| /* |
| * Session management functions. |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include <common/config.h> |
| #include <common/buffer.h> |
| #include <common/debug.h> |
| #include <common/memory.h> |
| |
| #include <types/capture.h> |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/checks.h> |
| #include <proto/connection.h> |
| #include <proto/dumpstats.h> |
| #include <proto/fd.h> |
| #include <proto/freq_ctr.h> |
| #include <proto/frontend.h> |
| #include <proto/hdr_idx.h> |
| #include <proto/listener.h> |
| #include <proto/log.h> |
| #include <proto/raw_sock.h> |
| #include <proto/session.h> |
| #include <proto/pipe.h> |
| #include <proto/proto_http.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/server.h> |
| #include <proto/sample.h> |
| #include <proto/stick_table.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| |
| struct pool_head *pool2_session; |
| struct list sessions; |
| |
| static int conn_session_complete(struct connection *conn); |
| static int conn_session_update(struct connection *conn); |
| static struct task *expire_mini_session(struct task *t); |
| int session_complete(struct session *s); |
| |
| /* data layer callbacks for an embryonic session */ |
| struct data_cb sess_conn_cb = { |
| .recv = NULL, |
| .send = NULL, |
| .wake = conn_session_update, |
| .init = conn_session_complete, |
| }; |
| |
| /* This function is called from the protocol layer accept() in order to |
| * instanciate a new embryonic session on behalf of a given listener and |
| * frontend. It returns a positive value upon success, 0 if the connection |
| * can be ignored, or a negative value upon critical failure. The accepted |
| * file descriptor is closed if we return <= 0. |
| */ |
| int session_accept(struct listener *l, int cfd, struct sockaddr_storage *addr) |
| { |
| struct proxy *p = l->frontend; |
| struct session *s; |
| struct task *t; |
| int ret; |
| |
| |
| ret = -1; /* assume unrecoverable error by default */ |
| |
| if (unlikely((s = pool_alloc2(pool2_session)) == NULL)) |
| goto out_close; |
| |
| if (unlikely((s->si[0].conn = pool_alloc2(pool2_connection)) == NULL)) |
| goto out_fail_conn0; |
| |
| if (unlikely((s->si[1].conn = pool_alloc2(pool2_connection)) == NULL)) |
| goto out_fail_conn1; |
| |
| /* minimum session initialization required for an embryonic session is |
| * fairly low. We need very little to execute L4 ACLs, then we need a |
| * task to make the client-side connection live on its own. |
| * - flags |
| * - stick-entry tracking |
| */ |
| s->flags = 0; |
| s->logs.logwait = p->to_log; |
| s->stkctr1_entry = NULL; |
| s->stkctr2_entry = NULL; |
| s->stkctr1_table = NULL; |
| s->stkctr2_table = NULL; |
| |
| s->listener = l; |
| s->fe = p; |
| |
| /* OK, we're keeping the session, so let's properly initialize the session */ |
| s->si[0].conn->t.sock.fd = cfd; |
| s->si[0].conn->ctrl = l->proto; |
| s->si[0].conn->flags = CO_FL_NONE; |
| s->si[0].conn->addr.from = *addr; |
| set_target_client(&s->si[0].conn->target, l); |
| |
| s->logs.accept_date = date; /* user-visible date for logging */ |
| s->logs.tv_accept = now; /* corrected date for internal use */ |
| s->uniq_id = totalconn; |
| p->feconn++; |
| /* This session was accepted, count it now */ |
| if (p->feconn > p->fe_counters.conn_max) |
| p->fe_counters.conn_max = p->feconn; |
| |
| proxy_inc_fe_conn_ctr(l, p); |
| |
| /* now evaluate the tcp-request layer4 rules. Since we expect to be able |
| * to abort right here as soon as possible, we check the rules before |
| * even initializing the stream interfaces. |
| */ |
| if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(s)) { |
| /* let's do a no-linger now to close with a single RST. */ |
| setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); |
| ret = 0; /* successful termination */ |
| goto out_free_session; |
| } |
| |
| #ifndef USE_ACCEPT4 |
| /* Adjust some socket options if the connection was accepted by a plain |
| * accept() syscall. |
| */ |
| if (unlikely(fcntl(cfd, F_SETFL, O_NONBLOCK) == -1)) |
| goto out_free_session; |
| #endif |
| |
| /* monitor-net and health mode are processed immediately after TCP |
| * connection rules. This way it's possible to block them, but they |
| * never use the lower data layers, they send directly over the socket, |
| * as they were designed for. We first flush the socket receive buffer |
| * in order to avoid emission of an RST by the system. We ignore any |
| * error. |
| */ |
| if (unlikely((p->mode == PR_MODE_HEALTH) || |
| ((l->options & LI_O_CHK_MONNET) && |
| addr->ss_family == AF_INET && |
| (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) { |
| /* we have 4 possibilities here : |
| * - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK" |
| * - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK" |
| * - HEALTH mode without HTTP check => just send "OK" |
| * - TCP mode from monitoring address => just close |
| */ |
| recv(cfd, trash.str, trash.size, MSG_DONTWAIT); |
| if (p->mode == PR_MODE_HTTP || |
| (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK)) |
| send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); |
| else if (p->mode == PR_MODE_HEALTH) |
| send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); |
| ret = 0; |
| goto out_free_session; |
| } |
| |
| |
| /* wait for a PROXY protocol header */ |
| if (l->options & LI_O_ACC_PROXY) { |
| s->si[0].conn->flags |= CO_FL_ACCEPT_PROXY; |
| conn_sock_want_recv(s->si[0].conn); |
| } |
| |
| if (unlikely((t = task_new()) == NULL)) |
| goto out_free_session; |
| |
| t->context = s; |
| t->nice = l->nice; |
| s->task = t; |
| |
| /* Add the various callbacks. Right now the transport layer is present |
| * but not initialized. Also note we need to be careful as the stream |
| * int is not initialized yet. |
| */ |
| conn_prepare(s->si[0].conn, &sess_conn_cb, l->proto, l->xprt, s); |
| |
| /* finish initialization of the accepted file descriptor */ |
| fd_insert(cfd); |
| fdtab[cfd].owner = s->si[0].conn; |
| fdtab[cfd].iocb = conn_fd_handler; |
| conn_data_want_recv(s->si[0].conn); |
| if (conn_xprt_init(s->si[0].conn) < 0) |
| goto out_free_task; |
| |
| /* OK, now either we have a pending handshake to execute with and |
| * then we must return to the I/O layer, or we can proceed with the |
| * end of the session initialization. In case of handshake, we also |
| * set the I/O timeout to the frontend's client timeout. |
| */ |
| |
| if (s->si[0].conn->flags & CO_FL_HANDSHAKE) { |
| t->process = expire_mini_session; |
| t->expire = tick_add_ifset(now_ms, p->timeout.client); |
| task_queue(t); |
| s->si[0].conn->flags |= CO_FL_INIT_DATA | CO_FL_WAKE_DATA; |
| return 1; |
| } |
| |
| /* OK let's complete session initialization */ |
| ret = session_complete(s); |
| if (ret > 0) |
| return ret; |
| |
| /* Error unrolling */ |
| out_free_task: |
| task_free(t); |
| out_free_session: |
| p->feconn--; |
| if (s->stkctr1_entry || s->stkctr2_entry) |
| session_store_counters(s); |
| pool_free2(pool2_connection, s->si[1].conn); |
| out_fail_conn1: |
| pool_free2(pool2_connection, s->si[0].conn); |
| out_fail_conn0: |
| pool_free2(pool2_session, s); |
| out_close: |
| if (ret < 0 && l->xprt == &raw_sock && p->mode == PR_MODE_HTTP) { |
| /* critical error, no more memory, try to emit a 500 response */ |
| struct chunk *err_msg = http_error_message(s, HTTP_ERR_500); |
| send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL); |
| } |
| |
| if (fdtab[cfd].owner) |
| fd_delete(cfd); |
| else |
| close(cfd); |
| return ret; |
| } |
| |
| /* This function kills an existing embryonic session. It stops the connection's |
| * transport layer, releases assigned resources, resumes the listener if it was |
| * disabled and finally kills the file descriptor. |
| */ |
| static void kill_mini_session(struct session *s) |
| { |
| /* kill the connection now */ |
| conn_xprt_close(s->si[0].conn); |
| |
| s->fe->feconn--; |
| if (s->stkctr1_entry || s->stkctr2_entry) |
| session_store_counters(s); |
| |
| if (!(s->listener->options & LI_O_UNLIMITED)) |
| actconn--; |
| jobs--; |
| s->listener->nbconn--; |
| if (s->listener->state == LI_FULL) |
| resume_listener(s->listener); |
| |
| /* Dequeues all of the listeners waiting for a resource */ |
| if (!LIST_ISEMPTY(&global_listener_queue)) |
| dequeue_all_listeners(&global_listener_queue); |
| |
| if (!LIST_ISEMPTY(&s->fe->listener_queue) && |
| (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0)) |
| dequeue_all_listeners(&s->fe->listener_queue); |
| |
| task_delete(s->task); |
| task_free(s->task); |
| |
| if (fdtab[s->si[0].conn->t.sock.fd].owner) |
| fd_delete(s->si[0].conn->t.sock.fd); |
| else |
| close(s->si[0].conn->t.sock.fd); |
| |
| pool_free2(pool2_connection, s->si[1].conn); |
| pool_free2(pool2_connection, s->si[0].conn); |
| pool_free2(pool2_session, s); |
| } |
| |
| /* Finish initializing a session from a connection, or kills it if the |
| * connection shows and error. Returns <0 if the connection was killed. |
| */ |
| static int conn_session_complete(struct connection *conn) |
| { |
| struct session *s = conn->owner; |
| |
| if (!(conn->flags & CO_FL_ERROR) && (session_complete(s) > 0)) { |
| conn->flags &= ~CO_FL_INIT_DATA; |
| return 0; |
| } |
| |
| /* kill the connection now */ |
| kill_mini_session(s); |
| return -1; |
| } |
| |
| /* Update an embryonic session status. The connection is killed in case of |
| * error, and <0 will be returned. Otherwise it does nothing. |
| */ |
| static int conn_session_update(struct connection *conn) |
| { |
| if (conn->flags & CO_FL_ERROR) { |
| kill_mini_session(conn->owner); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Manages embryonic sessions timeout. It is only called when the timeout |
| * strikes and performs the required cleanup. |
| */ |
| static struct task *expire_mini_session(struct task *t) |
| { |
| struct session *s = t->context; |
| |
| if (!(t->state & TASK_WOKEN_TIMER)) |
| return t; |
| |
| kill_mini_session(s); |
| return NULL; |
| } |
| |
| /* This function is called from the I/O handler which detects the end of |
| * handshake, in order to complete initialization of a valid session. It must |
| * be called with an embryonic session. It returns a positive value upon |
| * success, 0 if the connection can be ignored, or a negative value upon |
| * critical failure. The accepted file descriptor is closed if we return <= 0. |
| */ |
| int session_complete(struct session *s) |
| { |
| struct listener *l = s->listener; |
| struct proxy *p = s->fe; |
| struct http_txn *txn; |
| struct task *t = s->task; |
| int ret; |
| |
| ret = -1; /* assume unrecoverable error by default */ |
| |
| /* OK, we're keeping the session, so let's properly initialize the session */ |
| LIST_ADDQ(&sessions, &s->list); |
| LIST_INIT(&s->back_refs); |
| si_takeover_conn(&s->si[0], l->proto, l->xprt); |
| s->flags |= SN_INITIALIZED; |
| |
| s->unique_id = NULL; |
| |
| t->process = l->handler; |
| t->context = s; |
| t->expire = TICK_ETERNITY; |
| |
| /* Note: initially, the session's backend points to the frontend. |
| * This changes later when switching rules are executed or |
| * when the default backend is assigned. |
| */ |
| s->be = s->fe; |
| s->req = s->rep = NULL; /* will be allocated later */ |
| s->comp_algo = NULL; |
| |
| /* Let's count a session now */ |
| proxy_inc_fe_sess_ctr(l, p); |
| if (s->stkctr1_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, s->stkctr1_entry, STKTABLE_DT_SESS_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, sess_cnt)++; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, s->stkctr1_entry, STKTABLE_DT_SESS_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), |
| s->stkctr1_table->data_arg[STKTABLE_DT_SESS_RATE].u, 1); |
| } |
| |
| if (s->stkctr2_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, s->stkctr2_entry, STKTABLE_DT_SESS_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, sess_cnt)++; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, s->stkctr2_entry, STKTABLE_DT_SESS_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), |
| s->stkctr2_table->data_arg[STKTABLE_DT_SESS_RATE].u, 1); |
| } |
| |
| /* this part should be common with other protocols */ |
