
len = atoi(args[cur_arg]);
if (len <= 0) {
memprintf(err, "length must be > 0");
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
if (!len) {
memprintf(err, "a positive 'len' argument is mandatory");
free(expr);
return ACT_RET_PRS_ERR;
}
hdr = calloc(1, sizeof(*hdr));
hdr->next = px->req_cap;
hdr->name = NULL; /* not a header capture */
hdr->namelen = 0;
hdr->len = len;
hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED);
hdr->index = px->nb_req_cap++;
px->req_cap = hdr;
px->to_log |= LW_REQHDR;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_req_capture;
rule->arg.cap.expr = expr;
rule->arg.cap.hdr = hdr;
}
else if (strcmp(args[cur_arg], "id") == 0) {
int id;
char *error;
cur_arg++;
if (!args[cur_arg]) {
memprintf(err, "missing id value");
free(expr);
return ACT_RET_PRS_ERR;
}
id = strtol(args[cur_arg], &error, 10);
if (*error != '\0') {
memprintf(err, "cannot parse id '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
proxy->conf.args.ctx = ARGC_CAP;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_req_capture_by_id;
rule->arg.capid.expr = expr;
rule->arg.capid.idx = id;
}
else {
memprintf(err, "expects 'len' or 'id', found '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
*orig_arg = cur_arg;
return ACT_RET_PRS_OK;
}
/* This function executes the "capture" action and store the result in a
* capture slot if exists. It executes a fetch expression, turns the result
* into a string and puts it in a capture slot. It always returns 1. If an
* error occurs the action is cancelled, but the rule processing continues.
*/
enum act_return http_action_res_capture_by_id(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct sample *key;
struct cap_hdr *h;
char **cap = s->res_cap;
struct proxy *fe = strm_fe(s);
int len;
int i;
/* Look for the original configuration. */
for (h = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
h != NULL && i != rule->arg.capid.idx ;
i--, h = h->next);
if (!h)
return ACT_RET_CONT;
key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
if (!key)
return ACT_RET_CONT;
if (cap[h->index] == NULL)
cap[h->index] = pool_alloc2(h->pool);
if (cap[h->index] == NULL) /* no more capture memory */
return ACT_RET_CONT;
len = key->data.u.str.len;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], key->data.u.str.str, len);
cap[h->index][len] = 0;
return ACT_RET_CONT;
}
/* parse an "http-response capture" action. It takes a single argument which is
* a sample fetch expression. It stores the expression into arg->act.p[0] and
* the allocated hdr_cap struct od the preallocated id into arg->act.p[1].
* It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
enum act_parse_ret parse_http_res_capture(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
struct sample_expr *expr;
int cur_arg;
int id;
char *error;
for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
if (strcmp(args[cur_arg], "if") == 0 ||
strcmp(args[cur_arg], "unless") == 0)
break;
if (cur_arg < *orig_arg + 3) {
memprintf(err, "expects <expression> id <idx>");
return ACT_RET_PRS_ERR;
}
cur_arg = *orig_arg;
expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
if (!expr)
return ACT_RET_PRS_ERR;
if (!(expr->fetch->val & SMP_VAL_FE_HRS_HDR)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
return ACT_RET_PRS_ERR;
}
if (!args[cur_arg] || !*args[cur_arg]) {
memprintf(err, "expects 'id'");
free(expr);
return ACT_RET_PRS_ERR;
}
if (strcmp(args[cur_arg], "id") != 0) {
memprintf(err, "expects 'id', found '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
if (!args[cur_arg]) {
memprintf(err, "missing id value");
free(expr);
return ACT_RET_PRS_ERR;
}
id = strtol(args[cur_arg], &error, 10);
if (*error != '\0') {
memprintf(err, "cannot parse id '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
proxy->conf.args.ctx = ARGC_CAP;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_res_capture_by_id;
rule->arg.capid.expr = expr;
rule->arg.capid.idx = id;
*orig_arg = cur_arg;
return ACT_RET_PRS_OK;
}
/*
* Return the struct http_req_action_kw associated to a keyword.
*/
struct action_kw *action_http_req_custom(const char *kw)
{
return action_lookup(&http_req_keywords.list, kw);
}
/*
* Return the struct http_res_action_kw associated to a keyword.
*/
struct action_kw *action_http_res_custom(const char *kw)
{
return action_lookup(&http_res_keywords.list, kw);
}
/* "show errors" handler for the CLI. Returns 0 if wants to continue, 1 to stop
* now.
*/
static int cli_parse_show_errors(char **args, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
if (*args[2]) {
struct proxy *px;
px = proxy_find_by_name(args[2], 0, 0);
if (px)
appctx->ctx.errors.iid = px->uuid;
else
appctx->ctx.errors.iid = atoi(args[2]);
if (!appctx->ctx.errors.iid) {
appctx->ctx.cli.msg = "No such proxy.\n";
appctx->st0 = CLI_ST_PRINT;
return 1;
}
}
else
appctx->ctx.errors.iid = -1; // dump all proxies
appctx->ctx.errors.flag = 0;
if (strcmp(args[3], "request") == 0)
appctx->ctx.errors.flag |= 4; // ignore response
else if (strcmp(args[3], "response") == 0)
appctx->ctx.errors.flag |= 2; // ignore request
appctx->ctx.errors.px = NULL;
return 0;
}
/* This function dumps all captured errors onto the stream interface's
* read buffer. It returns 0 if the output buffer is full and it needs
* to be called again, otherwise non-zero.
*/
static int cli_io_handler_show_errors(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
extern const char *monthname[12];
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
chunk_reset(&trash);
if (!appctx->ctx.errors.px) {
/* the function had not been called yet, let's prepare the
* buffer for a response.
*/
struct tm tm;
get_localtime(date.tv_sec, &tm);
chunk_appendf(&trash, "Total events captured on [%02d/%s/%04d:%02d:%02d:%02d.%03d] : %u\n",
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(date.tv_usec/1000),
error_snapshot_id);
if (bi_putchk(si_ic(si), &trash) == -1) {
/* Socket buffer full. Let's try again later from the same point */
si_applet_cant_put(si);
return 0;
}
appctx->ctx.errors.px = proxy;
appctx->ctx.errors.bol = 0;
appctx->ctx.errors.ptr = -1;
}
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
while (appctx->ctx.errors.px) {
struct error_snapshot *es;
if ((appctx->ctx.errors.flag & 1) == 0) {
es = &appctx->ctx.errors.px->invalid_req;
if (appctx->ctx.errors.flag & 2) // skip req
goto next;
}
else {
es = &appctx->ctx.errors.px->invalid_rep;
if (appctx->ctx.errors.flag & 4) // skip resp
goto next;
}
if (!es->when.tv_sec)
goto next;
if (appctx->ctx.errors.iid >= 0 &&
appctx->ctx.errors.px->uuid != appctx->ctx.errors.iid &&
es->oe->uuid != appctx->ctx.errors.iid)
goto next;
if (appctx->ctx.errors.ptr < 0) {
/* just print headers now */
char pn[INET6_ADDRSTRLEN];
struct tm tm;
int port;
get_localtime(es->when.tv_sec, &tm);
chunk_appendf(&trash, " \n[%02d/%s/%04d:%02d:%02d:%02d.%03d]",
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(es->when.tv_usec/1000));
switch (addr_to_str(&es->src, pn, sizeof(pn))) {
case AF_INET:
case AF_INET6:
port = get_host_port(&es->src);
break;
default:
port = 0;
}
switch (appctx->ctx.errors.flag & 1) {
case 0:
chunk_appendf(&trash,
" frontend %s (#%d): invalid request\n"
" backend %s (#%d)",
appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
(es->oe->cap & PR_CAP_BE) ? es->oe->id : "<NONE>",
(es->oe->cap & PR_CAP_BE) ? es->oe->uuid : -1);
break;
case 1:
chunk_appendf(&trash,
" backend %s (#%d): invalid response\n"
" frontend %s (#%d)",
appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
es->oe->id, es->oe->uuid);
break;
}
chunk_appendf(&trash,
", server %s (#%d), event #%u\n"
" src %s:%d, session #%d, session flags 0x%08x\n"
" HTTP msg state %s(%d), msg flags 0x%08x, tx flags 0x%08x\n"
" HTTP chunk len %lld bytes, HTTP body len %lld bytes\n"
" buffer flags 0x%08x, out %d bytes, total %lld bytes\n"
" pending %d bytes, wrapping at %d, error at position %d:\n \n",
es->srv ? es->srv->id : "<NONE>", es->srv ? es->srv->puid : -1,
es->ev_id,
pn, port, es->sid, es->s_flags,
http_msg_state_str(es->state), es->state, es->m_flags, es->t_flags,
es->m_clen, es->m_blen,
es->b_flags, es->b_out, es->b_tot,
es->len, es->b_wrap, es->pos);
if (bi_putchk(si_ic(si), &trash) == -1) {
/* Socket buffer full. Let's try again later from the same point */
si_applet_cant_put(si);
return 0;
}
appctx->ctx.errors.ptr = 0;
appctx->ctx.errors.sid = es->sid;
}
if (appctx->ctx.errors.sid != es->sid) {
/* the snapshot changed while we were dumping it */
chunk_appendf(&trash,
" WARNING! update detected on this snapshot, dump interrupted. Please re-check!\n");
if (bi_putchk(si_ic(si), &trash) == -1) {
si_applet_cant_put(si);
return 0;
}
goto next;
}
/* OK, ptr >= 0, so we have to dump the current line */
while (es->buf && appctx->ctx.errors.ptr < es->len && appctx->ctx.errors.ptr < global.tune.bufsize) {
int newptr;
int newline;
newline = appctx->ctx.errors.bol;
newptr = dump_text_line(&trash, es->buf, global.tune.bufsize, es->len, &newline, appctx->ctx.errors.ptr);
if (newptr == appctx->ctx.errors.ptr)
return 0;
if (bi_putchk(si_ic(si), &trash) == -1) {
/* Socket buffer full. Let's try again later from the same point */
si_applet_cant_put(si);
return 0;
}
appctx->ctx.errors.ptr = newptr;
appctx->ctx.errors.bol = newline;
};
next:
appctx->ctx.errors.bol = 0;
appctx->ctx.errors.ptr = -1;
appctx->ctx.errors.flag ^= 1;
if (!(appctx->ctx.errors.flag & 1))
appctx->ctx.errors.px = appctx->ctx.errors.px->next;
}
/* dump complete */
return 1;
}
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "errors", NULL },
"show errors : report last request and response errors for each proxy",
cli_parse_show_errors, cli_io_handler_show_errors, NULL,
},
{{},}
}};
/************************************************************************/
/* All supported ACL keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ "base", "base", PAT_MATCH_STR },
{ "base_beg", "base", PAT_MATCH_BEG },
{ "base_dir", "base", PAT_MATCH_DIR },
{ "base_dom", "base", PAT_MATCH_DOM },
{ "base_end", "base", PAT_MATCH_END },
{ "base_len", "base", PAT_MATCH_LEN },
{ "base_reg", "base", PAT_MATCH_REG },
{ "base_sub", "base", PAT_MATCH_SUB },
{ "cook", "req.cook", PAT_MATCH_STR },
{ "cook_beg", "req.cook", PAT_MATCH_BEG },
{ "cook_dir", "req.cook", PAT_MATCH_DIR },
{ "cook_dom", "req.cook", PAT_MATCH_DOM },
{ "cook_end", "req.cook", PAT_MATCH_END },
{ "cook_len", "req.cook", PAT_MATCH_LEN },
{ "cook_reg", "req.cook", PAT_MATCH_REG },
{ "cook_sub", "req.cook", PAT_MATCH_SUB },
{ "hdr", "req.hdr", PAT_MATCH_STR },
{ "hdr_beg", "req.hdr", PAT_MATCH_BEG },
{ "hdr_dir", "req.hdr", PAT_MATCH_DIR },
{ "hdr_dom", "req.hdr", PAT_MATCH_DOM },
{ "hdr_end", "req.hdr", PAT_MATCH_END },
{ "hdr_len", "req.hdr", PAT_MATCH_LEN },
{ "hdr_reg", "req.hdr", PAT_MATCH_REG },
{ "hdr_sub", "req.hdr", PAT_MATCH_SUB },
/* these two declarations uses strings with list storage (in place
* of tree storage). The basic match is PAT_MATCH_STR, but the indexation
* and delete functions are relative to the list management. The parse
* and match method are related to the corresponding fetch methods. This
* is very particular ACL declaration mode.
*/
{ "http_auth_group", NULL, PAT_MATCH_STR, NULL, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_auth },
{ "method", NULL, PAT_MATCH_STR, pat_parse_meth, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_meth },
{ "path", "path", PAT_MATCH_STR },
{ "path_beg", "path", PAT_MATCH_BEG },
{ "path_dir", "path", PAT_MATCH_DIR },
{ "path_dom", "path", PAT_MATCH_DOM },
{ "path_end", "path", PAT_MATCH_END },
{ "path_len", "path", PAT_MATCH_LEN },
{ "path_reg", "path", PAT_MATCH_REG },
{ "path_sub", "path", PAT_MATCH_SUB },
{ "req_ver", "req.ver", PAT_MATCH_STR },
{ "resp_ver", "res.ver", PAT_MATCH_STR },
{ "scook", "res.cook", PAT_MATCH_STR },
{ "scook_beg", "res.cook", PAT_MATCH_BEG },
{ "scook_dir", "res.cook", PAT_MATCH_DIR },
{ "scook_dom", "res.cook", PAT_MATCH_DOM },
{ "scook_end", "res.cook", PAT_MATCH_END },
{ "scook_len", "res.cook", PAT_MATCH_LEN },
{ "scook_reg", "res.cook", PAT_MATCH_REG },
{ "scook_sub", "res.cook", PAT_MATCH_SUB },
{ "shdr", "res.hdr", PAT_MATCH_STR },
{ "shdr_beg", "res.hdr", PAT_MATCH_BEG },
{ "shdr_dir", "res.hdr", PAT_MATCH_DIR },
{ "shdr_dom", "res.hdr", PAT_MATCH_DOM },
{ "shdr_end", "res.hdr", PAT_MATCH_END },
{ "shdr_len", "res.hdr", PAT_MATCH_LEN },
{ "shdr_reg", "res.hdr", PAT_MATCH_REG },
{ "shdr_sub", "res.hdr", PAT_MATCH_SUB },
{ "url", "url", PAT_MATCH_STR },
{ "url_beg", "url", PAT_MATCH_BEG },
{ "url_dir", "url", PAT_MATCH_DIR },
{ "url_dom", "url", PAT_MATCH_DOM },
{ "url_end", "url", PAT_MATCH_END },
{ "url_len", "url", PAT_MATCH_LEN },
{ "url_reg", "url", PAT_MATCH_REG },
{ "url_sub", "url", PAT_MATCH_SUB },
{ "urlp", "urlp", PAT_MATCH_STR },
{ "urlp_beg", "urlp", PAT_MATCH_BEG },
{ "urlp_dir", "urlp", PAT_MATCH_DIR },
{ "urlp_dom", "urlp", PAT_MATCH_DOM },
{ "urlp_end", "urlp", PAT_MATCH_END },
{ "urlp_len", "urlp", PAT_MATCH_LEN },
{ "urlp_reg", "urlp", PAT_MATCH_REG },
{ "urlp_sub", "urlp", PAT_MATCH_SUB },
{ /* END */ },
}};
/************************************************************************/
/* All supported pattern keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "base", smp_fetch_base, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "base32", smp_fetch_base32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "base32+src", smp_fetch_base32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV },
/* capture are allocated and are permanent in the stream */
{ "capture.req.hdr", smp_fetch_capture_header_req, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRQHP },
/* retrieve these captures from the HTTP logs */
{ "capture.req.method", smp_fetch_capture_req_method, 0, NULL, SMP_T_STR, SMP_USE_HRQHP },
{ "capture.req.uri", smp_fetch_capture_req_uri, 0, NULL, SMP_T_STR, SMP_USE_HRQHP },
{ "capture.req.ver", smp_fetch_capture_req_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP },
{ "capture.res.hdr", smp_fetch_capture_header_res, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRSHP },
{ "capture.res.ver", smp_fetch_capture_res_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP },
/* cookie is valid in both directions (eg: for "stick ...") but cook*
* are only here to match the ACL's name, are request-only and are used
* for ACL compatibility only.
*/
{ "cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "cookie", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV },
{ "cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
/* hdr is valid in both directions (eg: for "stick ...") but hdr_* are
* only here to match the ACL's name, are request-only and are used for
* ACL compatibility only.
*/
{ "hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV },
{ "hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
{ "hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
{ "http_auth", smp_fetch_http_auth, ARG1(1,USR), NULL, SMP_T_BOOL, SMP_USE_HRQHV },
{ "http_auth_group", smp_fetch_http_auth_grp, ARG1(1,USR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "http_first_req", smp_fetch_http_first_req, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP },
{ "method", smp_fetch_meth, 0, NULL, SMP_T_METH, SMP_USE_HRQHP },
{ "path", smp_fetch_path, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "query", smp_fetch_query, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
/* HTTP protocol on the request path */
{ "req.proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP },
{ "req_proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP },
/* HTTP version on the request path */
{ "req.ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "req_ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "req.body", smp_fetch_body, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV },
{ "req.body_len", smp_fetch_body_len, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.body_size", smp_fetch_body_size, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.body_param", smp_fetch_body_param, ARG1(0,STR), NULL, SMP_T_BIN, SMP_USE_HRQHV },
{ "req.hdrs", smp_fetch_hdrs, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV },
{ "req.hdrs_bin", smp_fetch_hdrs_bin, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV },
/* HTTP version on the response path */
{ "res.ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV },
{ "resp_ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV },
/* explicit req.{cook,hdr} are used to force the fetch direction to be request-only */
{ "req.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "req.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV },
{ "req.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV },
{ "req.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "req.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
{ "req.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "req.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
/* explicit req.{cook,hdr} are used to force the fetch direction to be response-only */
{ "res.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV },
{ "res.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "res.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "res.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV },
{ "res.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "res.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV },
{ "res.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "res.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
{ "res.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV },
{ "res.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
/* scook is valid only on the response and is used for ACL compatibility */
{ "scook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV },
{ "scook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "scook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "set-cookie", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, /* deprecated */
/* shdr is valid only on the response and is used for ACL compatibility */
{ "shdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV },
{ "shdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV },
{ "shdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
{ "shdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
{ "status", smp_fetch_stcode, 0, NULL, SMP_T_SINT, SMP_USE_HRSHP },
{ "unique-id", smp_fetch_uniqueid, 0, NULL, SMP_T_STR, SMP_SRC_L4SRV },
{ "url", smp_fetch_url, 0, NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "url32", smp_fetch_url32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "url32+src", smp_fetch_url32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV },
{ "url_ip", smp_fetch_url_ip, 0, NULL, SMP_T_IPV4, SMP_USE_HRQHV },
{ "url_port", smp_fetch_url_port, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ "url_param", smp_fetch_url_param, ARG2(0,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "urlp" , smp_fetch_url_param, ARG2(0,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV },
{ "urlp_val", smp_fetch_url_param_val, ARG2(0,STR,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV },
{ /* END */ },
}};
/************************************************************************/
/* All supported converter keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
{ "http_date", sample_conv_http_date, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_T_STR},
{ "language", sample_conv_q_prefered, ARG2(1,STR,STR), NULL, SMP_T_STR, SMP_T_STR},
{ "capture-req", smp_conv_req_capture, ARG1(1,SINT), NULL, SMP_T_STR, SMP_T_STR},
{ "capture-res", smp_conv_res_capture, ARG1(1,SINT), NULL, SMP_T_STR, SMP_T_STR},
{ "url_dec", sample_conv_url_dec, 0, NULL, SMP_T_STR, SMP_T_STR},
{ NULL, NULL, 0, 0, 0 },
}};
/************************************************************************/
/* All supported http-request action keywords must be declared here. */
/************************************************************************/
struct action_kw_list http_req_actions = {
.kw = {
{ "capture", parse_http_req_capture },
{ "set-method", parse_set_req_line },
{ "set-path", parse_set_req_line },
{ "set-query", parse_set_req_line },
{ "set-uri", parse_set_req_line },
{ NULL, NULL }
}
};
struct action_kw_list http_res_actions = {
.kw = {
{ "capture", parse_http_res_capture },
{ "set-status", parse_http_set_status },
{ NULL, NULL }
}
};
__attribute__((constructor))
static void __http_protocol_init(void)
{
acl_register_keywords(&acl_kws);
sample_register_fetches(&sample_fetch_keywords);
sample_register_convs(&sample_conv_kws);
http_req_keywords_register(&http_req_actions);
http_res_keywords_register(&http_res_actions);
cli_register_kw(&cli_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/