blob: 6435191311d7d76820d1546dbdb3ddea61dc1a92 [file] [log] [blame]
/*
* Process debugging functions.
*
* Copyright 2000-2019 Willy Tarreau <willy@haproxy.org>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#ifdef USE_EPOLL
#include <sys/epoll.h>
#endif
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/buf.h>
#include <haproxy/cli.h>
#include <haproxy/clock.h>
#include <haproxy/debug.h>
#include <haproxy/fd.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/http_ana.h>
#include <haproxy/log.h>
#include <haproxy/net_helper.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/task.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <import/ist.h>
/* The dump state is made of:
* - num_thread on the lowest 15 bits
* - a SYNC flag on bit 15 (waiting for sync start)
* - number of participating threads on bits 16-30
* Initiating a dump consists in setting it to SYNC and incrementing the
* num_thread part when entering the function. The first thread periodically
* recounts active threads and compares it to the ready ones, and clears SYNC
* and sets the number of participants to the value found, which serves as a
* start signal. A thread finished dumping looks up the TID of the next active
* thread after it and writes it in the lowest part. If there's none, it sets
* the thread counter to the number of participants and resets that part,
* which serves as an end-of-dump signal. All threads decrement the num_thread
* part. Then all threads wait for the value to reach zero. Only used when
* USE_THREAD_DUMP is set.
*/
#define THREAD_DUMP_TMASK 0x00007FFFU
#define THREAD_DUMP_FSYNC 0x00008000U
#define THREAD_DUMP_PMASK 0x7FFF0000U
volatile unsigned int thread_dump_state = 0;
unsigned int panic_started = 0;
unsigned int debug_commands_issued = 0;
/* dumps a backtrace of the current thread that is appended to buffer <buf>.
* Lines are prefixed with the string <prefix> which may be empty (used for
* indenting). It is recommended to use this at a function's tail so that
* the function does not appear in the call stack. The <dump> argument
* indicates what dump state to start from, and should usually be zero. It
* may be among the following values:
* - 0: search usual callers before step 1, or directly jump to 2
* - 1: skip usual callers before step 2
* - 2: dump until polling loop, scheduler, or main() (excluded)
* - 3: end
* - 4-7: like 0 but stops *after* main.
*/
void ha_dump_backtrace(struct buffer *buf, const char *prefix, int dump)
{
struct buffer bak;
char pfx2[100];
void *callers[100];
int j, nptrs;
const void *addr;
nptrs = my_backtrace(callers, sizeof(callers)/sizeof(*callers));
if (!nptrs)
return;
if (snprintf(pfx2, sizeof(pfx2), "%s| ", prefix) > sizeof(pfx2))
pfx2[0] = 0;
/* The call backtrace_symbols_fd(callers, nptrs, STDOUT_FILENO would
* produce similar output to the following:
*/
chunk_appendf(buf, "%scall trace(%d):\n", prefix, nptrs);
for (j = 0; (j < nptrs || (dump & 3) < 2); j++) {
if (j == nptrs && !(dump & 3)) {
/* we failed to spot the starting point of the
* dump, let's start over dumping everything we
* have.
*/
dump += 2;
j = 0;
}
bak = *buf;
dump_addr_and_bytes(buf, pfx2, callers[j], 8);
addr = resolve_sym_name(buf, ": ", callers[j]);
if ((dump & 3) == 0) {
/* dump not started, will start *after*
* ha_thread_dump_all_to_trash, ha_panic and ha_backtrace_to_stderr
*/
if (addr == ha_thread_dump_all_to_trash || addr == ha_panic ||
addr == ha_backtrace_to_stderr)
dump++;
*buf = bak;
continue;
}
if ((dump & 3) == 1) {
/* starting */
if (addr == ha_thread_dump_all_to_trash || addr == ha_panic ||
addr == ha_backtrace_to_stderr) {
*buf = bak;
continue;
}
dump++;
}
if ((dump & 3) == 2) {
/* still dumping */
if (dump == 6) {
/* we only stop *after* main and we must send the LF */
if (addr == main) {
j = nptrs;
dump++;
}
}
else if (addr == run_poll_loop || addr == main || addr == run_tasks_from_lists) {
dump++;
*buf = bak;
break;
}
}
/* OK, line dumped */
chunk_appendf(buf, "\n");
}
}
/* dump a backtrace of current thread's stack to stderr. */
void ha_backtrace_to_stderr(void)
{
char area[2048];
struct buffer b = b_make(area, sizeof(area), 0, 0);
ha_dump_backtrace(&b, " ", 4);
if (b.data)
DISGUISE(write(2, b.area, b.data));
}
/* Dumps to the buffer some known information for the desired thread, and
* optionally extra info for the current thread. The dump will be appended to
* the buffer, so the caller is responsible for preliminary initializing it.
* The calling thread ID needs to be passed in <calling_tid> to display a star
* in front of the calling thread's line (usually it's tid). Any stuck thread
* is also prefixed with a '>'.
* It must be called under thread isolation.
*/
void ha_thread_dump(struct buffer *buf, int thr, int calling_tid)
{
unsigned long thr_bit = ha_thread_info[thr].ltid_bit;
unsigned long long p = ha_thread_ctx[thr].prev_cpu_time;
unsigned long long n = now_cpu_time_thread(thr);
int stuck = !!(ha_thread_ctx[thr].flags & TH_FL_STUCK);
int tgrp = ha_thread_info[thr].tgid;
chunk_appendf(buf,
"%c%cThread %-2u: id=0x%llx act=%d glob=%d wq=%d rq=%d tl=%d tlsz=%d rqsz=%d\n"
" %2u/%-2u stuck=%d prof=%d",
(thr == calling_tid) ? '*' : ' ', stuck ? '>' : ' ', thr + 1,
ha_get_pthread_id(thr),
thread_has_tasks(),
!eb_is_empty(&ha_thread_ctx[thr].rqueue_shared),
!eb_is_empty(&ha_thread_ctx[thr].timers),
!eb_is_empty(&ha_thread_ctx[thr].rqueue),
!(LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_URGENT]) &&
LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_NORMAL]) &&
LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_BULK]) &&
MT_LIST_ISEMPTY(&ha_thread_ctx[thr].shared_tasklet_list)),
ha_thread_ctx[thr].tasks_in_list,
ha_thread_ctx[thr].rq_total,
ha_thread_info[thr].tgid, ha_thread_info[thr].ltid + 1,
stuck,
!!(th_ctx->flags & TH_FL_TASK_PROFILING));
chunk_appendf(buf,
" harmless=%d wantrdv=%d",
!!(_HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp-1].threads_harmless) & thr_bit),
!!(th_ctx->flags & TH_FL_TASK_PROFILING));
chunk_appendf(buf, "\n");
chunk_appendf(buf, " cpu_ns: poll=%llu now=%llu diff=%llu\n", p, n, n-p);
/* this is the end of what we can dump from outside the current thread */
if (thr != tid)
return;
chunk_appendf(buf, " curr_task=");
ha_task_dump(buf, th_ctx->current, " ");
if (stuck) {
/* We only emit the backtrace for stuck threads in order not to
* waste precious output buffer space with non-interesting data.
* Please leave this as the last instruction in this function
* so that the compiler uses tail merging and the current
* function does not appear in the stack.
*/
ha_dump_backtrace(buf, " ", 0);
}
}
/* dumps into the buffer some information related to task <task> (which may
* either be a task or a tasklet, and prepend each line except the first one
* with <pfx>. The buffer is only appended and the first output starts by the
* pointer itself. The caller is responsible for making sure the task is not
* going to vanish during the dump.
*/
void ha_task_dump(struct buffer *buf, const struct task *task, const char *pfx)
{
const struct stream *s = NULL;
const struct appctx __maybe_unused *appctx = NULL;
struct hlua __maybe_unused *hlua = NULL;
const struct stconn *sc;
if (!task) {
chunk_appendf(buf, "0\n");
return;
}
if (TASK_IS_TASKLET(task))
chunk_appendf(buf,
"%p (tasklet) calls=%u\n",
task,
task->calls);
else
chunk_appendf(buf,
"%p (task) calls=%u last=%llu%s\n",
task,
task->calls,
task->wake_date ? (unsigned long long)(now_mono_time() - task->wake_date) : 0,
task->wake_date ? " ns ago" : "");
chunk_appendf(buf, "%s fct=%p(", pfx, task->process);
resolve_sym_name(buf, NULL, task->process);
chunk_appendf(buf,") ctx=%p", task->context);
if (task->process == task_run_applet && (appctx = task->context))
chunk_appendf(buf, "(%s)\n", appctx->applet->name);
else
chunk_appendf(buf, "\n");
if (task->process == process_stream && task->context)
s = (struct stream *)task->context;
else if (task->process == task_run_applet && task->context && (sc = appctx_sc((struct appctx *)task->context)))
s = sc_strm(sc);
else if (task->process == sc_conn_io_cb && task->context)
s = sc_strm(((struct stconn *)task->context));
if (s)
stream_dump(buf, s, pfx, '\n');
#ifdef USE_LUA
hlua = NULL;
if (s && (hlua = s->hlua)) {
chunk_appendf(buf, "%sCurrent executing Lua from a stream analyser -- ", pfx);
}
else if (task->process == hlua_process_task && (hlua = task->context)) {
chunk_appendf(buf, "%sCurrent executing a Lua task -- ", pfx);
}
else if (task->process == task_run_applet && (appctx = task->context) &&
(appctx->applet->fct == hlua_applet_tcp_fct)) {
chunk_appendf(buf, "%sCurrent executing a Lua TCP service -- ", pfx);
}
else if (task->process == task_run_applet && (appctx = task->context) &&
(appctx->applet->fct == hlua_applet_http_fct)) {
chunk_appendf(buf, "%sCurrent executing a Lua HTTP service -- ", pfx);
}
if (hlua && hlua->T) {
chunk_appendf(buf, "stack traceback:\n ");
append_prefixed_str(buf, hlua_traceback(hlua->T, "\n "), pfx, '\n', 0);
b_putchr(buf, '\n');
}
else
b_putchr(buf, '\n');
#endif
}
/* This function dumps all profiling settings. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero.
*/
static int cli_io_handler_show_threads(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
int thr;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
if (appctx->st0)
thr = appctx->st1;
else
thr = 0;
chunk_reset(&trash);
ha_thread_dump_all_to_trash();
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
appctx->st1 = thr;
return 0;
}
return 1;
}
#if defined(HA_HAVE_DUMP_LIBS)
/* parse a "show libs" command. It returns 1 if it emits anything otherwise zero. */
static int debug_parse_cli_show_libs(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
chunk_reset(&trash);
if (dump_libs(&trash, 1))
return cli_msg(appctx, LOG_INFO, trash.area);
else
return 0;
}
#endif
/* dumps a state of all threads into the trash and on fd #2, then aborts. */
void ha_panic()
{
if (HA_ATOMIC_FETCH_ADD(&panic_started, 1) != 0) {
/* a panic dump is already in progress, let's not disturb it,
* we'll be called via signal DEBUGSIG. By returning we may be
* able to leave a current signal handler (e.g. WDT) so that
* this will ensure more reliable signal delivery.
*/
return;
}
chunk_reset(&trash);
chunk_appendf(&trash, "Thread %u is about to kill the process.\n", tid + 1);
ha_thread_dump_all_to_trash();
DISGUISE(write(2, trash.area, trash.data));
for (;;)
abort();
}
/* Complain with message <msg> on stderr. If <counter> is not NULL, it is
* atomically incremented, and the message is only printed when the counter
* was zero, so that the message is only printed once. <taint> is only checked
* on bit 1, and will taint the process either for a bug (2) or warn (0).
*/
void complain(int *counter, const char *msg, int taint)
{
if (counter && _HA_ATOMIC_FETCH_ADD(counter, 1))
return;
DISGUISE(write(2, msg, strlen(msg)));
if (taint & 2)
mark_tainted(TAINTED_BUG);
else
mark_tainted(TAINTED_WARN);
}
/* parse a "debug dev exit" command. It always returns 1, though it should never return. */
static int debug_parse_cli_exit(char **args, char *payload, struct appctx *appctx, void *private)
{
int code = atoi(args[3]);
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
exit(code);
return 1;
}
/* parse a "debug dev bug" command. It always returns 1, though it should never return.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_bug(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
BUG_ON(one > zero);
return 1;
}
/* parse a "debug dev warn" command. It always returns 1.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_warn(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
WARN_ON(one > zero);
return 1;
}
/* parse a "debug dev check" command. It always returns 1.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_check(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
CHECK_IF(one > zero);
return 1;
}
/* parse a "debug dev close" command. It always returns 1. */
static int debug_parse_cli_close(char **args, char *payload, struct appctx *appctx, void *private)
{
int fd;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing file descriptor number.\n");
fd = atoi(args[3]);
if (fd < 0 || fd >= global.maxsock)
return cli_err(appctx, "File descriptor out of range.\n");
if (!fdtab[fd].owner)
return cli_msg(appctx, LOG_INFO, "File descriptor was already closed.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
fd_delete(fd);
return 1;
}
/* this is meant to cause a deadlock when more than one task is running it or when run twice */
static struct task *debug_run_cli_deadlock(struct task *task, void *ctx, unsigned int state)
{
static HA_SPINLOCK_T lock __maybe_unused;
HA_SPIN_LOCK(OTHER_LOCK, &lock);
return NULL;
}
/* parse a "debug dev deadlock" command. It always returns 1. */
static int debug_parse_cli_deadlock(char **args, char *payload, struct appctx *appctx, void *private)
{
int tasks;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
for (tasks = atoi(args[3]); tasks > 0; tasks--) {
struct task *t = task_new_on(tasks % global.nbthread);
if (!t)
continue;
t->process = debug_run_cli_deadlock;
t->context = NULL;
task_wakeup(t, TASK_WOKEN_INIT);
}
return 1;
}
/* parse a "debug dev delay" command. It always returns 1. */
static int debug_parse_cli_delay(char **args, char *payload, struct appctx *appctx, void *private)
{
int delay = atoi(args[3]);
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
usleep((long)delay * 1000);
return 1;
}
/* parse a "debug dev log" command. It always returns 1. */
static int debug_parse_cli_log(char **args, char *payload, struct appctx *appctx, void *private)
{
int arg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
for (arg = 3; *args[arg]; arg++) {
if (arg > 3)
chunk_strcat(&trash, " ");
chunk_strcat(&trash, args[arg]);
}
send_log(NULL, LOG_INFO, "%s\n", trash.area);
return 1;
}
/* parse a "debug dev loop" command. It always returns 1. */
static int debug_parse_cli_loop(char **args, char *payload, struct appctx *appctx, void *private)
{
struct timeval deadline, curr;
int loop = atoi(args[3]);
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
gettimeofday(&curr, NULL);
tv_ms_add(&deadline, &curr, loop);
while (tv_ms_cmp(&curr, &deadline) < 0)
gettimeofday(&curr, NULL);
return 1;
}
/* parse a "debug dev panic" command. It always returns 1, though it should never return. */
static int debug_parse_cli_panic(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
ha_panic();
return 1;
}
/* parse a "debug dev exec" command. It always returns 1. */
#if defined(DEBUG_DEV)
static int debug_parse_cli_exec(char **args, char *payload, struct appctx *appctx, void *private)
{
int pipefd[2];
int arg;
int pid;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
for (arg = 3; *args[arg]; arg++) {
if (arg > 3)
chunk_strcat(&trash, " ");
chunk_strcat(&trash, args[arg]);
}
thread_isolate();
if (pipe(pipefd) < 0)
goto fail_pipe;
if (fd_set_cloexec(pipefd[0]) == -1)
goto fail_fcntl;
if (fd_set_cloexec(pipefd[1]) == -1)
goto fail_fcntl;
pid = fork();
if (pid < 0)
goto fail_fork;
else if (pid == 0) {
/* child */
char *cmd[4] = { "/bin/sh", "-c", 0, 0 };
close(0);
dup2(pipefd[1], 1);
dup2(pipefd[1], 2);
cmd[2] = trash.area;
execvp(cmd[0], cmd);
printf("execvp() failed\n");
exit(1);
}
/* parent */
thread_release();
close(pipefd[1]);
chunk_reset(&trash);
while (1) {
size_t ret = read(pipefd[0], trash.area + trash.data, trash.size - 20 - trash.data);
if (ret <= 0)
break;
trash.data += ret;
if (trash.data + 20 == trash.size) {
chunk_strcat(&trash, "\n[[[TRUNCATED]]]\n");
break;
}
}
close(pipefd[0]);
waitpid(pid, NULL, WNOHANG);
trash.area[trash.data] = 0;
return cli_msg(appctx, LOG_INFO, trash.area);
fail_fork:
fail_fcntl:
close(pipefd[0]);
close(pipefd[1]);
fail_pipe:
thread_release();
return cli_err(appctx, "Failed to execute command.\n");
}
#endif
/* parse a "debug dev hex" command. It always returns 1. */
static int debug_parse_cli_hex(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long start, len;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing memory address to dump from.\n");
start = strtoul(args[3], NULL, 0);
if (!start)
return cli_err(appctx, "Will not dump from NULL address.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
/* by default, dump ~128 till next block of 16 */
len = strtoul(args[4], NULL, 0);
if (!len)
len = ((start + 128) & -16) - start;
chunk_reset(&trash);
dump_hex(&trash, " ", (const void *)start, len, 1);
trash.area[trash.data] = 0;
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev sym <addr>" command. It always returns 1. */
static int debug_parse_cli_sym(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long addr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing memory address to be resolved.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
addr = strtoul(args[3], NULL, 0);
chunk_printf(&trash, "%#lx resolves to ", addr);
resolve_sym_name(&trash, NULL, (const void *)addr);
chunk_appendf(&trash, "\n");
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev tkill" command. It always returns 1. */
static int debug_parse_cli_tkill(char **args, char *payload, struct appctx *appctx, void *private)
{
int thr = 0;
int sig = SIGABRT;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (*args[3])
thr = atoi(args[3]);
if (thr < 0 || thr > global.nbthread)
return cli_err(appctx, "Thread number out of range (use 0 for current).\n");
if (*args[4])
sig = atoi(args[4]);
_HA_ATOMIC_INC(&debug_commands_issued);
if (thr)
ha_tkill(thr - 1, sig);
else
raise(sig);
return 1;
}
/* hashes 'word' in "debug dev hash 'word' ". */
static int debug_parse_cli_hash(char **args, char *payload, struct appctx *appctx, void *private)
{
char *msg = NULL;
cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\n", HA_ANON_CLI(args[3])));
return 1;
}
/* parse a "debug dev write" command. It always returns 1. */
static int debug_parse_cli_write(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long len;
if (!*args[3])
return cli_err(appctx, "Missing output size.\n");
len = strtoul(args[3], NULL, 0);
if (len >= trash.size)
return cli_err(appctx, "Output too large, must be <tune.bufsize.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
trash.data = len;
memset(trash.area, '.', trash.data);
trash.area[trash.data] = 0;
for (len = 64; len < trash.data; len += 64)
trash.area[len] = '\n';
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev stream" command */
/*
* debug dev stream [strm=<ptr>] [strm.f[{+-=}<flags>]] [txn.f[{+-=}<flags>]] \
* [req.f[{+-=}<flags>]] [res.f[{+-=}<flags>]] \
* [sif.f[{+-=<flags>]] [sib.f[{+-=<flags>]] \
* [sif.s[=<state>]] [sib.s[=<state>]]
*/
static int debug_parse_cli_stream(char **args, char *payload, struct appctx *appctx, void *private)
{
struct stream *s = appctx_strm(appctx);
int arg;
void *ptr;
int size;
const char *word, *end;
struct ist name;
char *msg = NULL;
char *endarg;
unsigned long long old, new;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
ptr = NULL; size = 0;
if (!*args[3]) {
return cli_err(appctx,
"Usage: debug dev stream { <obj> <op> <value> | wake }*\n"
" <obj> = {strm | strm.f | strm.x | scf.s | scb.s |\n"
" txn.f | req.f | req.r | req.w | res.f | res.r | res.w}\n"
" <op> = {'' (show) | '=' (assign) | '^' (xor) | '+' (or) | '-' (andnot)}\n"
" <value> = 'now' | 64-bit dec/hex integer (0x prefix supported)\n"
" 'wake' wakes the stream asssigned to 'strm' (default: current)\n"
);
}
_HA_ATOMIC_INC(&debug_commands_issued);
for (arg = 3; *args[arg]; arg++) {
old = 0;
end = word = args[arg];
while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-')
end++;
name = ist2(word, end - word);
if (isteq(name, ist("strm"))) {
ptr = (!s || !may_access(s)) ? NULL : &s; size = sizeof(s);
} else if (isteq(name, ist("strm.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->flags; size = sizeof(s->flags);
} else if (isteq(name, ist("strm.x"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->conn_exp; size = sizeof(s->conn_exp);
} else if (isteq(name, ist("txn.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->txn->flags; size = sizeof(s->txn->flags);
} else if (isteq(name, ist("req.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->req.flags; size = sizeof(s->req.flags);
} else if (isteq(name, ist("res.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->res.flags; size = sizeof(s->res.flags);
} else if (isteq(name, ist("req.r"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->req.rex; size = sizeof(s->req.rex);
} else if (isteq(name, ist("res.r"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->res.rex; size = sizeof(s->res.rex);
} else if (isteq(name, ist("req.w"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->req.wex; size = sizeof(s->req.wex);
} else if (isteq(name, ist("res.w"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->res.wex; size = sizeof(s->res.wex);
} else if (isteq(name, ist("scf.s"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scf->state);
} else if (isteq(name, ist("scb.s"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scb->state);
} else if (isteq(name, ist("wake"))) {
if (s && may_access(s) && may_access((void *)s + sizeof(*s) - 1))
task_wakeup(s->task, TASK_WOKEN_TIMER|TASK_WOKEN_IO|TASK_WOKEN_MSG);
continue;
} else
return cli_dynerr(appctx, memprintf(&msg, "Unsupported field name: '%s'.\n", word));
/* read previous value */
if ((s || ptr == &s) && ptr && may_access(ptr) && may_access(ptr + size - 1)) {
if (size == 8)
old = read_u64(ptr);
else if (size == 4)
old = read_u32(ptr);
else if (size == 2)
old = read_u16(ptr);
else
old = *(const uint8_t *)ptr;
} else {
memprintf(&msg,
"%sSkipping inaccessible pointer %p for field '%.*s'.\n",
msg ? msg : "", ptr, (int)(end - word), word);
continue;
}
/* parse the new value . */
new = strtoll(end + 1, &endarg, 0);
if (end[1] && *endarg) {
if (strcmp(end + 1, "now") == 0)
new = now_ms;
else {
memprintf(&msg,
"%sIgnoring unparsable value '%s' for field '%.*s'.\n",
msg ? msg : "", end + 1, (int)(end - word), word);
continue;
}
}
switch (*end) {
case '\0': /* show */
memprintf(&msg, "%s%.*s=%#llx ", msg ? msg : "", (int)(end - word), word, old);
new = old; // do not change the value
break;
case '=': /* set */
break;
case '^': /* XOR */
new = old ^ new;
break;
case '+': /* OR */
new = old | new;
break;
case '-': /* AND NOT */
new = old & ~new;
break;
default:
break;
}
/* write the new value */
if (new != old) {
if (size == 8)
write_u64(ptr, new);
else if (size == 4)
write_u32(ptr, new);
else if (size == 2)
write_u16(ptr, new);
else
*(uint8_t *)ptr = new;
}
}
if (msg && *msg)
return cli_dynmsg(appctx, LOG_INFO, msg);
return 1;
}
static struct task *debug_task_handler(struct task *t, void *ctx, unsigned int state)
{
unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
unsigned long inter = tctx[1];
unsigned long rnd;
t->expire = tick_add(now_ms, inter);
/* half of the calls will wake up another entry */
rnd = statistical_prng();
if (rnd & 1) {
rnd >>= 1;
rnd %= tctx[0];
rnd = tctx[rnd + 2];
if (rnd & 1)
task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG);
else
tasklet_wakeup((struct tasklet *)rnd);
}
return t;
}
static struct task *debug_tasklet_handler(struct task *t, void *ctx, unsigned int state)
{
unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
unsigned long rnd;
int i;
/* wake up two random entries */
for (i = 0; i < 2; i++) {
rnd = statistical_prng() % tctx[0];
rnd = tctx[rnd + 2];
if (rnd & 1)
task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG);
else
tasklet_wakeup((struct tasklet *)rnd);
}
return t;
}
/* parse a "debug dev sched" command
* debug dev sched {task|tasklet} [count=<count>] [mask=<mask>] [single=<single>] [inter=<inter>]
*/
static int debug_parse_cli_sched(char **args, char *payload, struct appctx *appctx, void *private)
{
int arg;
void *ptr;
int size;
const char *word, *end;
struct ist name;
char *msg = NULL;
char *endarg;
unsigned long long new;
unsigned long count = 0;
unsigned long thrid = tid;
unsigned int inter = 0;
unsigned long i;
int mode = 0; // 0 = tasklet; 1 = task
unsigned long *tctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
ptr = NULL; size = 0;
if (strcmp(args[3], "task") != 0 && strcmp(args[3], "tasklet") != 0) {
return cli_err(appctx,
"Usage: debug dev sched {task|tasklet} { <obj> = <value> }*\n"
" <obj> = {count | tid | inter }\n"
" <value> = 64-bit dec/hex integer (0x prefix supported)\n"
);
}
mode = strcmp(args[3], "task") == 0;
_HA_ATOMIC_INC(&debug_commands_issued);
for (arg = 4; *args[arg]; arg++) {
end = word = args[arg];
while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-')
end++;
name = ist2(word, end - word);
if (isteq(name, ist("count"))) {
ptr = &count; size = sizeof(count);
} else if (isteq(name, ist("tid"))) {
ptr = &thrid; size = sizeof(thrid);
} else if (isteq(name, ist("inter"))) {
ptr = &inter; size = sizeof(inter);
} else
return cli_dynerr(appctx, memprintf(&msg, "Unsupported setting: '%s'.\n", word));
/* parse the new value . */
new = strtoll(end + 1, &endarg, 0);
if (end[1] && *endarg) {
memprintf(&msg,
"%sIgnoring unparsable value '%s' for field '%.*s'.\n",
msg ? msg : "", end + 1, (int)(end - word), word);
continue;
}
/* write the new value */
if (size == 8)
write_u64(ptr, new);
else if (size == 4)
write_u32(ptr, new);
else if (size == 2)
write_u16(ptr, new);
else
*(uint8_t *)ptr = new;
}
tctx = calloc(sizeof(*tctx), count + 2);
if (!tctx)
goto fail;
tctx[0] = (unsigned long)count;
tctx[1] = (unsigned long)inter;
if (thrid >= global.nbthread)
thrid = tid;
for (i = 0; i < count; i++) {
/* now, if poly or mask was set, tmask corresponds to the
* valid thread mask to use, otherwise it remains zero.
*/
//printf("%lu: mode=%d mask=%#lx\n", i, mode, tmask);
if (mode == 0) {
struct tasklet *tl = tasklet_new();
if (!tl)
goto fail;
tl->tid = thrid;
tl->process = debug_tasklet_handler;
tl->context = tctx;
tctx[i + 2] = (unsigned long)tl;
} else {
struct task *task = task_new_on(thrid);
if (!task)
goto fail;
task->process = debug_task_handler;
task->context = tctx;
tctx[i + 2] = (unsigned long)task + 1;
}
}
/* start the tasks and tasklets */
for (i = 0; i < count; i++) {
unsigned long ctx = tctx[i + 2];
if (ctx & 1)
task_wakeup((struct task *)(ctx - 1), TASK_WOKEN_INIT);
else
tasklet_wakeup((struct tasklet *)ctx);
}
if (msg && *msg)
return cli_dynmsg(appctx, LOG_INFO, msg);
return 1;
fail:
/* free partially allocated entries */
for (i = 0; tctx && i < count; i++) {
unsigned long ctx = tctx[i + 2];
if (!ctx)
break;
if (ctx & 1)
task_destroy((struct task *)(ctx - 1));
else
tasklet_free((struct tasklet *)ctx);
}
free(tctx);
return cli_err(appctx, "Not enough memory");
}
/* CLI state for "debug dev fd" */
struct dev_fd_ctx {
int start_fd;
};
/* CLI parser for the "debug dev fd" command. The current FD to restart from is
* stored in a struct dev_fd_ctx pointed to by svcctx.
*/
static int debug_parse_cli_fd(char **args, char *payload, struct appctx *appctx, void *private)
{
struct dev_fd_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
/* start at fd #0 */
ctx->start_fd = 0;
return 0;
}
/* CLI I/O handler for the "debug dev fd" command. Dumps all FDs that are
* accessible from the process but not known from fdtab. The FD number to
* restart from is stored in a struct dev_fd_ctx pointed to by svcctx.
*/
static int debug_iohandler_fd(struct appctx *appctx)
{
struct dev_fd_ctx *ctx = appctx->svcctx;
struct stconn *sc = appctx_sc(appctx);
struct sockaddr_storage sa;
struct stat statbuf;
socklen_t salen, vlen;
int ret1, ret2, port;
char *addrstr;
int ret = 1;
int i, fd;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
goto end;
chunk_reset(&trash);
thread_isolate();
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
for (fd = ctx->start_fd; fd < global.maxsock; fd++) {
/* check for FD's existence */
ret1 = fcntl(fd, F_GETFD, 0);
if (ret1 == -1)
continue; // not known to the process
if (fdtab[fd].owner)
continue; // well-known
/* OK we're seeing an orphan let's try to retrieve as much
* information as possible about it.
*/
chunk_printf(&trash, "%5d", fd);
if (fstat(fd, &statbuf) != -1) {
chunk_appendf(&trash, " type=%s mod=%04o dev=%#llx siz=%#llx uid=%lld gid=%lld fs=%#llx ino=%#llx",
isatty(fd) ? "tty.":
S_ISREG(statbuf.st_mode) ? "file":
S_ISDIR(statbuf.st_mode) ? "dir.":
S_ISCHR(statbuf.st_mode) ? "chr.":
S_ISBLK(statbuf.st_mode) ? "blk.":
S_ISFIFO(statbuf.st_mode) ? "pipe":
S_ISLNK(statbuf.st_mode) ? "link":
S_ISSOCK(statbuf.st_mode) ? "sock":
#ifdef USE_EPOLL
epoll_wait(fd, NULL, 0, 0) != -1 || errno != EBADF ? "epol":
#endif
"????",
(uint)statbuf.st_mode & 07777,
(ullong)statbuf.st_rdev,
(ullong)statbuf.st_size,
(ullong)statbuf.st_uid,
(ullong)statbuf.st_gid,
(ullong)statbuf.st_dev,
(ullong)statbuf.st_ino);
}
chunk_appendf(&trash, " getfd=%s+%#x",
(ret1 & FD_CLOEXEC) ? "cloex" : "",
ret1 &~ FD_CLOEXEC);
/* FD options */
ret2 = fcntl(fd, F_GETFL, 0);
if (ret2) {
chunk_appendf(&trash, " getfl=%s",
(ret1 & 3) >= 2 ? "O_RDWR" :
(ret1 & 1) ? "O_WRONLY" : "O_RDONLY");
for (i = 2; i < 32; i++) {
if (!(ret2 & (1UL << i)))
continue;
switch (1UL << i) {
case O_CREAT: chunk_appendf(&trash, ",O_CREAT"); break;
case O_EXCL: chunk_appendf(&trash, ",O_EXCL"); break;
case O_NOCTTY: chunk_appendf(&trash, ",O_NOCTTY"); break;
case O_TRUNC: chunk_appendf(&trash, ",O_TRUNC"); break;
case O_APPEND: chunk_appendf(&trash, ",O_APPEND"); break;
#ifdef O_ASYNC
case O_ASYNC: chunk_appendf(&trash, ",O_ASYNC"); break;
#endif
#ifdef O_DIRECT
case O_DIRECT: chunk_appendf(&trash, ",O_DIRECT"); break;
#endif
#ifdef O_NOATIME
case O_NOATIME: chunk_appendf(&trash, ",O_NOATIME"); break;
#endif
}
}
}
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_TYPE, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_type=%d", ret2);
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_accept=%d", ret2);
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_ERROR, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_error=%d", ret2);
salen = sizeof(sa);
if (getsockname(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
port = ntohs(((const struct sockaddr_in *)&sa)->sin_port);
else if (sa.ss_family == AF_INET6)
port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port);
else
port = 0;
addrstr = sa2str(&sa, port, 0);
chunk_appendf(&trash, " laddr=%s", addrstr);
free(addrstr);
}
salen = sizeof(sa);
if (getpeername(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
port = ntohs(((const struct sockaddr_in *)&sa)->sin_port);
else if (sa.ss_family == AF_INET6)
port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port);
else
port = 0;
addrstr = sa2str(&sa, port, 0);
chunk_appendf(&trash, " raddr=%s", addrstr);
free(addrstr);
}
chunk_appendf(&trash, "\n");
if (applet_putchk(appctx, &trash) == -1) {
ctx->start_fd = fd;
ret = 0;
break;
}
}
thread_release();
end:
return ret;
}
#if defined(DEBUG_MEM_STATS)
/* CLI state for "debug dev memstats" */
struct dev_mem_ctx {
struct mem_stats *start, *stop; /* begin/end of dump */
int show_all; /* show all entries if non-null */
int width;
};
/* CLI parser for the "debug dev memstats" command. Sets a dev_mem_ctx shown above. */
static int debug_parse_cli_memstats(char **args, char *payload, struct appctx *appctx, void *private)
{
struct dev_mem_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg;
extern __attribute__((__weak__)) struct mem_stats __start_mem_stats;
extern __attribute__((__weak__)) struct mem_stats __stop_mem_stats;
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
for (arg = 3; *args[arg]; arg++) {
if (strcmp(args[arg], "reset") == 0) {
struct mem_stats *ptr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
for (ptr = &__start_mem_stats; ptr < &__stop_mem_stats; ptr++) {
_HA_ATOMIC_STORE(&ptr->calls, 0);
_HA_ATOMIC_STORE(&ptr->size, 0);
}
return 1;
}
else if (strcmp(args[arg], "all") == 0) {
ctx->show_all = 1;
continue;
}
else
return cli_err(appctx, "Expects either 'reset' or 'all'.\n");
}
/* otherwise proceed with the dump from p0 to p1 */
ctx->start = &__start_mem_stats;
ctx->stop = &__stop_mem_stats;
ctx->width = 0;
return 0;
}
/* CLI I/O handler for the "debug dev memstats" command using a dev_mem_ctx
* found in appctx->svcctx. Dumps all mem_stats structs referenced by pointers
* located between ->start and ->stop. Dumps all entries if ->show_all != 0,
* otherwise only non-zero calls.
*/
static int debug_iohandler_memstats(struct appctx *appctx)
{
struct dev_mem_ctx *ctx = appctx->svcctx;
struct stconn *sc = appctx_sc(appctx);
struct mem_stats *ptr;
int ret = 1;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
goto end;
if (!ctx->width) {
/* we don't know the first column's width, let's compute it
* now based on a first pass on printable entries and their
* expected width (approximated).
*/
for (ptr = ctx->start; ptr != ctx->stop; ptr++) {
const char *p, *name;
int w = 0;
char tmp;
if (!ptr->size && !ptr->calls && !ctx->show_all)
continue;
for (p = name = ptr->caller.file; *p; p++) {
if (*p == '/')
name = p + 1;
}
if (ctx->show_all)
w = snprintf(&tmp, 0, "%s(%s:%d) ", ptr->caller.func, name, ptr->caller.line);
else
w = snprintf(&tmp, 0, "%s:%d ", name, ptr->caller.line);
if (w > ctx->width)
ctx->width = w;
}
}
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
for (ptr = ctx->start; ptr != ctx->stop; ptr++) {
const char *type;
const char *name;
const char *p;
const char *info = NULL;
const char *func = NULL;
if (!ptr->size && !ptr->calls && !ctx->show_all)
continue;
/* basename only */
for (p = name = ptr->caller.file; *p; p++) {
if (*p == '/')
name = p + 1;
}
func = ptr->caller.func;
switch (ptr->caller.what) {
case MEM_STATS_TYPE_CALLOC: type = "CALLOC"; break;
case MEM_STATS_TYPE_FREE: type = "FREE"; break;
case MEM_STATS_TYPE_MALLOC: type = "MALLOC"; break;
case MEM_STATS_TYPE_REALLOC: type = "REALLOC"; break;
case MEM_STATS_TYPE_STRDUP: type = "STRDUP"; break;
case MEM_STATS_TYPE_P_ALLOC: type = "P_ALLOC"; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break;
case MEM_STATS_TYPE_P_FREE: type = "P_FREE"; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break;
default: type = "UNSET"; break;
}
//chunk_printf(&trash,
// "%20s:%-5d %7s size: %12lu calls: %9lu size/call: %6lu\n",
// name, ptr->line, type,
// (unsigned long)ptr->size, (unsigned long)ptr->calls,
// (unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0));
chunk_reset(&trash);
if (ctx->show_all)
chunk_appendf(&trash, "%s(", func);
chunk_appendf(&trash, "%s:%d", name, ptr->caller.line);
if (ctx->show_all)
chunk_appendf(&trash, ")");
while (trash.data < ctx->width)
trash.area[trash.data++] = ' ';
chunk_appendf(&trash, "%7s size: %12lu calls: %9lu size/call: %6lu %s\n",
type,
(unsigned long)ptr->size, (unsigned long)ptr->calls,
(unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0),
info ? info : "");
if (applet_putchk(appctx, &trash) == -1) {
ctx->start = ptr;
ret = 0;
break;
}
}
end:
return ret;
}
#endif
#ifndef USE_THREAD_DUMP
/* This function dumps all threads' state to the trash. This version is the
* most basic one, which doesn't inspect other threads.
*/
void ha_thread_dump_all_to_trash()
{
unsigned int thr;
for (thr = 0; thr < global.nbthread; thr++)
ha_thread_dump(&trash, thr, tid);
}
#else /* below USE_THREAD_DUMP is set */
/* ID of the thread requesting the dump */
static unsigned int thread_dump_tid;
/* points to the buffer where the dump functions should write. It must
* have already been initialized by the requester. Nothing is done if
* it's NULL.
*/
struct buffer *thread_dump_buffer = NULL;
/* initiates a thread dump */
void ha_thread_dump_all_to_trash()
{
unsigned int old;
/* initiate a dump starting from first thread. Use a CAS so that we do
* not wait if we're not the first one, but we wait for a previous dump
* to finish.
*/
while (1) {
old = 0;
if (HA_ATOMIC_CAS(&thread_dump_state, &old, THREAD_DUMP_FSYNC))
break;
ha_thread_relax();
}
thread_dump_buffer = &trash;
thread_dump_tid = tid;
ha_tkillall(DEBUGSIG);
/* the call above contains a raise() so we're certain to return after
* returning from the sighandler, hence when the dump is complete.
*/
}
/* handles DEBUGSIG to dump the state of the thread it's working on. This is
* appended at the end of thread_dump_buffer which must be protected against
* reentrance from different threads (a thread-local buffer works fine).
*/
void debug_handler(int sig, siginfo_t *si, void *arg)
{
int harmless = is_thread_harmless();
int running = 0;
uint prev;
uint next;
/* first, let's check it's really for us and that we didn't just get
* a spurious DEBUGSIG.
*/
if (!_HA_ATOMIC_LOAD(&thread_dump_state))
return;
/* There are 5 phases in the dump process:
* 1- wait for all threads to sync or the first one to start
* 2- wait for our turn, i.e. when tid appears in lower bits.
* 3- perform the action if our tid is there
* 4- pass tid to the number of the next thread to dump or
* reset running counter if we're last one.
* 5- wait for running to be zero and decrement the count
*/
/* wait for all previous threads to finish first */
if (!harmless)
thread_harmless_now();
if (HA_ATOMIC_FETCH_ADD(&thread_dump_state, 1) == THREAD_DUMP_FSYNC) {
/* the first one which lands here is responsible for constantly
* recounting the number of active theads and switching from
* SYNC to DUMP.
*/
while (1) {
int first = -1; // first tid to dump
int thr;
running = 0;
for (thr = 0; thr < global.nbthread; thr++) {
if (ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit) {
running++;
if (first < 0)
first = thr;
}
}
if ((HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_TMASK) == running) {
/* all threads are there, let's try to start */
prev = THREAD_DUMP_FSYNC | running;
next = (running << 16) | first;
if (HA_ATOMIC_CAS(&thread_dump_state, &prev, next))
break;
/* it failed! maybe a thread appeared late (e.g. during boot), let's
* recount.
*/
}
ha_thread_relax();
}
}
/* all threads: let's wait for the SYNC flag to disappear; tid is reset at
* the same time to the first valid tid to dump and pmask will reflect the
* number of participants.
*/
while (HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_FSYNC)
ha_thread_relax();
/* wait for our turn */
while ((HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_TMASK) != tid)
ha_thread_relax();
/* make sure we don't count all that wait time against us */
HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK);
if (!harmless)
thread_harmless_end();
/* dump if needed */
if (thread_dump_buffer)
ha_thread_dump(thread_dump_buffer, tid, thread_dump_tid);
/* figure which is the next thread ID to dump among enabled ones. Note
* that this relies on the fact that we're not creating new threads in
* the middle of a dump, which is normally granted by the harmless bits
* anyway.
*/
for (next = tid + 1; next < global.nbthread; next++) {
if (unlikely(next >= MAX_THREADS)) {
/* just to please gcc 6.5 who guesses the ranges wrong. */
continue;
}
if (ha_thread_info[next].tg &&
ha_thread_info[next].tg->threads_enabled & ha_thread_info[next].ltid_bit)
break;
}
/* if there are threads left to dump, we atomically set the next one,
* otherwise we'll clear dump and set the thread part to the number of
* threads that need to disappear.
*/
if (next < global.nbthread) {
next = (HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_PMASK) | next;
HA_ATOMIC_STORE(&thread_dump_state, next);
} else {
thread_dump_buffer = NULL; // was the last one
running = (HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_PMASK) >> 16;
HA_ATOMIC_STORE(&thread_dump_state, running);
}
/* now wait for all others to finish dumping: the lowest part will turn
* to zero. Then all others decrement the done part.
*/
if (!harmless)
thread_harmless_now();
/* wait for everyone to finish*/
while (HA_ATOMIC_LOAD(&thread_dump_state) & THREAD_DUMP_PMASK)
ha_thread_relax();
/* make sure we don't count all that wait time against us */
HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK);
if (!harmless)
thread_harmless_end();
/* we're gone. Past this point anything can happen including another
* thread trying to re-trigger a dump, so thread_dump_buffer and
* thread_dump_tid may become invalid immediately after this call.
*/
HA_ATOMIC_SUB(&thread_dump_state, 1);
/* mark the current thread as stuck to detect it upon next invocation
* if it didn't move.
*/
if (!harmless &&
!(_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_SLEEPING))
_HA_ATOMIC_OR(&th_ctx->flags, TH_FL_STUCK);
}
static int init_debug_per_thread()
{
sigset_t set;
/* unblock the DEBUGSIG signal we intend to use */
sigemptyset(&set);
sigaddset(&set, DEBUGSIG);
ha_sigmask(SIG_UNBLOCK, &set, NULL);
return 1;
}
static int init_debug()
{
struct sigaction sa;
void *callers[1];
/* calling backtrace() will access libgcc at runtime. We don't want to
* do it after the chroot, so let's perform a first call to have it
* ready in memory for later use.
*/
my_backtrace(callers, sizeof(callers)/sizeof(*callers));
sa.sa_handler = NULL;
sa.sa_sigaction = debug_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sigaction(DEBUGSIG, &sa, NULL);
return ERR_NONE;
}
REGISTER_POST_CHECK(init_debug);
REGISTER_PER_THREAD_INIT(init_debug_per_thread);
#endif /* USE_THREAD_DUMP */
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{{ "debug", "dev", "bug", NULL }, "debug dev bug : call BUG_ON() and crash", debug_parse_cli_bug, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "check", NULL }, "debug dev check : call CHECK_IF() and possibly crash", debug_parse_cli_check, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "close", NULL }, "debug dev close <fd> : close this file descriptor", debug_parse_cli_close, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "deadlock", NULL }, "debug dev deadlock [nbtask] : deadlock between this number of tasks", debug_parse_cli_deadlock, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "delay", NULL }, "debug dev delay [ms] : sleep this long", debug_parse_cli_delay, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(DEBUG_DEV)
{{ "debug", "dev", "exec", NULL }, "debug dev exec [cmd] ... : show this command's output", debug_parse_cli_exec, NULL, NULL, NULL, ACCESS_EXPERT },
#endif
{{ "debug", "dev", "fd", NULL }, "debug dev fd : scan for rogue/unhandled FDs", debug_parse_cli_fd, debug_iohandler_fd, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "exit", NULL }, "debug dev exit [code] : immediately exit the process", debug_parse_cli_exit, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "hash", NULL }, "debug dev hash [msg] : return msg hashed if anon is set", debug_parse_cli_hash, NULL, NULL, NULL, 0 },
{{ "debug", "dev", "hex", NULL }, "debug dev hex <addr> [len] : dump a memory area", debug_parse_cli_hex, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "log", NULL }, "debug dev log [msg] ... : send this msg to global logs", debug_parse_cli_log, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "loop", NULL }, "debug dev loop [ms] : loop this long", debug_parse_cli_loop, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(DEBUG_MEM_STATS)
{{ "debug", "dev", "memstats", NULL }, "debug dev memstats [reset|all] : dump/reset memory statistics", debug_parse_cli_memstats, debug_iohandler_memstats, NULL, NULL, 0 },
#endif
{{ "debug", "dev", "panic", NULL }, "debug dev panic : immediately trigger a panic", debug_parse_cli_panic, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "sched", NULL }, "debug dev sched {task|tasklet} [k=v]* : stress the scheduler", debug_parse_cli_sched, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "stream",NULL }, "debug dev stream [k=v]* : show/manipulate stream flags", debug_parse_cli_stream,NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "sym", NULL }, "debug dev sym <addr> : resolve symbol address", debug_parse_cli_sym, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "tkill", NULL }, "debug dev tkill [thr] [sig] : send signal to thread", debug_parse_cli_tkill, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "warn", NULL }, "debug dev warn : call WARN_ON() and possibly crash", debug_parse_cli_warn, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "write", NULL }, "debug dev write [size] : write that many bytes in return", debug_parse_cli_write, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(HA_HAVE_DUMP_LIBS)
{{ "show", "libs", NULL, NULL }, "show libs : show loaded object files and libraries", debug_parse_cli_show_libs, NULL, NULL },
#endif
{{ "show", "threads", NULL, NULL }, "show threads : show some threads debugging information", NULL, cli_io_handler_show_threads, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);