| /* |
| * Pattern management functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| |
| #include <common/config.h> |
| #include <common/standard.h> |
| |
| #include <types/global.h> |
| #include <types/pattern.h> |
| |
| #include <proto/pattern.h> |
| #include <proto/sample.h> |
| |
| #include <ebsttree.h> |
| |
| char *pat_match_names[PAT_MATCH_NUM] = { |
| [PAT_MATCH_FOUND] = "found", |
| [PAT_MATCH_BOOL] = "bool", |
| [PAT_MATCH_INT] = "int", |
| [PAT_MATCH_IP] = "ip", |
| [PAT_MATCH_BIN] = "bin", |
| [PAT_MATCH_LEN] = "len", |
| [PAT_MATCH_STR] = "str", |
| [PAT_MATCH_BEG] = "beg", |
| [PAT_MATCH_SUB] = "sub", |
| [PAT_MATCH_DIR] = "dir", |
| [PAT_MATCH_DOM] = "dom", |
| [PAT_MATCH_END] = "end", |
| [PAT_MATCH_REG] = "reg", |
| }; |
| |
| int (*pat_parse_fcts[PAT_MATCH_NUM])(const char **, struct pattern *, enum pat_usage, int *, char **) = { |
| [PAT_MATCH_FOUND] = pat_parse_nothing, |
| [PAT_MATCH_BOOL] = pat_parse_nothing, |
| [PAT_MATCH_INT] = pat_parse_int, |
| [PAT_MATCH_IP] = pat_parse_ip, |
| [PAT_MATCH_BIN] = pat_parse_bin, |
| [PAT_MATCH_LEN] = pat_parse_len, |
| [PAT_MATCH_STR] = pat_parse_str, |
| [PAT_MATCH_BEG] = pat_parse_str, |
| [PAT_MATCH_SUB] = pat_parse_str, |
| [PAT_MATCH_DIR] = pat_parse_str, |
| [PAT_MATCH_DOM] = pat_parse_str, |
| [PAT_MATCH_END] = pat_parse_str, |
| [PAT_MATCH_REG] = pat_parse_reg, |
| }; |
| |
| enum pat_match_res (*pat_match_fcts[PAT_MATCH_NUM])(struct sample *, struct pattern *) = { |
| [PAT_MATCH_FOUND] = NULL, |
| [PAT_MATCH_BOOL] = pat_match_nothing, |
| [PAT_MATCH_INT] = pat_match_int, |
| [PAT_MATCH_IP] = pat_match_ip, |
| [PAT_MATCH_BIN] = pat_match_bin, |
| [PAT_MATCH_LEN] = pat_match_len, |
| [PAT_MATCH_STR] = pat_match_str, |
| [PAT_MATCH_BEG] = pat_match_beg, |
| [PAT_MATCH_SUB] = pat_match_sub, |
| [PAT_MATCH_DIR] = pat_match_dir, |
| [PAT_MATCH_DOM] = pat_match_dom, |
| [PAT_MATCH_END] = pat_match_end, |
| [PAT_MATCH_REG] = pat_match_reg, |
| }; |
| |
| /* Just used for checking configuration compatibility */ |
| int pat_match_types[PAT_MATCH_NUM] = { |
| [PAT_MATCH_FOUND] = SMP_T_UINT, |
| [PAT_MATCH_BOOL] = SMP_T_UINT, |
| [PAT_MATCH_INT] = SMP_T_UINT, |
| [PAT_MATCH_IP] = SMP_T_ADDR, |
| [PAT_MATCH_BIN] = SMP_T_CBIN, |
| [PAT_MATCH_LEN] = SMP_T_CSTR, |
| [PAT_MATCH_STR] = SMP_T_CSTR, |
| [PAT_MATCH_BEG] = SMP_T_CSTR, |
| [PAT_MATCH_SUB] = SMP_T_CSTR, |
| [PAT_MATCH_DIR] = SMP_T_CSTR, |
| [PAT_MATCH_DOM] = SMP_T_CSTR, |
| [PAT_MATCH_END] = SMP_T_CSTR, |
| [PAT_MATCH_REG] = SMP_T_CSTR, |
| }; |
| |
| /* |
| * |
| * The following functions are not exported and are used by internals process |
| * of pattern matching |
| * |
| */ |
| |
| /* Lookup an IPv4 address in the expression's pattern tree using the longest |
| * match method. The node is returned if it exists, otherwise NULL. |
| */ |
| static void *pat_lookup_ip(struct sample *smp, struct pattern_expr *expr) |
| { |
| struct in_addr *s; |
| |
| if (smp->type != SMP_T_IPV4) |
| return PAT_NOMATCH; |
| |
| s = &smp->data.ipv4; |
| return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr); |
| } |
| |
| /* Free data allocated by pat_parse_reg */ |
| static void pat_free_reg(void *ptr) |
| { |
| regex_free(ptr); |
| } |
| |
| /* Lookup a string in the expression's pattern tree. The node is returned if it |
| * exists, otherwise NULL. |
| */ |
| static void *pat_lookup_str(struct sample *smp, struct pattern_expr *expr) |
| { |
| /* data are stored in a tree */ |
| struct ebmb_node *node; |
| char prev; |
| |
| /* we may have to force a trailing zero on the test pattern */ |
| prev = smp->data.str.str[smp->data.str.len]; |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = '\0'; |
| node = ebst_lookup(&expr->pattern_tree, smp->data.str.str); |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = prev; |
| return node; |
| } |
| |
| /* Background: Fast way to find a zero byte in a word |
| * http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord |
| * hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL; |
| * |
| * To look for 4 different byte values, xor the word with those bytes and |
| * then check for zero bytes: |
| * |
| * v = (((unsigned char)c * 0x1010101U) ^ delimiter) |