| s->si[0].owner = t; |
| s->si[0].state = s->si[0].prev_state = SI_ST_EST; |
| s->si[0].err_type = SI_ET_NONE; |
| s->si[0].err_loc = NULL; |
| s->si[0].release = NULL; |
| s->si[0].send_proxy_ofs = 0; |
| s->si[0].exp = TICK_ETERNITY; |
| s->si[0].flags = SI_FL_NONE; |
| |
| if (likely(s->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[0].flags |= SI_FL_INDEP_STR; |
| |
| /* pre-initialize the other side's stream interface to an INIT state. The |
| * callbacks will be initialized before attempting to connect. |
| */ |
| s->si[1].conn->t.sock.fd = -1; /* just to help with debugging */ |
| s->si[1].conn->flags = CO_FL_NONE; |
| s->si[1].owner = t; |
| s->si[1].state = s->si[1].prev_state = SI_ST_INI; |
| s->si[1].err_type = SI_ET_NONE; |
| s->si[1].conn_retries = 0; /* used for logging too */ |
| s->si[1].err_loc = NULL; |
| s->si[1].release = NULL; |
| s->si[1].send_proxy_ofs = 0; |
| clear_target(&s->si[1].conn->target); |
| si_prepare_embedded(&s->si[1]); |
| s->si[1].exp = TICK_ETERNITY; |
| s->si[1].flags = SI_FL_NONE; |
| |
| if (likely(s->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[1].flags |= SI_FL_INDEP_STR; |
| |
| session_init_srv_conn(s); |
| clear_target(&s->target); |
| s->pend_pos = NULL; |
| |
| /* init store persistence */ |
| s->store_count = 0; |
| |
| if (unlikely((s->req = pool_alloc2(pool2_channel)) == NULL)) |
| goto out_free_task; /* no memory */ |
| |
| if (unlikely((s->req->buf = pool_alloc2(pool2_buffer)) == NULL)) |
| goto out_free_req; /* no memory */ |
| |
| if (unlikely((s->rep = pool_alloc2(pool2_channel)) == NULL)) |
| goto out_free_req_buf; /* no memory */ |
| |
| if (unlikely((s->rep->buf = pool_alloc2(pool2_buffer)) == NULL)) |
| goto out_free_rep; /* no memory */ |
| |
| /* initialize the request buffer */ |
| s->req->buf->size = global.tune.bufsize; |
| channel_init(s->req); |
| s->req->prod = &s->si[0]; |
| s->req->cons = &s->si[1]; |
| s->si[0].ib = s->si[1].ob = s->req; |
| s->req->flags |= CF_READ_ATTACHED; /* the producer is already connected */ |
| |
| /* activate default analysers enabled for this listener */ |
| s->req->analysers = l->analysers; |
| |
| s->req->wto = TICK_ETERNITY; |
| s->req->rto = TICK_ETERNITY; |
| s->req->rex = TICK_ETERNITY; |
| s->req->wex = TICK_ETERNITY; |
| s->req->analyse_exp = TICK_ETERNITY; |
| |
| /* initialize response buffer */ |
| s->rep->buf->size = global.tune.bufsize; |
| channel_init(s->rep); |
| s->rep->prod = &s->si[1]; |
| s->rep->cons = &s->si[0]; |
| s->si[0].ob = s->si[1].ib = s->rep; |
| s->rep->analysers = 0; |
| |
| if (s->fe->options2 & PR_O2_NODELAY) { |
| s->req->flags |= CF_NEVER_WAIT; |
| s->rep->flags |= CF_NEVER_WAIT; |
| } |
| |
| s->rep->rto = TICK_ETERNITY; |
| s->rep->wto = TICK_ETERNITY; |
| s->rep->rex = TICK_ETERNITY; |
| s->rep->wex = TICK_ETERNITY; |
| s->rep->analyse_exp = TICK_ETERNITY; |
| |
| txn = &s->txn; |
| /* Those variables will be checked and freed if non-NULL in |
| * session.c:session_free(). It is important that they are |
| * properly initialized. |
| */ |
| txn->sessid = NULL; |
| txn->srv_cookie = NULL; |
| txn->cli_cookie = NULL; |
| txn->uri = NULL; |
| txn->req.cap = NULL; |
| txn->rsp.cap = NULL; |
| txn->hdr_idx.v = NULL; |
| txn->hdr_idx.size = txn->hdr_idx.used = 0; |
| txn->req.flags = 0; |
| txn->rsp.flags = 0; |
| /* the HTTP messages need to know what buffer they're associated with */ |
| txn->req.chn = s->req; |
| txn->rsp.chn = s->rep; |
| |
| /* finish initialization of the accepted file descriptor */ |
| conn_data_want_recv(s->si[0].conn); |
| |
| if (p->accept && (ret = p->accept(s)) <= 0) { |
| /* Either we had an unrecoverable error (<0) or work is |
| * finished (=0, eg: monitoring), in both situations, |
| * we can release everything and close. |
| */ |
| goto out_free_rep_buf; |
| } |
| |
| /* if logs require transport layer information, note it on the connection */ |
| if (s->logs.logwait & LW_XPRT) |
| s->si[0].conn->flags |= CO_FL_XPRT_TRACKED; |
| |
| /* we want the connection handler to notify the stream interface about updates. */ |
| s->si[0].conn->flags |= CO_FL_WAKE_DATA; |
| |
| /* it is important not to call the wakeup function directly but to |
| * pass through task_wakeup(), because this one knows how to apply |
| * priorities to tasks. |
| */ |
| task_wakeup(t, TASK_WOKEN_INIT); |
| return 1; |
| |
| /* Error unrolling */ |
| out_free_rep_buf: |
| pool_free2(pool2_buffer, s->rep->buf); |
| out_free_rep: |
| pool_free2(pool2_channel, s->rep); |
| out_free_req_buf: |
| pool_free2(pool2_buffer, s->req->buf); |
| out_free_req: |
| pool_free2(pool2_channel, s->req); |
| out_free_task: |
| return ret; |
| } |
| |
| /* |
| * frees the context associated to a session. It must have been removed first. |
| */ |
| static void session_free(struct session *s) |
| { |
| struct http_txn *txn = &s->txn; |
| struct proxy *fe = s->fe; |
| struct bref *bref, *back; |
| int i; |
| |
| if (s->pend_pos) |
| pendconn_free(s->pend_pos); |
| |
| if (target_srv(&s->target)) { /* there may be requests left pending in queue */ |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| target_srv(&s->target)->cur_sess--; |
| } |
| if (may_dequeue_tasks(target_srv(&s->target), s->be)) |
| process_srv_queue(target_srv(&s->target)); |
| } |
| |
| if (unlikely(s->srv_conn)) { |
| /* the session still has a reserved slot on a server, but |
| * it should normally be only the same as the one above, |
| * so this should not happen in fact. |
| */ |
| sess_change_server(s, NULL); |
| } |
| |
| if (s->comp_algo) { |
| s->comp_algo->end(&s->comp_ctx.strm); |
| s->comp_algo = NULL; |
| } |
| |
| if (s->req->pipe) |
| put_pipe(s->req->pipe); |
| |
| if (s->rep->pipe) |
| put_pipe(s->rep->pipe); |
| |
| pool_free2(pool2_buffer, s->req->buf); |
| pool_free2(pool2_buffer, s->rep->buf); |
| |
| pool_free2(pool2_channel, s->req); |
| pool_free2(pool2_channel, s->rep); |
| |
| http_end_txn(s); |
| |
| /* ensure the client-side transport layer is destroyed */ |
| s->si[0].conn->flags &= ~CO_FL_XPRT_TRACKED; |
| conn_xprt_close(s->si[0].conn); |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (!s->store[i].ts) |
| continue; |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| } |
| |
| pool_free2(pool2_hdr_idx, txn->hdr_idx.v); |
| if (fe) { |
| pool_free2(fe->rsp_cap_pool, txn->rsp.cap); |
| pool_free2(fe->req_cap_pool, txn->req.cap); |
| } |
| |
| if (s->stkctr1_entry || s->stkctr2_entry) |
| session_store_counters(s); |
| |
| list_for_each_entry_safe(bref, back, &s->back_refs, users) { |
| /* we have to unlink all watchers. We must not relink them if |
| * this session was the last one in the list. |
| */ |
| LIST_DEL(&bref->users); |
| LIST_INIT(&bref->users); |
| if (s->list.n != &sessions) |
| LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users); |
| bref->ref = s->list.n; |
| } |
| LIST_DEL(&s->list); |
| pool_free2(pool2_connection, s->si[1].conn); |
| pool_free2(pool2_connection, s->si[0].conn); |
| pool_free2(pool2_session, s); |
| |
| /* We may want to free the maximum amount of pools if the proxy is stopping */ |
| if (fe && unlikely(fe->state == PR_STSTOPPED)) { |
| pool_flush2(pool2_buffer); |
| pool_flush2(pool2_channel); |
| pool_flush2(pool2_hdr_idx); |
| pool_flush2(pool2_requri); |
| pool_flush2(pool2_capture); |
| pool_flush2(pool2_session); |
| pool_flush2(fe->req_cap_pool); |
| pool_flush2(fe->rsp_cap_pool); |
| } |
| } |
| |
| |
| /* perform minimal intializations, report 0 in case of error, 1 if OK. */ |
| int init_session() |
| { |
| LIST_INIT(&sessions); |
| pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED); |
| return pool2_session != NULL; |
| } |
| |
| void session_process_counters(struct session *s) |
| { |
| unsigned long long bytes; |
| |
| if (s->req) { |
| bytes = s->req->total - s->logs.bytes_in; |
| s->logs.bytes_in = s->req->total; |
| if (bytes) { |
| s->fe->fe_counters.bytes_in += bytes; |
| |
| s->be->be_counters.bytes_in += bytes; |
| |
| if (target_srv(&s->target)) |
| target_srv(&s->target)->counters.bytes_in += bytes; |
| |
| if (s->listener->counters) |
| s->listener->counters->bytes_in += bytes; |
| |
| if (s->stkctr2_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, |
| s->stkctr2_entry, |
| STKTABLE_DT_BYTES_IN_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, bytes_in_cnt) += bytes; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, |
| s->stkctr2_entry, |
| STKTABLE_DT_BYTES_IN_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), |
| s->stkctr2_table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); |
| } |
| |
| if (s->stkctr1_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, |
| s->stkctr1_entry, |
| STKTABLE_DT_BYTES_IN_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, bytes_in_cnt) += bytes; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, |
| s->stkctr1_entry, |
| STKTABLE_DT_BYTES_IN_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), |
| s->stkctr1_table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); |
| } |
| } |
| } |
| |
| if (s->rep) { |
| bytes = s->rep->total - s->logs.bytes_out; |
| s->logs.bytes_out = s->rep->total; |
| if (bytes) { |
| s->fe->fe_counters.bytes_out += bytes; |
| |
| s->be->be_counters.bytes_out += bytes; |
| |
| if (target_srv(&s->target)) |
| target_srv(&s->target)->counters.bytes_out += bytes; |
| |
| if (s->listener->counters) |
| s->listener->counters->bytes_out += bytes; |
| |
| if (s->stkctr2_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, |
| s->stkctr2_entry, |
| STKTABLE_DT_BYTES_OUT_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, bytes_out_cnt) += bytes; |
| |
| ptr = stktable_data_ptr(s->stkctr2_table, |
| s->stkctr2_entry, |
| STKTABLE_DT_BYTES_OUT_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), |
| s->stkctr2_table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); |
| } |
| |
| if (s->stkctr1_entry) { |
| void *ptr; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, |
| s->stkctr1_entry, |
| STKTABLE_DT_BYTES_OUT_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, bytes_out_cnt) += bytes; |
| |
| ptr = stktable_data_ptr(s->stkctr1_table, |
| s->stkctr1_entry, |
| STKTABLE_DT_BYTES_OUT_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), |
| s->stkctr1_table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); |
| } |
| } |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_CON) meaning that a |
| * connection was attempted and that the file descriptor is already allocated. |
| * We must check for establishment, error and abort. Possible output states |
| * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and |
| * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER, |
| * otherwise 1. |
| */ |
| static int sess_update_st_con_tcp(struct session *s, struct stream_interface *si) |
| { |
| struct channel *req = si->ob; |
| struct channel *rep = si->ib; |
| |
| /* If we got an error, or if nothing happened and the connection timed |
| * out, we must give up. The CER state handler will take care of retry |
| * attempts and error reports. |
| */ |
| if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) { |
| si->exp = TICK_ETERNITY; |
| si->state = SI_ST_CER; |
| fd_delete(si_fd(si)); |
| |
| conn_xprt_close(si->conn); |
| if (si->release) |
| si->release(si); |
| |
| if (si->err_type) |
| return 0; |
| |
| si->err_loc = target_srv(&s->target); |
| if (si->flags & SI_FL_ERR) |
| si->err_type = SI_ET_CONN_ERR; |
| else |
| si->err_type = SI_ET_CONN_TO; |
| return 0; |
| } |
| |
| /* OK, maybe we want to abort */ |
| if (unlikely((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */ |
| ((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) || |
| s->be->options & PR_O_ABRT_CLOSE)))) { |
| /* give up */ |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| si->err_loc = target_srv(&s->target); |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 1; |
| } |
| |
| /* we need to wait a bit more if there was no activity either */ |
| if (!(req->flags & CF_WRITE_ACTIVITY)) |
| return 1; |
| |
| /* OK, this means that a connection succeeded. The caller will be |
| * responsible for handling the transition from CON to EST. |
| */ |
| s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->exp = TICK_ETERNITY; |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| si->err_loc = NULL; |
| return 1; |
| } |
| |
| /* This function is called with (si->state == SI_ST_CER) meaning that a |
| * previous connection attempt has failed and that the file descriptor |
| * has already been released. Possible causes include asynchronous error |
| * notification and time out. Possible output states are SI_ST_CLO when |
| * retries are exhausted, SI_ST_TAR when a delay is wanted before a new |
| * connection attempt, SI_ST_ASS when it's wise to retry on the same server, |
| * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are |
| * marked as in error state. It returns 0. |
| */ |
| static int sess_update_st_cer(struct session *s, struct stream_interface *si) |
| { |
| /* we probably have to release last session from the server */ |
| if (target_srv(&s->target)) { |
| health_adjust(target_srv(&s->target), HANA_STATUS_L4_ERR); |
| |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| target_srv(&s->target)->cur_sess--; |
| } |
| } |
| |
| /* ensure that we have enough retries left */ |
| si->conn_retries--; |
| if (si->conn_retries < 0) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_ERR; |
| si->err_loc = target_srv(&s->target); |
| } |
| |
| if (target_srv(&s->target)) |
| target_srv(&s->target)->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(target_srv(&s->target), s->be)) |
| process_srv_queue(target_srv(&s->target)); |
| |
| /* shutw is enough so stop a connecting socket */ |
| si_shutw(si); |
| si->ob->flags |= CF_WRITE_ERROR; |
| si->ib->flags |= CF_READ_ERROR; |
| |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 0; |
| } |
| |
| /* If the "redispatch" option is set on the backend, we are allowed to |
| * retry on another server for the last retry. In order to achieve this, |
| * we must mark the session unassigned, and eventually clear the DIRECT |
| * bit to ignore any persistence cookie. We won't count a retry nor a |
| * redispatch yet, because this will depend on what server is selected. |
| */ |
| if (target_srv(&s->target) && si->conn_retries == 0 && |
| s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) { |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(target_srv(&s->target), s->be)) |
| process_srv_queue(target_srv(&s->target)); |
| |
| s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); |
| si->state = SI_ST_REQ; |
| } else { |
| if (target_srv(&s->target)) |
| target_srv(&s->target)->counters.retries++; |
| s->be->be_counters.retries++; |
| si->state = SI_ST_ASS; |
| } |
| |
| if (si->flags & SI_FL_ERR) { |
| /* The error was an asynchronous connection error, and we will |
| * likely have to retry connecting to the same server, most |
| * likely leading to the same result. To avoid this, we wait |
| * one second before retrying. |
| */ |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| |
| si->state = SI_ST_TAR; |
| si->exp = tick_add(now_ms, MS_TO_TICKS(1000)); |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function handles the transition between the SI_ST_CON state and the |
| * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or |
| * SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined. |
| */ |
| static void sess_establish(struct session *s, struct stream_interface *si) |
| { |
| struct channel *req = si->ob; |
| struct channel *rep = si->ib; |
| |
| if (target_srv(&s->target)) |
| health_adjust(target_srv(&s->target), HANA_STATUS_L4_OK); |
| |
| if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. */ |
| if (s->fe->to_log && !(s->logs.logwait & LW_BYTES)) { |
| s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ |
| s->do_log(s); |
| } |
| } |
| else { |
| s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE; |
| /* reset hdr_idx which was already initialized by the request. |
| * right now, the http parser does it. |
| * hdr_idx_init(&s->txn.hdr_idx); |
| */ |
| } |
| |
| rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana; |
| rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ |
| if (si_ctrl(si)) { |
| /* real connections have timeouts */ |
| req->wto = s->be->timeout.server; |
| rep->rto = s->be->timeout.server; |
| } |
| req->wex = TICK_ETERNITY; |
| } |
| |
| /* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR. |
| * Other input states are simply ignored. |
| * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON. |
| * Flags must have previously been updated for timeouts and other conditions. |
| */ |
| static void sess_update_stream_int(struct session *s, struct stream_interface *si) |
| { |
| struct server *srv = target_srv(&s->target); |
| |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state); |
| |
| if (si->state == SI_ST_ASS) { |
| /* Server assigned to connection request, we have to try to connect now */ |
| int conn_err; |
| |
| conn_err = connect_server(s); |
| srv = target_srv(&s->target); |
| |
| if (conn_err == SN_ERR_NONE) { |
| /* state = SI_ST_CON now */ |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| return; |
| } |
| |
| /* We have received a synchronous error. We might have to |
| * abort, retry immediately or redispatch. |
| */ |
| if (conn_err == SN_ERR_INTERNAL) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_OTHER; |
| si->err_loc = srv; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| |
| /* release other sessions waiting for this server */ |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| |
| /* Failed and not retryable. */ |
| si_shutr(si); |
| si_shutw(si); |
| si->ob->flags |= CF_WRITE_ERROR; |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* no session was ever accounted for this server */ |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* We are facing a retryable error, but we don't want to run a |
| * turn-around now, as the problem is likely a source port |
| * allocation problem, so we want to retry now. |
| */ |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_ERR; |
| sess_update_st_cer(s, si); |
| /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ |
| return; |
| } |
| else if (si->state == SI_ST_QUE) { |
| /* connection request was queued, check for any update */ |
| if (!s->pend_pos) { |
| /* The connection is not in the queue anymore. Either |
| * we have a server connection slot available and we |
| * go directly to the assigned state, or we need to |
| * load-balance first and go to the INI state. |
| */ |
| si->exp = TICK_ETERNITY; |
| if (unlikely(!(s->flags & SN_ASSIGNED))) |
| si->state = SI_ST_REQ; |
| else { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| return; |
| } |
| |
| /* Connection request still in queue... */ |
| if (si->flags & SI_FL_EXP) { |
| /* ... and timeout expired */ |
| si->exp = TICK_ETERNITY; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| if (srv) |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| si_shutr(si); |
| si_shutw(si); |
| si->ob->flags |= CF_WRITE_TIMEOUT; |
| if (!si->err_type) |
| si->err_type = SI_ET_QUEUE_TO; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Connection remains in queue, check if we have to abort it */ |
| if ((si->ob->flags & (CF_READ_ERROR)) || |
| ((si->ob->flags & CF_SHUTW_NOW) && /* empty and client aborted */ |
| (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) { |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si_shutr(si); |
| si_shutw(si); |
| si->err_type |= SI_ET_QUEUE_ABRT; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Nothing changed */ |
| return; |
| } |
| else if (si->state == SI_ST_TAR) { |
| /* Connection request might be aborted */ |
| if ((si->ob->flags & (CF_READ_ERROR)) || |
| ((si->ob->flags & CF_SHUTW_NOW) && /* empty and client aborted */ |
| (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) { |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| si_shutr(si); |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| if (!(si->flags & SI_FL_EXP)) |
| return; /* still in turn-around */ |
| |
| si->exp = TICK_ETERNITY; |
| |
| /* we keep trying on the same server as long as the session is |
| * marked "assigned". |
| * FIXME: Should we force a redispatch attempt when the server is down ? |
| */ |
| if (s->flags & SN_ASSIGNED) |
| si->state = SI_ST_ASS; |
| else |
| si->state = SI_ST_REQ; |
| return; |
| } |
| } |
| |
| /* Set correct session termination flags in case no analyser has done it. It |
| * also counts a failed request if the server state has not reached the request |
| * stage. |
| */ |
| static void sess_set_term_flags(struct session *s) |
| { |
| if (!(s->flags & SN_FINST_MASK)) { |
| if (s->si[1].state < SI_ST_REQ) { |
| |
| s->fe->fe_counters.failed_req++; |
| if (s->listener->counters) |
| s->listener->counters->failed_req++; |
| |
| s->flags |= SN_FINST_R; |
| } |
| else if (s->si[1].state == SI_ST_QUE) |
| s->flags |= SN_FINST_Q; |
| else if (s->si[1].state < SI_ST_EST) |
| s->flags |= SN_FINST_C; |
| else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) |
| s->flags |= SN_FINST_D; |
| else |
| s->flags |= SN_FINST_L; |
| } |
| } |
| |
| /* This function initiates a server connection request on a stream interface |
| * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS, |
| * indicating that a server has been assigned. It may also return SI_ST_QUE, |
| * or SI_ST_CLO upon error. |
| */ |
| static void sess_prepare_conn_req(struct session *s, struct stream_interface *si) |
| { |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state); |
| |
| if (si->state != SI_ST_REQ) |
| return; |
| |
| /* Try to assign a server */ |
| if (srv_redispatch_connect(s) != 0) { |
| /* We did not get a server. Either we queued the |
| * connection request, or we encountered an error. |
| */ |
| if (si->state == SI_ST_QUE) |
| return; |
| |
| /* we did not get any server, let's check the cause */ |
| si_shutr(si); |
| si_shutw(si); |
| si->ob->flags |= CF_WRITE_ERROR; |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_OTHER; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* The server is assigned */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| |
| /* This stream analyser checks the switching rules and changes the backend |
| * if appropriate. The default_backend rule is also considered, then the |
| * target backend's forced persistence rules are also evaluated last if any. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request. |
| */ |
| static int process_switching_rules(struct session *s, struct channel *req, int an_bit) |
| { |
| struct persist_rule *prst_rule; |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| /* now check whether we have some switching rules for this request */ |
| if (!(s->flags & SN_BE_ASSIGNED)) { |
| struct switching_rule *rule; |
| |
| list_for_each_entry(rule, &s->fe->switching_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| if (!session_set_backend(s, rule->be.backend)) |
| goto sw_failed; |
| break; |
| } |
| } |
| |
| /* To ensure correct connection accounting on the backend, we |
| * have to assign one if it was not set (eg: a listen). This |
| * measure also takes care of correctly setting the default |
| * backend if any. |
| */ |
| if (!(s->flags & SN_BE_ASSIGNED)) |
| if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be)) |
| goto sw_failed; |
| } |
| |
| /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ |
| if (s->fe == s->be) { |
| s->req->analysers &= ~AN_REQ_INSPECT_BE; |
| s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE; |
| } |
| |
| /* as soon as we know the backend, we must check if we have a matching forced or ignored |
| * persistence rule, and report that in the session. |
| */ |
| list_for_each_entry(prst_rule, &s->be->persist_rules, list) { |
| int ret = 1; |
| |
| if (prst_rule->cond) { |
| ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (prst_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| if (prst_rule->type == PERSIST_TYPE_FORCE) { |
| s->flags |= SN_FORCE_PRST; |
| } else { |
| s->flags |= SN_IGNORE_PRST; |
| } |
| break; |
| } |
| } |
| |
| return 1; |
| |
| sw_failed: |
| /* immediately abort this request in case of allocation failure */ |
| channel_abort(s->req); |
| channel_abort(s->rep); |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_RESOURCE; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_R; |
| |
| s->txn.status = 500; |
| s->req->analysers = 0; |
| s->req->analyse_exp = TICK_ETERNITY; |
| return 0; |
| } |
| |
| /* This stream analyser works on a request. It applies all use-server rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_server_rules(struct session *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct server_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i + req->buf->o, |
| req->analysers); |
| |
| if (!(s->flags & SN_ASSIGNED)) { |
| list_for_each_entry(rule, &px->server_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| struct server *srv = rule->srv.ptr; |
| |
| if ((srv->state & SRV_RUNNING) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SN_FORCE_PRST)) { |
| s->flags |= SN_DIRECT | SN_ASSIGNED; |
| set_target_server(&s->target, srv); |
| break; |
| } |
| /* if the server is not UP, let's go on with next rules |
| * just in case another one is suited. |
| */ |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a request. It applies all sticking rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_sticking_rules(struct session *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct sticking_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| list_for_each_entry(rule, &px->sticking_rules, list) { |
| int ret = 1 ; |
| int i; |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| if (i != s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr); |
| if (!key) |
| continue; |
| |
| if (rule->flags & STK_IS_MATCH) { |
| struct stksess *ts; |
| |
| if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { |
| if (!(s->flags & SN_ASSIGNED)) { |
| struct eb32_node *node; |
| void *ptr; |
| |
| /* srv found in table */ |
| ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID); |
| node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); |
| if (node) { |
| struct server *srv; |
| |
| srv = container_of(node, struct server, conf.id); |
| if ((srv->state & SRV_RUNNING) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SN_FORCE_PRST)) { |
| s->flags |= SN_DIRECT | SN_ASSIGNED; |
| set_target_server(&s->target, srv); |
| } |
| } |
| } |
| stktable_touch(rule->table.t, ts, 1); |
| } |
| } |
| if (rule->flags & STK_IS_STORE) { |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a response. It applies all store rules on it |
| * then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_store_rules(struct session *s, struct channel *rep, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct sticking_rule *rule; |
| int i; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| rep->buf->i, |
| rep->analysers); |
| |
| list_for_each_entry(rule, &px->storersp_rules, list) { |
| int ret = 1 ; |
| int storereqidx = -1; |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) { |
| if (!(s->store[i].flags)) |
| storereqidx = i; |
| break; |
| } |
| } |
| |
| if ((i != s->store_count) && (storereqidx == -1)) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr); |
| if (!key) |
| continue; |
| |
| if (storereqidx != -1) { |
| stksess_setkey(s->store[storereqidx].table, s->store[storereqidx].ts, key); |
| s->store[storereqidx].flags = 1; |
| } |
| else if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count].flags = 1; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| |
| /* process store request and store response */ |
| for (i = 0; i < s->store_count; i++) { |
| struct stksess *ts; |
| void *ptr; |
| |
| if (target_srv(&s->target) && target_srv(&s->target)->state & SRV_NON_STICK) { |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| continue; |
| } |
| |
| ts = stktable_lookup(s->store[i].table, s->store[i].ts); |
| if (ts) { |
| /* the entry already existed, we can free ours */ |
| stktable_touch(s->store[i].table, ts, 1); |
| stksess_free(s->store[i].table, s->store[i].ts); |
| } |
| else |
| ts = stktable_store(s->store[i].table, s->store[i].ts, 1); |
| |
| s->store[i].ts = NULL; |
| ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); |
| stktable_data_cast(ptr, server_id) = target_srv(&s->target)->puid; |
| } |
| s->store_count = 0; /* everything is stored */ |
| |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This macro is very specific to the function below. See the comments in |
| * process_session() below to understand the logic and the tests. |
| */ |
| #define UPDATE_ANALYSERS(real, list, back, flag) { \ |
| list = (((list) & ~(flag)) | ~(back)) & (real); \ |
| back = real; \ |
| if (!(list)) \ |
| break; \ |
| if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ |
| continue; \ |
| } |
| |
| /* Processes the client, server, request and response jobs of a session task, |
| * then puts it back to the wait queue in a clean state, or cleans up its |
| * resources if it must be deleted. Returns in <next> the date the task wants |
| * to be woken up, or TICK_ETERNITY. In order not to call all functions for |
| * nothing too many times, the request and response buffers flags are monitored |
| * and each function is called only if at least another function has changed at |
| * least one flag it is interested in. |
| */ |
| struct task *process_session(struct task *t) |
| { |
| struct server *srv; |
| struct session *s = t->context; |
| unsigned int rqf_last, rpf_last; |
| unsigned int rq_prod_last, rq_cons_last; |
| unsigned int rp_cons_last, rp_prod_last; |
| unsigned int req_ana_back; |
| |
| //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, |
| // s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags); |
| |
| /* this data may be no longer valid, clear it */ |
| memset(&s->txn.auth, 0, sizeof(s->txn.auth)); |
| |
| /* This flag must explicitly be set every time */ |
| s->req->flags &= ~CF_READ_NOEXP; |
| |
| /* Keep a copy of req/rep flags so that we can detect shutdowns */ |
| rqf_last = s->req->flags & ~CF_MASK_ANALYSER; |
| rpf_last = s->rep->flags & ~CF_MASK_ANALYSER; |
| |
| /* we don't want the stream interface functions to recursively wake us up */ |
| if (s->req->prod->owner == t) |
| s->req->prod->flags |= SI_FL_DONT_WAKE; |
| if (s->req->cons->owner == t) |
| s->req->cons->flags |= SI_FL_DONT_WAKE; |
| |
| /* 1a: Check for low level timeouts if needed. We just set a flag on |
| * stream interfaces when their timeouts have expired. |
| */ |
| if (unlikely(t->state & TASK_WOKEN_TIMER)) { |
| stream_int_check_timeouts(&s->si[0]); |
| stream_int_check_timeouts(&s->si[1]); |
| |
| /* check channel timeouts, and close the corresponding stream interfaces |
| * for future reads or writes. Note: this will also concern upper layers |
| * but we do not touch any other flag. We must be careful and correctly |
| * detect state changes when calling them. |
| */ |
| |
| channel_check_timeouts(s->req); |
| |
| if (unlikely((s->req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| s->req->cons->flags |= SI_FL_NOLINGER; |
| si_shutw(s->req->cons); |
| } |
| |
| if (unlikely((s->req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (s->req->prod->flags & SI_FL_NOHALF) |
| s->req->prod->flags |= SI_FL_NOLINGER; |
| si_shutr(s->req->prod); |
| } |
| |
| channel_check_timeouts(s->rep); |
| |
| if (unlikely((s->rep->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| s->rep->cons->flags |= SI_FL_NOLINGER; |
| si_shutw(s->rep->cons); |
| } |
| |
| if (unlikely((s->rep->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (s->rep->prod->flags & SI_FL_NOHALF) |
| s->rep->prod->flags |= SI_FL_NOLINGER; |
| si_shutr(s->rep->prod); |
| } |
| } |
| |
| /* 1b: check for low-level errors reported at the stream interface. |
| * First we check if it's a retryable error (in which case we don't |
| * want to tell the buffer). Otherwise we report the error one level |
| * upper by setting flags into the buffers. Note that the side towards |
| * the client cannot have connect (hence retryable) errors. Also, the |
| * connection setup code must be able to deal with any type of abort. |
| */ |
| srv = target_srv(&s->target); |
| if (unlikely(s->si[0].flags & SI_FL_ERR)) { |
| if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) { |
| si_shutr(&s->si[0]); |
| si_shutw(&s->si[0]); |
| stream_int_report_error(&s->si[0]); |
| if (!(s->req->analysers) && !(s->rep->analysers)) { |
| s->be->be_counters.cli_aborts++; |
| s->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_CLICL; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_D; |
| } |
| } |
| } |
| |
| if (unlikely(s->si[1].flags & SI_FL_ERR)) { |
| if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) { |
| si_shutr(&s->si[1]); |
| si_shutw(&s->si[1]); |
| stream_int_report_error(&s->si[1]); |
| s->be->be_counters.failed_resp++; |
| if (srv) |
| srv->counters.failed_resp++; |
| if (!(s->req->analysers) && !(s->rep->analysers)) { |
| s->be->be_counters.srv_aborts++; |
| s->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_SRVCL; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_D; |
| } |
| } |
| /* note: maybe we should process connection errors here ? */ |
| } |
| |
| if (s->si[1].state == SI_ST_CON) { |
| /* we were trying to establish a connection on the server side, |
| * maybe it succeeded, maybe it failed, maybe we timed out, ... |
| */ |
| if (unlikely(!sess_update_st_con_tcp(s, &s->si[1]))) |
| sess_update_st_cer(s, &s->si[1]); |
| else if (s->si[1].state == SI_ST_EST) |
| sess_establish(s, &s->si[1]); |
| |
| /* state is now one of SI_ST_CON (still in progress), SI_ST_EST |
| * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), |
| * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. |
| */ |
| } |
| |
| rq_prod_last = s->si[0].state; |
| rq_cons_last = s->si[1].state; |
| rp_cons_last = s->si[0].state; |
| rp_prod_last = s->si[1].state; |
| |
| resync_stream_interface: |
| /* Check for connection closure */ |
| |
| DPRINTF(stderr, |
| "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", |
| now_ms, __FUNCTION__, __LINE__, |
| t, |
| s, s->flags, |
| s->req, s->rep, |
| s->req->rex, s->rep->wex, |
| s->req->flags, s->rep->flags, |
| s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state, |
| s->rep->cons->err_type, s->req->cons->err_type, |
| s->req->cons->conn_retries); |
| |
| /* nothing special to be done on client side */ |
| if (unlikely(s->req->prod->state == SI_ST_DIS)) |
| s->req->prod->state = SI_ST_CLO; |
| |
| /* When a server-side connection is released, we have to count it and |
| * check for pending connections on this server. |
| */ |
| if (unlikely(s->req->cons->state == SI_ST_DIS)) { |
| s->req->cons->state = SI_ST_CLO; |
| srv = target_srv(&s->target); |
| if (srv) { |
| if (s->flags & SN_CURR_SESS) { |
| s->flags &= ~SN_CURR_SESS; |
| srv->cur_sess--; |
| } |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| } |
| } |
| |
| /* |
| * Note: of the transient states (REQ, CER, DIS), only REQ may remain |
| * at this point. |
| */ |
| |
| resync_request: |
| /* Analyse request */ |
| if (((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER) || |
| ((s->req->flags ^ rqf_last) & CF_MASK_STATIC) || |
| s->si[0].state != rq_prod_last || |
| s->si[1].state != rq_cons_last) { |
| unsigned int flags = s->req->flags; |
| |
| if (s->req->prod->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop new connections, |
| * disable reading or closing. Note: if an analyser |
| * disables any of these bits, it is responsible for |
| * enabling them again when it disables itself, so |
| * that other analysers are called in similar conditions. |
| */ |
| channel_auto_read(s->req); |
| channel_auto_connect(s->req); |
| channel_auto_close(s->req); |
| |
| /* We will call all analysers for which a bit is set in |
| * s->req->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the session. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| * |
| * We build a list of analysers to run. We evaluate all |
| * of these analysers in the order of the lower bit to |
| * the higher bit. This ordering is very important. |
| * An analyser will often add/remove other analysers, |
| * including itself. Any changes to itself have no effect |
| * on the loop. If it removes any other analysers, we |
| * want those analysers not to be called anymore during |
| * this loop. If it adds an analyser that is located |
| * after itself, we want it to be scheduled for being |
| * processed during the loop. If it adds an analyser |
| * which is located before it, we want it to switch to |
| * it immediately, even if it has already been called |
| * once but removed since. |
| * |
| * In order to achieve this, we compare the analyser |
| * list after the call with a copy of it before the |
| * call. The work list is fed with analyser bits that |
| * appeared during the call. Then we compare previous |
| * work list with the new one, and check the bits that |
| * appeared. If the lowest of these bits is lower than |
| * the current bit, it means we have enabled a previous |
| * analyser and must immediately loop again. |
| */ |
| |
| ana_list = ana_back = s->req->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| |
| if (ana_list & AN_REQ_INSPECT_FE) { |
| if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_FE)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_FE); |
| } |
| |
| if (ana_list & AN_REQ_WAIT_HTTP) { |
| if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_FE) { |
| if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE); |
| } |
| |
| if (ana_list & AN_REQ_SWITCHING_RULES) { |
| if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES); |
| } |
| |
| if (ana_list & AN_REQ_INSPECT_BE) { |
| if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_BE)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_BE); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_BE) { |
| if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_TARPIT) { |
| if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT); |
| } |
| |
| if (ana_list & AN_REQ_SRV_RULES) { |
| if (!process_server_rules(s, s->req, AN_REQ_SRV_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SRV_RULES); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_INNER) { |
| if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_BODY) { |
| if (!http_process_request_body(s, s->req, AN_REQ_HTTP_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY); |
| } |
| |
| if (ana_list & AN_REQ_PRST_RDP_COOKIE) { |
| if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); |
| } |
| |
| if (ana_list & AN_REQ_STICKING_RULES) { |
| if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_XFER_BODY) { |
| if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); |
| } |
| break; |
| } |
| } |
| |
| rq_prod_last = s->si[0].state; |
| rq_cons_last = s->si[1].state; |
| s->req->flags &= ~CF_WAKE_ONCE; |
| rqf_last = s->req->flags; |
| |
| if ((s->req->flags ^ flags) & CF_MASK_STATIC) |
| goto resync_request; |
| } |
| |
| /* we'll monitor the request analysers while parsing the response, |
| * because some response analysers may indirectly enable new request |
| * analysers (eg: HTTP keep-alive). |
| */ |
| req_ana_back = s->req->analysers; |
| |
| resync_response: |
| /* Analyse response */ |
| |
| if (unlikely(s->rep->flags & CF_HIJACK)) { |
| /* In inject mode, we wake up everytime something has |
| * happened on the write side of the buffer. |
| */ |
| unsigned int flags = s->rep->flags; |
| |
| if ((s->rep->flags & (CF_WRITE_PARTIAL|CF_WRITE_ERROR|CF_SHUTW)) && |
| !channel_full(s->rep)) { |
| s->rep->hijacker(s, s->rep); |
| } |
| |
| if ((s->rep->flags ^ flags) & CF_MASK_STATIC) { |
| rpf_last = s->rep->flags; |
| goto resync_response; |
| } |
| } |
| else if (((s->rep->flags & ~rpf_last) & CF_MASK_ANALYSER) || |
| (s->rep->flags ^ rpf_last) & CF_MASK_STATIC || |
| s->si[0].state != rp_cons_last || |
| s->si[1].state != rp_prod_last) { |
| unsigned int flags = s->rep->flags; |
| |
| if ((s->rep->flags & CF_MASK_ANALYSER) && |
| (s->rep->analysers & AN_REQ_WAIT_HTTP)) { |
| /* Due to HTTP pipelining, the HTTP request analyser might be waiting |
| * for some free space in the response buffer, so we might need to call |
| * it when something changes in the response buffer, but still we pass |
| * it the request buffer. Note that the SI state might very well still |
| * be zero due to us returning a flow of redirects! |
| */ |
| s->rep->analysers &= ~AN_REQ_WAIT_HTTP; |
| s->req->flags |= CF_WAKE_ONCE; |
| } |
| |
| if (s->rep->prod->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop disable reading or |
| * closing. Note: if an analyser disables any of these |
| * bits, it is responsible for enabling them again when |
| * it disables itself, so that other analysers are called |
| * in similar conditions. |
| */ |
| channel_auto_read(s->rep); |
| channel_auto_close(s->rep); |
| |
| /* We will call all analysers for which a bit is set in |
| * s->rep->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the session. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| */ |
| |
| ana_list = ana_back = s->rep->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| |
| if (ana_list & AN_RES_INSPECT) { |
| if (!tcp_inspect_response(s, s->rep, AN_RES_INSPECT)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_INSPECT); |
| } |
| |
| if (ana_list & AN_RES_WAIT_HTTP) { |
| if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_RES_STORE_RULES) { |
| if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES); |
| } |
| |
| if (ana_list & AN_RES_HTTP_PROCESS_BE) { |
| if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_RES_HTTP_XFER_BODY) { |
| if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); |
| } |
| break; |
| } |
| } |
| |
| rp_cons_last = s->si[0].state; |
| rp_prod_last = s->si[1].state; |
| rpf_last = s->rep->flags; |
| |
| if ((s->rep->flags ^ flags) & CF_MASK_STATIC) |
| goto resync_response; |
| } |
| |
| /* maybe someone has added some request analysers, so we must check and loop */ |
| if (s->req->analysers & ~req_ana_back) |
| goto resync_request; |
| |
| if ((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* FIXME: here we should call protocol handlers which rely on |
| * both buffers. |
| */ |
| |
| |
| /* |
| * Now we propagate unhandled errors to the session. Normally |
| * we're just in a data phase here since it means we have not |
| * seen any analyser who could set an error status. |
| */ |
| srv = target_srv(&s->target); |
| if (unlikely(!(s->flags & SN_ERR_MASK))) { |
| if (s->req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the client got an error or a read timeout expired */ |
| s->req->analysers = 0; |
| if (s->req->flags & CF_READ_ERROR) { |
| s->be->be_counters.cli_aborts++; |
| s->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SN_ERR_CLICL; |
| } |
| else if (s->req->flags & CF_READ_TIMEOUT) { |
| s->be->be_counters.cli_aborts++; |
| s->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SN_ERR_CLITO; |
| } |
| else if (s->req->flags & CF_WRITE_ERROR) { |
| s->be->be_counters.srv_aborts++; |
| s->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SN_ERR_SRVCL; |
| } |
| else { |
| s->be->be_counters.srv_aborts++; |
| s->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SN_ERR_SRVTO; |
| } |
| sess_set_term_flags(s); |
| } |
| else if (s->rep->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the server got an error or a read timeout expired */ |
| s->rep->analysers = 0; |
| if (s->rep->flags & CF_READ_ERROR) { |
| s->be->be_counters.srv_aborts++; |
| s->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SN_ERR_SRVCL; |
| } |
| else if (s->rep->flags & CF_READ_TIMEOUT) { |
| s->be->be_counters.srv_aborts++; |
| s->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SN_ERR_SRVTO; |
| } |
| else if (s->rep->flags & CF_WRITE_ERROR) { |
| s->be->be_counters.cli_aborts++; |
| s->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SN_ERR_CLICL; |
| } |
| else { |
| s->be->be_counters.cli_aborts++; |
| s->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SN_ERR_CLITO; |
| } |
| sess_set_term_flags(s); |
| } |
| } |
| |
| /* |
| * Here we take care of forwarding unhandled data. This also includes |
| * connection establishments and shutdown requests. |
| */ |
| |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (!s->req->analysers && |
| !(s->req->flags & (CF_HIJACK|CF_SHUTW|CF_SHUTR_NOW)) && |
| (s->req->prod->state >= SI_ST_EST) && |
| (s->req->to_forward != CHN_INFINITE_FORWARD)) { |
| /* This buffer is freewheeling, there's no analyser nor hijacker |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(s->req); |
| channel_auto_connect(s->req); |
| channel_auto_close(s->req); |
| buffer_flush(s->req->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer (which might possibly not be connected yet). |
| */ |
| if (!(s->req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward(s->req, CHN_INFINITE_FORWARD); |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward request data */ |
| if (!(s->req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| s->req->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (s->si[0].conn->xprt && s->si[0].conn->xprt->rcv_pipe && s->si[0].conn->xprt->snd_pipe) && |
| (s->si[1].conn->xprt && s->si[1].conn->xprt->rcv_pipe && s->si[1].conn->xprt->snd_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (s->req->flags & CF_STREAMER_FAST)))) { |
| s->req->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rqf_last = s->req->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* first, let's check if the request buffer needs to shutdown(write), which may |
| * happen either because the input is closed or because we want to force a close |
| * once the server has begun to respond. |
| */ |
| if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) |
| channel_shutw_now(s->req); |
| |
| /* shutdown(write) pending */ |
| if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(s->req))) |
| si_shutw(s->req->cons); |
| |
| /* shutdown(write) done on server side, we must stop the client too */ |
| if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && |
| !s->req->analysers)) |
| channel_shutr_now(s->req); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((s->req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (s->req->prod->flags & SI_FL_NOHALF) |
| s->req->prod->flags |= SI_FL_NOLINGER; |
| si_shutr(s->req->prod); |
| } |
| |
| /* it's possible that an upper layer has requested a connection setup or abort. |
| * There are 2 situations where we decide to establish a new connection : |
| * - there are data scheduled for emission in the buffer |
| * - the CF_AUTO_CONNECT flag is set (active connection) |
| */ |
| if (s->req->cons->state == SI_ST_INI) { |
| if (!(s->req->flags & CF_SHUTW)) { |
| if ((s->req->flags & CF_AUTO_CONNECT) || !channel_is_empty(s->req)) { |
| /* If we have an applet without a connect method, we immediately |
| * switch to the connected state, otherwise we perform a connection |
| * request. |
| */ |
| s->req->cons->state = SI_ST_REQ; /* new connection requested */ |
| s->req->cons->conn_retries = s->be->conn_retries; |
| if (unlikely(s->req->cons->conn->target.type == TARG_TYPE_APPLET && |
| !(si_ctrl(s->req->cons) && si_ctrl(s->req->cons)->connect))) { |
| s->req->cons->state = SI_ST_EST; /* connection established */ |
| s->rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ |
| s->req->wex = TICK_ETERNITY; |
| } |
| } |
| } |
| else { |
| s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */ |
| channel_shutw_now(s->req); /* fix buffer flags upon abort */ |
| channel_shutr_now(s->rep); |
| } |
| } |
| |
| |
| /* we may have a pending connection request, or a connection waiting |
| * for completion. |
| */ |
| if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) { |
| do { |
| /* nb: step 1 might switch from QUE to ASS, but we first want |
| * to give a chance to step 2 to perform a redirect if needed. |
| */ |
| if (s->si[1].state != SI_ST_REQ) |
| sess_update_stream_int(s, &s->si[1]); |
| if (s->si[1].state == SI_ST_REQ) |
| sess_prepare_conn_req(s, &s->si[1]); |
| |
| srv = target_srv(&s->target); |
| if (s->si[1].state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SN_REDIRECTABLE)) |
| perform_http_redirect(s, &s->si[1]); |
| } while (s->si[1].state == SI_ST_ASS); |
| |
| /* Now we can add the server name to a header (if requested) */ |
| /* check for HTTP mode and proxy server_name_hdr_name != NULL */ |
| if ((s->flags & SN_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP) && |
| (s->be->server_id_hdr_name != NULL)) { |
| http_send_name_header(&s->txn, s->be, target_srv(&s->target)->id); |
| } |
| } |
| |
| /* Benchmarks have shown that it's optimal to do a full resync now */ |
| if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| /* otherwise we want to check if we need to resync the req buffer or not */ |
| if ((s->req->flags ^ rqf_last) & CF_MASK_STATIC) |
| goto resync_request; |
| |
| /* perform output updates to the response buffer */ |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (!s->rep->analysers && |
| !(s->rep->flags & (CF_HIJACK|CF_SHUTW|CF_SHUTR_NOW)) && |
| (s->rep->prod->state >= SI_ST_EST) && |
| (s->rep->to_forward != CHN_INFINITE_FORWARD)) { |
| /* This buffer is freewheeling, there's no analyser nor hijacker |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(s->rep); |
| channel_auto_close(s->rep); |
| buffer_flush(s->rep->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| if (!(s->rep->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward(s->rep, CHN_INFINITE_FORWARD); |
| |
| /* if we have no analyser anymore in any direction and have a |
| * tunnel timeout set, use it now. |
| */ |
| if (!s->req->analysers && s->be->timeout.tunnel) { |
| s->req->rto = s->req->wto = s->rep->rto = s->rep->wto = |
| s->be->timeout.tunnel; |
| s->req->rex = s->req->wex = s->rep->rex = s->rep->wex = |
| tick_add(now_ms, s->be->timeout.tunnel); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward response data */ |
| if (!(s->rep->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| s->rep->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (s->si[0].conn->xprt && s->si[0].conn->xprt->rcv_pipe && s->si[0].conn->xprt->snd_pipe) && |
| (s->si[1].conn->xprt && s->si[1].conn->xprt->rcv_pipe && s->si[1].conn->xprt->snd_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || |
| (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (s->rep->flags & CF_STREAMER_FAST)))) { |
| s->rep->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rpf_last = s->rep->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* |
| * FIXME: this is probably where we should produce error responses. |
| */ |
| |
| /* first, let's check if the response buffer needs to shutdown(write) */ |
| if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) |
| channel_shutw_now(s->rep); |
| |
| /* shutdown(write) pending */ |
| if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(s->rep))) |
| si_shutw(s->rep->cons); |
| |
| /* shutdown(write) done on the client side, we must stop the server too */ |
| if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && |
| !s->rep->analysers) |
| channel_shutr_now(s->rep); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((s->rep->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (s->rep->prod->flags & SI_FL_NOHALF) |
| s->rep->prod->flags |= SI_FL_NOLINGER; |
| si_shutr(s->rep->prod); |
| } |
| |
| if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| if (s->req->flags != rqf_last) |
| goto resync_request; |
| |
| if ((s->rep->flags ^ rpf_last) & CF_MASK_STATIC) |
| goto resync_response; |
| |
| /* we're interested in getting wakeups again */ |
| s->req->prod->flags &= ~SI_FL_DONT_WAKE; |
| s->req->cons->flags &= ~SI_FL_DONT_WAKE; |
| |
| /* This is needed only when debugging is enabled, to indicate |
| * client-side or server-side close. Please note that in the unlikely |
| * event where both sides would close at once, the sequence is reported |
| * on the server side first. |
| */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || |
| (global.mode & MODE_VERBOSE)))) { |
| if (s->si[1].state == SI_ST_CLO && |
| s->si[1].prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)si_fd(&s->si[0]), |
| (unsigned short)si_fd(&s->si[1])); |
| if (write(1, trash.str, trash.len) < 0) /* shut gcc warning */; |
| } |
| |
| if (s->si[0].state == SI_ST_CLO && |
| s->si[0].prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)si_fd(&s->si[0]), |
| (unsigned short)si_fd(&s->si[1])); |
| if (write(1, trash.str, trash.len) < 0) /* shut gcc warning */; |
| } |
| } |
| |
| if (likely((s->rep->cons->state != SI_ST_CLO) || |
| (s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) { |
| |
| if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED)) |
| session_process_counters(s); |
| |
| if (s->rep->cons->state == SI_ST_EST && s->rep->cons->conn->target.type != TARG_TYPE_APPLET) |
| si_update(s->rep->cons); |
| |
| if (s->req->cons->state == SI_ST_EST && s->req->cons->conn->target.type != TARG_TYPE_APPLET) |
| si_update(s->req->cons); |
| |
| s->req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); |
| s->rep->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); |
| s->si[0].prev_state = s->si[0].state; |
| s->si[1].prev_state = s->si[1].state; |
| s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| |
| /* Trick: if a request is being waiting for the server to respond, |
| * and if we know the server can timeout, we don't want the timeout |
| * to expire on the client side first, but we're still interested |
| * in passing data from the client to the server (eg: POST). Thus, |
| * we can cancel the client's request timeout if the server's |
| * request timeout is set and the server has not yet sent a response. |
| */ |
| |
| if ((s->rep->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 && |
| (tick_isset(s->req->wex) || tick_isset(s->rep->rex))) { |
| s->req->flags |= CF_READ_NOEXP; |
| s->req->rex = TICK_ETERNITY; |
| } |
| |
| /* Call the stream interfaces' I/O handlers when embedded. |
| * Note that this one may wake the task up again. |
| */ |
| if (s->req->cons->conn->target.type == TARG_TYPE_APPLET || |
| s->rep->cons->conn->target.type == TARG_TYPE_APPLET) { |
| if (s->req->cons->conn->target.type == TARG_TYPE_APPLET) |
| s->req->cons->conn->target.ptr.a->fct(s->req->cons); |
| if (s->rep->cons->conn->target.type == TARG_TYPE_APPLET) |
| s->rep->cons->conn->target.ptr.a->fct(s->rep->cons); |
| if (task_in_rq(t)) { |
| /* If we woke up, we don't want to requeue the |
| * task to the wait queue, but rather requeue |
| * it into the runqueue ASAP. |
| */ |
| t->expire = TICK_ETERNITY; |
| return t; |
| } |
| } |
| |
| t->expire = tick_first(tick_first(s->req->rex, s->req->wex), |
| tick_first(s->rep->rex, s->rep->wex)); |
| if (s->req->analysers) |
| t->expire = tick_first(t->expire, s->req->analyse_exp); |
| |
| if (s->si[0].exp) |
| t->expire = tick_first(t->expire, s->si[0].exp); |
| |
| if (s->si[1].exp) |
| t->expire = tick_first(t->expire, s->si[1].exp); |
| |
| #ifdef DEBUG_FULL |
| fprintf(stderr, |
| "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" |
| " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", |
| now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp, |
| s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state); |
| #endif |
| |
| #ifdef DEBUG_DEV |
| /* this may only happen when no timeout is set or in case of an FSM bug */ |
| if (!tick_isset(t->expire)) |
| ABORT_NOW(); |
| #endif |
| return t; /* nothing more to do */ |
| } |
| |
| s->fe->feconn--; |
| if (s->flags & SN_BE_ASSIGNED) |
| s->be->beconn--; |
| if (!(s->listener->options & LI_O_UNLIMITED)) |
| actconn--; |
| jobs--; |
| s->listener->nbconn--; |
| if (s->listener->state == LI_FULL) |
| resume_listener(s->listener); |
| |
| /* Dequeues all of the listeners waiting for a resource */ |
| if (!LIST_ISEMPTY(&global_listener_queue)) |
| dequeue_all_listeners(&global_listener_queue); |
| |
| if (!LIST_ISEMPTY(&s->fe->listener_queue) && |
| (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0)) |
| dequeue_all_listeners(&s->fe->listener_queue); |
| |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { |
| chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| (unsigned short)si_fd(s->req->prod), (unsigned short)si_fd(s->req->cons)); |
| if (write(1, trash.str, trash.len) < 0) /* shut gcc warning */; |
| } |
| |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| session_process_counters(s); |
| |
| if (s->txn.status) { |
| int n; |
| |
| n = s->txn.status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (s->fe->mode == PR_MODE_HTTP) |
| s->fe->fe_counters.p.http.rsp[n]++; |
| |
| if ((s->flags & SN_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP)) |
| s->be->be_counters.p.http.rsp[n]++; |
| } |
| |
| /* let's do a final log if we need it */ |
| if (s->logs.logwait && |
| !(s->flags & SN_MONITOR) && |
| (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { |
| s->do_log(s); |
| } |
| |
| /* the task MUST not be in the run queue anymore */ |
| session_free(s); |
| task_delete(t); |
| task_free(t); |
| return NULL; |
| } |
| |
| /* |
| * This function adjusts sess->srv_conn and maintains the previous and new |
| * server's served session counts. Setting newsrv to NULL is enough to release |
| * current connection slot. This function also notifies any LB algo which might |
| * expect to be informed about any change in the number of active sessions on a |
| * server. |
| */ |
| void sess_change_server(struct session *sess, struct server *newsrv) |
| { |
| if (sess->srv_conn == newsrv) |
| return; |
| |
| if (sess->srv_conn) { |
| sess->srv_conn->served--; |
| if (sess->srv_conn->proxy->lbprm.server_drop_conn) |
| sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); |
| session_del_srv_conn(sess); |
| } |
| |
| if (newsrv) { |
| newsrv->served++; |
| if (newsrv->proxy->lbprm.server_take_conn) |
| newsrv->proxy->lbprm.server_take_conn(newsrv); |
| session_add_srv_conn(sess, newsrv); |
| } |
| } |
| |
| /* Handle server-side errors for default protocols. It is called whenever a a |
| * connection setup is aborted or a request is aborted in queue. It sets the |
| * session termination flags so that the caller does not have to worry about |
| * them. It's installed as ->srv_error for the server-side stream_interface. |
| */ |
| void default_srv_error(struct session *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| int err = 0, fin = 0; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) { |
| err = SN_ERR_CLICL; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_ABRT) { |
| err = SN_ERR_CLICL; |
| fin = SN_FINST_C; |
| } |
| else if (err_type & SI_ET_QUEUE_TO) { |
| err = SN_ERR_SRVTO; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_QUEUE_ERR) { |
| err = SN_ERR_SRVCL; |
| fin = SN_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_TO) { |
| err = SN_ERR_SRVTO; |
| fin = SN_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_ERR) { |
| err = SN_ERR_SRVCL; |
| fin = SN_FINST_C; |
| } |
| else /* SI_ET_CONN_OTHER and others */ { |
| err = SN_ERR_INTERNAL; |
| fin = SN_FINST_C; |
| } |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= fin; |
| } |
| |
| /* kill a session and set the termination flags to <why> (one of SN_ERR_*) */ |
| void session_shutdown(struct session *session, int why) |
| { |
| if (session->req->flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| return; |
| |
| channel_shutw_now(session->req); |
| channel_shutr_now(session->rep); |
| session->task->nice = 1024; |
| if (!(session->flags & SN_ERR_MASK)) |
| session->flags |= why; |
| task_wakeup(session->task, TASK_WOKEN_OTHER); |
| } |
| |
| /************************************************************************/ |
| /* All supported ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* set temp integer to the General Purpose Counter 0 value in the stksess entry <ts> */ |
| static int |
| acl_fetch_get_gpc0(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_GPC0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, gpc0); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the General Purpose Counter 0 value from the session's tracked |
| * frontend counters. |
| */ |
| static int |
| acl_fetch_sc1_get_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| return acl_fetch_get_gpc0(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the General Purpose Counter 0 value from the session's tracked |
| * backend counters. |
| */ |
| static int |
| acl_fetch_sc2_get_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| return acl_fetch_get_gpc0(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the General Purpose Counter 0 value from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_get_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_get_gpc0(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* Increment the General Purpose Counter 0 value in the stksess entry <ts> and |
| * return it into temp integer. |
| */ |
| static int |
| acl_fetch_inc_gpc0(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_GPC0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = ++stktable_data_cast(ptr, gpc0); |
| } |
| return 1; |
| } |
| |
| /* Increment the General Purpose Counter 0 value from the session's tracked |
| * frontend counters and return it into temp integer. |
| */ |
| static int |
| acl_fetch_sc1_inc_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| return acl_fetch_inc_gpc0(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* Increment the General Purpose Counter 0 value from the session's tracked |
| * backend counters and return it into temp integer. |
| */ |
| static int |
| acl_fetch_sc2_inc_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| return acl_fetch_inc_gpc0(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* Increment the General Purpose Counter 0 value from the session's source |
| * address in the table pointed to by expr, and return it into temp integer. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_inc_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_inc_gpc0(&px->table, smp, stktable_update_key(&px->table, key)); |
| } |
| |
| /* Clear the General Purpose Counter 0 value in the stksess entry <ts> and |
| * return its previous value into temp integer. |
| */ |
| static int |
| acl_fetch_clr_gpc0(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_GPC0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, gpc0); |
| stktable_data_cast(ptr, gpc0) = 0; |
| } |
| return 1; |
| } |
| |
| /* Clear the General Purpose Counter 0 value from the session's tracked |
| * frontend counters and return its previous value into temp integer. |
| */ |
| static int |
| acl_fetch_sc1_clr_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| return acl_fetch_clr_gpc0(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* Clear the General Purpose Counter 0 value from the session's tracked |
| * backend counters and return its previous value into temp integer. |
| */ |
| static int |
| acl_fetch_sc2_clr_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| return acl_fetch_clr_gpc0(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* Clear the General Purpose Counter 0 value from the session's source address |
| * in the table pointed to by expr, and return its previous value into temp integer. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_clr_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_clr_gpc0(&px->table, smp, stktable_update_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the cumulated number of connections in the stksess entry <ts> */ |
| static int |
| acl_fetch_conn_cnt(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_CONN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, conn_cnt); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the cumulated number of connections from the session's tracked FE counters */ |
| static int |
| acl_fetch_sc1_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_conn_cnt(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the cumulated number of connections from the session's tracked BE counters */ |
| static int |
| acl_fetch_sc2_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_conn_cnt(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the cumulated number of connections from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_conn_cnt(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the connection rate in the stksess entry <ts> over the configured period */ |
| static int |
| acl_fetch_conn_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_CONN_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate), |
| table->data_arg[STKTABLE_DT_CONN_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the connection rate from the session's tracked FE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc1_conn_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_conn_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the connection rate from the session's tracked BE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc2_conn_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_conn_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the connection rate from the session's source address in the |
| * table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_conn_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_conn_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the number of connections from the session's source address |
| * in the table pointed to by expr, after updating it. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_updt_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stksess *ts; |
| struct stktable_key *key; |
| void *ptr; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| |
| if ((ts = stktable_update_key(&px->table, key)) == NULL) |
| /* entry does not exist and could not be created */ |
| return 0; |
| |
| ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored in this table */ |
| |
| smp->type = SMP_T_UINT; |
| smp->data.uint = ++stktable_data_cast(ptr, conn_cnt); |
| smp->flags = SMP_F_VOL_TEST; |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections in the stksess entry <ts> */ |
| static int |
| acl_fetch_conn_cur(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_CONN_CUR); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, conn_cur); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections from the session's tracked FE counters */ |
| static int |
| acl_fetch_sc1_conn_cur(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_conn_cur(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the number of concurrent connections from the session's tracked BE counters */ |
| static int |
| acl_fetch_sc2_conn_cur(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_conn_cur(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the number of concurrent connections from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_conn_cur(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_conn_cur(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the cumulated number of sessions in the stksess entry <ts> */ |
| static int |
| acl_fetch_sess_cnt(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_SESS_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, sess_cnt); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked FE counters */ |
| static int |
| acl_fetch_sc1_sess_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_sess_cnt(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked BE counters */ |
| static int |
| acl_fetch_sc2_sess_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_sess_cnt(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the cumulated number of session from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_sess_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_sess_cnt(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the session rate in the stksess entry <ts> over the configured period */ |
| static int |
| acl_fetch_sess_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_SESS_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), |
| table->data_arg[STKTABLE_DT_SESS_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the session rate from the session's tracked FE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc1_sess_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_sess_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's tracked BE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc2_sess_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_sess_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's source address in the |
| * table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_sess_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_sess_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the cumulated number of sessions in the stksess entry <ts> */ |
| static int |
| acl_fetch_http_req_cnt(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_HTTP_REQ_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, http_req_cnt); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked FE counters */ |
| static int |
| acl_fetch_sc1_http_req_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_http_req_cnt(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked BE counters */ |
| static int |
| acl_fetch_sc2_http_req_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_http_req_cnt(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the cumulated number of session from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_http_req_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_http_req_cnt(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the session rate in the stksess entry <ts> over the configured period */ |
| static int |
| acl_fetch_http_req_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_HTTP_REQ_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), |
| table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the session rate from the session's tracked FE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc1_http_req_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_http_req_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's tracked BE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc2_http_req_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_http_req_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's source address in the |
| * table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_http_req_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_http_req_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the cumulated number of sessions in the stksess entry <ts> */ |
| static int |
| acl_fetch_http_err_cnt(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_HTTP_ERR_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, http_err_cnt); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked FE counters */ |
| static int |
| acl_fetch_sc1_http_err_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_http_err_cnt(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the cumulated number of sessions from the session's tracked BE counters */ |
| static int |
| acl_fetch_sc2_http_err_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_http_err_cnt(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the cumulated number of session from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_http_err_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_http_err_cnt(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the session rate in the stksess entry <ts> over the configured period */ |
| static int |
| acl_fetch_http_err_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_HTTP_ERR_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), |
| table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the session rate from the session's tracked FE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc1_http_err_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_http_err_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's tracked BE counters over |
| * the configured period. |
| */ |
| static int |
| acl_fetch_sc2_http_err_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_http_err_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the session rate from the session's source address in the |
| * table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_http_err_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_http_err_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the number of kbytes received from clients matching the stksess entry <ts> */ |
| static int |
| acl_fetch_kbytes_in(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_BYTES_IN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, bytes_in_cnt) >> 10; |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the number of kbytes received from clients according to the |
| * session's tracked FE counters. |
| */ |
| static int |
| acl_fetch_sc1_kbytes_in(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_kbytes_in(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the number of kbytes received from clients according to the |
| * session's tracked BE counters. |
| */ |
| static int |
| acl_fetch_sc2_kbytes_in(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_kbytes_in(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the number of kbytes received from the session's source |
| * address in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_kbytes_in(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_kbytes_in(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the bytes rate from clients in the stksess entry <ts> over the |
| * configured period. |
| */ |
| static int |
| acl_fetch_bytes_in_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_BYTES_IN_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), |
| table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the bytes rate from clients from the session's tracked FE |
| * counters over the configured period. |
| */ |
| static int |
| acl_fetch_sc1_bytes_in_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_bytes_in_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the bytes rate from clients from the session's tracked BE |
| * counters over the configured period. |
| */ |
| static int |
| acl_fetch_sc2_bytes_in_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_bytes_in_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the bytes rate from clients from the session's source address |
| * in the table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_bytes_in_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_bytes_in_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the number of kbytes sent to clients matching the stksess entry <ts> */ |
| static int |
| acl_fetch_kbytes_out(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_BYTES_OUT_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = stktable_data_cast(ptr, bytes_out_cnt) >> 10; |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the number of kbytes sent to clients according to the session's |
| * tracked FE counters. |
| */ |
| static int |
| acl_fetch_sc1_kbytes_out(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_kbytes_out(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the number of kbytes sent to clients according to the session's |
| * tracked BE counters. |
| */ |
| static int |
| acl_fetch_sc2_kbytes_out(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_kbytes_out(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the number of kbytes sent to the session's source address in |
| * the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_kbytes_out(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_kbytes_out(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the bytes rate to clients in the stksess entry <ts> over the |
| * configured period. |
| */ |
| static int |
| acl_fetch_bytes_out_rate(struct stktable *table, struct sample *smp, struct stksess *ts) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = 0; |
| if (ts != NULL) { |
| void *ptr = stktable_data_ptr(table, ts, STKTABLE_DT_BYTES_OUT_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), |
| table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the bytes rate to clients from the session's tracked FE counters |
| * over the configured period. |
| */ |
| static int |
| acl_fetch_sc1_bytes_out_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr1_entry) |
| return 0; |
| |
| return acl_fetch_bytes_out_rate(l4->stkctr1_table, smp, l4->stkctr1_entry); |
| } |
| |
| /* set temp integer to the bytes rate to clients from the session's tracked BE counters |
| * over the configured period. |
| */ |
| static int |
| acl_fetch_sc2_bytes_out_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| if (!l4->stkctr2_entry) |
| return 0; |
| |
| return acl_fetch_bytes_out_rate(l4->stkctr2_table, smp, l4->stkctr2_entry); |
| } |
| |
| /* set temp integer to the bytes rate to client from the session's source address in |
| * the table pointed to by expr, over the configured period. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_src_bytes_out_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| struct stktable_key *key; |
| |
| key = addr_to_stktable_key(&l4->si[0].conn->addr.from); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| return acl_fetch_bytes_out_rate(&px->table, smp, stktable_lookup_key(&px->table, key)); |
| } |
| |
| /* set temp integer to the number of used entries in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_table_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = args->data.prx->table.current; |
| return 1; |
| } |
| |
| /* set temp integer to the number of free entries in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| acl_fetch_table_avl(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp) |
| { |
| px = args->data.prx; |
| smp->flags = SMP_F_VOL_TEST; |
| smp->type = SMP_T_UINT; |
| smp->data.uint = px->table.size - px->table.current; |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {{ },{ |
| { "sc1_bytes_in_rate", acl_parse_int, acl_fetch_sc1_bytes_in_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_bytes_out_rate", acl_parse_int, acl_fetch_sc1_bytes_out_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_clr_gpc0", acl_parse_int, acl_fetch_sc1_clr_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_conn_cnt", acl_parse_int, acl_fetch_sc1_conn_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_conn_cur", acl_parse_int, acl_fetch_sc1_conn_cur, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_conn_rate", acl_parse_int, acl_fetch_sc1_conn_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_get_gpc0", acl_parse_int, acl_fetch_sc1_get_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_http_err_cnt", acl_parse_int, acl_fetch_sc1_http_err_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_http_err_rate", acl_parse_int, acl_fetch_sc1_http_err_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_http_req_cnt", acl_parse_int, acl_fetch_sc1_http_req_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_http_req_rate", acl_parse_int, acl_fetch_sc1_http_req_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_inc_gpc0", acl_parse_int, acl_fetch_sc1_inc_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_kbytes_in", acl_parse_int, acl_fetch_sc1_kbytes_in, acl_match_int, ACL_USE_TCP4_VOLATILE, 0 }, |
| { "sc1_kbytes_out", acl_parse_int, acl_fetch_sc1_kbytes_out, acl_match_int, ACL_USE_TCP4_VOLATILE, 0 }, |
| { "sc1_sess_cnt", acl_parse_int, acl_fetch_sc1_sess_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc1_sess_rate", acl_parse_int, acl_fetch_sc1_sess_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_bytes_in_rate", acl_parse_int, acl_fetch_sc2_bytes_in_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_bytes_out_rate", acl_parse_int, acl_fetch_sc2_bytes_out_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_clr_gpc0", acl_parse_int, acl_fetch_sc2_clr_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_conn_cnt", acl_parse_int, acl_fetch_sc2_conn_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_conn_cur", acl_parse_int, acl_fetch_sc2_conn_cur, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_conn_rate", acl_parse_int, acl_fetch_sc2_conn_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_get_gpc0", acl_parse_int, acl_fetch_sc2_get_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_http_err_cnt", acl_parse_int, acl_fetch_sc2_http_err_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_http_err_rate", acl_parse_int, acl_fetch_sc2_http_err_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_http_req_cnt", acl_parse_int, acl_fetch_sc2_http_req_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_http_req_rate", acl_parse_int, acl_fetch_sc2_http_req_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_inc_gpc0", acl_parse_int, acl_fetch_sc2_inc_gpc0, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_kbytes_in", acl_parse_int, acl_fetch_sc2_kbytes_in, acl_match_int, ACL_USE_TCP4_VOLATILE, 0 }, |
| { "sc2_kbytes_out", acl_parse_int, acl_fetch_sc2_kbytes_out, acl_match_int, ACL_USE_TCP4_VOLATILE, 0 }, |
| { "sc2_sess_cnt", acl_parse_int, acl_fetch_sc2_sess_cnt, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "sc2_sess_rate", acl_parse_int, acl_fetch_sc2_sess_rate, acl_match_int, ACL_USE_NOTHING, 0 }, |
| { "src_bytes_in_rate", acl_parse_int, acl_fetch_src_bytes_in_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_bytes_out_rate", acl_parse_int, acl_fetch_src_bytes_out_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_clr_gpc0", acl_parse_int, acl_fetch_src_clr_gpc0, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_conn_cnt", acl_parse_int, acl_fetch_src_conn_cnt, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_conn_cur", acl_parse_int, acl_fetch_src_conn_cur, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_conn_rate", acl_parse_int, acl_fetch_src_conn_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_get_gpc0", acl_parse_int, acl_fetch_src_get_gpc0, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_http_err_cnt", acl_parse_int, acl_fetch_src_http_err_cnt, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_http_err_rate", acl_parse_int, acl_fetch_src_http_err_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_http_req_cnt", acl_parse_int, acl_fetch_src_http_req_cnt, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_http_req_rate", acl_parse_int, acl_fetch_src_http_req_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_inc_gpc0", acl_parse_int, acl_fetch_src_inc_gpc0, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_kbytes_in", acl_parse_int, acl_fetch_src_kbytes_in, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_kbytes_out", acl_parse_int, acl_fetch_src_kbytes_out, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_sess_cnt", acl_parse_int, acl_fetch_src_sess_cnt, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_sess_rate", acl_parse_int, acl_fetch_src_sess_rate, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "src_updt_conn_cnt", acl_parse_int, acl_fetch_src_updt_conn_cnt, acl_match_int, ACL_USE_TCP4_VOLATILE, ARG1(1,TAB) }, |
| { "table_avl", acl_parse_int, acl_fetch_table_avl, acl_match_int, ACL_USE_NOTHING, ARG1(1,TAB) }, |
| { "table_cnt", acl_parse_int, acl_fetch_table_cnt, acl_match_int, ACL_USE_NOTHING, ARG1(1,TAB) }, |
| { NULL, NULL, NULL, NULL }, |
| }}; |
| |
| |
| /* Parse a "track-sc[12]" line starting with "track-sc[12]" in args[arg-1]. |
| * Returns the number of warnings emitted, or -1 in case of fatal errors. The |
| * <prm> struct is fed with the table name if any. If unspecified, the caller |
| * will assume that the current proxy's table is used. |
| */ |
| int parse_track_counters(char **args, int *arg, |
| int section_type, struct proxy *curpx, |
| struct track_ctr_prm *prm, |
| struct proxy *defpx, char **err) |
| { |
| int sample_type = 0; |
| |
| /* parse the arguments of "track-sc[12]" before the condition in the |
| * following form : |
| * track-sc[12] src [ table xxx ] [ if|unless ... ] |
| */ |
| while (args[*arg]) { |
| if (strcmp(args[*arg], "src") == 0) { |
| prm->type = STKTABLE_TYPE_IP; |
| sample_type = 1; |
| } |
| else if (strcmp(args[*arg], "table") == 0) { |
| if (!args[*arg + 1]) { |
| memprintf(err, "missing table name"); |
| return -1; |
| } |
| /* we copy the table name for now, it will be resolved later */ |
| prm->table.n = strdup(args[*arg + 1]); |
| (*arg)++; |
| } |
| else { |
| /* unhandled keywords are handled by the caller */ |
| break; |
| } |
| (*arg)++; |
| } |
| |
| if (!sample_type) { |
| memprintf(err, |
| "tracking key not specified (found %s, only 'src' is supported)", |
| quote_arg(args[*arg])); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| __attribute__((constructor)) |
| static void __session_init(void) |
| { |
| acl_register_keywords(&acl_kws); |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |