| /* |
| * HTT/1 mux-demux for connections |
| * |
| * Copyright 2018 Christopher Faulet <cfaulet@haproxy.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| #include <common/cfgparse.h> |
| #include <common/config.h> |
| #include <common/h1.h> |
| #include <common/h2.h> |
| #include <common/htx.h> |
| #include <common/initcall.h> |
| |
| #include <types/pipe.h> |
| #include <types/proxy.h> |
| #include <types/session.h> |
| |
| #include <proto/connection.h> |
| #include <proto/http_htx.h> |
| #include <proto/log.h> |
| #include <proto/session.h> |
| #include <proto/stream.h> |
| #include <proto/stream_interface.h> |
| |
| /* |
| * H1 Connection flags (32 bits) |
| */ |
| #define H1C_F_NONE 0x00000000 |
| |
| /* Flags indicating why writing output data are blocked */ |
| #define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */ |
| #define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */ |
| /* 0x00000004 - 0x00000008 unused */ |
| |
| /* Flags indicating why reading input data are blocked. */ |
| #define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */ |
| #define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */ |
| #define H1C_F_IN_BUSY 0x00000040 |
| /* 0x00000040 - 0x00000800 unused */ |
| |
| #define H1C_F_CS_ERROR 0x00001000 /* connection must be closed ASAP because an error occurred */ |
| #define H1C_F_CS_SHUTW_NOW 0x00002000 /* connection must be shut down for writes ASAP */ |
| #define H1C_F_CS_SHUTDOWN 0x00004000 /* connection is shut down for read and writes */ |
| #define H1C_F_CS_WAIT_CONN 0x00008000 /* waiting for the connection establishment */ |
| |
| #define H1C_F_WAIT_NEXT_REQ 0x00010000 /* waiting for the next request to start, use keep-alive timeout */ |
| #define H1C_F_UPG_H2C 0x00020000 /* set if an upgrade to h2 should be done */ |
| |
| /* |
| * H1 Stream flags (32 bits) |
| */ |
| #define H1S_F_NONE 0x00000000 |
| #define H1S_F_ERROR 0x00000001 /* An error occurred on the H1 stream */ |
| #define H1S_F_REQ_ERROR 0x00000002 /* An error occurred during the request parsing/xfer */ |
| #define H1S_F_RES_ERROR 0x00000004 /* An error occurred during the response parsing/xfer */ |
| /* 0x00000008 unused */ |
| #define H1S_F_WANT_KAL 0x00000010 |
| #define H1S_F_WANT_TUN 0x00000020 |
| #define H1S_F_WANT_CLO 0x00000040 |
| #define H1S_F_WANT_MSK 0x00000070 |
| #define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */ |
| #define H1S_F_BUF_FLUSH 0x00000100 /* Flush input buffer and don't read more data */ |
| #define H1S_F_SPLICED_DATA 0x00000200 /* Set when the kernel splicing is in used */ |
| #define H1S_F_HAVE_I_EOD 0x00000400 /* Set during input process to know the last empty chunk was processed */ |
| #define H1S_F_HAVE_I_TLR 0x00000800 /* Set during input process to know the trailers were processed */ |
| #define H1S_F_HAVE_O_EOD 0x00001000 /* Set during output process to know the last empty chunk was processed */ |
| #define H1S_F_HAVE_O_TLR 0x00002000 /* Set during output process to know the trailers were processed */ |
| |
| /* H1 connection descriptor */ |
| struct h1c { |
| struct connection *conn; |
| struct proxy *px; |
| uint32_t flags; /* Connection flags: H1C_F_* */ |
| |
| struct buffer ibuf; /* Input buffer to store data before parsing */ |
| struct buffer obuf; /* Output buffer to store data after reformatting */ |
| |
| struct buffer_wait buf_wait; /* Wait list for buffer allocation */ |
| struct wait_event wait_event; /* To be used if we're waiting for I/Os */ |
| |
| struct h1s *h1s; /* H1 stream descriptor */ |
| struct task *task; /* timeout management task */ |
| int timeout; /* idle timeout duration in ticks */ |
| int shut_timeout; /* idle timeout duration in ticks after stream shutdown */ |
| }; |
| |
| /* H1 stream descriptor */ |
| struct h1s { |
| struct h1c *h1c; |
| struct conn_stream *cs; |
| struct cs_info csinfo; /* CS info, only used for client connections */ |
| uint32_t flags; /* Connection flags: H1S_F_* */ |
| |
| struct wait_event *recv_wait; /* Address of the wait_event the conn_stream associated is waiting on */ |
| struct wait_event *send_wait; /* Address of the wait_event the conn_stream associated is waiting on */ |
| |
| struct session *sess; /* Associated session */ |
| struct h1m req; |
| struct h1m res; |
| |
| enum http_meth_t meth; /* HTTP resquest method */ |
| uint16_t status; /* HTTP response status */ |
| }; |
| |
| /* the h1c and h1s pools */ |
| DECLARE_STATIC_POOL(pool_head_h1c, "h1c", sizeof(struct h1c)); |
| DECLARE_STATIC_POOL(pool_head_h1s, "h1s", sizeof(struct h1s)); |
| |
| static int h1_recv(struct h1c *h1c); |
| static int h1_send(struct h1c *h1c); |
| static int h1_process(struct h1c *h1c); |
| static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short state); |
| static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode); |
| static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state); |
| |
| /*****************************************************/ |
| /* functions below are for dynamic buffer management */ |
| /*****************************************************/ |
| /* |
| * Indicates whether or not the we may call the h1_recv() function to |
| * attempt to receive data into the buffer and/or parse pending data. The |
| * condition is a bit complex due to some API limits for now. The rules are the |
| * following : |
| * - if an error or a shutdown was detected on the connection and the buffer |
| * is empty, we must not attempt to receive |
| * - if the input buffer failed to be allocated, we must not try to receive |
| * and we know there is nothing pending |
| * - if no flag indicates a blocking condition, we may attempt to receive, |
| * regardless of whether the input buffer is full or not, so that only de |
| * receiving part decides whether or not to block. This is needed because |
| * the connection API indeed prevents us from re-enabling receipt that is |
| * already enabled in a polled state, so we must always immediately stop as |
| * soon as the mux can't proceed so as never to hit an end of read with data |
| * pending in the buffers. |
| * - otherwise must may not attempt to receive |
| */ |
| static inline int h1_recv_allowed(const struct h1c *h1c) |
| { |
| if (b_data(&h1c->ibuf) == 0 && (h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN))) |
| return 0; |
| |
| if (h1c->conn->flags & CO_FL_ERROR || conn_xprt_read0_pending(h1c->conn)) |
| return 0; |
| |
| if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL|H1C_F_IN_BUSY))) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Tries to grab a buffer and to re-enables processing on mux <target>. The h1 |
| * flags are used to figure what buffer was requested. It returns 1 if the |
| * allocation succeeds, in which case the connection is woken up, or 0 if it's |
| * impossible to wake up and we prefer to be woken up later. |
| */ |
| static int h1_buf_available(void *target) |
| { |
| struct h1c *h1c = target; |
| |
| if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc_margin(&h1c->ibuf, 0)) { |
| h1c->flags &= ~H1C_F_IN_ALLOC; |
| if (h1_recv_allowed(h1c)) |
| tasklet_wakeup(h1c->wait_event.task); |
| return 1; |
| } |
| |
| if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc_margin(&h1c->obuf, 0)) { |
| h1c->flags &= ~H1C_F_OUT_ALLOC; |
| tasklet_wakeup(h1c->wait_event.task); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate a buffer. If if fails, it adds the mux in buffer wait queue. |
| */ |
| static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr) |
| { |
| struct buffer *buf = NULL; |
| |
| if (likely(LIST_ISEMPTY(&h1c->buf_wait.list)) && |
| unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) { |
| h1c->buf_wait.target = h1c; |
| h1c->buf_wait.wakeup_cb = h1_buf_available; |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_ADDQ(&buffer_wq, &h1c->buf_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| __conn_xprt_stop_recv(h1c->conn); |
| } |
| return buf; |
| } |
| |
| /* |
| * Release a buffer, if any, and try to wake up entities waiting in the buffer |
| * wait queue. |
| */ |
| static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr) |
| { |
| if (bptr->size) { |
| b_free(bptr); |
| offer_buffers(h1c->buf_wait.target, tasks_run_queue); |
| } |
| } |
| |
| /* returns the number of streams in use on a connection to figure if it's |
| * idle or not. We can't have an h1s without a CS so checking h1s is fine, |
| * as the caller will want to know if it was the last one after a detach(). |
| */ |
| static int h1_used_streams(struct connection *conn) |
| { |
| struct h1c *h1c = conn->ctx; |
| |
| return h1c->h1s ? 1 : 0; |
| } |
| |
| /* returns the number of streams still available on a connection */ |
| static int h1_avail_streams(struct connection *conn) |
| { |
| return 1 - h1_used_streams(conn); |
| } |
| |
| |
| /*****************************************************************/ |
| /* functions below are dedicated to the mux setup and management */ |
| /*****************************************************************/ |