| * where <delimiter> is the 4 byte values to look for (as an uint) |
| * and <c> is the character that is being tested |
| */ |
| static inline unsigned int is_delimiter(unsigned char c, unsigned int mask) |
| { |
| mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */ |
| return (mask - 0x01010101) & ~mask & 0x80808080U; |
| } |
| |
| static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4) |
| { |
| return d1 << 24 | d2 << 16 | d3 << 8 | d4; |
| } |
| |
| |
| /* |
| * |
| * These functions are exported and may be used by any other component. |
| * |
| * The following functions are used for parsing pattern matching |
| * input value. The <text> contain a list of word. The last entry |
| * must be one NULL character. the <text> contain the string to be |
| * parsed. <pattern> must be a preallocated pattern. The pat_parse_* |
| * functions fill this structure with the parsed value. <usage> can |
| * be PAT_U_COMPILE or PAT_U_LOOKUP. If the value PAT_U_COMPILE is |
| * used memory is allocated for filling the pattern. If the value |
| * PAT_U_LOOKUP is set, the parser use "trash" or return pointers |
| * to the input strings. In both cases, the caller must use the |
| * value PAT_U_LOOKUP with caution. <opaque> is used to pass value |
| * between two calls to the parser. the interger must ben initilized |
| * to 0 (see note below). <err> is filled with an error message built |
| * with memprintf() function. |
| * |
| * In succes case, the pat_parse_* function return the number of |
| * <text> eated. If the function fail, it returns 0 and <err> is |
| * filled. |
| * |
| * NOTE: <opaque>iIt is used with integer range parser. The following |
| * configuration line is processed with this method: |
| * |
| * acl ... -m int eq 10 20 |
| * |
| * The first call to the parser eat 2 elements: "eq" and "10". The |
| * pattern is filled with "eq 10" content. The <opaque> contain |
| * coded value value that represent "eq". |
| * |
| * The second call to the parser just eat 1 element: "20". The opaque |
| * contain the value of the operator. The parser returns pattern filled |
| * with "eq 20". |
| * |
| */ |
| |
| /* ignore the current line */ |
| int pat_parse_nothing(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| return 1; |
| } |
| |
| /* Parse a string. It is allocated and duplicated. */ |
| int pat_parse_str(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| pattern->type = SMP_T_CSTR; |
| pattern->expect_type = SMP_T_CSTR; |
| if (usage == PAT_U_COMPILE) { |
| pattern->ptr.str = strdup(*text); |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| } |
| else |
| pattern->ptr.str = (char *)*text; |
| pattern->len = strlen(*text); |
| return 1; |
| } |
| |
| /* Parse a binary written in hexa. It is allocated. */ |
| int pat_parse_bin(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| struct chunk *trash; |
| |
| pattern->type = SMP_T_CBIN; |
| pattern->expect_type = SMP_T_CBIN; |
| |
| if (usage == PAT_U_COMPILE) |
| /* If the parse_binary fails, it returns 0. In succes case, it returns |
| * the length of the arsed binary content. The functions pat_parse_* |
| * must return 0 if fail and the number of elements eated from **text |
| * if not fail. In succes case, this function eat always 1 elements. |
| * The double operator "!" converts the range "1-n" to "1". |
| */ |
| return !!parse_binary(*text, &pattern->ptr.str, &pattern->len, err); |
| |
| trash = get_trash_chunk(); |
| pattern->len = trash->size; |
| pattern->ptr.str = trash->str; |
| return !!parse_binary(*text, &pattern->ptr.str, &pattern->len, err); |
| } |
| |
| /* Parse and concatenate all further strings into one. */ |
| int |
| pat_parse_strcat(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| int len = 0, i; |
| char *s; |
| struct chunk *trash; |
| |
| for (i = 0; *text[i]; i++) |
| len += strlen(text[i])+1; |
| |
| pattern->type = SMP_T_CSTR; |
| if (usage == PAT_U_COMPILE) { |
| pattern->ptr.str = calloc(1, len); |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| } |
| else { |
| trash = get_trash_chunk(); |
| if (trash->size < len) { |
| memprintf(err, "no space avalaible in the buffer. expect %d, provides %d", |
| len, trash->size); |
| return 0; |
| } |
| pattern->ptr.str = trash->str; |
| } |
| |
| s = pattern->ptr.str; |
| |
| for (i = 0; *text[i]; i++) |
| s += sprintf(s, i?" %s":"%s", text[i]); |
| |
| pattern->len = len; |
| |
| return i; |
| } |
| |
| /* Parse a regex. It is allocated. */ |
| int pat_parse_reg(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| struct my_regex *preg; |
| struct chunk *trash; |
| |
| if (usage == PAT_U_COMPILE) { |
| |
| preg = calloc(1, sizeof(*preg)); |
| if (!preg) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| if (!regex_comp(*text, preg, !(pattern->flags & PAT_F_IGNORE_CASE), 0, err)) { |
| free(preg); |
| return 0; |
| } |
| pattern->freeptrbuf = &pat_free_reg; |
| } |
| else { |
| |
| trash = get_trash_chunk(); |
| if (trash->size < sizeof(*preg)) { |
| memprintf(err, "no space avalaible in the buffer. expect %d, provides %d", |
| (int)sizeof(*preg), trash->size); |
| return 0; |
| } |
| |
| preg = (struct my_regex *)trash->str; |
| preg->regstr = (char *)*text; |
| pattern->freeptrbuf = NULL; |
| } |
| |
| pattern->ptr.reg = preg; |
| pattern->expect_type = SMP_T_CSTR; |
| return 1; |
| } |
| |
| /* Parse a range of positive integers delimited by either ':' or '-'. If only |
| * one integer is read, it is set as both min and max. An operator may be |
| * specified as the prefix, among this list of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. |
| * |
| * If err is non-NULL, an error message will be returned there on errors and |
| * the caller will have to free it. |
| * |
| */ |
| int pat_parse_int(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| pattern->type = SMP_T_UINT; |
| pattern->expect_type = SMP_T_UINT; |
| |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i *= 10; |
| i += j; |
| } |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| int pat_parse_len(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| int ret; |
| |
| ret = pat_parse_int(text, pattern, usage, opaque, err); |
| pattern->expect_type = SMP_T_CSTR; |
| return ret; |
| } |
| |
| /* Parse a range of positive 2-component versions delimited by either ':' or |
| * '-'. The version consists in a major and a minor, both of which must be |
| * smaller than 65536, because internally they will be represented as a 32-bit |
| * integer. |
| * If only one version is read, it is set as both min and max. Just like for |
| * pure integers, an operator may be specified as the prefix, among this list |
| * of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. This allows constructs |
| * such as the following one : |
| * |
| * acl obsolete_ssl ssl_req_proto lt 3 |
| * acl unsupported_ssl ssl_req_proto gt 3.1 |
| * acl valid_ssl ssl_req_proto 3.0-3.1 |
| * |
| */ |
| int pat_parse_dotted_ver(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if (j == '.') { |
| /* minor part */ |
| if (i >= 65536) |
| return 0; |
| i <<= 16; |
| continue; |
| } |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| if (i < 65536) |
| i <<= 16; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10; |
| i += j; |
| } |
| |
| /* if we only got a major version, let's shift it now */ |
| if (i < 65536) |
| i <<= 16; |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "version range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| pattern->expect_type = SMP_T_UINT; |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| /* Parse an IP address and an optional mask in the form addr[/mask]. |
| * The addr may either be an IPv4 address or a hostname. The mask |
| * may either be a dotted mask or a number of bits. Returns 1 if OK, |
| * otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6). |
| */ |
| int pat_parse_ip(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err) |
| { |
| pattern->expect_type = SMP_T_ADDR; |
| if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) { |
| pattern->type = SMP_T_IPV4; |
| return 1; |
| } |
| else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) { |
| /* no tree support right now */ |
| pattern->type = SMP_T_IPV6; |
| return 1; |
| } |
| else { |
| memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text); |
| return 0; |
| } |
| } |
| |
| /* |
| * |
| * These functions are exported and may be used by any other component. |
| * |
| * This fucntion just take a sample <smp> and check if this sample match |
| * with the pattern <pattern>. This fucntion return just PAT_MATCH or |
| * PAT_NOMATCH. |
| * |
| */ |
| |
| /* always return false */ |
| enum pat_match_res pat_match_nothing(struct sample *smp, struct pattern *pattern) |
| { |
| return PAT_NOMATCH; |
| } |
| |
| |
| /* NB: For two strings to be identical, it is required that their lengths match */ |
| enum pat_match_res pat_match_str(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len != smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* NB: For two binaries buf to be identical, it is required that their lengths match */ |
| enum pat_match_res pat_match_bin(struct sample *smp, struct pattern *pattern) |
| { |
| if (pattern->len != smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Executes a regex. It temporarily changes the data to add a trailing zero, |
| * and restores the previous character when leaving. |
| */ |
| enum pat_match_res pat_match_reg(struct sample *smp, struct pattern *pattern) |
| { |
| if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the pattern matches the beginning of the tested string. */ |
| enum pat_match_res pat_match_beg(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0)) |
| return PAT_NOMATCH; |
| return PAT_MATCH; |
| } |
| |
| /* Checks that the pattern matches the end of the tested string. */ |
| enum pat_match_res pat_match_end(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0)) |
| return PAT_NOMATCH; |
| return PAT_MATCH; |
| } |
| |
| /* Checks that the pattern is included inside the tested string. |
| * NB: Suboptimal, should be rewritten using a Boyer-Moore method. |
| */ |
| enum pat_match_res pat_match_sub(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| char *end; |
| char *c; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| end = smp->data.str.str + smp->data.str.len - pattern->len; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if (icase) { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (tolower(*c) != tolower(*pattern->ptr.str)) |
| continue; |
| if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0) |
| return PAT_MATCH; |
| } |
| } else { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (*c != *pattern->ptr.str) |
| continue; |
| if (strncmp(pattern->ptr.str, c, pattern->len) == 0) |
| return PAT_MATCH; |
| } |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* This one is used by other real functions. It checks that the pattern is |
| * included inside the tested string, but enclosed between the specified |
| * delimiters or at the beginning or end of the string. The delimiters are |
| * provided as an unsigned int made by make_4delim() and match up to 4 different |
| * delimiters. Delimiters are stripped at the beginning and end of the pattern. |
| */ |
| static int match_word(struct sample *smp, struct pattern *pattern, unsigned int delimiters) |
| { |
| int may_match, icase; |
| char *c, *end; |
| char *ps; |
| int pl; |
| |
| pl = pattern->len; |
| ps = pattern->ptr.str; |
| |
| while (pl > 0 && is_delimiter(*ps, delimiters)) { |
| pl--; |
| ps++; |
| } |
| |
| while (pl > 0 && is_delimiter(ps[pl - 1], delimiters)) |
| pl--; |
| |
| if (pl > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| may_match = 1; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| end = smp->data.str.str + smp->data.str.len - pl; |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (is_delimiter(*c, delimiters)) { |
| may_match = 1; |
| continue; |
| } |
| |
| if (!may_match) |
| continue; |
| |
| if (icase) { |
| if ((tolower(*c) == tolower(*ps)) && |
| (strncasecmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return PAT_MATCH; |
| } else { |
| if ((*c == *ps) && |
| (strncmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return PAT_MATCH; |
| } |
| may_match = 0; |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delimiters '?' or '/' or at the beginning or end of the string. |
| * Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| enum pat_match_res pat_match_dir(struct sample *smp, struct pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '?', '?')); |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delmiters '/', '?', '.' or ":" or at the beginning or end of |
| * the string. Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| enum pat_match_res pat_match_dom(struct sample *smp, struct pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '.', ':')); |
| } |
| |
| /* Checks that the integer in <test> is included between min and max */ |
| enum pat_match_res pat_match_int(struct sample *smp, struct pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) && |
| (!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the length of the pattern in <test> is included between min and max */ |
| enum pat_match_res pat_match_len(struct sample *smp, struct pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) && |
| (!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| enum pat_match_res pat_match_ip(struct sample *smp, struct pattern *pattern) |
| { |
| unsigned int v4; /* in network byte order */ |
| struct in6_addr *v6; |
| int bits, pos; |
| struct in6_addr tmp6; |
| |
| if (pattern->type == SMP_T_IPV4) { |
| if (smp->type == SMP_T_IPV4) { |
| v4 = smp->data.ipv4.s_addr; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| /* v4 match on a V6 sample. We want to check at least for |
| * the following forms : |
| * - ::ffff:ip:v4 (ipv4 mapped) |
| * - ::0000:ip:v4 (old ipv4 mapped) |
| * - 2002:ip:v4:: (6to4) |
| */ |
| if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 && |
| *(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 && |
| (*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 || |
| *(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) { |
| v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12]; |
| } |
| else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) { |
| v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) + |
| ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4])); |
| } |
| else |
| return PAT_NOMATCH; |
| } |
| else |
| return PAT_NOMATCH; |
| |
| if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0) |
| return PAT_MATCH; |
| else |
| return PAT_NOMATCH; |
| } |
| else if (pattern->type == SMP_T_IPV6) { |
| if (smp->type == SMP_T_IPV4) { |
| /* Convert the IPv4 sample address to IPv4 with the |
| * mapping method using the ::ffff: prefix. |
| */ |
| memset(&tmp6, 0, 10); |
| *(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff); |
| *(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr; |
| v6 = &tmp6; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| v6 = &smp->data.ipv6; |
| } |
| else { |
| return PAT_NOMATCH; |
| } |
| |
| bits = pattern->val.ipv6.mask; |
| for (pos = 0; bits > 0; pos += 4, bits -= 32) { |
| v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos]; |
| if (bits < 32) |
| v4 &= htonl((~0U) << (32-bits)); |
| if (v4) |
| return PAT_NOMATCH; |
| } |
| return PAT_MATCH; |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* NB: does nothing if <pat> is NULL */ |
| void pattern_free(struct pattern *pat) |
| { |
| if (!pat) |
| return; |
| |
| if (pat->ptr.ptr) { |
| if (pat->freeptrbuf) |
| pat->freeptrbuf(pat->ptr.ptr); |
| |
| free(pat->ptr.ptr); |
| } |
| |
| free(pat->smp); |
| free(pat); |
| } |
| |
| void free_pattern_list(struct list *head) |
| { |
| struct pattern *pat, *tmp; |
| list_for_each_entry_safe(pat, tmp, head, list) |
| pattern_free(pat); |
| } |
| |
| void free_pattern_tree(struct eb_root *root) |
| { |
| struct eb_node *node, *next; |
| struct pat_idx_elt *elt; |
| |
| node = eb_first(root); |
| while (node) { |
| next = eb_next(node); |
| eb_delete(node); |
| elt = container_of(node, struct pat_idx_elt, node); |
| free(elt->smp); |
| free(elt); |
| node = next; |
| } |
| } |
| |
| void pattern_prune_expr(struct pattern_expr *expr) |
| { |
| free_pattern_list(&expr->patterns); |
| free_pattern_tree(&expr->pattern_tree); |
| LIST_INIT(&expr->patterns); |
| } |
| |
| void pattern_init_expr(struct pattern_expr *expr) |
| { |
| LIST_INIT(&expr->patterns); |
| expr->pattern_tree = EB_ROOT_UNIQUE; |
| } |
| |
| /* return 1 if the process is ok |
| * return -1 if the parser fail. The err message is filled. |
| * return -2 if out of memory |
| */ |
| int pattern_register(struct pattern_expr *expr, const char **args, |
| struct sample_storage *smp, |
| struct pattern **pattern, |
| int patflags, char **err) |
| { |
| int opaque = 0; |
| unsigned int mask = 0; |
| struct pat_idx_elt *node; |
| int len; |
| int ret; |
| |
| /* eat args */ |
| while (**args) { |
| |
| /* we keep the previous pattern along iterations as long as it's not used */ |
| if (!*pattern) |
| *pattern = (struct pattern *)malloc(sizeof(**pattern)); |
| if (!*pattern) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| memset(*pattern, 0, sizeof(**pattern)); |
| (*pattern)->flags = patflags; |
| |
| ret = expr->parse(args, *pattern, PAT_U_COMPILE, &opaque, err); |
| if (!ret) |
| return 0; |
| |
| /* each parser return the number of args eated */ |
| args += ret; |
| |
| /* |
| * |
| * SMP_T_CSTR tree indexation |
| * |
| * The match "pat_match_str()" can use tree. |
| * |
| */ |
| if (expr->match == pat_match_str) { |
| |
| /* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */ |
| if ((*pattern)->flags & PAT_F_IGNORE_CASE) |
| goto just_chain_the_pattern; |
| |
| /* Process the key len */ |
| len = strlen((*pattern)->ptr.str) + 1; |
| |
| /* node memory allocation */ |
| node = calloc(1, sizeof(*node) + len); |
| if (!node) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| /* copy the pointer to sample associated to this node */ |
| node->smp = smp; |
| |
| /* copy the string */ |
| memcpy(node->node.key, (*pattern)->ptr.str, len); |
| |
| /* the "map_parser_str()" function always duplicate string information */ |
| free((*pattern)->ptr.str); |
| (*pattern)->ptr.str = NULL; |
| |
| /* we pre-set the data pointer to the tree's head so that functions |
| * which are able to insert in a tree know where to do that. |
| * |
| * because "val" is an "union", the previous data are crushed. |
| */ |
| (*pattern)->flags |= PAT_F_TREE; |
| (*pattern)->val.tree = &expr->pattern_tree; |
| |
| /* index the new node */ |
| if (ebst_insert((*pattern)->val.tree, &node->node) != &node->node) |
| free(node); /* was a duplicate */ |
| } |
| |
| /* |
| * |
| * SMP_T_IPV4 tree indexation |
| * |
| * The match "pat_match_ip()" can use tree. |
| * |
| */ |
| else if (expr->match == pat_match_ip) { |
| |
| /* Only IPv4 can be indexed */ |
| if ((*pattern)->type != SMP_T_IPV4) |
| goto just_chain_the_pattern; |
| |
| /* in IPv4 case, check if the mask is contiguous so that we can |
| * insert the network into the tree. A continuous mask has only |
| * ones on the left. This means that this mask + its lower bit |
| * added once again is null. |
| */ |
| mask = ntohl((*pattern)->val.ipv4.mask.s_addr); |
| if (mask + (mask & -mask) != 0) |
| goto just_chain_the_pattern; |
| mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */ |
| |
| /* node memory allocation */ |
| node = calloc(1, sizeof(*node) + 4); |
| if (!node) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| /* copy the pointer to sample associated to this node */ |
| node->smp = smp; |
| |
| /* FIXME: insert <addr>/<mask> into the tree here */ |
| memcpy(node->node.key, &(*pattern)->val.ipv4.addr, 4); /* network byte order */ |
| |
| /* we pre-set the data pointer to the tree's head so that functions |
| * which are able to insert in a tree know where to do that. |
| * |
| * because "val" is an "union", the previous data are crushed. |
| */ |
| (*pattern)->flags |= PAT_F_TREE; |
| (*pattern)->val.tree = &expr->pattern_tree; |
| |
| /* Index the new node |
| * FIXME: insert <addr>/<mask> into the tree here |
| */ |
| node->node.node.pfx = mask; |
| if (ebmb_insert_prefix((*pattern)->val.tree, &node->node, 4) != &node->node) |
| free(node); /* was a duplicate */ |
| } |
| |
| /* |
| * |
| * if the parser did not feed the tree, let's chain the pattern to the list |
| * |
| */ |
| else { |
| |
| just_chain_the_pattern: |
| |
| LIST_ADDQ(&expr->patterns, &(*pattern)->list); |
| |
| /* copy the pointer to sample associated to this node */ |
| (*pattern)->smp = smp; |
| |
| /* get a new one */ |
| *pattern = NULL; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Reads patterns from a file. If <err_msg> is non-NULL, an error message will |
| * be returned there on errors and the caller will have to free it. |
| */ |
| int pattern_read_from_file(struct pattern_expr *expr, |
| const char *filename, int patflags, |
| char **err) |
| { |
| FILE *file; |
| char *c; |
| char *arg; |
| struct pattern *pattern; |
| int ret = 0; |
| int line = 0; |
| int code; |
| const char *args[2]; |
| |
| file = fopen(filename, "r"); |
| if (!file) { |
| memprintf(err, "failed to open pattern file <%s>", filename); |
| return 0; |
| } |
| |
| /* now parse all patterns. The file may contain only one pattern per |
| * line. If the line contains spaces, they will be part of the pattern. |
| * The pattern stops at the first CR, LF or EOF encountered. |
| */ |
| pattern = NULL; |
| while (fgets(trash.str, trash.size, file) != NULL) { |
| line++; |
| c = trash.str; |
| |
| /* ignore lines beginning with a dash */ |
| if (*c == '#') |
| continue; |
| |
| /* strip leading spaces and tabs */ |
| while (*c == ' ' || *c == '\t') |
| c++; |
| |
| |
| arg = c; |
| while (*c && *c != '\n' && *c != '\r') |
| c++; |
| *c = 0; |
| |
| /* empty lines are ignored too */ |
| if (c == arg) |
| continue; |
| |
| args[0] = arg; |
| args[1] = ""; |
| |
| code = pattern_register(expr, args, NULL, &pattern, patflags, err); |
| if (code == -2) { |
| memprintf(err, "out of memory when loading patterns from file <%s>", filename); |
| goto out_close; |
| } |
| else if (code < 0) { |
| memprintf(err, "%s when loading patterns from file <%s>", *err, filename); |
| goto out_free_pattern; |
| } |
| } |
| |
| ret = 1; /* success */ |
| |
| out_free_pattern: |
| pattern_free(pattern); |
| out_close: |
| fclose(file); |
| return ret; |
| } |
| |
| /* This function matches a sample <smp> against a set of patterns presented in |
| * pattern expression <expr>. Upon success, if <sample> is not NULL, it is fed |
| * with the pointer associated with the matching pattern. This function returns |
| * PAT_NOMATCH or PAT_MATCH. |
| */ |
| enum pat_match_res pattern_exec_match(struct pattern_expr *expr, struct sample *smp, |
| struct sample_storage **sample, |
| struct pattern **pat, struct pat_idx_elt **idx_elt) |
| { |
| enum pat_match_res pat_res = PAT_NOMATCH; |
| struct pattern *pattern; |
| struct ebmb_node *node = NULL; |
| struct pat_idx_elt *elt; |
| |
| if (expr->match == pat_match_nothing) { |
| if (smp->data.uint) |
| pat_res |= PAT_MATCH; |
| else |
| pat_res |= PAT_NOMATCH; |
| } |
| else if (!expr->match) { |
| /* just check for existence */ |
| pat_res |= PAT_MATCH; |
| } |
| else { |
| if (!eb_is_empty(&expr->pattern_tree)) { |
| /* a tree is present, let's check what type it is */ |
| if (expr->match == pat_match_str) { |
| if (sample_convert(smp, SMP_T_STR)) |
| node = pat_lookup_str(smp, expr); |
| } |
| else if (expr->match == pat_match_ip) { |
| if (sample_convert(smp, SMP_T_IPV4)) |
| node = pat_lookup_ip(smp, expr); |
| } |
| if (node) { |
| pat_res |= PAT_MATCH; |
| elt = ebmb_entry(node, struct pat_idx_elt, node); |
| if (sample) |
| *sample = elt->smp; |
| if (idx_elt) |
| *idx_elt = elt; |
| } |
| } |
| |
| /* call the match() function for all tests on this value */ |
| list_for_each_entry(pattern, &expr->patterns, list) { |
| if (pat_res == PAT_MATCH) |
| break; |
| if (sample_convert(smp, pattern->expect_type)) |
| pat_res |= expr->match(smp, pattern); |
| if (sample) |
| *sample = pattern->smp; |
| if (pat) |
| *pat = pattern; |
| } |
| } |
| |
| return pat_res; |
| } |
| |
| /* This function browse the pattern expr <expr> to lookup the key <key>. On |
| * error it returns 0. On success, it returns 1 and fills either <pat_elt> |
| * or <idx_elt> with the respectively matched pointers, and the other one with |
| * NULL. Pointers are not set if they're passed as NULL. |
| */ |
| int pattern_lookup(const char *key, struct pattern_expr *expr, |
| struct pattern **pat_elt, struct pat_idx_elt **idx_elt, char **err) |
| { |
| struct pattern pattern; |
| struct pattern *pat; |
| struct ebmb_node *node; |
| struct pat_idx_elt *elt; |
| const char *args[2]; |
| int opaque = 0; |
| unsigned int mask = 0; |
| |
| /* no real pattern */ |
| if (!expr->match || expr->match == pat_match_nothing) |
| return 0; |
| |
| /* build lookup pattern */ |
| args[0] = key; |
| args[1] = ""; |
| if (!expr->parse(args, &pattern, PAT_U_LOOKUP, &opaque, NULL)) |
| return 0; |
| |
| pat = NULL; |
| elt = NULL; |
| |
| /* Try to look up the tree first. IPv6 is not indexed */ |
| if (!eb_is_empty(&expr->pattern_tree) && pattern.type != SMP_T_IPV6) { |
| /* Check the pattern type */ |
| if (pattern.type != SMP_T_STR && |
| pattern.type != SMP_T_CSTR && |
| pattern.type != SMP_T_IPV4) { |
| memprintf(err, "Unexpected pattern type."); |
| return 0; |
| } |
| |
| /* Convert mask. If the mask is not contiguous, ignore the lookup |
| * in the tree, and browse the list. |
| */ |
| if (expr->match == pat_match_ip) { |
| mask = ntohl(pattern.val.ipv4.mask.s_addr); |
| if (mask + (mask & -mask) != 0) |
| goto browse_list; |
| mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */ |
| } |
| |
| /* browse each node of the tree, and check string */ |
| if (expr->match == pat_match_str) { |
| for (node = ebmb_first(&expr->pattern_tree); |
| node; |
| node = ebmb_next(node)) { |
| elt = container_of(node, struct pat_idx_elt, node); |
| if (strcmp(pattern.ptr.str, (char *)elt->node.key) == 0) |
| goto found; |
| } |
| } |
| else if (expr->match == pat_match_ip) { |
| for (node = ebmb_first(&expr->pattern_tree); |
| node; |
| node = ebmb_next(node)) { |
| elt = container_of(node, struct pat_idx_elt, node); |
| if (elt->node.node.pfx == mask && |
| memcmp(&pattern.val.ipv4.addr.s_addr, elt->node.key, 4) == 0) |
| goto found; |
| } |
| } |
| } |
| |
| browse_list: |
| elt = NULL; |
| if (expr->parse == pat_parse_int || |
| expr->parse == pat_parse_len) { |
| list_for_each_entry(pat, &expr->patterns, list) { |
| if (pat->flags & PAT_F_TREE) |
| continue; |
| if (pattern.val.range.min_set != pat->val.range.min_set) |
| continue; |
| if (pattern.val.range.max_set != pat->val.range.max_set) |
| continue; |
| if (pattern.val.range.min_set && |
| pattern.val.range.min != pat->val.range.min) |
| continue; |
| if (pattern.val.range.max_set && |
| pattern.val.range.max != pat->val.range.max) |
| continue; |
| goto found; |
| } |
| } |
| else if (expr->parse == pat_parse_ip) { |
| list_for_each_entry(pat, &expr->patterns, list) { |
| if (pat->flags & PAT_F_TREE) |
| continue; |
| if (pattern.type != pat->type) |
| continue; |
| if (pattern.type == SMP_T_IPV4 && |
| memcmp(&pattern.val.ipv4.addr, &pat->val.ipv4.addr, sizeof(pat->val.ipv4.addr)) != 0) |
| continue; |
| if (pattern.type == SMP_T_IPV4 && |
| memcmp(&pattern.val.ipv4.mask, &pat->val.ipv4.mask, sizeof(pat->val.ipv4.addr)) != 0) |
| continue; |
| if (pattern.type == SMP_T_IPV6 && |
| memcmp(&pattern.val.ipv6.addr, &pat->val.ipv6.addr, sizeof(pat->val.ipv6.addr)) != 0) |
| continue; |
| if (pattern.type == SMP_T_IPV6 && |
| pattern.val.ipv6.mask != pat->val.ipv6.mask) |
| continue; |
| goto found; |
| } |
| } |
| else if (expr->parse == pat_parse_str) { |
| list_for_each_entry(pat, &expr->patterns, list) { |
| if (pat->flags & PAT_F_TREE) |
| continue; |
| if (pattern.len != pat->len) |
| continue; |
| if (pat->flags & PAT_F_IGNORE_CASE) { |
| if (strncasecmp(pattern.ptr.str, pat->ptr.str, pat->len) != 0) |
| continue; |
| } |
| else { |
| if (strncmp(pattern.ptr.str, pat->ptr.str, pat->len) != 0) |
| continue; |
| } |
| goto found; |
| } |
| } |
| else if (expr->parse == pat_parse_bin) { |
| list_for_each_entry(pat, &expr->patterns, list) { |
| if (pat->flags & PAT_F_TREE) |
| continue; |
| if (pattern.len != pat->len) |
| continue; |
| if (memcmp(pattern.ptr.ptr, pat->ptr.ptr, pat->len) != 0) |
| continue; |
| goto found; |
| } |
| } |
| else if (expr->parse == pat_parse_reg) { |
| list_for_each_entry(pat, &expr->patterns, list) { |
| if (pat->flags & PAT_F_TREE) |
| continue; |
| if (pat->flags & PAT_F_IGNORE_CASE) { |
| if (strcasecmp(pattern.ptr.reg->regstr, pat->ptr.reg->regstr) != 0) |
| continue; |
| } |
| else { |
| if (strcmp(pattern.ptr.reg->regstr, pat->ptr.reg->regstr) != 0) |
| continue; |
| } |
| goto found; |
| } |
| } |
| |
| /* if we get there, we didn't find the pattern */ |
| return 0; |
| found: |
| if (idx_elt) |
| *idx_elt = elt; |
| |
| if (pat_elt) |
| *pat_elt = pat; |
| |
| return 1; |
| } |