| static struct conn_stream *h1s_new_cs(struct h1s *h1s) |
| { |
| struct conn_stream *cs; |
| |
| cs = cs_new(h1s->h1c->conn); |
| if (!cs) |
| goto err; |
| h1s->cs = cs; |
| cs->ctx = h1s; |
| |
| if (h1s->flags & H1S_F_NOT_FIRST) |
| cs->flags |= CS_FL_NOT_FIRST; |
| |
| if (stream_create_from_cs(cs) < 0) |
| goto err; |
| return cs; |
| |
| err: |
| cs_free(cs); |
| h1s->cs = NULL; |
| return NULL; |
| } |
| |
| static struct h1s *h1s_create(struct h1c *h1c, struct conn_stream *cs, struct session *sess) |
| { |
| struct h1s *h1s; |
| |
| h1s = pool_alloc(pool_head_h1s); |
| if (!h1s) |
| goto fail; |
| |
| h1s->h1c = h1c; |
| h1c->h1s = h1s; |
| |
| h1s->sess = sess; |
| |
| h1s->cs = NULL; |
| h1s->flags = H1S_F_WANT_KAL; |
| |
| h1s->recv_wait = NULL; |
| h1s->send_wait = NULL; |
| |
| h1m_init_req(&h1s->req); |
| h1s->req.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); |
| |
| h1m_init_res(&h1s->res); |
| h1s->res.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); |
| |
| h1s->status = 0; |
| h1s->meth = HTTP_METH_OTHER; |
| |
| if (h1c->flags & H1C_F_WAIT_NEXT_REQ) |
| h1s->flags |= H1S_F_NOT_FIRST; |
| h1c->flags &= ~H1C_F_WAIT_NEXT_REQ; |
| |
| if (!conn_is_back(h1c->conn)) { |
| if (h1c->px->options2 & PR_O2_REQBUG_OK) |
| h1s->req.err_pos = -1; |
| |
| /* For frontend connections we should always have a session */ |
| if (!sess) |
| sess = h1c->conn->owner; |
| |
| h1s->csinfo.create_date = sess->accept_date; |
| h1s->csinfo.tv_create = sess->tv_accept; |
| h1s->csinfo.t_handshake = sess->t_handshake; |
| h1s->csinfo.t_idle = -1; |
| } |
| else { |
| if (h1c->px->options2 & PR_O2_RSPBUG_OK) |
| h1s->res.err_pos = -1; |
| |
| h1s->csinfo.create_date = date; |
| h1s->csinfo.tv_create = now; |
| h1s->csinfo.t_handshake = 0; |
| h1s->csinfo.t_idle = -1; |
| } |
| |
| /* If a conn_stream already exists, attach it to this H1S. Otherwise we |
| * create a new one. |
| */ |
| if (cs) { |
| cs->ctx = h1s; |
| h1s->cs = cs; |
| } |
| else { |
| cs = h1s_new_cs(h1s); |
| if (!cs) |
| goto fail; |
| } |
| return h1s; |
| |
| fail: |
| pool_free(pool_head_h1s, h1s); |
| return NULL; |
| } |
| |
| static void h1s_destroy(struct h1s *h1s) |
| { |
| if (h1s) { |
| struct h1c *h1c = h1s->h1c; |
| |
| h1c->h1s = NULL; |
| |
| if (h1s->recv_wait != NULL) |
| h1s->recv_wait->events &= ~SUB_RETRY_RECV; |
| if (h1s->send_wait != NULL) |
| h1s->send_wait->events &= ~SUB_RETRY_SEND; |
| |
| h1c->flags &= ~H1C_F_IN_BUSY; |
| h1c->flags |= H1C_F_WAIT_NEXT_REQ; |
| if (h1s->flags & (H1S_F_REQ_ERROR|H1S_F_RES_ERROR)) |
| h1c->flags |= H1C_F_CS_ERROR; |
| pool_free(pool_head_h1s, h1s); |
| } |
| } |
| |
| static const struct cs_info *h1_get_cs_info(struct conn_stream *cs) |
| { |
| struct h1s *h1s = cs->ctx; |
| |
| if (h1s && !conn_is_back(cs->conn)) |
| return &h1s->csinfo; |
| return NULL; |
| } |
| |
| /* |
| * Initialize the mux once it's attached. It is expected that conn->ctx points |
| * to the existing conn_stream (for outgoing connections or for incoming onces |
| * during a mux upgrade) or NULL (for incoming ones during the connexion |
| * establishment). <input> is always used as Input buffer and may contain |
| * data. It is the caller responsibility to not reuse it anymore. Returns < 0 on |
| * error. |
| */ |
| static int h1_init(struct connection *conn, struct proxy *proxy, struct session *sess, |
| struct buffer *input) |
| { |
| struct h1c *h1c; |
| struct task *t = NULL; |
| |
| h1c = pool_alloc(pool_head_h1c); |
| if (!h1c) |
| goto fail_h1c; |
| h1c->conn = conn; |
| h1c->px = proxy; |
| |
| h1c->flags = H1C_F_NONE; |
| h1c->ibuf = *input; |
| h1c->obuf = BUF_NULL; |
| h1c->h1s = NULL; |
| h1c->task = NULL; |
| |
| LIST_INIT(&h1c->buf_wait.list); |
| h1c->wait_event.task = tasklet_new(); |
| if (!h1c->wait_event.task) |
| goto fail; |
| h1c->wait_event.task->process = h1_io_cb; |
| h1c->wait_event.task->context = h1c; |
| h1c->wait_event.events = 0; |
| |
| if (conn_is_back(conn)) { |
| h1c->shut_timeout = h1c->timeout = proxy->timeout.server; |
| if (tick_isset(proxy->timeout.serverfin)) |
| h1c->shut_timeout = proxy->timeout.serverfin; |
| } else { |
| h1c->shut_timeout = h1c->timeout = proxy->timeout.client; |
| if (tick_isset(proxy->timeout.clientfin)) |
| h1c->shut_timeout = proxy->timeout.clientfin; |
| } |
| if (tick_isset(h1c->timeout)) { |
| t = task_new(tid_bit); |
| if (!t) |
| goto fail; |
| |
| h1c->task = t; |
| t->process = h1_timeout_task; |
| t->context = h1c; |
| t->expire = tick_add(now_ms, h1c->timeout); |
| } |
| |
| if (!(conn->flags & CO_FL_CONNECTED)) |
| h1c->flags |= H1C_F_CS_WAIT_CONN; |
| |
| /* Always Create a new H1S */ |
| if (!h1s_create(h1c, conn->ctx, sess)) |
| goto fail; |
| |
| conn->ctx = h1c; |
| |
| |
| if (t) |
| task_queue(t); |
| |
| /* Try to read, if nothing is available yet we'll just subscribe */ |
| tasklet_wakeup(h1c->wait_event.task); |
| |
| /* mux->wake will be called soon to complete the operation */ |
| return 0; |
| |
| fail: |
| if (t) |
| task_destroy(t); |
| if (h1c->wait_event.task) |
| tasklet_free(h1c->wait_event.task); |
| pool_free(pool_head_h1c, h1c); |
| fail_h1c: |
| return -1; |
| } |
| |
| /* release function. This one should be called to free all resources allocated |
| * to the mux. |
| */ |
| static void h1_release(struct h1c *h1c) |
| { |
| struct connection *conn = NULL; |
| |
| if (h1c) { |
| /* The connection must be aattached to this mux to be released */ |
| if (h1c->conn && h1c->conn->ctx == h1c) |
| conn = h1c->conn; |
| |
| if (conn && h1c->flags & H1C_F_UPG_H2C) { |
| h1c->flags &= ~H1C_F_UPG_H2C; |
| if (conn_upgrade_mux_fe(conn, NULL, &h1c->ibuf, ist("h2"), PROTO_MODE_HTX) != -1) { |
| /* connection successfully upgraded to H2, this |
| * mux was already released */ |
| return; |
| } |
| sess_log(conn->owner); /* Log if the upgrade failed */ |
| } |
| |
| |
| if (!LIST_ISEMPTY(&h1c->buf_wait.list)) { |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_DEL(&h1c->buf_wait.list); |
| LIST_INIT(&h1c->buf_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| } |
| |
| h1_release_buf(h1c, &h1c->ibuf); |
| h1_release_buf(h1c, &h1c->obuf); |
| |
| if (h1c->task) { |
| h1c->task->context = NULL; |
| task_wakeup(h1c->task, TASK_WOKEN_OTHER); |
| h1c->task = NULL; |
| } |
| |
| if (h1c->wait_event.task) |
| tasklet_free(h1c->wait_event.task); |
| |
| h1s_destroy(h1c->h1s); |
| if (conn && h1c->wait_event.events != 0) |
| conn->xprt->unsubscribe(conn, conn->xprt_ctx, h1c->wait_event.events, |
| &h1c->wait_event); |
| pool_free(pool_head_h1c, h1c); |
| } |
| |
| if (conn) { |
| conn->mux = NULL; |
| conn->ctx = NULL; |
| |
| conn_stop_tracking(conn); |
| conn_full_close(conn); |
| if (conn->destroy_cb) |
| conn->destroy_cb(conn); |
| conn_free(conn); |
| } |
| } |
| |
| /******************************************************/ |
| /* functions below are for the H1 protocol processing */ |
| /******************************************************/ |
| /* Parse the request version and set H1_MF_VER_11 on <h1m> if the version is |
| * greater or equal to 1.1 |
| */ |
| static void h1_parse_req_vsn(struct h1m *h1m, const struct htx_sl *sl) |
| { |
| const char *p = HTX_SL_REQ_VPTR(sl); |
| |
| if ((HTX_SL_REQ_VLEN(sl) == 8) && |
| (*(p + 5) > '1' || |
| (*(p + 5) == '1' && *(p + 7) >= '1'))) |
| h1m->flags |= H1_MF_VER_11; |
| } |
| |
| /* Parse the response version and set H1_MF_VER_11 on <h1m> if the version is |
| * greater or equal to 1.1 |
| */ |
| static void h1_parse_res_vsn(struct h1m *h1m, const struct htx_sl *sl) |
| { |
| const char *p = HTX_SL_RES_VPTR(sl); |
| |
| if ((HTX_SL_RES_VLEN(sl) == 8) && |
| (*(p + 5) > '1' || |
| (*(p + 5) == '1' && *(p + 7) >= '1'))) |
| h1m->flags |= H1_MF_VER_11; |
| } |
| |
| /* |
| * Check the validity of the request version. If the version is valid, it |
| * returns 1. Otherwise, it returns 0. |
| */ |
| static int h1_process_req_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl) |
| { |
| struct h1c *h1c = h1s->h1c; |
| |
| /* RFC7230#2.6 has enforced the format of the HTTP version string to be |
| * exactly one digit "." one digit. This check may be disabled using |
| * option accept-invalid-http-request. |
| */ |
| if (!(h1c->px->options2 & PR_O2_REQBUG_OK)) { |
| if (sl.rq.v.len != 8) |
| return 0; |
| |
| if (*(sl.rq.v.ptr + 4) != '/' || |
| !isdigit((unsigned char)*(sl.rq.v.ptr + 5)) || |
| *(sl.rq.v.ptr + 6) != '.' || |
| !isdigit((unsigned char)*(sl.rq.v.ptr + 7))) |
| return 0; |
| } |
| else if (!sl.rq.v.len) { |
| /* try to convert HTTP/0.9 requests to HTTP/1.0 */ |
| |
| /* RFC 1945 allows only GET for HTTP/0.9 requests */ |
| if (sl.rq.meth != HTTP_METH_GET) |
| return 0; |
| |
| /* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */ |
| if (!sl.rq.u.len) |
| return 0; |
| |
| /* Add HTTP version */ |
| sl.rq.v = ist("HTTP/1.0"); |
| return 1; |
| } |
| |
| if ((sl.rq.v.len == 8) && |
| ((*(sl.rq.v.ptr + 5) > '1') || |
| ((*(sl.rq.v.ptr + 5) == '1') && (*(sl.rq.v.ptr + 7) >= '1')))) |
| h1m->flags |= H1_MF_VER_11; |
| return 1; |
| } |
| |
| /* |
| * Check the validity of the response version. If the version is valid, it |
| * returns 1. Otherwise, it returns 0. |
| */ |
| static int h1_process_res_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl) |
| { |
| struct h1c *h1c = h1s->h1c; |
| |
| /* RFC7230#2.6 has enforced the format of the HTTP version string to be |
| * exactly one digit "." one digit. This check may be disabled using |
| * option accept-invalid-http-request. |
| */ |
| if (!(h1c->px->options2 & PR_O2_RSPBUG_OK)) { |
| if (sl.st.v.len != 8) |
| return 0; |
| |
| if (*(sl.st.v.ptr + 4) != '/' || |
| !isdigit((unsigned char)*(sl.st.v.ptr + 5)) || |
| *(sl.st.v.ptr + 6) != '.' || |
| !isdigit((unsigned char)*(sl.st.v.ptr + 7))) |
| return 0; |
| } |
| |
| if ((sl.st.v.len == 8) && |
| ((*(sl.st.v.ptr + 5) > '1') || |
| ((*(sl.st.v.ptr + 5) == '1') && (*(sl.st.v.ptr + 7) >= '1')))) |
| h1m->flags |= H1_MF_VER_11; |
| |
| return 1; |
| } |
| |
| /* Deduce the connection mode of the client connection, depending on the |
| * configuration and the H1 message flags. This function is called twice, the |
| * first time when the request is parsed and the second time when the response |
| * is parsed. |
| */ |
| static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m) |
| { |
| struct proxy *fe = h1s->h1c->px; |
| |
| if (h1m->flags & H1_MF_RESP) { |
| /* Output direction: second pass */ |
| if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || |
| h1s->status == 101) { |
| /* Either we've established an explicit tunnel, or we're |
| * switching the protocol. In both cases, we're very unlikely to |
| * understand the next protocols. We have to switch to tunnel |
| * mode, so that we transfer the request and responses then let |
| * this protocol pass unmodified. When we later implement |
| * specific parsers for such protocols, we'll want to check the |
| * Upgrade header which contains information about that protocol |
| * for responses with status 101 (eg: see RFC2817 about TLS). |
| */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN; |
| } |
| else if (h1s->flags & H1S_F_WANT_KAL) { |
| /* By default the client is in KAL mode. CLOSE mode mean |
| * it is imposed by the client itself. So only change |
| * KAL mode here. */ |
| if (!(h1m->flags & H1_MF_XFER_LEN) || (h1m->flags & H1_MF_CONN_CLO)) { |
| /* no length known or explicit close => close */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| else if (!(h1m->flags & H1_MF_CONN_KAL) && |
| (fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) { |
| /* no explict keep-alive and option httpclose => close */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| } |
| } |
| else { |
| /* Input direction: first pass */ |
| if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || h1m->flags & H1_MF_CONN_CLO) { |
| /* no explicit keep-alive in HTTP/1.0 or explicit close => close*/ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| } |
| |
| /* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */ |
| if (h1s->flags & H1S_F_WANT_KAL && fe->state == PR_STSTOPPED) |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| |
| /* Deduce the connection mode of the client connection, depending on the |
| * configuration and the H1 message flags. This function is called twice, the |
| * first time when the request is parsed and the second time when the response |
| * is parsed. |
| */ |
| static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m) |
| { |
| struct session *sess = h1s->sess; |
| struct proxy *be = h1s->h1c->px; |
| int fe_flags = sess ? sess->fe->options : 0; |
| |
| if (h1m->flags & H1_MF_RESP) { |
| /* Input direction: second pass */ |
| |
| if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || |
| h1s->status == 101) { |
| /* Either we've established an explicit tunnel, or we're |
| * switching the protocol. In both cases, we're very unlikely to |
| * understand the next protocols. We have to switch to tunnel |
| * mode, so that we transfer the request and responses then let |
| * this protocol pass unmodified. When we later implement |
| * specific parsers for such protocols, we'll want to check the |
| * Upgrade header which contains information about that protocol |
| * for responses with status 101 (eg: see RFC2817 about TLS). |
| */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN; |
| } |
| else if (h1s->flags & H1S_F_WANT_KAL) { |
| /* By default the server is in KAL mode. CLOSE mode mean |
| * it is imposed by haproxy itself. So only change KAL |
| * mode here. */ |
| if (!(h1m->flags & H1_MF_XFER_LEN) || h1m->flags & H1_MF_CONN_CLO || |
| !(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))){ |
| /* no length known or explicit close or no explicit keep-alive in HTTP/1.0 => close */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| } |
| } |
| else { |
| /* Output direction: first pass */ |
| if (h1m->flags & H1_MF_CONN_CLO) { |
| /* explicit close => close */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| else if (!(h1m->flags & H1_MF_CONN_KAL) && |
| ((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || |
| (be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || |
| (fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_CLO || |
| (be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)) { |
| /* no explicit keep-alive option httpclose/server-close => close */ |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| } |
| |
| /* If KAL, check if the backend is stopping. If yes, switch in CLO mode */ |
| if (h1s->flags & H1S_F_WANT_KAL && be->state == PR_STSTOPPED) |
| h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; |
| } |
| |
| static void h1_update_req_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) |
| { |
| struct proxy *px = h1s->h1c->px; |
| |
| /* Don't update "Connection:" header in TUNNEL mode or if "Upgrage" |
| * token is found |
| */ |
| if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG) |
| return; |
| |
| if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) { |
| if (!(h1m->flags & H1_MF_VER_11)) |
| *conn_val = ist("keep-alive"); |
| } |
| else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */ |
| if (h1m->flags & H1_MF_VER_11) |
| *conn_val = ist("close"); |
| } |
| } |
| |
| static void h1_update_res_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) |
| { |
| /* Don't update "Connection:" header in TUNNEL mode or if "Upgrage" |
| * token is found |
| */ |
| if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG) |
| return; |
| |
| if (h1s->flags & H1S_F_WANT_KAL) { |
| if (!(h1m->flags & H1_MF_VER_11) || |
| !((h1m->flags & h1s->req.flags) & H1_MF_VER_11)) |
| *conn_val = ist("keep-alive"); |
| } |
| else { /* H1S_F_WANT_CLO */ |
| if (h1m->flags & H1_MF_VER_11) |
| *conn_val = ist("close"); |
| } |
| } |
| |
| static void h1_process_input_conn_mode(struct h1s *h1s, struct h1m *h1m, struct htx *htx) |
| { |
| if (!conn_is_back(h1s->h1c->conn)) |
| h1_set_cli_conn_mode(h1s, h1m); |
| else |
| h1_set_srv_conn_mode(h1s, h1m); |
| } |
| |
| static void h1_process_output_conn_mode(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) |
| { |
| if (!conn_is_back(h1s->h1c->conn)) |
| h1_set_cli_conn_mode(h1s, h1m); |
| else |
| h1_set_srv_conn_mode(h1s, h1m); |
| |
| if (!(h1m->flags & H1_MF_RESP)) |
| h1_update_req_conn_value(h1s, h1m, conn_val); |
| else |
| h1_update_res_conn_value(h1s, h1m, conn_val); |
| } |
| |
| /* Append the description of what is present in error snapshot <es> into <out>. |
| * The description must be small enough to always fit in a buffer. The output |
| * buffer may be the trash so the trash must not be used inside this function. |
| */ |
| static void h1_show_error_snapshot(struct buffer *out, const struct error_snapshot *es) |
| { |
| chunk_appendf(out, |
| " H1 connection flags 0x%08x, H1 stream flags 0x%08x\n" |
| " H1 msg state %s(%d), H1 msg flags 0x%08x\n" |
| " H1 chunk len %lld bytes, H1 body len %lld bytes :\n", |
| es->ctx.h1.c_flags, es->ctx.h1.s_flags, |
| h1m_state_str(es->ctx.h1.state), es->ctx.h1.state, |
| es->ctx.h1.m_flags, es->ctx.h1.m_clen, es->ctx.h1.m_blen); |
| } |
| /* |
| * Capture a bad request or response and archive it in the proxy's structure. |
| * By default it tries to report the error position as h1m->err_pos. However if |
| * this one is not set, it will then report h1m->next, which is the last known |
| * parsing point. The function is able to deal with wrapping buffers. It always |
| * displays buffers as a contiguous area starting at buf->p. The direction is |
| * determined thanks to the h1m's flags. |
| */ |
| static void h1_capture_bad_message(struct h1c *h1c, struct h1s *h1s, |
| struct h1m *h1m, struct buffer *buf) |
| { |
| struct session *sess = h1c->conn->owner; |
| struct proxy *proxy = h1c->px; |
| struct proxy *other_end = sess->fe; |
| union error_snapshot_ctx ctx; |
| |
| if (h1s->cs->data && !(h1m->flags & H1_MF_RESP)) |
| other_end = si_strm(h1s->cs->data)->be; |
| |
| /* http-specific part now */ |
| ctx.h1.state = h1m->state; |
| ctx.h1.c_flags = h1c->flags; |
| ctx.h1.s_flags = h1s->flags; |
| ctx.h1.m_flags = h1m->flags; |
| ctx.h1.m_clen = h1m->curr_len; |
| ctx.h1.m_blen = h1m->body_len; |
| |
| proxy_capture_error(proxy, !!(h1m->flags & H1_MF_RESP), other_end, |
| h1c->conn->target, sess, buf, 0, 0, |
| (h1m->err_pos >= 0) ? h1m->err_pos : h1m->next, |
| &ctx, h1_show_error_snapshot); |
| } |
| |
| /* Emit the chunksize followed by a CRLF in front of data of the buffer |
| * <buf>. It goes backwards and starts with the byte before the buffer's |
| * head. The caller is responsible for ensuring there is enough room left before |
| * the buffer's head for the string. |
| */ |
| static void h1_emit_chunk_size(struct buffer *buf, size_t chksz) |
| { |
| char *beg, *end; |
| |
| beg = end = b_head(buf); |
| *--beg = '\n'; |
| *--beg = '\r'; |
| do { |
| *--beg = hextab[chksz & 0xF]; |
| } while (chksz >>= 4); |
| buf->head -= (end - beg); |
| b_add(buf, end - beg); |
| } |
| |
| /* Emit a CRLF after the data of the buffer <buf>. The caller is responsible for |
| * ensuring there is enough room left in the buffer for the string. */ |
| static void h1_emit_chunk_crlf(struct buffer *buf) |
| { |
| *(b_peek(buf, b_data(buf))) = '\r'; |
| *(b_peek(buf, b_data(buf) + 1)) = '\n'; |
| b_add(buf, 2); |
| } |
| |
| /* |
| * Switch the request to tunnel mode. This function must only be called for |
| * CONNECT requests. On the client side, the mux is mark as busy on input, |
| * waiting the response. |
| */ |
| static void h1_set_req_tunnel_mode(struct h1s *h1s) |
| { |
| h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); |
| h1s->req.state = H1_MSG_TUNNEL; |
| if (!conn_is_back(h1s->h1c->conn)) |
| h1s->h1c->flags |= H1C_F_IN_BUSY; |
| } |
| |
| /* |
| * Switch the response to tunnel mode. This function must only be called on |
| * successfull replies to CONNECT requests or on protocol switching. On the |
| * server side, if the request is not finished, the mux is mark as busy on |
| * input. Otherwise the request is also switch to tunnel mode. |
| */ |
| static void h1_set_res_tunnel_mode(struct h1s *h1s) |
| { |
| h1s->res.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); |
| h1s->res.state = H1_MSG_TUNNEL; |
| if (conn_is_back(h1s->h1c->conn) && h1s->req.state < H1_MSG_DONE) |
| h1s->h1c->flags |= H1C_F_IN_BUSY; |
| else { |
| h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); |
| h1s->req.state = H1_MSG_TUNNEL; |
| if (h1s->h1c->flags & H1C_F_IN_BUSY) { |
| h1s->h1c->flags &= ~H1C_F_IN_BUSY; |
| tasklet_wakeup(h1s->h1c->wait_event.task); |
| } |
| } |
| } |
| |
| /* |
| * Handle 100-Continue responses or any other informational 1xx responses which |
| * is non-final. In such case, this function reset the response parser. It is |
| * the caller responsibility to call this function when appropriate. |
| */ |
| static void h1_handle_1xx_response(struct h1s *h1s, struct h1m *h1m) |
| { |
| if ((h1m->flags & H1_MF_RESP) && h1m->state == H1_MSG_DONE && |
| h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) { |
| h1m_init_res(&h1s->res); |
| h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); |
| h1s->h1c->flags &= ~H1C_F_IN_BUSY; |
| } |
| } |
| |
| /* |
| * Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if |
| * it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR |
| * flag and filling h1s->err_pos and h1s->err_state fields. This functions is |
| * responsible to update the parser state <h1m>. |
| */ |
| static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx, |
| struct buffer *buf, size_t *ofs, size_t max) |
| { |
| struct http_hdr hdrs[MAX_HTTP_HDR]; |
| union h1_sl h1sl; |
| unsigned int flags = HTX_SL_F_NONE; |
| int ret = 0; |
| |
| if (!max) |
| goto end; |
| |
| /* Realing input buffer if necessary */ |
| if (b_head(buf) + b_data(buf) > b_wrap(buf)) |
| b_slow_realign(buf, trash.area, 0); |
| |
| if (!(h1m->flags & H1_MF_RESP)) { |
| /* Try to match H2 preface before parsing the request headers. */ |
| ret = b_isteq(buf, 0, b_data(buf), ist(H2_CONN_PREFACE)); |
| if (ret > 0) |
| goto h2c_upgrade; |
| } |
| |
| ret = h1_headers_to_hdr_list(b_peek(buf, *ofs), b_peek(buf, *ofs) + max, |
| hdrs, sizeof(hdrs)/sizeof(hdrs[0]), h1m, &h1sl); |
| if (ret <= 0) { |
| /* Incomplete or invalid message. If the buffer is full, it's an |
| * error because headers are too large to be handled by the |
| * parser. */ |
| if (ret < 0 || (!ret && b_full(buf))) |
| goto error; |
| goto end; |
| } |
| |
| /* messages headers fully parsed, do some checks to prepare the body |
| * parsing. |
| */ |
| |
| /* Be sure to keep some space to do headers rewritting */ |
| if (ret > (b_size(buf) - global.tune.maxrewrite)) |
| goto error; |
| |
| /* Save the request's method or the response's status, check if the body |
| * length is known and check the VSN validity */ |
| if (!(h1m->flags & H1_MF_RESP)) { |
| h1s->meth = h1sl.rq.meth; |
| |
| /* By default, request have always a known length */ |
| h1m->flags |= H1_MF_XFER_LEN; |
| |
| if (h1s->meth == HTTP_METH_CONNECT) { |
| /* Switch CONNECT requests to tunnel mode */ |
| h1_set_req_tunnel_mode(h1s); |
| } |
| else if (!(h1m->flags & H1_MF_CHNK) && !h1m->body_len) { |
| /* Switch requests with no body to done. */ |
| h1m->state = H1_MSG_DONE; |
| } |
| |
| if (!h1_process_req_vsn(h1s, h1m, h1sl)) { |
| h1m->err_pos = h1sl.rq.v.ptr - b_head(buf); |
| h1m->err_state = h1m->state; |
| goto vsn_error; |
| } |
| } |
| else { |
| h1s->status = h1sl.st.status; |
| |
| if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || |
| h1s->status == 101) { |
| /* Switch successfull replies to CONNECT requests and |
| * protocol switching to tunnel mode. */ |
| h1_set_res_tunnel_mode(h1s); |
| } |
| else if ((h1s->meth == HTTP_METH_HEAD) || |
| (h1s->status >= 100 && h1s->status < 200) || |
| (h1s->status == 204) || (h1s->status == 304)) { |
| /* Switch responses without body to done. */ |
| h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK); |
| h1m->flags |= H1_MF_XFER_LEN; |
| h1m->curr_len = h1m->body_len = 0; |
| h1m->state = H1_MSG_DONE; |
| } |
| else if (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) { |
| /* Responses with a known body length. Switch requests |
| * with no body to done. */ |
| h1m->flags |= H1_MF_XFER_LEN; |
| if ((h1m->flags & H1_MF_CLEN) && !h1m->body_len) |
| h1m->state = H1_MSG_DONE; |
| } |
| else { |
| /* Responses with an unknown body length */ |
| h1m->state = H1_MSG_TUNNEL; |
| } |
| |
| if (!h1_process_res_vsn(h1s, h1m, h1sl)) { |
| h1m->err_pos = h1sl.st.v.ptr - b_head(buf); |
| h1m->err_state = h1m->state; |
| goto vsn_error; |
| } |
| } |
| |
| /* Set HTX start-line flags */ |
| if (h1m->flags & H1_MF_VER_11) |
| flags |= HTX_SL_F_VER_11; |
| if (h1m->flags & H1_MF_XFER_ENC) |
| flags |= HTX_SL_F_XFER_ENC; |
| if (h1m->flags & H1_MF_XFER_LEN) { |
| flags |= HTX_SL_F_XFER_LEN; |
| if (h1m->flags & H1_MF_CHNK) |
| flags |= HTX_SL_F_CHNK; |
| else if (h1m->flags & H1_MF_CLEN) |
| flags |= HTX_SL_F_CLEN; |
| if (h1m->state == H1_MSG_DONE) |
| flags |= HTX_SL_F_BODYLESS; |
| } |
| |
| if (!(h1m->flags & H1_MF_RESP)) { |
| struct htx_sl *sl; |
| |
| sl = htx_add_stline(htx, HTX_BLK_REQ_SL, flags, h1sl.rq.m, h1sl.rq.u, h1sl.rq.v); |
| if (!sl || !htx_add_all_headers(htx, hdrs)) |
| goto error; |
| sl->info.req.meth = h1s->meth; |
| } |
| else { |
| struct htx_sl *sl; |
| |
| flags |= HTX_SL_F_IS_RESP; |
| sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, h1sl.st.v, h1sl.st.c, h1sl.st.r); |
| if (!sl || !htx_add_all_headers(htx, hdrs)) |
| goto error; |
| sl->info.res.status = h1s->status; |
| } |
| |
| if (h1m->state == H1_MSG_DONE) { |
| if (!htx_add_endof(htx, HTX_BLK_EOM)) |
| goto error; |
| h1s->cs->flags |= CS_FL_EOI; |
| } |
| |
| h1_process_input_conn_mode(h1s, h1m, htx); |
| |
| /* If body length cannot be determined, set htx->extra to |
| * ULLONG_MAX. This value is impossible in other cases. |
| */ |
| htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX); |
| |
| /* Recheck there is enough space to do headers rewritting */ |
| if (htx_used_space(htx) > b_size(buf) - global.tune.maxrewrite) |
| goto error; |
| |
| *ofs += ret; |
| end: |
| return ret; |
| |
| error: |
| h1m->err_state = h1m->state; |
| h1m->err_pos = h1m->next; |
| vsn_error: |
| h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR); |
| h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); |
| ret = 0; |
| goto end; |
| |
| h2c_upgrade: |
| h1s->h1c->flags |= H1C_F_UPG_H2C; |
| h1s->cs->flags |= CS_FL_REOS; |
| htx->flags |= HTX_FL_UPGRADE; |
| ret = 0; |
| goto end; |
| } |
| |
| /* |
| * Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it |
| * couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag |
| * and filling h1s->err_pos and h1s->err_state fields. This functions is |
| * responsible to update the parser state <h1m>. |
| */ |
| static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx *htx, |
| struct buffer *buf, size_t *ofs, size_t max, |
| struct buffer *htxbuf, size_t reserve) |
| { |
| uint32_t data_space; |
| size_t total = 0; |
| int ret = 0; |
| |
| data_space = htx_free_data_space(htx); |
| if (data_space <= reserve) |
| goto end; |
| data_space -= reserve; |
| |
| if (h1m->flags & H1_MF_XFER_LEN) { |
| if (h1m->flags & H1_MF_CLEN) { |
| /* content-length: read only h2m->body_len */ |
| ret = max; |
| if (ret > data_space) |
| ret = data_space; |
| if ((uint64_t)ret > h1m->curr_len) |
| ret = h1m->curr_len; |
| if (ret > b_contig_data(buf, *ofs)) |
| ret = b_contig_data(buf, *ofs); |
| if (ret) { |
| /* very often with large files we'll face the following |
| * situation : |
| * - htx is empty and points to <htxbuf> |
| * - ret == buf->data |
| * - buf->head == sizeof(struct htx) |
| * => we can swap the buffers and place an htx header into |
| * the target buffer instead |
| */ |
| if (unlikely(htx_is_empty(htx) && ret == b_data(buf) && |
| !*ofs && b_head_ofs(buf) == sizeof(struct htx))) { |
| void *raw_area = buf->area; |
| void *htx_area = htxbuf->area; |
| struct htx_blk *blk; |
| |
| buf->area = htx_area; |
| htxbuf->area = raw_area; |
| htx = (struct htx *)htxbuf->area; |
| htx->size = htxbuf->size - sizeof(*htx); |
| htx_reset(htx); |
| b_set_data(htxbuf, b_size(htxbuf)); |
| |
| blk = htx_add_blk(htx, HTX_BLK_DATA, ret); |
| blk->info += ret; |
| /* nothing else to do, the old buffer now contains an |
| * empty pre-initialized HTX header |
| */ |
| } |
| else if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret))) |
| goto end; |
| h1m->curr_len -= ret; |
| *ofs += ret; |
| total += ret; |
| } |
| |
| if (!h1m->curr_len) { |
| if (!htx_add_endof(htx, HTX_BLK_EOM)) |
| goto end; |
| h1m->state = H1_MSG_DONE; |
| h1s->cs->flags |= CS_FL_EOI; |
| } |
| } |
| else if (h1m->flags & H1_MF_CHNK) { |
| new_chunk: |
| /* te:chunked : parse chunks */ |
| if (h1m->state == H1_MSG_CHUNK_CRLF) { |
| ret = h1_skip_chunk_crlf(buf, *ofs, *ofs + max); |
| if (ret <= 0) |
| goto end; |
| h1m->state = H1_MSG_CHUNK_SIZE; |
| |
| max -= ret; |
| *ofs += ret; |
| total += ret; |
| } |
| |
| if (h1m->state == H1_MSG_CHUNK_SIZE) { |
| unsigned int chksz; |
| |
| ret = h1_parse_chunk_size(buf, *ofs, *ofs + max, &chksz); |
| if (ret <= 0) |
| goto end; |
| if (!chksz) { |
| if (!htx_add_endof(htx, HTX_BLK_EOD)) |
| goto end; |
| h1s->flags |= H1S_F_HAVE_I_EOD; |
| h1m->state = H1_MSG_TRAILERS; |
| } |
| else |
| h1m->state = H1_MSG_DATA; |
| |
| h1m->curr_len = chksz; |
| h1m->body_len += chksz; |
| max -= ret; |
| *ofs += ret; |
| total += ret; |
| } |
| |
| if (h1m->state == H1_MSG_DATA) { |
| ret = max; |
| if (ret > data_space) |
| ret = data_space; |
| if ((uint64_t)ret > h1m->curr_len) |
| ret = h1m->curr_len; |
| if (ret > b_contig_data(buf, *ofs)) |
| ret = b_contig_data(buf, *ofs); |
| if (ret) { |
| if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret))) |
| goto end; |
| h1m->curr_len -= ret; |
| max -= ret; |
| *ofs += ret; |
| total += ret; |
| } |
| if (!h1m->curr_len) { |
| h1m->state = H1_MSG_CHUNK_CRLF; |
| data_space = htx_free_data_space(htx); |
| if (data_space <= reserve) |
| goto end; |
| data_space -= reserve; |
| goto new_chunk; |
| } |
| goto end; |
| } |
| |
| if (h1m->state == H1_MSG_TRAILERS) { |
| /* Trailers were alread parsed, only the EOM |
| * need to be added */ |
| if (h1s->flags & H1S_F_HAVE_I_TLR) |
| goto skip_tlr_parsing; |
| |
| ret = h1_measure_trailers(buf, *ofs, *ofs + max); |
| if (ret > data_space) |
| ret = (htx_is_empty(htx) ? -1 : 0); |
| if (ret <= 0) |
| goto end; |
| |
| /* Realing input buffer if tailers wrap. For now |
| * this is a workaroung. Because trailers are |
| * not split on CRLF, like headers, there is no |
| * way to know where to split it when trailers |
| * wrap. This is a limitation of |
| * h1_measure_trailers. |
| */ |
| if (b_peek(buf, *ofs) > b_peek(buf, *ofs + ret)) |
| b_slow_realign(buf, trash.area, 0); |
| |
| if (!htx_add_trailer(htx, ist2(b_peek(buf, *ofs), ret))) |
| goto end; |
| h1s->flags |= H1S_F_HAVE_I_TLR; |
| max -= ret; |
| *ofs += ret; |
| total += ret; |
| |
| skip_tlr_parsing: |
| if (!htx_add_endof(htx, HTX_BLK_EOM)) |
| goto end; |
| h1m->state = H1_MSG_DONE; |
| h1s->cs->flags |= CS_FL_EOI; |
| } |
| } |
| else { |
| /* XFER_LEN is set but not CLEN nor CHNK, it means there |
| * is no body. Switch the message in DONE state |
| */ |
| if (!htx_add_endof(htx, HTX_BLK_EOM)) |
| goto end; |
| h1m->state = H1_MSG_DONE; |
| h1s->cs->flags |= CS_FL_EOI; |
| } |
| } |
| else { |
| /* no content length, read till SHUTW */ |
| ret = max; |
| if (ret > data_space) |
| ret = data_space; |
| if (ret > b_contig_data(buf, *ofs)) |
| ret = b_contig_data(buf, *ofs); |
| if (ret) { |
| if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret))) |
| goto end; |
| |
| *ofs += ret; |
| total = ret; |
| } |
| } |
| |
| end: |
| if (ret < 0) { |
| h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR); |
| h1m->err_state = h1m->state; |
| h1m->err_pos = *ofs + max + ret; |
| h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); |
| return 0; |
| } |
| /* update htx->extra, only when the body length is known */ |
| if (h1m->flags & H1_MF_XFER_LEN) |
| htx->extra = h1m->curr_len; |
| return total; |
| } |
| |
| /* |
| * Process incoming data. It parses data and transfer them from h1c->ibuf into |
| * <buf>. It returns the number of bytes parsed and transferred if > 0, or 0 if |
| * it couldn't proceed. |
| */ |
| static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, int flags) |
| { |
| struct h1s *h1s = h1c->h1s; |
| struct h1m *h1m; |
| struct htx *htx; |
| size_t data = 0; |
| size_t total = 0; |
| size_t ret = 0; |
| size_t count, rsv; |
| int errflag; |
| |
| htx = htx_from_buf(buf); |
| |
| if (!conn_is_back(h1c->conn)) { |
| h1m = &h1s->req; |
| errflag = H1S_F_REQ_ERROR; |
| } |
| else { |
| h1m = &h1s->res; |
| errflag = H1S_F_RES_ERROR; |
| } |
| |
| data = htx->data; |
| count = b_data(&h1c->ibuf); |
| rsv = ((flags & CO_RFL_KEEP_RSV) ? global.tune.maxrewrite : 0); |
| |
| if (htx_is_empty(htx)) |
| h1_handle_1xx_response(h1s, h1m); |
| |
| do { |
| if (h1m->state <= H1_MSG_LAST_LF) { |
| ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count); |
| if (!ret) |
| break; |
| } |
| else if (h1m->state <= H1_MSG_TRAILERS) { |
| ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf, rsv); |
| htx = htx_from_buf(buf); |
| if (!ret) |
| break; |
| } |
| else if (h1m->state == H1_MSG_DONE) { |
| if (h1s->req.state < H1_MSG_DONE || h1s->res.state < H1_MSG_DONE) |
| h1c->flags |= H1C_F_IN_BUSY; |
| break; |
| } |
| else if (h1m->state == H1_MSG_TUNNEL) { |
| ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf, rsv); |
| htx = htx_from_buf(buf); |
| if (!ret) |
| break; |
| } |
| else { |
| h1s->flags |= errflag; |
| break; |
| } |
| |
| count -= ret; |
| } while (!(h1s->flags & errflag) && count); |
| |
| if (h1s->flags & errflag) |
| goto parsing_err; |
| |
| b_del(&h1c->ibuf, total); |
| |
| end: |
| htx_to_buf(htx, buf); |
| data = (htx->data - data); |
| if (h1c->flags & H1C_F_IN_FULL && buf_room_for_htx_data(&h1c->ibuf)) { |
| h1c->flags &= ~H1C_F_IN_FULL; |
| tasklet_wakeup(h1c->wait_event.task); |
| } |
| |
| h1s->cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM); |
| |
| if (!b_data(&h1c->ibuf)) |
| h1_release_buf(h1c, &h1c->ibuf); |
| else if (!htx_is_empty(htx)) |
| h1s->cs->flags |= CS_FL_RCV_MORE | CS_FL_WANT_ROOM; |
| |
| if ((h1s->cs->flags & CS_FL_REOS) && (!b_data(&h1c->ibuf) || htx_is_empty(htx))) { |
| h1s->cs->flags |= CS_FL_EOS; |
| if (h1m->state > H1_MSG_LAST_LF && h1m->state < H1_MSG_DONE) |
| h1s->cs->flags |= CS_FL_ERROR; |
| } |
| |
| return data; |
| |
| parsing_err: |
| b_reset(&h1c->ibuf); |
| htx->flags |= HTX_FL_PARSING_ERROR; |
| htx_to_buf(htx, buf); |
| h1s->cs->flags |= CS_FL_EOS; |
| return 0; |
| } |
| |
| /* |
| * Process outgoing data. It parses data and transfer them from the channel buffer into |
| * h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or |
| * 0 if it couldn't proceed. |
| */ |
| static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count) |
| { |
| struct h1s *h1s = h1c->h1s; |
| struct h1m *h1m; |
| struct htx *chn_htx; |
| struct htx_blk *blk; |
| struct buffer *tmp; |
| size_t total = 0; |
| int process_conn_mode = 1; /* If still 1 on EOH, process the connection mode */ |
| int errflag; |
| |
| if (!count) |
| goto end; |
| |
| chn_htx = htx_from_buf(buf); |
| if (htx_is_empty(chn_htx)) |
| goto end; |
| |
| if (!h1_get_buf(h1c, &h1c->obuf)) { |
| h1c->flags |= H1C_F_OUT_ALLOC; |
| goto end; |
| } |
| |
| if (!conn_is_back(h1c->conn)) { |
| h1m = &h1s->res; |
| errflag = H1S_F_RES_ERROR; |
| } |
| else { |
| h1m = &h1s->req; |
| errflag = H1S_F_REQ_ERROR; |
| } |
| |
| /* the htx is non-empty thus has at least one block */ |
| blk = htx_get_head_blk(chn_htx); |
| |
| tmp = get_trash_chunk(); |
| |
| /* Perform some optimizations to reduce the number of buffer copies. |
| * First, if the mux's buffer is empty and the htx area contains |
| * exactly one data block of the same size as the requested count, |
| * then it's possible to simply swap the caller's buffer with the |
| * mux's output buffer and adjust offsets and length to match the |
| * entire DATA HTX block in the middle. In this case we perform a |
| * true zero-copy operation from end-to-end. This is the situation |
| * that happens all the time with large files. Second, if this is not |
| * possible, but the mux's output buffer is empty, we still have an |
| * opportunity to avoid the copy to the intermediary buffer, by making |
| * the intermediary buffer's area point to the output buffer's area. |
| * In this case we want to skip the HTX header to make sure that copies |
| * remain aligned and that this operation remains possible all the |
| * time. This goes for headers, data blocks and any data extracted from |
| * the HTX blocks. |
| */ |
| if (!b_data(&h1c->obuf)) { |
| h1c->obuf.head = sizeof(struct htx) + blk->addr; |
| |
| if (chn_htx->used == 1 && |
| htx_get_blk_type(blk) == HTX_BLK_DATA && |
| htx_get_blk_value(chn_htx, blk).len == count) { |
| void *old_area = h1c->obuf.area; |
| |
| h1c->obuf.area = buf->area; |
| h1c->obuf.data = count; |
| |
| buf->area = old_area; |
| buf->data = buf->head = 0; |
| |
| /* The message is chunked. We need to emit the chunk |
| * size. We have at least the size of the struct htx to |
| * write the chunk envelope. It should be enough. |
| */ |
| if (h1m->flags & H1_MF_CHNK) { |
| h1_emit_chunk_size(&h1c->obuf, count); |
| h1_emit_chunk_crlf(&h1c->obuf); |
| } |
| |
| total += count; |
| goto out; |
| } |
| tmp->area = h1c->obuf.area + h1c->obuf.head; |
| } |
| |
| tmp->size = b_room(&h1c->obuf); |
| |
| while (count && !(h1s->flags & errflag) && blk) { |
| struct htx_sl *sl; |
| struct ist n, v; |
| enum htx_blk_type type = htx_get_blk_type(blk); |
| uint32_t sz = htx_get_blksz(blk); |
| uint32_t vlen; |
| |
| vlen = sz; |
| if (vlen > count) { |
| if (type != HTX_BLK_DATA && type != HTX_BLK_TLR) |
| goto copy; |
| vlen = count; |
| } |
| |
| switch (type) { |
| case HTX_BLK_UNUSED: |
| break; |
| |
| case HTX_BLK_REQ_SL: |
| h1m_init_req(h1m); |
| h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); |
| sl = htx_get_blk_ptr(chn_htx, blk); |
| h1s->meth = sl->info.req.meth; |
| h1_parse_req_vsn(h1m, sl); |
| if (!htx_reqline_to_h1(sl, tmp)) |
| goto copy; |
| h1m->flags |= H1_MF_XFER_LEN; |
| if (sl->flags & HTX_SL_F_BODYLESS) |
| h1m->flags |= H1_MF_CLEN; |
| h1m->state = H1_MSG_HDR_FIRST; |
| break; |
| |
| case HTX_BLK_RES_SL: |
| h1m_init_res(h1m); |
| h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); |
| sl = htx_get_blk_ptr(chn_htx, blk); |
| h1s->status = sl->info.res.status; |
| h1_parse_res_vsn(h1m, sl); |
| if (!htx_stline_to_h1(sl, tmp)) |
| goto copy; |
| if (sl->flags & HTX_SL_F_XFER_LEN) |
| h1m->flags |= H1_MF_XFER_LEN; |
| if (sl->info.res.status < 200 && |
| (sl->info.res.status == 100 || sl->info.res.status >= 102)) |
| process_conn_mode = 0; |
| h1m->state = H1_MSG_HDR_FIRST; |
| break; |
| |
| case HTX_BLK_HDR: |
| h1m->state = H1_MSG_HDR_NAME; |
| n = htx_get_blk_name(chn_htx, blk); |
| v = htx_get_blk_value(chn_htx, blk); |
| |
| if (isteqi(n, ist("transfer-encoding"))) |
| h1_parse_xfer_enc_header(h1m, v); |
| else if (isteqi(n, ist("content-length"))) { |
| /* Only skip C-L header with invalid value. */ |
| if (h1_parse_cont_len_header(h1m, &v) < 0) |
| goto skip_hdr; |
| } |
| else if (isteqi(n, ist("connection"))) { |
| h1_parse_connection_header(h1m, &v); |
| if (!v.len) |
| goto skip_hdr; |
| } |
| |
| if (!htx_hdr_to_h1(n, v, tmp)) |
| goto copy; |
| skip_hdr: |
| h1m->state = H1_MSG_HDR_L2_LWS; |
| break; |
| |
| case HTX_BLK_PHDR: |
| /* not implemented yet */ |
| h1m->flags |= errflag; |
| break; |
| |
| case HTX_BLK_EOH: |
| if (h1m->state != H1_MSG_LAST_LF && process_conn_mode) { |
| /* There is no "Connection:" header and |
| * it the conn_mode must be |
| * processed. So do it */ |
| n = ist("Connection"); |
| v = ist(""); |
| h1_process_output_conn_mode(h1s, h1m, &v); |
| if (v.len) { |
| if (!htx_hdr_to_h1(n, v, tmp)) |
| goto copy; |
| } |
| process_conn_mode = 0; |
| } |
| |
| if ((h1s->meth != HTTP_METH_CONNECT && |
| (h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) == |
| (H1_MF_VER_11|H1_MF_XFER_LEN)) || |
| (h1s->status >= 200 && h1s->status != 204 && h1s->status != 304 && |
| h1s->meth != HTTP_METH_HEAD && !(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) && |
| (h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) == |
| (H1_MF_VER_11|H1_MF_RESP|H1_MF_XFER_LEN))) { |
| /* chunking needed but header not seen */ |
| if (!chunk_memcat(tmp, "transfer-encoding: chunked\r\n", 28)) |
| goto copy; |
| h1m->flags |= H1_MF_CHNK; |
| } |
| |
| h1m->state = H1_MSG_LAST_LF; |
| if (!chunk_memcat(tmp, "\r\n", 2)) |
| goto copy; |
| |
| if (!(h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_CONNECT) { |
| /* a CONNECT request is sent to the server. Switch it to tunnel mode. */ |
| h1_set_req_tunnel_mode(h1s); |
| } |
| else if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || h1s->status == 101) { |
| /* a successfull reply to a CONNECT or a protocol switching is sent |
| * to the client . Switch the response to tunnel mode. */ |
| h1_set_res_tunnel_mode(h1s); |
| } |
| else |
| h1m->state = H1_MSG_DATA; |
| break; |
| |
| case HTX_BLK_DATA: |
| v = htx_get_blk_value(chn_htx, blk); |
| v.len = vlen; |
| if (!htx_data_to_h1(v, tmp, !!(h1m->flags & H1_MF_CHNK))) |
| goto copy; |
| break; |
| |
| case HTX_BLK_EOD: |
| if (!chunk_memcat(tmp, "0\r\n", 3)) |
| goto copy; |
| h1s->flags |= H1S_F_HAVE_O_EOD; |
| h1m->state = H1_MSG_TRAILERS; |
| break; |
| |
| case HTX_BLK_TLR: |
| if (!(h1s->flags & H1S_F_HAVE_O_EOD)) { |
| if (!chunk_memcat(tmp, "0\r\n", 3)) |
| goto copy; |
| h1s->flags |= H1S_F_HAVE_O_EOD; |
| } |
| v = htx_get_blk_value(chn_htx, blk); |
| v.len = vlen; |
| if (!htx_trailer_to_h1(v, tmp)) |
| goto copy; |
| h1s->flags |= H1S_F_HAVE_O_TLR; |
| break; |
| |
| case HTX_BLK_EOM: |
| if ((h1m->flags & H1_MF_CHNK)) { |
| if (!(h1s->flags & H1S_F_HAVE_O_EOD)) { |
| if (!chunk_memcat(tmp, "0\r\n", 3)) |
| goto copy; |
| h1s->flags |= H1S_F_HAVE_O_EOD; |
| } |
| if (!(h1s->flags & H1S_F_HAVE_O_TLR)) { |
| if (!chunk_memcat(tmp, "\r\n", 2)) |
| goto copy; |
| h1s->flags |= H1S_F_HAVE_O_TLR; |
| } |
| } |
| h1m->state = H1_MSG_DONE; |
| break; |
| |
| case HTX_BLK_OOB: |
| v = htx_get_blk_value(chn_htx, blk); |
| if (!chunk_memcat(tmp, v.ptr, v.len)) |
| goto copy; |
| break; |
| |
| default: |
| h1m->flags |= errflag; |
| break; |
| } |
| total += vlen; |
| count -= vlen; |
| if (sz == vlen) |
| blk = htx_remove_blk(chn_htx, blk); |
| else { |
| htx_cut_data_blk(chn_htx, blk, vlen); |
| break; |
| } |
| } |
| |
| if (htx_is_empty(chn_htx)) |
| h1_handle_1xx_response(h1s, h1m); |
| |
| copy: |
| /* when the output buffer is empty, tmp shares the same area so that we |
| * only have to update pointers and lengths. |
| */ |
| if (tmp->area == h1c->obuf.area + h1c->obuf.head) |
| h1c->obuf.data = tmp->data; |
| else |
| b_putblk(&h1c->obuf, tmp->area, tmp->data); |
| |
| htx_to_buf(chn_htx, buf); |
| out: |
| if (!buf_room_for_htx_data(&h1c->obuf)) |
| h1c->flags |= H1C_F_OUT_FULL; |
| end: |
| return total; |
| } |
| |
| /*********************************************************/ |
| /* functions below are I/O callbacks from the connection */ |
| /*********************************************************/ |
| static void h1_wake_stream_for_recv(struct h1s *h1s) |
| { |
| if (h1s && h1s->recv_wait) { |
| h1s->recv_wait->events &= ~SUB_RETRY_RECV; |
| tasklet_wakeup(h1s->recv_wait->task); |
| h1s->recv_wait = NULL; |
| } |
| } |
| static void h1_wake_stream_for_send(struct h1s *h1s) |
| { |
| if (h1s && h1s->send_wait) { |
| h1s->send_wait->events &= ~SUB_RETRY_SEND; |
| tasklet_wakeup(h1s->send_wait->task); |
| h1s->send_wait = NULL; |
| } |
| } |
| |
| /* |
| * Attempt to read data, and subscribe if none available |
| */ |
| static int h1_recv(struct h1c *h1c) |
| { |
| struct connection *conn = h1c->conn; |
| struct h1s *h1s = h1c->h1s; |
| size_t ret = 0, max; |
| int rcvd = 0; |
| |
| if (h1c->wait_event.events & SUB_RETRY_RECV) |
| return (b_data(&h1c->ibuf)); |
| |
| if (!h1_recv_allowed(h1c)) { |
| rcvd = 1; |
| goto end; |
| } |
| |
| if (!h1_get_buf(h1c, &h1c->ibuf)) { |
| h1c->flags |= H1C_F_IN_ALLOC; |
| goto end; |
| } |
| |
| if (h1s && (h1s->flags & (H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA))) { |
| if (!b_data(&h1c->ibuf)) |
| h1_wake_stream_for_recv(h1s); |
| rcvd = 1; |
| goto end; |
| } |
| |
| /* |
| * If we only have a small amount of data, realign it, |
| * it's probably cheaper than doing 2 recv() calls. |
| */ |
| if (b_data(&h1c->ibuf) > 0 && b_data(&h1c->ibuf) < 128) |
| b_slow_realign(&h1c->ibuf, trash.area, 0); |
| |
| max = buf_room_for_htx_data(&h1c->ibuf); |
| if (max) { |
| h1c->flags &= ~H1C_F_IN_FULL; |
| |
| b_realign_if_empty(&h1c->ibuf); |
| if (!b_data(&h1c->ibuf)) { |
| /* try to pre-align the buffer like the rxbufs will be |
| * to optimize memory copies. |
| */ |
| h1c->ibuf.head = sizeof(struct htx); |
| } |
| ret = conn->xprt->rcv_buf(conn, conn->xprt_ctx, &h1c->ibuf, max, 0); |
| } |
| if (ret > 0) { |
| rcvd = 1; |
| if (h1s && h1s->cs) { |
| h1s->cs->flags |= (CS_FL_READ_PARTIAL|CS_FL_RCV_MORE); |
| if (h1s->csinfo.t_idle == -1) |
| h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake; |
| } |
| } |
| |
| if (!h1_recv_allowed(h1c) || !buf_room_for_htx_data(&h1c->ibuf)) { |
| rcvd = 1; |
| goto end; |
| } |
| |
| conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); |
| |
| end: |
| if (ret > 0 || (conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn)) |
| h1_wake_stream_for_recv(h1s); |
| |
| if (conn_xprt_read0_pending(conn) && h1s && h1s->cs) |
| h1s->cs->flags |= CS_FL_REOS; |
| if (!b_data(&h1c->ibuf)) |
| h1_release_buf(h1c, &h1c->ibuf); |
| else if (!buf_room_for_htx_data(&h1c->ibuf)) |
| h1c->flags |= H1C_F_IN_FULL; |
| return rcvd; |
| } |
| |
| |
| /* |
| * Try to send data if possible |
| */ |
| static int h1_send(struct h1c *h1c) |
| { |
| struct connection *conn = h1c->conn; |
| unsigned int flags = 0; |
| size_t ret; |
| int sent = 0; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return 0; |
| |
| if (h1c->flags & H1C_F_CS_WAIT_CONN) { |
| if (!(h1c->wait_event.events & SUB_RETRY_SEND)) |
| conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event); |
| return 0; |
| } |
| |
| if (!b_data(&h1c->obuf)) |
| goto end; |
| |
| if (h1c->flags & H1C_F_OUT_FULL) |
| flags |= CO_SFL_MSG_MORE; |
| |
| ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, &h1c->obuf, b_data(&h1c->obuf), flags); |
| if (ret > 0) { |
| h1c->flags &= ~H1C_F_OUT_FULL; |
| b_del(&h1c->obuf, ret); |
| sent = 1; |
| } |
| |
| if (conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) { |
| /* error or output closed, nothing to send, clear the buffer to release it */ |
| b_reset(&h1c->obuf); |
| } |
| |
| end: |
| if (!(h1c->flags & H1C_F_OUT_FULL)) |
| h1_wake_stream_for_send(h1c->h1s); |
| |
| /* We're done, no more to send */ |
| if (!b_data(&h1c->obuf)) { |
| h1_release_buf(h1c, &h1c->obuf); |
| if (h1c->flags & H1C_F_CS_SHUTW_NOW) |
| h1_shutw_conn(conn, CS_SHW_NORMAL); |
| } |
| else if (!(h1c->wait_event.events & SUB_RETRY_SEND)) |
| conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event); |
| |
| return sent; |
| } |
| |
| |
| /* callback called on any event by the connection handler. |
| * It applies changes and returns zero, or < 0 if it wants immediate |
| * destruction of the connection. |
| */ |
| static int h1_process(struct h1c * h1c) |
| { |
| struct connection *conn = h1c->conn; |
| struct h1s *h1s = h1c->h1s; |
| |
| if (!conn->ctx) |
| return -1; |
| |
| if (h1c->flags & H1C_F_CS_WAIT_CONN) { |
| if (!(conn->flags & (CO_FL_CONNECTED|CO_FL_ERROR))) |
| goto end; |
| h1c->flags &= ~H1C_F_CS_WAIT_CONN; |
| h1_wake_stream_for_send(h1s); |
| } |
| |
| if (!h1s) { |
| if (h1c->flags & H1C_F_CS_ERROR || |
| conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH) || |
| conn_xprt_read0_pending(conn)) |
| goto release; |
| if (!conn_is_back(conn) && !(h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))) { |
| if (!h1s_create(h1c, NULL, NULL)) |
| goto release; |
| } |
| else |
| goto end; |
| h1s = h1c->h1s; |
| } |
| |
| if (b_data(&h1c->ibuf) && h1s->csinfo.t_idle == -1) |
| h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake; |
| |
| if (!b_data(&h1c->ibuf) && h1s && h1s->cs && h1s->cs->data_cb->wake && |
| (conn_xprt_read0_pending(conn) || h1c->flags & H1C_F_CS_ERROR || |
| conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) { |
| int flags = 0; |
| |
| if (h1c->flags & H1C_F_CS_ERROR || conn->flags & CO_FL_ERROR) |
| flags |= CS_FL_ERROR; |
| if (conn_xprt_read0_pending(conn)) |
| flags |= CS_FL_REOS; |
| h1s->cs->flags |= flags; |
| h1s->cs->data_cb->wake(h1s->cs); |
| } |
| end: |
| if (h1c->task) { |
| h1c->task->expire = TICK_ETERNITY; |
| if (b_data(&h1c->obuf)) { |
| h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN)) |
| ? h1c->shut_timeout |
| : h1c->timeout)); |
| task_queue(h1c->task); |
| } |
| } |
| return 0; |
| |
| release: |
| h1_release(h1c); |
| return -1; |
| } |
| |
| static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short status) |
| { |
| struct h1c *h1c = ctx; |
| int ret = 0; |
| |
| if (!(h1c->wait_event.events & SUB_RETRY_SEND)) |
| ret = h1_send(h1c); |
| if (!(h1c->wait_event.events & SUB_RETRY_RECV)) |
| ret |= h1_recv(h1c); |
| if (ret || !h1c->h1s) |
| h1_process(h1c); |
| return NULL; |
| } |
| |
| static void h1_reset(struct connection *conn) |
| { |
| struct h1c *h1c = conn->ctx; |
| |
| /* Reset the flags, and let the mux know we're waiting for a connection */ |
| h1c->flags = H1C_F_CS_WAIT_CONN; |
| } |
| |
| static int h1_wake(struct connection *conn) |
| { |
| struct h1c *h1c = conn->ctx; |
| int ret; |
| |
| h1_send(h1c); |
| ret = h1_process(h1c); |
| if (ret == 0) { |
| struct h1s *h1s = h1c->h1s; |
| |
| if (h1s && h1s->cs && h1s->cs->data_cb->wake) |
| ret = h1s->cs->data_cb->wake(h1s->cs); |
| } |
| return ret; |
| } |
| |
| /* Connection timeout management. The principle is that if there's no receipt |
| * nor sending for a certain amount of time, the connection is closed. |
| */ |
| static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state) |
| { |
| struct h1c *h1c = context; |
| int expired = tick_is_expired(t->expire, now_ms); |
| |
| if (!expired && h1c) |
| return t; |
| |
| task_destroy(t); |
| |
| if (!h1c) { |
| /* resources were already deleted */ |
| return NULL; |
| } |
| |
| h1c->task = NULL; |
| /* If a stream is still attached to the mux, just set an error and wait |
| * for the stream's timeout. Otherwise, release the mux. This is only ok |
| * because same timeouts are used. |
| */ |
| if (h1c->h1s && h1c->h1s->cs) |
| h1c->flags |= H1C_F_CS_ERROR; |
| else |
| h1_release(h1c); |
| return NULL; |
| } |
| |
| /*******************************************/ |
| /* functions below are used by the streams */ |
| /*******************************************/ |
| |
| /* |
| * Attach a new stream to a connection |
| * (Used for outgoing connections) |
| */ |
| static struct conn_stream *h1_attach(struct connection *conn, struct session *sess) |
| { |
| struct h1c *h1c = conn->ctx; |
| struct conn_stream *cs = NULL; |
| struct h1s *h1s; |
| |
| if (h1c->flags & H1C_F_CS_ERROR) |
| goto end; |
| |
| cs = cs_new(h1c->conn); |
| if (!cs) |
| goto end; |
| |
| h1s = h1s_create(h1c, cs, sess); |
| if (h1s == NULL) |
| goto end; |
| |
| return cs; |
| end: |
| cs_free(cs); |
| return NULL; |
| } |
| |
| /* Retrieves a valid conn_stream from this connection, or returns NULL. For |
| * this mux, it's easy as we can only store a single conn_stream. |
| */ |
| static const struct conn_stream *h1_get_first_cs(const struct connection *conn) |
| { |
| struct h1c *h1c = conn->ctx; |
| struct h1s *h1s = h1c->h1s; |
| |
| if (h1s) |
| return h1s->cs; |
| |
| return NULL; |
| } |
| |
| static void h1_destroy(void *ctx) |
| { |
| struct h1c *h1c = ctx; |
| |
| if (!h1c->h1s || !h1c->conn || h1c->conn->ctx != h1c) |
| h1_release(h1c); |
| } |
| |
| /* |
| * Detach the stream from the connection and possibly release the connection. |
| */ |
| static void h1_detach(struct conn_stream *cs) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1c *h1c; |
| struct session *sess; |
| int has_keepalive; |
| int is_not_first; |
| |
| cs->ctx = NULL; |
| if (!h1s) |
| return; |
| |
| sess = h1s->sess; |
| h1c = h1s->h1c; |
| h1s->cs = NULL; |
| |
| has_keepalive = h1s->flags & H1S_F_WANT_KAL; |
| is_not_first = h1s->flags & H1S_F_NOT_FIRST; |
| h1s_destroy(h1s); |
| |
| if (conn_is_back(h1c->conn) && has_keepalive && |
| !(h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) { |
| /* Never ever allow to reuse a connection from a non-reuse backend */ |
| if ((h1c->px->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR) |
| h1c->conn->flags |= CO_FL_PRIVATE; |
| |
| if (!(h1c->conn->owner)) { |
| h1c->conn->owner = sess; |
| if (!session_add_conn(sess, h1c->conn, h1c->conn->target)) { |
| h1c->conn->owner = NULL; |
| if (!srv_add_to_idle_list(objt_server(h1c->conn->target), h1c->conn)) |
| /* The server doesn't want it, let's kill the connection right away */ |
| h1c->conn->mux->destroy(h1c->conn); |
| else |
| tasklet_wakeup(h1c->wait_event.task); |
| return; |
| |
| } |
| } |
| if (h1c->conn->owner == sess) { |
| int ret = session_check_idle_conn(sess, h1c->conn); |
| if (ret == -1) |
| /* The connection got destroyed, let's leave */ |
| return; |
| else if (ret == 1) { |
| /* The connection was added to the server list, |
| * wake the task so we can subscribe to events |
| */ |
| tasklet_wakeup(h1c->wait_event.task); |
| return; |
| } |
| } |
| /* we're in keep-alive with an idle connection, monitor it if not already done */ |
| if (LIST_ISEMPTY(&h1c->conn->list)) { |
| struct server *srv = objt_server(h1c->conn->target); |
| |
| if (srv) { |
| if (h1c->conn->flags & CO_FL_PRIVATE) |
| LIST_ADD(&srv->priv_conns[tid], &h1c->conn->list); |
| else if (is_not_first) |
| LIST_ADD(&srv->safe_conns[tid], &h1c->conn->list); |
| else |
| LIST_ADD(&srv->idle_conns[tid], &h1c->conn->list); |
| } |
| } |
| } |
| |
| /* We don't want to close right now unless the connection is in error */ |
| if ((h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN|H1C_F_UPG_H2C)) || |
| (h1c->conn->flags & CO_FL_ERROR) || !h1c->conn->owner) |
| h1_release(h1c); |
| else { |
| tasklet_wakeup(h1c->wait_event.task); |
| if (h1c->task) { |
| h1c->task->expire = TICK_ETERNITY; |
| if (b_data(&h1c->obuf)) { |
| h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN)) |
| ? h1c->shut_timeout |
| : h1c->timeout)); |
| task_queue(h1c->task); |
| } |
| } |
| } |
| } |
| |
| |
| static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1c *h1c; |
| |
| if (!h1s) |
| return; |
| h1c = h1s->h1c; |
| |
| if ((cs->flags & CS_FL_KILL_CONN) || (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) |
| goto do_shutr; |
| |
| if ((h1c->flags & H1C_F_UPG_H2C) || (h1s->flags & H1S_F_WANT_KAL)) |
| return; |
| |
| do_shutr: |
| /* NOTE: Be sure to handle abort (cf. h2_shutr) */ |
| if (cs->flags & CS_FL_SHR) |
| return; |
| if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr) |
| cs->conn->xprt->shutr(cs->conn, cs->conn->xprt_ctx, |
| (mode == CS_SHR_DRAIN)); |
| if ((cs->conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) |
| h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN; |
| } |
| |
| static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1c *h1c; |
| |
| if (!h1s) |
| return; |
| h1c = h1s->h1c; |
| |
| if ((cs->flags & CS_FL_KILL_CONN) || (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) |
| goto do_shutw; |
| |
| if ((h1c->flags & H1C_F_UPG_H2C) || |
| ((h1s->flags & H1S_F_WANT_KAL) && h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE)) |
| return; |
| |
| do_shutw: |
| h1c->flags |= H1C_F_CS_SHUTW_NOW; |
| if ((cs->flags & CS_FL_SHW) || b_data(&h1c->obuf)) |
| return; |
| |
| h1_shutw_conn(cs->conn, mode); |
| } |
| |
| static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode) |
| { |
| struct h1c *h1c = conn->ctx; |
| |
| conn_xprt_shutw(conn); |
| conn_sock_shutw(conn, (mode == CS_SHW_NORMAL)); |
| if ((conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) |
| h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN; |
| } |
| |
| /* Called from the upper layer, to unsubscribe to events */ |
| static int h1_unsubscribe(struct conn_stream *cs, int event_type, void *param) |
| { |
| struct wait_event *sw; |
| struct h1s *h1s = cs->ctx; |
| |
| if (!h1s) |
| return 0; |
| |
| if (event_type & SUB_RETRY_RECV) { |
| sw = param; |
| if (h1s->recv_wait == sw) { |
| sw->events &= ~SUB_RETRY_RECV; |
| h1s->recv_wait = NULL; |
| } |
| } |
| if (event_type & SUB_RETRY_SEND) { |
| sw = param; |
| if (h1s->send_wait == sw) { |
| sw->events &= ~SUB_RETRY_SEND; |
| h1s->send_wait = NULL; |
| } |
| } |
| return 0; |
| } |
| |
| /* Called from the upper layer, to subscribe to events, such as being able to send */ |
| static int h1_subscribe(struct conn_stream *cs, int event_type, void *param) |
| { |
| struct wait_event *sw; |
| struct h1s *h1s = cs->ctx; |
| |
| if (!h1s) |
| return -1; |
| |
| switch (event_type) { |
| case SUB_RETRY_RECV: |
| sw = param; |
| if (!(sw->events & SUB_RETRY_RECV)) { |
| sw->events |= SUB_RETRY_RECV; |
| sw->handle = h1s; |
| h1s->recv_wait = sw; |
| } |
| return 0; |
| case SUB_RETRY_SEND: |
| sw = param; |
| if (!(sw->events & SUB_RETRY_SEND)) { |
| sw->events |= SUB_RETRY_SEND; |
| sw->handle = h1s; |
| h1s->send_wait = sw; |
| } |
| return 0; |
| default: |
| break; |
| } |
| return -1; |
| } |
| |
| /* Called from the upper layer, to receive data */ |
| static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1c *h1c = h1s->h1c; |
| size_t ret = 0; |
| |
| if (!(h1c->flags & H1C_F_IN_ALLOC)) |
| ret = h1_process_input(h1c, buf, flags); |
| |
| if (flags & CO_RFL_BUF_FLUSH) { |
| struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res); |
| |
| if (h1m->state != H1_MSG_TUNNEL || (h1m->state == H1_MSG_DATA && h1m->curr_len)) |
| h1s->flags |= H1S_F_BUF_FLUSH; |
| } |
| else if (ret > 0 || (h1s->flags & H1S_F_SPLICED_DATA)) { |
| h1s->flags &= ~H1S_F_SPLICED_DATA; |
| if (!(h1c->wait_event.events & SUB_RETRY_RECV)) |
| tasklet_wakeup(h1c->wait_event.task); |
| } |
| return ret; |
| } |
| |
| |
| /* Called from the upper layer, to send data */ |
| static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1c *h1c; |
| size_t total = 0; |
| |
| if (!h1s) |
| return 0; |
| |
| h1c = h1s->h1c; |
| if (h1c->flags & H1C_F_CS_WAIT_CONN) |
| return 0; |
| |
| while (total != count) { |
| size_t ret = 0; |
| |
| if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC))) |
| ret = h1_process_output(h1c, buf, count); |
| if (!ret) |
| break; |
| total += ret; |
| if (!h1_send(h1c)) |
| break; |
| } |
| |
| return total; |
| } |
| |
| #if defined(CONFIG_HAP_LINUX_SPLICE) |
| /* Send and get, using splicing */ |
| static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count) |
| { |
| struct h1s *h1s = cs->ctx; |
| struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res); |
| int ret = 0; |
| |
| if ((h1m->state != H1_MSG_DATA && h1m->state != H1_MSG_TUNNEL) || |
| (h1m->state == H1_MSG_DATA && !h1m->curr_len)) { |
| h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA); |
| cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_RECV, &h1s->h1c->wait_event); |
| goto end; |
| } |
| |
| if (b_data(&h1s->h1c->ibuf)) { |
| h1s->flags |= H1S_F_BUF_FLUSH; |
| goto end; |
| } |
| |
| h1s->flags &= ~H1S_F_BUF_FLUSH; |
| h1s->flags |= H1S_F_SPLICED_DATA; |
| if (h1m->state == H1_MSG_DATA && count > h1m->curr_len) |
| count = h1m->curr_len; |
| ret = cs->conn->xprt->rcv_pipe(cs->conn, cs->conn->xprt_ctx, pipe, count); |
| if (h1m->state == H1_MSG_DATA && ret > 0) { |
| h1m->curr_len -= ret; |
| if (!h1m->curr_len) |
| h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA); |
| } |
| |
| end: |
| if (conn_xprt_read0_pending(cs->conn)) { |
| cs->flags |= CS_FL_REOS; |
| if (!pipe->data) |
| cs->flags |= CS_FL_EOS; |
| } |
| return ret; |
| } |
| |
| static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe) |
| { |
| struct h1s *h1s = cs->ctx; |
| int ret = 0; |
| |
| if (b_data(&h1s->h1c->obuf)) |
| goto end; |
| |
| ret = cs->conn->xprt->snd_pipe(cs->conn, cs->conn->xprt_ctx, pipe); |
| end: |
| if (pipe->data) { |
| if (!(h1s->h1c->wait_event.events & SUB_RETRY_SEND)) |
| cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_SEND, &h1s->h1c->wait_event); |
| } |
| return ret; |
| } |
| #endif |
| |
| /* for debugging with CLI's "show fd" command */ |
| static void h1_show_fd(struct buffer *msg, struct connection *conn) |
| { |
| struct h1c *h1c = conn->ctx; |
| struct h1s *h1s = h1c->h1s; |
| |
| chunk_appendf(msg, " h1c.flg=0x%x .sub=%d .ibuf=%u@%p+%u/%u .obuf=%u@%p+%u/%u", |
| h1c->flags, h1c->wait_event.events, |
| (unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf), |
| (unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf), |
| (unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf), |
| (unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf)); |
| |
| if (h1s) { |
| char *method; |
| |
| if (h1s->meth < HTTP_METH_OTHER) |
| method = http_known_methods[h1s->meth].ptr; |
| else |
| method = "UNKNOWN"; |
| chunk_appendf(msg, " h1s=%p h1s.flg=0x%x .req.state=%s .res.state=%s" |
| " .meth=%s status=%d", |
| h1s, h1s->flags, |
| h1m_state_str(h1s->req.state), |
| h1m_state_str(h1s->res.state), method, h1s->status); |
| if (h1s->cs) |
| chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p", |
| h1s->cs->flags, h1s->cs->data); |
| } |
| } |
| |
| /****************************************/ |
| /* MUX initialization and instanciation */ |
| /****************************************/ |
| |
| /* The mux operations */ |
| static const struct mux_ops mux_h1_ops = { |
| .init = h1_init, |
| .wake = h1_wake, |
| .attach = h1_attach, |
| .get_first_cs = h1_get_first_cs, |
| .get_cs_info = h1_get_cs_info, |
| .detach = h1_detach, |
| .destroy = h1_destroy, |
| .avail_streams = h1_avail_streams, |
| .used_streams = h1_used_streams, |
| .rcv_buf = h1_rcv_buf, |
| .snd_buf = h1_snd_buf, |
| #if defined(CONFIG_HAP_LINUX_SPLICE) |
| .rcv_pipe = h1_rcv_pipe, |
| .snd_pipe = h1_snd_pipe, |
| #endif |
| .subscribe = h1_subscribe, |
| .unsubscribe = h1_unsubscribe, |
| .shutr = h1_shutr, |
| .shutw = h1_shutw, |
| .show_fd = h1_show_fd, |
| .reset = h1_reset, |
| .flags = MX_FL_HTX, |
| .name = "h1", |
| }; |
| |
| |
| /* this mux registers default HTX proto */ |
| static struct mux_proto_list mux_proto_htx = |
| { .token = IST(""), .mode = PROTO_MODE_HTX, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops }; |
| |
| INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_htx); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |